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ABSTRACT

LLM agents enhanced by tree search algorithms have shown significant perfor-
mance in code generation. However, existing search methods generally operate
directly in the code language space, leading to suboptimal search quality due to
ignoring the reasoning process behind the code. Specifically, two key challenges
remain largely unaddressed: 1) A lack of exploration for the reasoning process,
which is essential for high-reasoning-demand tasks like code generation, and 2)
Inadequate search quality due to the absence of refinement mechanism. In this
paper, we introduce RETHINKMCTS, a framework that explores and refines the
reasoning process for generating code. Specifically, we employ MCTS to search
for the thoughts before code generation and integrate MCTS with a refinement
mechanism called rethink, which incorporates fine-grained code execution feed-
back to refine erroneous thoughts during the search. It ensures the search path
aligns with better reasoning, improving overall search quality. Through extensive
experiments, we demonstrate that RETHINKMCTS outperforms previous search-
enhanced and feedback-enhanced code generation baselines. On the HumanEval
dataset, it boosts the pass@1 of GPT-3.5-turbo from 70.12 to 89.02 and that of
GPT-4o-mini from 87.20 to 94.51. By conducting thought-level exploration and
integrating the rethink mechanism, it significantly enhances the search quality of
the entire search tree1.

1 INTRODUCTION
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Figure 1: Comparison between reflection-based
methods and RETHINKMCTS. Reflection-based
methods would maintain the error in the path,
while RETHINKMCTS would refine erroneous
thoughts and continue along a better path.

Coding has become an increasingly valuable
skill in the digital information era (Liu et al.,
2023). As the capabilities of large language
models (LLMs) continue to impress, research
has increasingly focused on enhancing their
code generation abilities (Luo et al., 2023;
Zheng et al., 2023; Gong et al., 2024). Early ef-
forts concentrate on pre-training or fine-tuning
language models specifically on vast amounts of
code data (Li et al., 2023; Roziere et al., 2023).
With the growing power of general LLMs and
the need for external tools and resources such
as compilers and code libraries in code gener-
ation (Zhou et al., 2024; Kannan et al., 2023),
utilizing general LLMs as agents to improve
code generation through algorithmic design has
emerged as a promising direction (Jain et al., 2023; Ugare et al., 2024).

In research where LLMs are used as agents for code generation, search methods have been widely
applied and have demonstrated remarkable effectiveness (Zhou et al., 2023a; DeLorenzo et al.,
2024). These methods often explore various possibilities through search techniques. Despite achiev-
ing notable results, directly exploring and refining at the code language space—be it at the token

1Resources are available at https://anonymous.4open.science/r/RethinkMCTS-D748/.
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level (Zhang et al., 2023), line level (Kulal et al., 2019) or even the entire program level (Zhou et al.,
2023a)—may limit the effectiveness of the search by overlooking the underlying reasoning process
behind the code.

Specifically, existing search approaches for code generation face two key limitations: 1) The lack of
exploration for the reasoning process for code generation as a high-reasoning-demand task. Studies,
such as chain-of-thought (Wei et al., 2022) and tree of thoughts (Yao et al., 2024), show that explic-
itly modeling the reasoning process leads to better results. Research by Tang et al. (2023) further
highlighted that LLMs are better equipped for semantic reasoning than symbolic reasoning. How-
ever, for code generation, a high-reasoning-demand task (Cook et al., 2018), current work has yet to
explore the thoughts (reasoning) behind the generated code. 2) Inadequate search quality due to the
lack of refinement mechanism. A refinement mechanism holds great potential for search algorithms
in code generation. From the code environment perspective, the detailed feedback obtained from
code execution is highly informative and plays a crucial role in refining erroneous outputs (Wang
et al., 2022; Zhong et al., 2024). Previous work has also shown that LLMs can refine their previous
outputs when provided with external feedback (Zhou et al., 2023b; Gou et al., 2023), making a re-
finement mechanism highly suitable for this task. From the tree search perspective, since the search
tree is typically built incrementally, refining earlier outputs ensures that the exploration remains on
more optimal paths, thereby improving the overall search quality. However, such a refinement mech-
anism has yet to be successfully integrated into code generation search algorithms. Some methods
tried self-reflection to summarize past errors (Zhou et al., 2023a; Shinn et al., 2024), however, as
shown in Figure 1, they would remain erroneous actions in the exploration path, leading subsequent
searches to continue along incorrect trajectories.

In this work, we address these limitations by focusing on the thought process of code generation. We
propose RETHINKMCTS, a framework that explicitly searches reasoning steps before generating
code and refines erroneous thoughts based on code execution feedback. Specifically, RETHINKM-
CTS begins by employing the MCTS algorithm to explore reasoning paths before generating code
and then generates the code based on these reasoning thoughts. After executing the code, we per-
form block-level analysis on the failed public test cases and acquire the verbal execution feedback.
Following this, we introduce a refinement mechanism called rethink, which makes the LLM refine
erroneous thoughts based on the feedback. As shown in Figure 1, this enables the search algorithm
to continue exploring along corrected paths, ultimately enhancing the search tree’s quality. To fur-
ther guide action evaluation in the MCTS search process, we propose a dual evaluation approach to
ensure effective code selection, particularly when public test cases alone are insufficient. Overall,
RETHINKMCTS connects three stages of code generation—reasoning (before), coding (during),
and refining (after)—through its rethink mechanism. Our main contributions can be summarized as
follows:

• Reasoning-to-Code Search Framework for Code Generation: Our framework employs a multi-
step thinking process combined with single-step code generation using Monte Carlo Tree Search
(MCTS) to explore various strategies for code generation. A combination of verbal and scalar
feedback guides the MCTS tree generation. To the best of our knowledge, we are the first to
search and refine the thought process behind code to enhance LLMs on code generation.

