
Augmenting Bayesian Optimization with Preference-based Expert Feedback

Daolang Huang 1 Louis Filstroff 2 Petrus Mikkola 1 Runkai Zheng 3 Milica Todorovic 4 Samuel Kaski 1 5

Abstract
Bayesian optimization (BO) is a well-established
method to optimize black-box functions whose
direct evaluations are costly. In this paper, we
tackle the problem of incorporating expert knowl-
edge into BO, with the goal of further acceler-
ating the optimization, which has received little
attention so far. We design a multi-task learning
architecture for this task, with the goal of jointly
eliciting the expert knowledge and minimizing
the objective function. In particular, this allows
for the expert knowledge to be transferred into
the BO task. We introduce a specific architecture
based on Siamese neural networks to handle the
knowledge elicitation from pairwise queries. Ex-
periments on various benchmark functions show
that the proposed method significantly speeds up
BO even when the expert knowledge is biased.

1. Introduction
Bayesian optimization (BO) (Jones et al., 1998; Brochu
et al., 2010) has become a well-established class of methods
to optimize black-box functions, with applications in hyper-
parameter tuning (Snoek et al., 2012), chemistry (Hase et al.,
2018), and material science (Zhang et al., 2020), to cite only
a few. Formally, let f : X → R be a black-box function
defined over some compact space X ⊂ Rd. We assume that
evaluating f at some point x is possible, but expensive. The
goal is to find the global optimum x⋆, defined as

x⋆ = argmin
x∈X

f(x). (1)

Each domain-specific BO problem naturally has its domain

1Department of Computer Science, Aalto University, Finland
2ENSAI, CREST, France 3School of Data Science, The Chi-
nese University of Hong Kong (Shenzhen), China 4Department
of Mechanical and Materials Engineering, University of Turku,
Finland 5Department of Computer Science, The University
of Manchester, UK. Correspondence to: Daolang Huang
<daolang.huang@aalto.fi>.

The Many Facets of Preference Learning Workshop at the In-
ternational Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA, 2023. Copyright 2023 by the author(s).

experts with their own knowledge of the problem, i.e., often
tacit knowledge about the shape of f or where the global
optimum might lie. Moreover, the cost of asking the expert
can be significantly cheaper than the cost of obtaining the
value of f(x) in many applications. However, leveraging
that expert knowledge in order to speed up BO has only
started to receive attention in the literature very recently (Li
et al., 2020; Ramachandran et al., 2020; Souza et al., 2021;
Hvarfner et al., 2022), and none of these works properly
discuss how to obtain such knowledge. The reason may be
that eliciting knowledge from humans is notoriously chal-
lenging. Indeed, humans can be bad at evaluating absolute
magnitudes, but can be much better at comparing instances
(Millet, 1997; Shah et al., 2014). This has been utilized
for preference learning through pairwise comparisons of
items (Chu & Ghahramani, 2005), and has been expanded
to an online learning setting (Brochu et al., 2008; González
et al., 2017) to find the optimum of the preferences. Even
though this approach has recently been shown to work in
expert knowledge elicitation (Mikkola et al., 2020), there is
still a need for methods to elicit knowledge from the expert
with the goal of performing BO for f . Transferring that
knowledge into the BO task also represents a challenge.

In this paper, we propose an expert knowledge-augmented
BO method. We formulate the problem as a multi-task learn-
ing (MTL) problem (Caruana, 1997), and propose to solve
it with a Bayesian neural network-based architecture whose
goal is to learn both f and the expert knowledge. The key
insight is to leverage statistical strength across the latent rep-
resentations of the two tasks, which both are about the same
ground truth f , but imperfect in different ways. We operate
by first querying the expert, and then initialize the BO with
that knowledge, which leads to a speed-up for the BO. For
expert knowledge elicitation, we introduce a novel prefer-
ence learning method based on Siamese neural networks.
We call it a preferential Bayesian neural network (PBNN);
it not only learns the instance preference relationship, but is
also capable of capturing the latent function shape.

Experiments demonstrate that PBNN leads to better per-
formance than existing GP-based approaches with limited
numbers of data acquisition steps. More importantly, we
show that the standard BO optimization can be significantly
sped-up when the elicited expert knowledge is transferred
to the BO surrogate.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 1. (a) A simple neural network architecture to handle preference learning. The neural network outputs the probability of ŷ to be 1
given x and x′, but fails at capturing the shape of the utility function of the expert, g. (b) The proposed architecture, based on a Siamese
neural network. It also solves the preference learning problem, but each sub-network outputs a real-valued latent representation that we
interpret as g(x). The network is able to learn the shape of g, up to a monotonic transformation.

2. Preferential Bayesian Neural Network
A first goal is to elicit the knowledge of the domain expert.
We model it as a function, denoted by g, which represents
their beliefs. We can interpret g as a biased version of f . By
querying pairwise comparisons from the expert, we build
a probabilistic surrogate of g. Note that g corresponds to
the utility function of the expert, which is a well-studied
concept in economics (Rader, 1963).

