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ABSTRACT

One-class learning (OCL) comprises a set of techniques applied when real-world
problems have a single class of interest. The usual procedure for OCL is learning
a hypersphere that comprises instances of this class and, ideally, repels unseen in-
stances from any other classes. Besides, several OCL algorithms for graphs have
been proposed since graph representation learning has succeeded in various fields.
These methods may use a two-step strategy, initially representing the graph and, in
a second step, classifying its nodes. On the other hand, end-to-end methods learn
the node representations while classifying the nodes in one learning process. We
highlight three main gaps in the literature on OCL for graphs: (i) non-customized
representations for OCL; (ii) the lack of constraints on hypersphere parameters
learning; and (iii) the methods’ lack of interpretability and visualization. We pro-
pose One-cLass Graph Autoencoder (OLGA). OLGA is end-to-end and learns
the representations for the graph nodes while encapsulating the interest instances
by combining two loss functions. We propose a new hypersphere loss function
to encapsulate the interest instances. OLGA combines this new hypersphere loss
with the graph autoencoder reconstruction loss to improve model learning. OLGA
achieved state-of-the-art results and outperformed six other methods with a statis-
tically significant difference from five methods. Moreover, OLGA learns low-
dimensional representations maintaining the classification performance with an
interpretable model representation learning and results.

1 INTRODUCTION

Graphs offer a powerful structure for modeling real-world problems by explicitly capturing node
relations. Edges represent their connections, providing a comprehensive view of interconnectedness
and dependencies. This explicit representation of relations is essential in domains such as social
networks, recommendation systems, and biological networks, enabling accurate analysis and pre-
diction (Zhou et al., 2020; Xia et al., 2021; Deng et al., 2022).

Different classification problems involving an interest class are commonly modeled using graphs.
These include tasks such as classifying fake news (de Souza et al., 2022), identifying events of in-
terest (Nguyen & Grishman, 2018), predicting hit songs (da Silva et al., 2022), detecting fraud (Dou
et al., 2020), and performing anomaly detection (Liu et al., 2022a). Notably, in many of these tasks,
humans can naturally detect the interest class solely by observing instances of interest. In machine
learning, this strategy is represented by One-Class Learning (OCL) approaches, which enable the
classification of interest instances by training solely on samples from this class (Emmert-Streib &
Dehmer, 2022). OCL reduces the need for extensive labeling efforts, is suitable for unbalanced sce-
narios, and does not require comprehensive coverage of the non-interest class(es) (Tax, 2001; Khan
& Madden, 2014; Fernández et al., 2018; Alam et al., 2020).

OCL and graphs are attractive strategies for solving real-world problems with an interest class (Wang
et al., 2021; Feng et al., 2022; Deldar et al., 2022). First, Two-step methods employed unsupervised
graph neural networks (GNNs) to generate representations for graph nodes, followed by OCL algo-
rithms to classify the interest nodes (Gôlo et al., 2022; da Silva et al., 2022; Huang et al., 2022b;
Ganz et al., 2023). Recent advancements have focused on end-to-end one-class graph neural net-
works (OCGNNs), which simultaneously learn representations and classify instances as belonging
to the interest class (Feng et al., 2022; Wang et al., 2021; Huang et al., 2021; Deldar et al., 2022). A
common strategy in both approaches is defining a hypersphere to encapsulate the interest represen-
tations, aiming to separate them from non-interest (Tax & Duin, 2004; Wang et al., 2021).
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Significant gaps need to be addressed when OCL and GNNs are combined. Firstly, two-step methods
rely on pre-learning data representations, which are not customized for the OCL step (Wang et al.,
2021). On the other hand, current end-to-end methods lack studies on graphs from different domains
and lack constraints on hypersphere parameters learning, often leading to solutions trapped in local
minima (Ruff et al., 2018; Feng et al., 2022; Wang et al., 2021). For instance, encapsulating the
interest class around a single point in the learned space with a minimum-radius hypersphere can
yield erroneous results for unseen data.