• Refining Erroneous Thoughts in MCTS: We introduce the rethink mechanism into MCTS to re-
fine erroneous thoughts using detailed verbal feedback from code execution, allowing the search
to follow higher-quality traces. Different from reflection-based methods that summarize past mis-
takes without changing current erroneous reasoning, our approach directly refines flawed thoughts,
ensuring the search proceeds along more optimal trajectories.

• Introducing Detailed Feedback and Dual Evaluation for Refinement: Block-level analy-
sis is introduced as the detailed feedback of code execution, guiding the refinement of faulty
thought. Additionally, a dual evaluation method—using both public test cases and LLM self-
evaluations—is used to ensure effective code selection, particularly when public test cases alone
cannot fully assess the code’s correctness.
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2 PRELIMINARIES

2.1 PROBLEM FORMULATION

The task is code generation, and we follow the setup from previous work by Zhang et al. (2023).
Specifically, for an LLM-based agent, the input consists of a problem statement P and a set of public
test cases Tpub. The goal is to develop a code generation agent model M that produces the correct
code C ∼ M(P, Tpub) to solve the given problem. Each test case of Tpub is defined by an input-
output pair. To evaluate the effectiveness of the generated code, we also retain a set of private test
cases Tpriv, which remains hidden from the agent during the code generation process. The primary
metric for evaluating the quality of the generated code is whether it can pass these private test cases.

2.2 BLOCK-LEVEL CODE ANALYSIS

Executing buggy code in an executor can only provide standard error information. If the code runs
without crashing but produces incorrect outputs, there is often little to no error feedback available.
However, since code is quite structured (Chevalier et al., 2007), it is possible to extract detailed
execution feedback through a more organized analysis. We follow previous work by Zhong et al.
(2024) to get a block-level code analysis.

In static code analysis, the code could be divided into basic blocks (Larus, 1999). A basic block is
defined as a linear sequence of code containing a single entry point and a single exit point (Flow,
1994; Alfred et al., 2007). We first acquire the control-flow graph (CFG) of the code, and then a
public test case is fed into this graph to produce an execution trace of the test, [B1, B2, ..., Bn],
where each node within the CFG corresponds to a basic block. We execute these blocks one by one
and track all variable state changes in the trace. These blocks and variables are collected and then
provided to the LLM to perform a block-level analysis, assessing whether each block is correct or
faulty. We show an example of the analysis process in the Appendix B.5.

2.3 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that achieves great success in
decision-making tasks (Silver et al., 2016). It combines the exploration of tree search with the
randomness of Monte Carlo simulations to make decisions in complex environments. It initials the
problem description as the root node and moves down the tree by selecting actions (child nodes)
until the leaf node according to the Upper Confidence Bound (UCB) (Silver et al., 2017) algorithm
that balances exploration and exploitation. Then, the MCTS would generate new child nodes for
the chosen leaf node. For the newly generated node, the MCTS would simulate it until the terminal
state and assign an evaluation reward to this node. Finally, the reward is backpropagated along the
way back to the root node. Each node would update its value based on the newly collected reward.

3 RETHINKMCTS

Overview The motivation of RETHINKMCTS is to search and refine the thought process during
code generation based on the feedback from the coding environment, ultimately guiding the agent
toward the correct solution. To achieve this, we take an LLM as the agent to generate the thoughts
and the code, as well as refine the thoughts based on the code execution feedback. We employ
Monte Carlo Tree Search (MCTS) as the search algorithm to balance exploration and exploitation
during the search for thoughts. More importantly, we introduce a rethink mechanism, utilizing
detailed feedback from code execution to refine erroneous thoughts. This allows the search to follow
improved paths and, in turn, enhances the quality of the search. The framework is shown in Figure 2,
and we provide the pseudocode in Algorithm 1 in the Appendix C. Our design has the following key
features:

• Tree Search for Thought Process: We employ tree search to explore the thought process of
writing code. After multiple reasoning steps, code is generated based on the accumulated thoughts.

• Block-Level Analysis Feedback: We use block-level analysis of the code as the fine-grained
feedback from code execution.

3
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from typing import List
def has_close_elements(nums: List[float], t: float) ->
bool:
    """ Check if in given list of numbers, are any two
numbers closer to each other than  given threshold.   
"""

One strategy could be to traverse the array...

Use a nested loop to ...

n = len(nums)
for i in range(n):
  for j in range(i+1, n):
    if nums[i]-nums[j] < t: 
      return True
return False Block-level Analysis

Rethink

Execution

Scalar & Verbal Feedback

Selection
Backpropagation
Rethink

Problem Description
Erroneous Thought

Code

Dual Evaluation

LLM EvaluationPublic Test Case

Verbal FeedbackScalar Reward

from typing import List
def has_close_elements(nums: List[float], t: float) ...

Use a nested loop to compare each pair...

Utilize a more efficient data structure...

Code

Code

Utilize a more efficient ...

if len(nums) < 2:
  return False
nums.sort()
for i in range(len(nums)-1):
  if abs(nums[i]-nums[i+1])
<t:
    return True
return False

Problem Description

Code Code

Correct Thought
Dual Evaluation

Figure 2: Overview of RETHINKMCTS. We use MCTS to explore different thoughts before gener-
ating code. We obtain block-level analysis as verbal feedback through a code executor and use the
verbal feedback from failed test cases to refine the thoughts, thereby improving the overall quality
of the search tree.

• Rethink Mechanism: We introduce a rethink mechanism that leverages feedback from the code
execution to refine and improve the quality of the reasoning process.

• Dual Evaluation: In our evaluation phase, we propose a dual evaluation approach, wherein both
public test cases and LLM evaluation are used to assess the generated code, ultimately helping to
identify high-quality solutions.

These key features are integrated into operations in RETHINKMCTS, selection, expansion, evalua-
tion, verbal feedback, backpropagation, and rethink.