As motivated in the introduction, it is much easier for hu-
mans to compare two items than to give the absolute magni-
tude of one item (for instance, it is extremely difficult for a
material scientist to assess the total energy of a simulated
material model, but comparing the stability between two
material configurations is easier). Hence, we assume that
the expert cannot directly return the value g(x) for a certain
x. Instead, given a pair of covariates [x,x′] ∈ X × X , we
assume that the expert is able to return a preference label
ŷ ∈ {0, 1}, with value ŷi = 1 if g(x) ≥ g(x′), and ŷi = 0
if g(x) < g(x′). We will sequentially collect a dataset
Dg = {(xi,x

′
i, ŷi)}Mi=1, which is in turn used to build a

probabilistic surrogate of g. Note that based on the ordered
data, we will be able to learn about the shape of g, but
not about the actual magnitude and scale, meaning that any
monotonic transformation of g is an equivalent solution.

We introduce a neural network architecture to handle pref-
erence learning. A natural solution is to expand the input
space to X × X by concatenating the covariates pair. Such
an architecture is displayed in Figure 1-a. However, by do-
ing so, we would not learn anything about the function g.
Instead, we propose to use an architecture based on Siamese
networks (Figure 1-b), coined PBNN (preferential Bayesian
neural network), which is detailed in the next subsection.

2.1. Preference Learning with Siamese Networks

Network architecture and loss function A Siamese neu-
ral network consists of two parallel, identical sub-networks
that share the same set of parameters. Each sub-network
takes a distinct input, and the representations produced by
each network are then compared using a connection func-
tion, which we denote by ζ. They were introduced in the
90s for signature verification (Bromley et al., 1993), and
have since become very popular for, e.g., one-shot/few-shot
learning (Koch et al., 2015), and object tracking (Bertinetto
et al., 2016). As our knowledge elicitation task amounts to
a comparison between two values at a time, the Siamese
network architecture naturally fits to our problem.

The proposed PBNN uses that architecture exactly. Let us
denote by wg the weights shared by the two sub-networks,
and let us denote by g̃wg

(x) and g̃wg
(x′) the representa-

tions produced by forwarding x and x′. PBNN models the
probability of ŷ to be 1 given two inputs x and x′ by com-
paring g̃wg (x) and g̃wg (x

′) with the connection function
ζ. Contrary to the “concatenation” baseline approach previ-
ously described (Figure 1-a), the representations produced
by the two sub-networks are real-valued, and we interpret
them as the values of the true function g. These two values
are further combined to provide a value in [0, 1], i.e., our
connection function is naturally chosen as

ζ(g̃wg (x), g̃wg (x
′)) = σ(g̃wg (x)− g̃wg (x

′)), (2)

where σ(x) =
1

1 + e−x
is the sigmoid function. We can

then train the whole model by minimizing the negative log-
likelihood, which is equivalent to using the binary cross-
entropy loss. We write

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 2. Multi-task learning (MTL) architecture, for the tasks of building jointly probabilistic surrogates for both the expert’s beliefs g
and the function to be optimized f . The green flow corresponds to surrogate of g, used in the knowledge elicitation part, and the blue flow
to the surrogate of f , which is used for Bayesian optimization. The first layers (with parameters wh) are shared for the two surrogates,
meaning that we aim at leveraging the similarity between the two functions by sharing some representations. They only differ in the
output layer, parameterized by either βg or βf . The two losses Lg and Lf are combined using a weighted scheme, which will give more
and more importance to Lf as we get evaluations of f .

log p(Dg|wg) =

M∑
i=1

log p(ŷi|[xi,x
′
i],wg) (3)

=

M∑
i=1

(
ŷi log

(
ζ(g̃wg

(x), g̃wg
(x′))

)
(4)

+ (1− ŷi) log
(
1− ζ(g̃wg (x), g̃wg (x

′))
))
.

To summarize, the Siamese network-based architecture
solves the binary classification problem, but does so by
learning an intermediate representation, which we identify
as g(x). However, the current architecture only outputs a
point estimate for g̃wg

(x), which is unsatisfying in our sce-
nario where we wish to characterize uncertainties. To do so,
we resort to Bayesian inference.

Bayesian inference To characterize the posterior distri-
bution p(wg|Dg) ∝ p(Dg|wg)p(wg), the network weights
wg are equipped with a prior distribution p(wg). The poste-
rior is then in turn used to compute the predictive posterior
distribution of g̃wg (x). We resort to variational inference
to characterize the posterior distribution. Variational infer-
ence aims at finding the closest approximation in terms of
Kullback-Leibler divergence to p(wg|Dg), among a chosen
family of distributions parameterized by θg. Let us denote
this approximation by q(wg|θg) (the so-called variational
posterior). It can easily be shown that this amounts to mini-
mizing the following expression w.r.t. θg:

Lg(θg) = KL[q(wg|θg)||p(wg)] (5)
− Eq(wg|θg)[log p(Dg|wg)],

where the term log p(Dg|wg) is given by (4). This expres-
sion is called the negative ELBO (evidence lower bound).

The loss in (5) and its gradient are intractable, but we use
Bayes by backprop (BBB) (Blundell et al., 2015) as our prac-
tical implementation. It provides Monte Carlo estimators of
the loss and gradients, and ensures that back-propagation
works. The minimization is then simply carried out by gra-
dient descent. We refer the reader to the original paper for
details.