Another significant limitation in current research is the representation learning process interpretabil-
ity issue, especially in OCL (Wu & Mooney, 2019; Liu et al., 2022b). Existing methods often
assume high-dimensional latent spaces, which can hamper interpretability. In contrast, we argue
that OCGNNs with low dimensions (two or three) offer natural interpretability. We can gain insights
into the model’s behavior by visually exploring the distance between instances in each learning
epoch and visualizing the decision surface. Some studies have attempted interpretability by employ-
ing t-SNE for low-dimensional projections at the end of the learning process (Wang et al., 2021;
Feng et al., 2022). However, we argue that explicitly learning low-dimensional node representations
within the OCL context can benefit model interpretability and the overall OCL learning process.

This paper introduces OLGA (One-cLass Graph Autoencoder), a new end-to-end one-class graph
neural network method. OLGA achieves meaningful node representations and state-of-the-art one-
class node classification by combining two loss functions. The first is based on the graph autoen-
coder loss, which aims to reconstruct and preserve the graph topology by mapping nodes into a new
latent space. The second is a newly proposed hypersphere loss that leverages instances from the
interest class to enhance one-class-oriented representation learning and classification. Moreover,
OLGA also learns low-dimensional representations to improve the classification performance and
introduce interpretability to the learning process. In summary, our contributions are:

1. We present OLGA, a new end-to-end one-class graph neural network method for node
classification that simultaneously learns meaningful representations and classifies nodes.

2. We propose a new hypersphere loss function for one-class graph neural networks.

3. We demonstrate that low-dimensional one-class representations in OLGA support inter-
pretability for model representation learning and improve classification performance.

4. We evaluate OLGA against other state-of-the-art methods on eight datasets from various
domains and sources to confirm its performance in practical application scenarios.

We carried out an experimental evaluation using eight one-class datasets from diverse domains and
sources. We compared OLGA with six other methods, including three OCGNNs with different GNN
architectures and three strong baselines: Deep-walk, Node2Vec, and Graph Autoencoder (GAE)
combined with the One-Class Support Vector Machine. OLGA achieved state-of-the-art perfor-
mance on most datasets considering textual, image, and tabular domains outperforming the other six
methods. Our method demonstrated a statistically significant improvement over five of the compared
methods. Moreover, OLGA demonstrated the potential to learn low-dimensional representations en-
abling an interpretable learning process and data visualizations for OCL.

2 RELATED WORK

We divide the related work into two categories. The first category comprises the two-step methods.
These methods generate embeddings through unsupervised graph neural networks and, in another
step, apply a one-class learning algorithm. The second category comprises the end-to-end methods
that learn the representations while classifying the nodes in one step (learning process).

2.1 TWO-STEP METHODS

Two-step methods apply graph neural networks (GNNs) in the first step. GNNs are state-of-the-
art for representation learning on graphs. GNNs also capture structural features of the graphs and
aggregate information from neighboring nodes associated with the interest class to generate embed-
dings for the nodes. Finally, in the second step, these methods use OCL algorithms to solve the
one-class problem (da Silva et al., 2022; Huang et al., 2022b; Ganz et al., 2023; Gôlo et al., 2022).
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In this sense, Gôlo et al. (2022) proposed to perform the movie recommendations through one-class
learning. The authors used unsupervised graph neural networks with a link prediction loss to learn
representations for the movies and users in the graph. The study used the One-Class Support Vector
Machines (OCSVM) to classify.

da Silva et al. (2022) propose to detect hit songs through OCL. The authors used an unsupervised
heterogeneous graph neural network to learn representations for the songs and, in the second step,
used the OCSVM to classify and measure how famous a song is. Furthermore, Huang et al. (2022b)
proposed to detect intrusions in systems through OCL. The authors proposed the One-Class Directed
Heterogeneous graph neural network. This method combines an unsupervised heterogeneous GNN
with the Deep Support Vector Data Description (DeppSVDD) algorithm (Ruff et al., 2018) to detect
the anomalies. Ganz et al. (2023) detects backdoor software through OCL. Through collaborative
graphs with commit nodes, branches, files, developers, and methods (functions), the authors repre-
sent the graph nodes through an unsupervised heterogeneous GNN, specifically a variational graph
autoencoder (Kipf & Welling, 2016). In the second step, Ganz et al. (2023) uses DeppSVDD to
detect backdoor software.

Two-step methods obtained state-of-the-art results in learning robust representations through GNNs
for the OCL. However, these methods generate non-customized and agnostic representations for the
OCL classification algorithm since the representation is learned independently of the OCL algo-
rithm. This fact can limit the learned representation quality and negatively impact the OCL algo-
rithm. End-to-end methods overcome this limitation by combining these two steps into one.