Selection In MCTS, the selection step balances exploration and exploitation by iteratively choos-
ing the actions that are most promising for further expansion. This process continues until a leaf
node is reached. Each node is selected based on a score derived from the number of visits N(s) and
the stored value of the state-action pair Q(s, a), where the state s is the problem description and prior
thoughts, and action a represents the new thought associated with the node. Every node’s retained
value Q(s, a) is the maximum reward obtained by starting in s and taking action a. For scoring,
we employ P-UCB (Silver et al., 2017), an enhanced version of the UCB algorithm, to compute the
overall score for each node:

P-UCB(s, a) = Q(s, a) + β(s) · p(a | s) ·
√
log(N(s))

1 +N(s′)
, (1)

where s′ is the state reached by taking action a in s; N(s) is the visited times of the node; p(a | s)
is the probability that thought a is the next thought given the problem description and previous
thoughts s, which is proposed by the LLM agent. β is the weight for exploration, which depends on
the number of visit of s, defined as

β(s) = log

(
N(s) + cbase + 1

cbase

)
+ c, (2)

where cbase is a hyperparameter; c is the exploration weight.

At each state or node, the selection process chooses the action with the highest P-UCB value, and
repeats this process until a leaf node is reached.

Expansion After selecting a leaf node, the expansion step generates its child nodes to explore
different possible actions. We define the search action space as potential thoughts or strategies
for writing the code. To make use of the feedback obtained from code execution, we handle the
expansion in two scenarios:

• If the current leaf node evaluation has failed public test cases, the expansion step incorporates the
verbal feedback f from these failed test cases into the prompt. The LLM agent then proposes

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

multiple subsequent thoughts z and assigns each thought a reasonableness score e, as represented
by p(a|s) in Eq. (1). The output is based on prior thoughts and the current verbal feedback, i.e.,
[(z1, e1), . . . , (zk, ek)] ∼ p((z, e)(1···k)|s, f).

• If the current leaf node evaluation passes all public test cases, the expansion step directs the
agent to propose subsequent thoughts without additional feedback, i.e., [(z1, e1), . . . , (zk, ek)] ∼
p((z, e)(1···k)|s).

Evaluation The primary goal of the evaluation is to estimate the likelihood that the current node
will successfully complete the final task. Some previous works refer to the evaluation step in MCTS
as “simulation” (Zhou et al., 2023a; Hao et al., 2023), as it typically involves simulating the progres-
sion from the node’s intermediate state to a terminal state and evaluating the terminal state. For the
task of code generation, we search for the thoughts and evaluate with the code generated following
the thoughts, meaning we generate complete code based on the currently produced thoughts and use
the evaluation of the code as the reward.

In code generation, a natural approach is to use the pass rate of public test cases (Zhang et al., 2023)
as the reward. However, the limitation of this method is that public test cases cover only a part of
the test set. When multiple code outputs pass all the public test cases, some may still fail to fully
solve the problem, making it difficult to differentiate between them. Some earlier efforts have tried
to address this by generating additional test cases to cover a broader range of scenarios (Huang et al.,
2023b; Zhou et al., 2023a), but this method is costly and does not guarantee that the generated test
cases are accurate. To overcome this challenge, we propose a dual evaluation approach. Once all
public test cases are passed, we further instruct the LLM to provide a self-assessed comprehensive
score, vllm, to evaluate the code’s correctness in solving the whole problem.

reward =

{
vtest, if 0 ≤ vtest < 1

a× vtest + b× vllm, if vtest = 1
, (3)

where vtest is the pass rate on public test cases; vllm is the LLM’s self-evaluation score. a and b
controls the weight of two parts.

The reward in this context is a scalar value, used to calculate the Q-value at each node and to deter-
mine the score during the selection phase. However, in code generation, the compiler and executor
can return detailed error messages, and various code analysis tools can provide more granular in-
sights into the code. These details about the code are crucial for making modifications but can not
be captured in a scalar reward. Therefore, alongside the scalar reward, we also integrate verbal
feedback.

Verbal Feedback When the generated code fails to pass a public test case, human programmers
typically diagnose the issue by examining details such as variable values during execution. In the
context of solving code generation tasks with search algorithms, relying solely on scalar feedback
based on the pass rate of public test cases lacks detailed information. Therefore, we incorporate
verbal feedback in the MCTS process. Specifically, as described in Sec. 2.2, we perform block-level
analysis when the code fails a public test case and store the resulting information as verbal feedback
in the current node. This feedback is then utilized in both the expansion and rethink phases.

Backpropagation In MCTS, backpropagation refers to the process of updating the Q-values of
all nodes along the path from the current node to the root node using the rewards obtained from the
evaluation. Beyond using scalar feedback to update the values of parent nodes, verbal feedback is
also stored in the current leaf node for use in subsequent expansion and rethink phases.

Rethink When the code fails to pass a public test case, we can obtain block-level analysis as
detailed verbal feedback on the execution. How can we leverage such fine-grained feedback to
produce correct code? We propose to use this feedback to make the LLM “rethink”, meaning to
regenerate the current erroneous thought based on the feedback to avoid generating the incorrect
code. As shown in Figure 2, the leaf node is re-generated by znew ∼ p(z|s, f, zold). It is important
to emphasize that we do not regenerate the parent nodes in the trace for two key reasons: 1) The
parent nodes have already accumulated rewards over multiple rounds of evaluation from all their
child nodes, and regenerating them would invalidate the previously gathered rewards. 2) The parent

5
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node has already gone through its own rethink process. This means that either the parent node did
not encounter failing public test cases during its evaluation or has already been refined through the
rethink process. Therefore, we do not revisit the parent nodes when performing the rethink on a leaf
node.