2.2. Active Data Acquisition

Humans are not passive sources of information, and can
only answer a certain amount of queries before growing
tired or impatient. In this limited budget setting, in or-
der to maximize the use of the expert’s time, we propose
to resort to active learning to learn an accurate model in
a sample-efficient way. Here, we propose to use the so-
called BALD (Bayesian Active Learning by Disagreement,
Houlsby et al. (2011); Gal et al. (2017)), a criterion justified
from an information-theoretic perspective. BALD selects
the point from a pool Dpool which maximizes the mutual
information between its observation and model parameters.
Adapting BALD to our setting, we write

[x,x′]⋆ = argmax
[x,x′]∈Dpool

I(ŷ;wg|[x,x′],Dg). (6)

We approximate the mutual information as follows:

I(ŷ,wg|[x,x′],Dg)

= H[ŷ|[x,x′],Dg]− Ep(w|Dg)[H[ŷ|[x,x
′],wg]], (7)

≃ H[ŷ|[x,x′],Dg]− Eq(wg|θg)[H[ŷ|[x,x
′],wg]], (8)

≃ h

(
1

T

T∑
t=1

p̂
w

(t)
g
(x,x′)

)
− 1

T

T∑
t=1

h
(
p̂
w

(t)
g
(x,x′)

)
,

(9)

Augmenting Bayesian Optimization with Preference-based Expert Feedback

whereH denotes the differential entropy, and the notation

p̂wg
(x,x′) = ζ(g̃wg

(x), g̃wg
(x′)) (10)

denotes the predicted probability that ŷ = 1 given the pair
[x,x′] and parameters wg (i.e., the output of the network
with parameters wg), and where h(p) = −p log(p)− (1−
p) log(1 − p) denotes the binary entropy function. The
approximation in (8) comes from swapping the true pos-
terior distribution p(wg|Dg) with the variational posterior
q(wg|θg), and the approximation in (9) corresponds to
Monte Carlo approximations given that the w

(t)
g are i.i.d.

samples from q(wg|θg). We will refer to this criterion as
PBALD.

3. Expert Knowledge-Augmented Bayesian
Optimization

We now tackle the challenge of transferring what was
learned in the previous step for the BO task. To that end,
we propose to plug the previously described PBNN archi-
tecture into a wider multi-task learning (MTL) one. The
MTL architecture aims at building probabilistic surrogates
for both f and g, by sharing the weights of the hidden layers,
and having separate weights for the last layer. Indeed, we
leverage the similarity between the functions f and g by
sharing some of the latent representations produced by the
network. The architecture is detailed in Section 3.2. As
we are eliciting the knowledge of the expert in a first step,
this will have the effect of providing the surrogate model
for f with a good initialization, which in turn will lead to
accelerating the task of optimizing f . For this second step,
we sequentially update this surrogate by collecting a dataset
Df = {(xj , f(xj))}Jj=1. Those points are selected using
the expected imporvement acquisition function, a standard
BO acquisition function recalled in Appendix A.1.

3.1. Surrogate model for f

The probabilistic surrogate we use for f is a Bayesian neu-
ral network. Let us denote by wf its weights, with prior
distribution p(wf). We further denote by f̃wf

(x) the output
obtained by forwarding x. Similarly, we resort to varia-
tional inference to characterize the posterior distribution
p(wf |Df), i.e., we aim at minimizing the following expres-
sion w.r.t. variational parameters θf :

Lf (θf) = KL[q(wf |θf)||p(wf)] (11)
− Eq(wf |θf)[log p(Df |wf)],

where q(wf |θf) denotes the variational posterior parame-
terized by θf . Note that the log-likelihood term p(Df |wf)
is here Gaussian, which corresponds to the mean squared
error.

A straightforward way of transferring what was learned in
the first step would be to use the posterior distribution of
the weights from the trained PBNN as the prior for wf .
However, since PBNN does not learn the actual scale of f ,
using it to provide the prior distribution of the weights will
not help at all, and may even lead to catastrophic forgetting
(French, 1999), where the shape information encoded in the
posterior distribution of weights is erased during the training
with Df .

To alleviate this problem, we consider a MTL architecture,
with hard parameter sharing among the hidden layers for the
surrogates of f and g. In other words, we consider a joint
model, whose shared parameters are going to be initialized
through the trained PBNN. This is detailed next.

3.2. Multi-task learning

We adopt hard parameter sharing among the weights of the
hidden layers for the surrogates of f and g. Let us split the
weights wg of PBNN into wh and βg, where wh are the
weights of all hidden layers and βg the weights of the output
layer. That is, we can write g̃(x) = βT

g ϕwh
(x), where

ϕwh
(x) represents the feature vector which is produced by

forwarding x through all the hidden layers. The weights
wh are going to be shared for both surrogates, i.e., the BNN
surrogate of f is parameterized by wh and βf , such that
f̃(x) = βT

f ϕwh
(x) is the predicted outcome.

As such, the shared representation ϕwh
(x) will encode com-

mon features, such as the shape information that we wish
to transfer to the surrogate of f . While expert knowledge
may be biased, βf can be interpreted as a calibrator to lead
the surrogate of f to its actual scale and also rectify the
potentially inaccurate information provided by the expert.
By using the joint model, we will need fewer queries for
Bayesian optimization, i.e., we save potentially expensive
simulation costs. The full architecture of the MTL system is
presented in Figure 2. Details regarding the combination of
the losses Lg and Lf can be found in Appendix A.2. Lastly,
the full algorithm corresponding to our method is detailed
in Appendix A.3.