2.2 END-TO-END METHODS

End-to-end methods learn representations and classify instances in a single learning process. In
the OCL, this is challenging due to the lack of counterexamples. In this sense, we need an ap-
propriate loss function based on one class. In this way, the methods learn embeddings customized
and non-agnostic that capture structural information from the graph, aggregating information from
neighboring nodes and learning the pattern of the interest class while classifying instances (Feng
et al., 2022; Wang et al., 2021; Huang et al., 2021; Deldar et al., 2022). In this sense, Feng et al.
(2022) proposed to detect anomalies in IIoT Systems through OCL. The authors proposed using
GNNs through a graph autoencoder to learn representations, and for classification, the authors used
a threshold applied to the losses generated by the graph autoencoder.

In a pioneering way, Wang et al. (2021) proposed the one-class graph neural network (OCGNN),
a graph neural network with a loss function similar to SVDD, learning embeddings for the nodes
while encapsulating the interest instances through a hypersphere. The OCGNN was applied in graph
anomaly detection (GAD). Later, Huang et al. (2021) proposed the GAD through the one-class
temporal graph attention network method, a method similar to OCGNN that considers temporal
information, attention mechanisms, and dynamic graphs with de hypersphere loss. Deldar et al.
(2022) performs Android malware detection through a graph autoencoder (GAE) with a customized
loss via thresholds. The authors used a loss function through an anomaly score generated by the
difference between the initial representation and the representation decoded by the GAE.

Most end-to-end methods are based on the One-Class Graph Neural Network (OCGNN) from Wang
et al. (2021). Formally, the OCGNN from Wang et al. (2021) minimizes Equation 1:

L(r,W ) =
1

ν|V in|

|V in|∑
i=1

[∥g(V ,A;W )i − c∥2 − r2]+ + r2 +
λ

2

L∑
l=0

∥W l∥2, (1)

in which V is the node set, V in is the interest node set, A is the adjacency matrix, g(V ,A;W )
is a traditional graph neural network, r is the radius of the hypersphere that is learned alternately
with the neural network weights W , ν ∈ [0, 1) is an upper bound on the fraction of training errors
and a lower bound of the fraction of support vectors, c is the center of the hypersphere defined as
the mean of the embeddings of the nodes in the class of interest through an initial forward propa-
gation, λ is the weight decay regularizer of the OCGNN, and L is the number of neural network
layers. This approach can be used with different GNNs, such as Graph Convolutional Networks
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(GCN) (Kipf & Welling, 2017), Graph Attention Networks (GAT) (Velickovic et al., 2017), and
GraphSAGE (Hamilton et al., 2017), by modifying the output of the term g(V ,A;W ).

These end-to-end methods are applied in GAD, thus lacking studies on different domains. These
methods based on hyperspheres lack constraints on the hypersphere loss function, often biasing the
learning and harming the performance. For instance, in the OCGNNs, by using only the hypersphere
loss function, all instances (interest and non-interest) will gradually converge to the center as GNN
aggregates neighbor representations. Furthermore, in the GAEs with thresholds that use only the
reconstruct loss, all instances (interest and non-interest) can converge for one single region since
autoencoders are vulnerable to converge to a constant mapping onto the mean, which is the optimal
constant solution of the mean squared error (Ruff et al., 2018). Another gap is the lack of methods
exploited in low dimensionality to interpret and explain the learning process and to be used as
visualization methods. Finally, GAEs are explorers in different studies (Deldar et al., 2022; Feng
et al., 2022), and the hyperspheres loss function (Wang et al., 2021; Huang et al., 2021). However,
GAEs were not exploited in OCGNNs that use the hypersphere loss function. One reason is the
challenge of combining the loss function of the GAEs and hyperspheres. In this sense, in the next
section, we present OLGA, the One-cLass Graph Autoencoder, a method to mitigate these gaps.

3 OLGA: ONE-CLASS GRAPH AUTOENCODER

We propose a novel end-to-end method for classifying interest nodes called One-cLass Graph
Autoencoder (OLGA). OLGA learns node representations while classifying the nodes using
hypersphere-based modeling (Tax & Duin, 2004). We base our method on a graph autoencoder
to capture the structural properties of the graph through a reconstruction loss function (Kipf &
Welling, 2016). Additionally, we propose a new loss function to encapsulate the interest instances
that encourage these interest instances to approach the center even within the hypersphere. This
characteristic encourages unlabeled interest instances to go into the hypersphere since labeled in-
terest instances will remain updated even within the hypersphere. Otherwise, the learning process
stabilizes, harming learning because unlabeled interest instance representations may not be updated.