The advantage of introducing rethink is twofold. From the code generation perspective, rethink
refines the reasoning process behind writing code, thus would ultimately lead to better code. From
the MCTS perspective, it refines the current action or current node. Since the MCTS tree is built
incrementally, improving the quality of the current action allows the LLM to explore more optimal
paths in the vast search space, thereby enhancing the overall search quality of the tree. Through the
rethink mechanism, we seamlessly integrate the process of refining the reasoning of code generation
with the MCTS search process.

4 EXPERIMENT SETTINGS

Datasets We evaluate RETHINKMCTS and baseline methods on two widely used benchmark
datasets: APPS (Hendrycks et al., 2021) and HumanEval (Chen et al., 2021). The APPS dataset
contains three levels of difficulties: introductory, interview, and competition. We evaluate all the
methods on the formal 100 problems of each difficulty. Since the APPS dataset does not distin-
guish between public and private test cases, we split each program’s test cases evenly into two sets,
following the approach of Zhang et al. (2023). The first set is used as the public test cases for the
algorithms to optimize the pass rate, and the second set is used as the private test cases for evaluating
the generated programs. We use pass rate and pass@1 as the evaluation metrics for code correctness
following Zhang et al. (2023). Pass rate is the average percentage of private test cases successfully
passed by the generated code across all problems, and pass@1 measures the percentage of problems
where the generated programs pass all private test cases, which is the most widely adopted metric in
the literature of code generation (Austin et al., 2021; Chen et al., 2021; Dong et al., 2023).

Baselines To illustrate the effectiveness of RETHINKMCTS, we compare two kinds of code gen-
eration methods. The first kind is feedback-enhanced, which uses the code execution feedback to
refine codes iteratively: LDB (Zhong et al., 2024), Reflexion (Shinn et al., 2024). The second kind
is tree search-enhanced methods: PG-TD (Zhang et al., 2023), ToT (Yao et al., 2024), LATS (Zhou
et al., 2023a) and RAP (Hao et al., 2023).

Implementation We pick GPT-3.5-turbo and GPT-4o-mini as the backbone models to compare
different algorithms. For search-enhanced methods, including RETHINKMCTS, we set the maxi-
mum number of children of any node to be 3. For MCTS-based methods, we set the hyperparameters
in Eq. (2) cbase to be 10 and c to be 4 following previous work by Zhang et al. (2023). And we set
the a and b in Eq. (3) to be (0.8, 0.2) and we compare performances under different settings in
Sec. 5. We set the maximum number of rollouts or simulation times to be 16. For efficiency, fol-
lowing Zhang et al. (2023), we cache all the codes generated during tree search and finally output
the one with the highest evaluation score. For LDB, we set the maximum number of debug times
to be 10, as in the original paper (Zhong et al., 2024). For ToT, we define the search action as
thought and prompt each node to generate a complete code based on the node’s thoughts, similar to
RETHINKMCTS, but without incorporating detailed feedback or the rethink mechanism. Addition-
ally, the original ToT is designed to handle simple problems that can be clearly divided into discrete
steps. Here, we adapt it for code generation in a manner similar to RETHINKMCTS.

5 RESULTS

Overall Performance We present the overall performance in Table 1, where we can see that RE-
THINKMCTS outperforms all baseline models across both datasets. Additionally, by comparing
them with the original base model, both feedback-enhanced and tree search-enhanced methods
show significant performance improvements, demonstrating the effectiveness of exploring differ-
ent strategies and using detailed feedback from code execution. Notably, the ToT baseline achieves
impressive performance, demonstrating the advantage of searching for the reasoning process during
the coding process. However, ToT is a general framework that is designed originally for simpler
problems like Game of 24 (Yao et al., 2024), which could be clearly divided into discrete steps
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Pass Rate (%) Pass@1 (%)
APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

GPT-3.5-turbo Base 50.43 40.57 23.67 29 19 9 70.12
PG-TD 60.89 50.80 26.50 40 25 8 76.22
ToT 63.21 63.49 26.30 37 33 11 84.15
LATS 54.06 45.86 21.83 36 20 7 79.88
RAP 43.22 43.32 22.83 21 14 8 71.95
LDB 56.68 46.78 21.00 35 22 8 81.09
Reflexion 53.20 45.58 17.50 35 21 7 71.95
RETHINKMCTS 67.09 68.65 29.50 45 38 13 89.02

GPT-4o-mini Base 56.56 52.40 35.00 35 29 16 87.20
PG-TD 65.87 70.37 43.16 45 46 27 91.46
ToT 74.34 71.83 42.50 55 47 27 93.29
LATS 69.46 67.65 35.83 50 45 19 93.29
RAP 64.24 57.25 37.67 39 32 20 87.20
LDB 60.64 60.78 40.33 40 38 23 90.85
Reflexion 60.65 56.87 38.00 40 31 18 90.85
RETHINKMCTS 76.60 74.35 42.50 59 49 28 94.51

Table 1: Performances of RETHINKMCTS and baselines on APPS and HumanEval. RETHINKM-
CTS achieves the best performance across all the datasets with the maximum number of rollouts for
tree search algorithms being 16.
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Figure 3: Ablation study of block-level analy-
sis (blockInfo), rethink mechanism, verbal feed-
back (VF), and self-evaluation with GPT-3.5-
turbo as the backbone.
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Figure 4: Performance comparison between dif-
ferent search granularity. For advanced models
like GPT-3.5-turbo, it’s better to explore at the
thought level.

and search for each step, essentially different from our idea of searching and refining the reasoning
thoughts or strategies of writing code. It does not utilize feedback during the search process. Its
search quality is inferior to RETHINKMCTS, underscoring the importance of feedback in refining
the thought process.