4. Experiments
In this section, we first evaluate the performance of our
proposed PBNN in knowledge elicitation. We then ana-
lyze the performance of expert knowledge-augmented BO
across various objective functions. Lastly, we conduct a
further experiment involving actual humans on simulated
data. The results of all additional experiments can be found
in Appendix B.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Table 1. Accuracy of preference prediction after M acquisitions
is significantly better than the earlier GP-based method on three
datasets. The accuracy score corresponds to the proportion of cor-
rect binary preference prediction on a hold-out test set comprising
1000 pairs. The mean and standard deviation of this score are
reported over 20 replications.

Accuracy (%)
DATASET M GP PBNN

Machine CPU (6D) 50 67.29± 2.91 81.07± 3.74
100 69.45± 1.82 84.38± 1.52

Boston Housing (13D) 50 67.41± 2.35 83.40± 2.14
100 69.33± 2.50 85.89± 2.52

Pyrimidine (27D) 50 70.99± 2.35 79.63± 2.14
100 79.29± 2.50 86.59± 2.52

4.1. Knowledge elicitation performance of PBNN

Toy example We first present a toy example using 1-
dimensional benchmark functions to illustrate how the pro-
posed PBNN architecture can learn the shape of the function
g through pairwise comparisons. The model is trained by
sequentially selecting 10, 20 and 50 pairwise comparisons
using the PBALD criterion and getting the associated pref-
erence labels. We assume noiseless feedback in this experi-
ment for illustration purposes. Figure 3 displays the compar-
ison between the real function values g and elicited expert
model predictions g̃, with the Forrester and Styblinski-Tang
functions. From the figure, it can been seen that with 50
pairwise comparisons, the expert model g̃ can capture the
ordinal information, i.e., g up to a monotonic constant, as
previously explained.

Performance comparison We compare the performance
of PBNN with the classical GP-based preference learning
model by (Chu & Ghahramani, 2005) on three different
datasets. We artificially transform three regression datasets
into preference datasets by creating preference labels be-
tween all possible pairs of covariates using the target values.
For the GP-based model, we use the squared exponential
kernel with the hyperparameters optimized by maximum
marginal likelihood. The details of the PBNN architecture
are shown in Appendix.

A total of M pairs are sequentially queried by maximizing
the BALD criterion (Houlsby et al., 2011) for the GP-based
model, and the PBALD criterion for PBNN, respectively.
After the active learning phase, the accuracy of the model is
assessed by computing a binary accuracy score on a hold-
out test set consisting of 1000 pairs. The results on the three
datasets, averaged over 20 replications, are presented in
Table 1 for M = 50 and M = 100. In all scenarios, PBNN
achieved better accuracy results w.r.t. the GP-based model.
We further compare the runtimes of the two methods in the
Appendix, on all three datasets, PBNN is roughly 20 times
faster than the GP-based baseline.

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15

Forrester function
g(x)
g(x) - 10 acq.
g(x) - 20 acq.
g(x) - 50 acq.

4 2 0 2 4
x

25

0

25

50

75

100

125
Styblinski-Tang function

Figure 3. Toy example illustrating how the proposed PBNN ar-
chitecture can learn the shape of a function using pairwise com-
parisons. Experiments carried out on the Forrester (top) and
Styblinski-Tang (bottom) functions. The thickest, dark blue line
represents the true function g, while the dotted lines represent
the predicted functions g̃ learned by PBNN using 10, 20 and 50
pairwise comparisons.

4.2. Performance of Bayesian optimization

We first study the performance of the proposed knowledge-
augmented Bayesian optimization scheme in a simulated
setting where we can control the bias of an expert. More
precisely, we compare how well the scheme performs w.r.t.
to standard Bayesian optimization on several benchmark
functions from the literature.

We assume an expert with potentially biased beliefs of the
true function f , with the bias expressed as a perturbation
function δ:

g(x) = f(x) + δ(x), (12)

where δ is a zero-mean Gaussian process draw with ker-
nel σ2

δk(x, x
′), which encodes the form of the expert’s bias.

Note that this does not reduce generality, assuming a general
enough perturbation family. In the experiments reported be-
low, we study the effect of expert’s bias on the performance
by choosing the SE kernel with lengthscale ℓ = 0.1 and
varying σ2

δ so that we obtain five levels of expert knowledge
accuracy from 50% up to 90%. The visual illustration of the
simulated experts is shown in Appendix A.4.

For the MTL structure, the shared hidden layers have width
[100, 30, 15]. Standard BO is run using the BNN surrogate
described in Section 3.1, in other words, it is the exact
same architecture as the “BO branch” of the MTL, for fair
comparison. Experiments were run with M = 100, J = 50
and α = 0.95. The results, detailed in the next paragraph,

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 4. Comparison of the optimization performance of the expert knowledge-augmented BO using 4 benchmark functions w.r.t.
standard BO. We simulate 5 experts with different levels of knowledge (denoted PBNN-xx%), where the percentage stands for the
accuracy of the expert’s preferential feedback, i.e., 50% means that the expert is simulated with fully biased knowledge. The knowledge
of the simulated expert is elicited using M = 100 pairwise comparisons. The standard BO scheme, i.e., without expert knowledge, is
denoted BNN. The results are averaged over 50 simulations.

are averaged over 50 replications of the experiment. The
full description of experimental settings is in Appendix D.

Figure 4 shows the results on four benchmark func-
tions1: “Forrester1D”, “Six-hump-camel2D”, “Branin2D”
and “Levy10D”. The results are evaluated by ybest, which
is the current minimal value of the true objective function
predicted by the surrogate of f . We can see that the more
accurate the simulated expert is, the more pronounced the
acceleration effect. If the expert is reliable enough, we can
speed up BO significantly. When the expert does not have
any knowledge, i.e. 50% preference accuracy, this actu-
ally leads to performance deterioration w.r.t. standard BO,
which meets our expectation. For the all expert accuracy
levels ≥ 60%, the final round BO performance (J = 50)
is at least as competitive as the standard BO. However, the
gain is much more striking in the early stages of the BO
(J ≪ 50). This phenomenon may be due to the challenge of
making use of inaccurate expert knowledge as more accurate
ground-truth data becomes increasingly available.

1https://www.sfu.ca/ ssurjano/optimization.html

5. Conclusion
In this paper, we tackled the incorporation of human expert
knowledge into BO with the goal of speeding up the opti-
mization. Our procedure breaks down into two steps. The
first is to elicit the expert beliefs by querying them with pair-
wise comparisons. By doing so, we obtain the approximate
shape of the objective function. The second step is to share
the expert knowledge with the BO, to provide auxiliary
information about the potential location of the optimum.

More precisely, we proposed PBNN, a novel preference
learning architecture based on Siamese networks to effi-
ciently elicit the expert knowledge. By sequentially query-
ing the preferences between two objects with active learn-
ing, the proposed PBNN is more powerful in capturing the
latent preference relationships compared with the former
GP-based model on different datasets. To conduct the knowl-
edge transfer, we design a well-aligned multi-task learning
structure with a knowledge sharing scheme to combine our
expert model with BO surrogate. Experiments on different
benchmark functions and real data show that when the ex-
pert is trustworthy, we can gain significant benefit from the
elicited knowledge and markedly speed up the optimization.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

References
Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,

and Torr, P. H. Fully-convolutional siamese networks for
object tracking. In European Conference on Computer
Vision (ECCV), pp. 850–865, 2016.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. Weight uncertainty in neural network. In Inter-
national Conference on Machine Learning (ICML), pp.
1613–1622, 2015.

Brochu, E., Freitas, N. D., and Ghosh, A. Active preference
learning with discrete choice data. In Advances in Neural
Information Processing Systems (NIPS), pp. 409–416,
2008.

Brochu, E., Cora, V. M., and De Freitas, N. A tutorial
on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599,
2010.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah,
R. Signature verification using a” siamese” time delay
neural network. In Advances in Neural Information Pro-
cessing Systems (NIPS), 1993.

Caruana, R. Multitask learning. Machine Learning, 28(1):
41–75, 1997.

Chu, W. and Ghahramani, Z. Preference learning with gaus-
sian processes. In International Conference on Machine
Learning (ICML), pp. 137–144, 2005.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

Gal, Y., Islam, R., and Ghahramani, Z. Deep Bayesian active
learning with image data. In International Conference on
Machine Learning (ICML), pp. 1183–1192, 2017.

González, J., Dai, Z., Damianou, A., and Lawrence, N. D.
Preferential Bayesian Optimization. In International Con-
ference on Machine Learning (ICML), pp. 1282–1291,
2017.

Hase, F., Roch, L. M., Kreisbeck, C., and Aspuru-Guzik,
A. Phoenics: a Bayesian optimizer for chemistry. ACS
central science, 4(9):1134–1145, 2018.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M.
Bayesian active learning for classification and preference
learning. arXiv preprint arXiv:1112.5745, 2011.

Hvarfner, C., Stoll, D., Souza, A., Nardi, L., Lindauer, M.,
and Hutter, F. πBO: Augmenting Acquisition Functions
with User Beliefs for Bayesian Optimization. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient
Global Optimization of Expensive Black-Box Functions.
Journal of Global Optimization, 13:455–492, 1998.

Kim, S., Lu, P. Y., Loh, C., Smith, J., Snoek, J., and Soljačić,
M. Scalable and flexible deep bayesian optimization
with auxiliary information for scientific problems. arXiv
preprint arXiv:2104.11667, 2021.

Koch, G., Zemel, R., Salakhutdinov, R., et al. Siamese
neural networks for one-shot image recognition. In ICML
deep learning workshop, 2015.

Li, C., Gupta, S., Rana, S., Nguyen, V., Robles-Kelly, A.,
and Venkatesh, S. Incorporating expert prior knowledge
into experimental design via posterior sampling. arXiv
preprint arXiv:2002.11256, 2020.

Mikkola, P., Todorović, M., Järvi, J., Rinke, P., and Kaski, S.
Projective preferential bayesian optimization. In Interna-
tional Conference on Machine Learning, pp. 6884–6892,
2020.

Millet, I. The effectiveness of alternative preference elicita-
tion methods in the analytic hierarchy process. Journal
of Multi-Criteria Decision Analysis, 6(1):41–51, 1997.

Rader, T. The existence of a utility function to represent
preferences. The Review of Economic Studies, 30(3):
229–232, 1963.

Ramachandran, A., Gupta, S., Rana, S., Li, C., and
Venkatesh, S. Incorporating expert prior in bayesian opti-
misation via space warping. Knowledge-Based Systems,
195:105663, 2020.

Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A., Ram-
chandran, K., and Wainwright, M. When is it better to
compare than to score? arXiv preprint arXiv:1406.6618,
2014.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing systems
(NIPS), 2012.

Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer,
M., and Hutter, F. Bayesian optimization with a prior
for the optimum. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pp. 265–296, 2021.

Zhang, Y., Apley, D. W., and Chen, W. Bayesian opti-
mization for materials design with mixed quantitative and
qualitative variables. Scientific reports, 10(1):1–13, 2020.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Supplementary Materials

A. Additional details
A.1. Acquisition function for BO

We adopt the expected improvement (EI) as the acquisition function (Jones et al., 1998). Given µx the predictive mean of
BO surrogate model and s2x the predictive variance, the EI at point x is defined as:

αEI(x) = sx[γ(x)Φ(γ(x)) + ψ(γ(x))], (13)

where γ(x) = (ybest − µx)/sx, ybest is the current lowest value of the objective function, and Φ(·) and ψ(·) are the
cumulative distribution function and probability density function of a standard normal random variable. Since (13) is
intractable for a BNN as there is no analytical form of the output distribution, we use Monte Carlo sampling to obtain the
approximate EI (Kim et al., 2021):

αEI(x) ≈
1

T

T∑
t=1

max
(
ybest − f̃ (t)(x), 0

)
, (14)

where the f̃ (t)(x) are i.i.d. predictive samples at x.

A.2. Combining the losses

One remaining question is how to combine the loss functions Lg (5) and Lf (11). In order to put more emphasis on the
actual acquisitions of f over time, we propose a weighted scheme with exponential decay for the Lg. After the j-th BO
acquisition, the loss Lj is such that

Lj =
αj−1

αj−1 + 1
Lg +

1

αj−1 + 1
Lf , (15)

with α < 1 a hyperparameter to control the speed of the decay.

A.3. Algorithm

Our two-step, expert knowledge-augmented BO procedure (knowledge elicitation first, BO second) is summed up in
Algorithm 1.

A.4. Simulated experts

Figure 5 illustrates the comparison between the simulated experts with the ground truth objective function with the Forrester
function, for the 5 considered accuracy levels.

B. Additional results of the experiments
B.1. Computational cost analysis

We compare the runtimes of PBNN with the GP-based preference learning model by (Chu & Ghahramani, 2005). The
inference of PBNN is typically run GPU-based architectures, however, for a fair comparison, we compare 20 runs of each
method on the three datasets using M = 50 using the same CPU architecture2. The results are reported in Table 2. On all
three datasets, the proposed PBNN is roughly 20 times faster than the GP-based baseline.

B.2. Experiment with human experts

We further study the performance of the proposed method in a real-world setting with actual human experts. To that end,
we conduct a simple user experiment involving memory abilities. Similarly to the previous experiment, the goal is to
optimize BO benchmark functions, this time 2D functions. To induce controlled knowledge about those functions, we
let users memorize the shape of the objective function by displaying 3D-plots for a short time. This provides useful but

22x20 core Xeon Gold 6248 2.50GHz, 192GB RAM.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Algorithm 1 Expert knowledge-augmented BO
Input: Active learning budget M , BO acquisition budget J
Output: Minimum of f

1: // Start Knowledge Elicitation
2: Initialize the expert model g̃ using PBNN with a random pair, Dg = {(x0,x

′
0, ŷ0)}.

3: for i = 1 to M do
4: [xi,x

′
i] = argmax

[x,x′]∈Dpool

I(ŷ;wg|[x,x′],Dg) ((9))

5: Query the expert to obtain ŷi associated to [xi,x
′
i]

6: Dg ← Dg ∪ (xi,x
′
i, ŷi)

7: Update variational parameters θg by minimizing (5)
8: end for
9: // Start Bayesian Optimization

10: Df = ∅
11: ybest =∞
12: for j = 1 to J do
13: x̌j = argmax

x∈X
αEI(x)

14: Evaluate f(x̌j)
15: Df ← Df ∪ (x̌j , f(x̌j))
16: Update variational parameters θg and θf by minimizing the combined loss (15)
17: ybest ← min(ybest, f(argmin

x∈X
f̃(x)))

18: end for
19: return ybest

Table 2. Average runtimes (in seconds) after M = 50 acquisitions on three datasets. The runtime of the proposed PBNN is roughly
20 times faster than the GP-based method. The comparison was carried out with 20 runs on the same CPU architecture. The standard
deviation is also reported.

Runtimes (sec.)
DATASET M GP PBNN
Machine CPU (6D) 50 899 ± 68 40± 4
Boston Housing (13D) 50 981 ± 72 50± 7
Pyrimidine (27D) 50 1003 ± 64 57± 9

biased preference information for optimization. Based on their memory of the function, the user must then answer a series
of questions asked in preferential form, in asked in the format “At which point do you think the value of the function is
larger?”. The questions are determined by the PBALD criterion, detailed in Section 2.2. Finally, BO augmented with expert
knowledge is then run with the proposed methodology. We compare this approach with standard BO. The intuition behind
this experiment is that users cannot memorize the function in all its complexity, but still can grasp an understanding its
overall shape, which could speed up the optimization.