Ablation Study We conduct ablation studies to remove each of our model’s components and
reevaluate them. For the verbal feedback component, we compare two variants: the first variant
removes verbal feedback entirely, relying only on the scalar reward (w/o VF), while the second
replaces verbal feedback with standard error messages or incorrect code outputs, omitting block-
level analysis information (VF w/o blockInfo). The results using GPT-3.5-turbo as the backbone
model are shown in Figure 3, and the results on GPT-4o-mini are presented in Appendix A. The
chart shows that each module contributes to the model’s overall performance. Verbal feedback has
the most significant impact, as the rethink mechanism we proposed is primarily based on feedback
from code execution. Without this feedback, providing instructions for rethink alone would not be
sufficient for the model to refine thoughts effectively. This result highlights that detailed feedback
from code execution is the key to refining erroneous reasoning in the context of code generation.
In fact, previous studies (Huang et al., 2023c) have noted that LLMs lack the ability to self-correct
their reasoning without external feedback.

Additionally, we can see that for the HumanEval dataset, block-level analysis information signifi-
cantly affects performance (89.1 −→ 86.6), while for the APPS dataset, the impact is smaller. We
hypothesize that this is due to the fewer public test cases in HumanEval compared to APPS (average
2.8 (HumanEval) vs. 27.52 (APPS Introductory) public test cases), making fine-grained analysis of
each test case crucial for rethink to refine erroneous thought in HumanEval. In contrast, the ample
number of public test cases in APPS Introductory allows the model to find the issues with only stan-
dard error information. This is also why dual evaluation is crucial for HumanEval, as the limited
number of public test cases is insufficient to fully assess the quality of a code snippet. In such cases,
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Pass Rate (%) Pass@1 (%)
APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

Direct Evaluation 76.60 74.34 42.50 59 49 28 94.51
Self-generated Tests 77.32 75.80 47.23 59 44 28 93.29

Table 2: The performance comparison between using Direct Self-evaluation and Self-generating test
evaluation.
it becomes necessary to introduce LLM to reevaluate the code. Finally, the rethink mechanism we
proposed significantly enhances the results. This improvement stems from that rethink enabling the
use of fine-grained block-level analysis in verbal feedback, effectively correcting logical errors in
the reasoning process.

Search Granularity Study RETHINKMCTS conducts a thought-level search during code gen-
eration. Here, we compare the action spaces for MCTS, specifically examining different levels of
search granularity: token, line, code, and thought. The experimental results with GPT-3.5-turbo as
backbone are presented in Figure 4, and the results on GPT-4o-mini are presented in Appendix A.

As shown in the figure, the thought-level search is more effective in finding viable code compared
to token, line, and code-level searches. This demonstrates that for advanced LLMs like GPT-3.5-
turbo, exploring the reasoning process is beneficial (Zhang et al., 2024b; Huang & Chang, 2022).
Additionally, we observe that token-level searching performs better than line and code-level search-
ing. This is due to the fact that with a limited number of search iterations, token-level searches
allow fewer constraints on the early tokens, thus uncovering more possibilities compared to line and
code-level searches. Finally, although thought-level search yields the best results among different
granularities, its effectiveness is further enhanced in RETHINKMCTS by introducing detailed feed-
back and rethink mechanism, making the search over thoughts in the code generation process even
more effective.

Effectiveness of Rethink The goal of rethink is to improve the quality of the thought search by
refining error thoughts, thereby enhancing the search quality within the same number of rollouts. To
validate the effectiveness of rethink, we compare the performance between increasing the number
of rethink operations and increasing the number of rollouts without applying rethink, while keeping
the total number of rollouts consistent. The results are shown in Figure 5.
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Figure 5: Performance comparison between rethink
more times and more rollouts without rethink. re-
think is more effective than increasing rollouts.

The figure shows that both increasing the
number of rethink operations and increasing
the number of rollouts both enhance the per-
formance of code generation. This is ex-
pected as more extensive exploration raises
the probability of finding the correct code.
However, increasing rethink times is better
than simply increasing rollouts. From a tree
search perspective, without the rethink mech-
anism, erroneous thoughts would persist in
the trace, causing the following nodes to fol-
low incorrect reasoning paths, which makes
it challenging to ensure the quality of the en-
tire reasoning trace. The rethink mechanism

refines these flawed thoughts based on the code feedback, enabling subsequent exploration along a
better path and thus improving the overall quality of the tree search.

Method APPS Intro. HumanEval

W/O RETHINK 10.04 48.30
RETHINKMCTS 15.60 53.29

Table 3: The success rate comparison of the
searched codes between with and without
the rethink mechanism.

Furthermore, we compare the pass rate on public test
cases of all the generated codes for the entire MCTS
tree, with and without the rethink operation, since
only public test cases are available during the search.
The results are presented in Table 3. We can see that
the rethink operation increases the proportion of ef-
fective code found in the tree. This highlights how
refining erroneous thoughts enables the tree to focus
more on correct paths, leading to better outcomes.
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(a, b)
Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

(0.8, 0.2) 76.6 74.3 42.5 59 49 28 94.5
(1.0, 0.2) 76.9 76.4 43.5 60 53 27 92.7
(1.0, 1.0) 78.8 75.2 40.5 60 54 24 91.5

Table 4: Performance comparison under different reward weights. The (1.0, 0.2) and (1.0, 1.0)
configurations make the nodes that achieve a pass rate of 1.0 on public test cases receive a score
higher than 1.0, whereas the (0.8, 0.2) configuration keeps all node evaluations between 0∼1.

Self-evaluation vs. Self-generating Unit Tests Given the limited coverage of public test cases,
we propose a dual evaluation approach. Once the code passes all public test cases, we supplement it
with a comprehensive self-evaluation score of the code from the LLM. In this section, we compare
self-evaluation with the alternative approach of self-generating unit tests. In the latter approach,
when the code passes the public test cases, we have the LLM generate additional test cases and get a
new pass rate on these tests. The combined results serve as a comprehensive evaluation of the code.
Experimental results are shown in Table 2.

As the table demonstrates, while self-generating unit tests improve the pass rate on test cases, they
do not improve the pass@1 metric. This is because self-evaluation directly assesses the code after it
passes the public test cases, scoring it based on how well it meets the problem’s requirements. As a
result, it provides a more accurate indication of the code’s ability to address the entire problem. In
contrast, self-generating unit tests focus on creating additional tests, which emphasize the test suite
rather than the code itself. There are two potential reasons for this: 1) Self-generating unit tests
primarily identify patterns in the existing tests and generate a set of tests that better match the test
suite. This can enhance the pass rate by filtering for code that matches these patterns, but it doesn’t
necessarily identify the mismatch between the code and the problem requirement. 2) The generated
tests may not always be correct (Huang et al., 2023b), which can mislead the code’s modification
process and the subsequent search direction, potentially steering it away from valid solutions.

Study on Reward Weights We conduct experiments to investigate the impact of reward weights
in Eq. (3) of Sec. 3. The results are shown in Table 4. It is evident that (a, b) significantly impacts
the performance of RETHINKMCTS, highlighting the importance of LLM self-evaluation. The self-
evaluation reward is only applied when the code achieves a pass rate of 1 on public test cases, so
these different configurations have distinct implications. With the (0.8, 0.2) configuration, the code is
given a baseline score of 0.8, and the LLM’s evaluation score is used to distinguish between different
codes. This allows for situations where the total score of code that passes all public test cases could
be lower than that of code with a pass rate below 1, but only when the LLM’s self-evaluation score
is particularly low. Here, the LLM’s self-evaluation score supplements the incomplete evaluation of
public test cases. The main goal of the configurations (1.0, 0.2) and (1.0, 1.0) is to ensure that the
overall score of codes with a pass rate of 1 is higher than 1. The advantage of this approach is that
the final output code will most likely maintain a pass rate of 1 on public test cases, leading to better
overall performance on the APPS dataset. However, since RETHINKMCTS is based on tree search,
a node with a pass rate of 1 on public test cases doesn’t always indicate a path worth exploring.
Conversely, nodes with a pass rate below 1 may still warrant further exploration if their reasoning
process is promising. Unfortunately, the (1.0, 0.2) and (1.0, 1.0) weights prematurely discard such
paths, leading to poorer performance on the HumanEval and APPS Competition datasets.

6 RELATED WORK

LLMs for Code Generation Large language models (LLMs) have been widely applied and de-
veloped in the field of code (Nam et al., 2024; Huang et al., 2023a; Li et al., 2024; He et al., 2024).
Research on LLMs for code generation can be broadly divided into two categories: The first cate-
gory focuses on fine-tuning LLMs, specifically on code data (Luo et al., 2023; Li et al., 2023; Fried
et al., 2022; Roziere et al., 2023), which makes them to get a deep understanding of code syntax,
semantics, and structures. Strong foundational models, like GPT-3.5-turbo and GPT-4, have also
demonstrated impressive performance on code generation tasks due to their advanced pre-training
on code data (Madaan et al., 2024). The second category is to use LLMs as agents (Ishibashi &
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Nishimura, 2024; Zhang et al., 2024a; Jin et al., 2024). They usually design a procedure for gener-
ating codes and make LLMs play different roles. LDB proposed by Zhong et al. (2024) takes the
LLM as a debugger and utilizes block-level decomposition to locate bugs, finally enhancing the code
generation performance by iteratively debugging. PG-TD proposed by Zhang et al. (2023) utilizes
Monte Carlo Tree Search (Browne et al., 2012) methods combined with the probabilistic output of
LLMs to achieve token-level search for code generation. Reflexion proposed by Shinn et al. (2024)
takes the LLM to generate reasoning, action, and reflections to make the LLM learn from past
experience, which achieved impressive performance on code generation problems. Although they
achieve great performance, these methods fail to build a process of devising the reasoning behind
writing code for such a high-reasoning-demand task, which is the focus of our work.

Tree Search-enhanced LLMs Tree search methods can improve the reasoning performance of
LLMs by exploring various possible paths (Wang et al., 2024; Meng et al., 2024; Yuan et al., 2024).
By designing different action spaces, LLMs can explore at different levels (Zhang et al., 2023;
Hu et al., 2024; Hao et al., 2023). PG-TD (Zhang et al., 2023) explores at the token level using the
probability distribution of tokens from the Transformer (Vaswani, 2017) architecture, achieving fine-
grained search for the correct code. Tree of Thoughts (ToT) (Yao et al., 2024) builds on the Chain-
of-Thoughts (CoT) (Wei et al., 2022) by breaking down the steps of a task and exploring the thought
for each step. With increasing research attention, more methods are being developed to better guide
LLMs in performing tree search explorations. LATS (Zhou et al., 2023a) combines tree search with
self-reflection. It searches at the code level for code generation and then summarizes the failures as
reflections, storing them in memory for future generations. The error summarization is the verbal
feedback of their method. Our approach takes a different path. Instead of merely summarizing or
reflecting on errors, we employ block-level analysis as verbal feedback. This feedback is then used
to regenerate MCTS nodes (refining erroneous thoughts), thus enhancing the overall quality of the
trace by systematically refining incorrect reasoning within it. TS-LLM (Feng et al., 2023) proposes
a tuning-based method that trains a value function to guide the decoding process. By contrast, we
focus on tuning-free algorithms that enhance the code generation capabilities of LLMs in an off-the-
shelf manner. While these methods successfully enhance the task-solving abilities of LLMs, they
may not fully harness the potential of tree search in code generation tasks. This is largely because
many of these approaches focus on token- or code-level searches, overlooking the deeper reasoning
process that is critical for tasks like code generation, which require intricate reasoning. Additionally,
the detailed execution feedback provided by the code environment has great potential to guide the
search process, but these methods fall short of effectively integrating this feedback into the search.
In this paper, we focus on leveraging detailed feedback from the code execution environment to
guide and refine the thought process, thereby improving the overall quality of exploration.