We choose three commonly used 2D benchmark functions: Six-hump-camel2D, Three-hump-camel2D and Branin2D. This
choice is motivated by the fact that these particular functions have several local minima, but are still smooth enough so that
users can remember their general shape in a short time. The plots are displayed for 2 minutes, which is enough time to
remember the general shape of the function, but not learn perfect information, thus mimicking expert knowledge on complex
problems. The number of preferential questions is set to 25, a number not too small to effectively build the expert model
nor too large to bore the users. The coordinates of the points selected by each question, as well as their locations in the
coordinate system used for the visualization of the function, are provided to the user. Other settings remain the same as the
experiments of Section 4.2. We also provide a brief instruction manual for the users (see Appendix C). The experiment is
carried out following an existing code of conduct about user studies. The users are recruited from a student population that
have no previous knowledge of the test functions.

Table 3 reports the accuracy of eight different users on the three selected objective functions. All the accuracy rates are
greater than 50%, and the average accuracy is 70% or higher for each function. Figure 6 shows the comparison between

Augmenting Bayesian Optimization with Preference-based Expert Feedback

0.0 0.2 0.4 0.6 0.8 1.0
x

15

10

5

0

5

10

15

20
Biased expert knowledge

f(x)
g(x)-90%
g(x)-80%
g(x)-70%
g(x)-60%
g(x)-50%

Figure 5. Illustration of the simulated expert’s beliefs using the Forrester1D. The true function is the thickest, dark blue curve, and the
other curves correspond to that function perturbed with a random GP draw with various variances. The variances are chosen such that the
accuracy of the expert ranges from 50% to 90 %.

Table 3. User accuracy for the three BO benchmark functions, i.e., the percentage of questions each user answered correctly (out of 25).
Accuracy

Function (2D) User1 User2 User3 User4 User5 User6 User7 User8 Avg.
3H-camel 64% 84% 72% 80% 52% 80% 72% 68% 71.5%
6H-camel 52% 68% 76% 88% 64% 84% 72% 56% 70%
Branin 80% 72% 72% 80% 68% 84% 80% 76% 76.5%

standard BO and our method in terms of optimization performance. Each simulation builds the expert model using PBNN
with the same dataset obtained from each user, but with different network initialization. We run 10 simulations to account for
the randomness. As can be seen on those plots, the help of experts leads to prominent acceleration compared with standard
BO, which again proves the effectiveness of our expert knowledge-augmented BO method.

B.3. Experiments with different elicitation budgets

We further investigate the performance of our expert-augmented BO with different elicitation budgets. We use the same
objective functions as in Section 4.2 and simulate four different levels of the experts. We use the same configurations as in
the previous experiments, the details can be found in Section D.2.

The results are shown in Figures 7 8, 9, 10. The overall performance behaves as expected. With a larger elicitation budget,
the acceleration of BO is more obvious. We notice that the performance is even worse under a very limited budget than
standard BO, i.e., M = 10. We guess the reason behind this situation is that the insufficient preference training data makes
the network prone to overfitting, hence misguiding the training of the surrogate model during the MTL stage. Moreover, in
some figures, we can see the performance between M = 50 and M = 100 is very close, which implies that there is no need
to over-query for the expert under some relatively easy-to-optimize functions since the expert knowledge will then dominate
the actual BO regression data and slow down the optimization. In this case, we should consider lowering the value of α
(Equation 15).

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 6. Comparison of the optimization performance of the expert knowledge-augmented BO with real users on 3 2D benchmark
functions w.r.t. standard BO. We collect the data from 8 users, where the percentage stands for the accuracy of the expert’s preferential
feedback. The knowledge of the simulated expert is elicited using M = 25 pairwise comparisons. The results are averaged over 10
simulations.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 7. A BO comparison on ”Forrester1D” function with different knowledge elicitation budget. We simulate 4 experts with different
levels of knowledge, in each subplot we use the same level of the expert. The results are averaged over 20 simulations.

Figure 8. A BO comparison on ”Branin2D” function with different knowledge elicitation budget. We simulate 4 experts with different
levels of knowledge, in each subplot we use the same level of the expert. The results are averaged over 20 simulations.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

Figure 9. A BO comparison on ”Six-Hump-Camel2D” function with different knowledge elicitation budget. We simulate 4 experts with
different levels of knowledge, in each subplot we use the same level of the expert. The results are averaged over 20 simulations.

Figure 10. A BO comparison on ”Levy10D” function with different knowledge elicitation budget. We simulate 4 experts with different
levels of knowledge, in each subplot we use the same level of the expert. The results are averaged over 20 simulations.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

C. User Manual
Introduction Welcome to the test. During this experiment, you need to try your best to remember the shapes of three
different 2-D functions in limited time. After that you need to answer 25 simple questions, by telling which point do you
think is larger between a pair of points.

In this test, we rely on the existing code of conduct for conducting user studies in our field. The experimental data is only
used for this paper, and we will not disclose any of your private information.

Experimental details Three experiments will be conducted in random order. When each experiment starts, you will be
shown a 3-D plot and a 2-D heat map of the function (demo plots are shown in Figure 11), and you can drag the 3-D plot to
have a better visualization. You will have 2 minutes to remember the plots, once the time is up, you will no longer be able to
view these plots.

Figure 11. The left plot is the 3-D view of the objective function, and the right one is the 2-D heat map. These plots are only for
demonstration, the real objective functions in the experiment will not be shown here.

After that, you will be asked 25 questions. Each question is asked in the format ”At which point do you think the value of
the function is larger?” And there will be no time limit for you to answer these questions. We will provide the coordinates of
the two points to you and also plot their locations in the coordinate system used in the visualization of the function. The
demo plot is shown in Figure 12.

Figure 12. The plot of two points in the question stage.

Augmenting Bayesian Optimization with Preference-based Expert Feedback

After answering all the questions, you will directly jump to the next experiment. Upon finish the three experiments, the
system will calculate the accuracy of your performance, and you can also view your own user model in 3D plot (see
Figure 13 for reference).

Figure 13. An example of the user model

D. Experimental settings
D.1. Elicitation experiment

DATASETS

• Machine CPU: A computer hardware dataset. The dimension is 6 and has 209 instances

• Boston housing: This dataset contains information concerning housing in the area of Boston Mass. The dimension is
13 and has 506 cases

• Pyrimidine: A pyrimidine QSAR dataset. The dimension of this dataset is 27 and has 74 instances

The initial training set contains one random pair. The query pool size for active learning is 2000 pairs, and the test set used
for evaluating accuracy consists of 1000 pairs. The dataset is shuffled in each epoch.

HYPER-PARAMETERS

• Number of active acquisitions in elicitation stage: 50, 100

• Monte Carlo sampling budget in BALD: 100

• Number of simulations: 20

NEURAL NETWORK CONFIGURATIONS

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with learning rate = 0.001

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001

• Batch size: 2

• Number of epochs: 20

• BNN hidden layers: 2 shared layers with weight prior N (0, 0.1), width [100, 10]

• Activation function: Tanh

Augmenting Bayesian Optimization with Preference-based Expert Feedback

D.2. BO with simulated experts

BENCHMARK FUNCTIONS

• Forrester1D: A simple one-dimensional test function, with one global minimum, one local minimum and a zero-gradient
inflection point. This function is evaluated on x ∈ [0, 1]. The form of this function is:

f(x) = (6x− 2)2 sin(12x− 4). (16)

• Branin2D: A 2D function with three global minima. We take a = 1, b =
5.1

4π2
, c =

5

π
, r = 6, s = 10 and t =

1

8π
.

This function is evaluated on the square x1 ∈ [−5, 10], x2 ∈ [0, 15]. The function form is:

f(x) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s. (17)

• Six-hump-camel2D: A 2D function with six local minima, two of which are global. This function is evaluated on the
square x1 ∈ [−3, 3], x2 ∈ [−2, 2]. The function form is:

f(x) = (4− 2.1x21 +
x41
3
)x21 + x1x2 + (−4 + 4x22)x

2
2. (18)

• Levy10D: A 10D function evaluated on the hypercube xi ∈ [−2, 2], for all i = 1, ..., d. The function form is:

f(x) = sin2(πw1) +

d−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)] (19)

+ (wd − 1)2[1 + sin2(2πwd)],

where wi = 1 +
xi − 1

4
, for all i = 1, ..., d.

The number of initial training pairs for elicitation is 1. The query pool size for active learning is 2000.

HYPER-PARAMETERS

• Number of active acquisitions in elicitation stage: 100

• Number of BO acquisition: 50

• Monte Carlo sampling budget in BALD: 100

• Monte Carlo sampling budget in EI: 30

• α in MTL shared weight: 0.95

• Number of simulations: 50

NEURAL NETWORK CONFIGURATIONS

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with lr = 0.001 in elicitation stage, lr = 0.01 in BO stage

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001 in elicitation stage, no scheduler in BO.

• Batch size: 10 for preference data, 5 for regression data

• Number of epochs: 100 in elicitation stage, 200 in BO stage

• BNN hidden layers: 3 shared layers with weight prior N (0, 0.1), width [100, 30, 15]

• Activation function: Tanh

Augmenting Bayesian Optimization with Preference-based Expert Feedback

D.3. BO with actual human experts

BENCHMARK FUNCTIONS

• Three-hump-camel2D: This function has three local minima and is evaluated on the square x1 ∈ [−2, 2], x2 ∈ [−2, 2].
The form of this function is:

f(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22. (20)

• Six-hump-camel2D: A 2D function with six local minima, two of which are global. This function is evaluated on the
square x1 ∈ [−2, 2], x2 ∈ [−1, 1]. The function form is:

f(x) = (4− 2.1x21 +
x41
3
)x21 + x1x2 + (−4 + 4x22)x

2
2. (21)

• Branin2D: A 2D function with three global minima. We take a = 1, b =
5.1

4π2
, c =

5

π
, r = 6, s = 10 and t =

1

8π
.

This function is evaluated on the square x1 ∈ [−5, 10], x2 ∈ [0, 15]. The function form is:

f(x) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s. (22)

The number of initial training pairs for elicitation is 1. The query pool size for active learning is 2000.

HYPER-PARAMETERS

• Number of active acquisitions in elicitation stage: 25

• Number of BO acquisition: 20

• Monte Carlo sampling budget in BALD: 100

• Monte Carlo sampling budget in EI: 30

• α in MTL shared weight: 0.95

• Number of simulations: 10

NEURAL NETWORK CONFIGURATIONS

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with lr = 0.001 in elicitation stage, lr = 0.01 in BO stage

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001 in elicitation stage, no scheduler in BO.

• Batch size: 10 for preference data, 5 for regression data

• Number of epochs: 100 in elicitation stage, 200 in BO stage

• BNN hidden layers: 3 shared layers with weight prior N (0, 0.1), width [100, 30, 15]

• Activation function: Tanh