7 CONCLUSION

In this work, we propose RETHINKMCTS, the first framework designed to search and refine
thoughts for code generation. Unlike previous tree search-enhanced methods, RETHINKMCTS
explores different coding strategies by navigating through the reasoning process and introduces a
feedback-based refinement mechanism to enhance search quality. This approach effectively utilizes
execution information to construct verbal feedback, thereby refining erroneous reasoning steps. Ad-
ditionally, in the evaluation phase, we introduce a dual evaluation method to address the incomplete
coverage of public test cases. Through comparative experiments on the APPS and HumanEval
datasets, we demonstrate that RETHINKMCTS achieves the best performance, demonstrating its
ability to effectively generate high-quality code by searching and refining the reasoning process.
Beyond code generation tasks, RETHINKMCTS provides a general approach for enhancing task
performance through a search-and-refinement reasoning process, making it have the potential to be
applied to other domains handled by LLM agents, such as mathematical problem-solving and tool
usage scenarios.
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APPENDIX

A ADDITIONAL RESULTS

This section presents some additional experiment results.

Ablation Study Here, we present the results of the ablation study using GPT-4o-mini as the back-
bone model, as shown in Figure 6. It is clear that the rethink operation and verbal feedback remain
the most significant contributors to our model’s performance. Notably, the rethink mechanism ex-
hibits even stronger effects with GPT-4o-mini than with GPT-3.5-turbo, likely due to the model’s
enhanced ability to effectively utilize feedback and make refinement.

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink90.0
91.2
92.4
93.6
94.8

Hu
m

an
Ev

al

94.5

92.7 92.7
91.5

92.7

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink50.0

52.4

54.8

57.2

59.6

AP
PS

 In
tro

. 59
57 57

53 52

Figure 6: Ablation study of block-level analy-
sis (blockInfo), rethink mechanism, the verbal
feedback (VF) and self-evaluation with GPT-
4o-mini as the backbone.
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Figure 7: Performance comparison between dif-
ferent search granularity. For advanced model
like GPT-4o-mini, it’s better to explore at the
thought level.

Search Granularity Study We present the results of the search granularity study using GPT-4o-
mini as the backbone model, shown in Figure 7. It is evident that the differences across granularities
are smaller on the HumanEval dataset, likely due to its relatively low overall difficulty. However,
on the APPS dataset, the advantage of thought-level search becomes much more pronounced, espe-
cially at the highest “competition” difficulty level. This suggests that for more complex problems,
exploring the thought process and reasoning is beneficial.

B PROMPTS

In this section, we present the prompts used when an LLM acts as an agent to perform various
operations.

B.1 EXPANSION PROMPT

First, we discuss the prompts for the Expansion step in the MCTS process. There are two sets of
prompts: one set is used to generate new thoughts based on the problem description and previous
thoughts when there is no feedback;

{problem statement}

{thoughts}
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Above is a problem to be solved by Python program.

I need you analyze this problem and provide strategies . I need you to output {width} possible thoughts and strategies .

Remember each only contain one possible strategy of the problem. Please wrap your response into a JSON object that contains
keys ‘Thought−i‘ with i as the number of your thought , and key ‘Reasonableness‘ with the Reasonableness of each thought ,
which should between 0˜1 and the sum should be 1.

The JSON should be a ** list of dicts **, the dicts are splited with comma ’,’.
Example Answers:
[

{”Thought−1”:” We could use the print function to finish the task in one line : print (2 + 3) ”, ”Reasonableness”: 0.7},
{”Thought−2”:” We should calculate the problem by setting a=2+3, and then print (a) ”, ”Reasonableness”: 0.29},
{”Thought−3”:” The problem can’t be solved by Python .”, ”Reasonableness”: 0.01}

]

The other set is used when the generated code contains errors and verbal feedback is provided. In
this case, the LLM uses the verbal feedback to generate thoughts that avoid such errors.

{problem statement}

{thoughts}

‘‘‘ python
{generated code}
‘‘‘

{verbal feedback}

I need you to analyze and provide new thoughts that can lead to the correct solution code.

The goal is that the thoughts could lead to the code that not only avoids the current error but also solve the problem in a
way that handles other potential test cases that we haven’t encountered yet . I need you to output {self .width} possible
thoughts and strategies . Remember each only contain one possible strategy of the problem.

Please wrap your response into a JSON object that contains keys ‘Thought−i‘ with i as the number of your thought , and key ‘
Reasonableness‘ with the Reasonableness of each thought , which should between 0˜1 and the sum should be 1.

The JSON should be a ** list of dicts **, the dicts are splited with comma ’,’.

Example Answers:
[

{”Thought−1”:” We could use the print function to finish the task in one line : print (2 + 3) ”, ”Reasonableness”: 0.7},
{”Thought−2”:” We should calculate the problem by setting a=2+3, and then print (a) ”, ”Reasonableness”: 0.29},
{”Thought−3”:” The problem can’t be solved by Python .”, ”Reasonableness”: 0.01}

]

B.2 CODE GENERATION PROMPT

We present the prompt we use to instruct the LLM to generate code following previous
thoughts.

{problem statement}

{thoughts}

Complete the Python program to solve the problem. Remember to contain the complete program including all the imports and
function header in your response .

Also some thoughts are included that you can refer to and build upon when writing the code.

Answer with the code ONLY. No other explanation or words attached !

B.3 EVALUATION PROMPT

Besides the normal evaluation on the public test cases, we also develop an LLM-based self-
evaluation when the public test cases are all passed. Here we present the prompts.

{problem statement}
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{thoughts}

‘‘‘ python
{generated code}
‘‘‘
Above is a Python code problem with the thoughts and code to solve the problem. The code could pass all the example test
cases , however, it may or may not be completely correct .

Please evaluate and return the correctness score in range [−1, 1].

Evaluate the correctness of the code and give only ONE evaluation score .

The code’s correctness is whether it can pass all the possible unseen test cases of the problem, not just the given ones.

Example Answers:
{” evaluation ”: −0.5, ” explanation ”: The code is far from correct for solving the problem.}
{” evaluation ”: 0.1, ” explanation ”: The code is not the correct solution but can pass some simple test cases .}
{” evaluation ”: 0.85, ” explanation ”: The code can pass most test cases while may fail on some corner cases .}
{” evaluation ”: 1.0, ” explanation ”: The generated code is the correct solution that can pass all the possible test cases and
strange corner cases too.}

B.4 RETHINK PROMPT

When the generated code following some thoughts doesn’t pass some public test cases, we would
use the block-level analysis to form the verbal feedback and use it to refine the previous thought,
a.k.a, rethink. Here we present the prompt for this operation.

{problem statement}

{thoughts}

‘‘‘ python
{generated code}
‘‘‘

{verbal feedback}

Based on your previous thoughts and the new experience , please provide a new Thought to replace the previous thought . This
new thought should avoid the mistake .

Remember that you only need to provide the thought (one or two sentences ) to solve the problem, not the code.

B.5 AN EXAMPLE OF VERBAL FEEDBACK

The verbal feedback we constructed contains the detailed block-level analysis of the code. Here we
present an example of it.

(Problem and Code)
import math
def largest divisor (n: int ) −> int:

””” For a given number n, find the largest number that divides n evenly , smaller than n
>>> largest divisor(15)
5
”””
for i in range( int (math. sqrt (n)) , 0, −1):

if n % i == 0 and i < n:
return i

return 1 # In case n is 1, return 1 as the largest divisor

(Execution Feedback)
The code above fails the given unit test :
assert largest divisor (15) == 5
# Current Execution Output:
3.

(Block−level Analysis )
Here is the code execution trace block by block with the intermediate variable values . Please explain the execution FOR
EACH BLOCK and answer whether this block is correct or not . If not , give an explanation on what is wrong. Please wrap your
response into a JSON object that contains keys ‘block‘ with the name of each block , key ‘ correct ‘ with value False or True,
and key ‘ explanation ‘ with an explanation on the bug.
Example Answers:
{”block”: ”BLOCK−1”, ”correct”: ”True”, ” explanation ”: ”The block initializes variable ‘a‘ and ‘b‘.”}
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{”block”: ”BLOCK−2”, ”correct”: ”False”, ” explanation ”: ”The block is incorrect because the code does not add the two
integers together , but instead subtracts the second integer from the first . To fix this issue , we should change the operator
from ‘−‘ to ‘+‘ in the return statement . This will ensure that the function returns the correct output for the given input

.”}
[BLOCK−0]

# n=15
for i in range( int (math. sqrt (n)) , 0, −1):
# n=15 i=3

[BLOCK−1]
# n=15 i=3
if n % i == 0 and i < n:
# n=15 i=3

[BLOCK−2]
# n=15 i=3
return i
# n=15 i=3 ret =3

# LLM−analysis
‘‘‘ json
[

{”block”: ”BLOCK−0”, ”correct”: ”True”, ” explanation ”: ”The block initializes the loop with the correct starting point ,
which is the integer part of the square root of n .”},
{”block”: ”BLOCK−1”, ”correct”: ”False”, ” explanation ”: ”The block checks if 3 is a divisor of 15, which is correct , but
we are not immediately returning the largest divisor . The loop continues , and the next iteration will check smaller

values of i .”},
{”block”: ”BLOCK−2”, ”correct”: ”False”, ” explanation ”: ”The block incorrectly returns 3 instead of the larger valid
divisor . Since the loop searches from the square root downwards, it should continue checking until it finds the next
valid divisor , which is 5. The return statement needs to occur outside of this loop and only when the largest divisor is
found.”}

]
‘‘‘

C ALGORITHM

We present the detailed procedure of RETHINKMCTS in pseudocode in Algorithm 1.
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Algorithm 1 The RETHINKMCTS algorithm.
Require: root: the problem description; c: P-UCB exploration parameter; k: the maximum number of chil-

dren of any node; a, b: the reward weights of the pass rate and the LLM evaluation.
1: program dict = DICTIONARY()
2: verbal feedback f = EMPTY
3: for i← 1, 2, . . . ,max rollouts do
4: node← root
5: # Selection
6: while |node.children| > 0 do
7: node← P UCB SELECT(node.children, c)
8: end while
9: # Expansion

10: next thoughts← TOP K(node, k)
11: for next thought ∈ next thoughts do
12: next state← CONCAT(node, next thought)
13: Create a node new node for next state
14: Add new node to the children of node
15: end for
16: # Evaluation
17: C ← GENERATE(node)
18: vtest, f ← GET PASS RATE(p)
19: vllm, f ← GET LLM EVAL(p)
20: program dict[C] = r = a ∗ vtest + b ∗ vllm

21: if vtest = 1 then
22: program dict[C] = r = a ∗ vtest + b ∗ vllm

23: else
24: program dict[C] = r = vtest

25: end if
26: # Backpropagation
27: Update and the values of node and its ancestors in the tree with r
28: # Rethink
29: if vtest ̸= 1 then
30: node.thought = RETHINK(node, f)
31: next thoughts = RETHINK NEXT(node, k, f)
32: C = RE-GENERATE(node)
33: r = RE-EVALUATION(C)
34: program dict[C] = r
35: end if
36: end for
37: return program in program dict with the highest reward
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