We utilize the GAE architecture with our loss functions to improve the one-class learning in a
multi-task learning way (Zhang & Yang, 2021; Sami et al., 2022). Multi-task learning aims to im-
prove the learning for each task by leveraging the relevant information contained in multiple solved
tasks (Zhang & Yang, 2018). In the context of OCL, multi-task learning has shown promise in im-
proving the learning process (Xue & Beauseroy, 2016; Liu et al., 2021). Furthermore, promising
multi-task GNNs indicate that performing multi-task learning also boosts each individual task while
improving representation learning (Ma & Mei, 2019; Xie et al., 2020). In this context, we propose a
multi-task learning approach using our loss functions for OCL in GNNs. Figure 1 illustrates OLGA.
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Figure 1: OLGA illustration with our new hypersphere and GAE loss functions.

Formally, a GAE utilizes a GNN encoder and a decoder represented by an inner product of the latent
representation (Kipf & Welling, 2016). Equation 2 describes a GAE (Kipf & Welling, 2016).

GAE =

{
Encoder : H(L) = g(V ,A;W )

Decoder : Â = σ(H(L) ·H(L)⊺)
, (2)
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in which, GAE learns H(L) with the mean squared error between A and Â, and σ(.) is a logistic
sigmoid function.

Our main task is the classification of instances as belonging to the interest class or not, which we de-
fine as T1. We define two additional reconstruction tasks to improve the learning and, consequently,
the classification. The first one regards the reconstruction of the entire graph, defined as T2. The
other task is the reconstruction of unlabeled nodes, defined as T3.

Let’s define some sets of nodes according to V . {V in,V u} ∈ V , where V in is the set of nodes of
interest, and V u is the set of unlabeled nodes. Let’s define di as the value indicating whether the
interest instance is within the hypersphere with radius r and center c given by Equation 3:

di = ∥h(L)
i − c∥2 − r2, (3)

in which, h(L)
i ∈ H(L). Negative values of di indicate that the node is inside the hypersphere, and

positive values indicate that it is outside.

For each task addressed in this study, we define a loss function. For T1, we propose a new loss
function based on the hypersphere paradigm (Tax & Duin, 2004; Wang et al., 2021). The proposed
hypersphere loss function penalizes instances of interest outside the hypersphere. Also, when the
instance is inside the hypersphere, it continues to be penalized but to a lesser extent to encourage it
to move closer to the center. We define our loss function in Equation 4. Figure L1 illustrates the loss
function L1 in a one-dimensional space.

Figure 2: Our new hypersphere loss function (L1) Illustration.

L1(W ) =
1

|V in|

V in∑
i=1

f(di), (4) f(di) =

{
di + 1, if di > 0
exp(di), otherwise . (5)

For T2, we define L2 as the reconstruction error of the entire graph (V in∪Vu), defined in Equation 6.
For T3, we define the loss function L3, which can be defined as shown in Equation 7.

L2(W ) = mse(A, Â), (6) L3(W ) = mse(Au, Âu), (7)

in which Au is the adjacency matrix of the unlabeled nodes in the graph, and Âu is the reconstruction
of this matrix generated by OLGA.

If we only use the L1, all instances will converge towards the center, regardless of whether they
are interest nodes, as the GNN aggregates representations at each iteration. Therefore, we propose
multi-task learning with additional loss functions to assist our main task solved by L1, combining
the loss functions. Equation 8 presents our final loss. Our strategy combines the GAE loss function
with the hypersphere loss function to work as a constraint so that the L1 does not entirely bias the
learning and improve the learning of representations and classification performance.

L(W ) = L1 ∗ α+ L2 ∗ β + L3 ∗ δ, (8)

in which α, β, and δ are the weights for L1, L2, and L3 losses in the training process.

The update of the network parameters is done based on the partial derivative of the losses. In the
end, we have an addition of the partial derivatives for the ∂L1

∂θe
+ ∂L2

∂θd
+ ∂L3

∂θd
, in which θe represents
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the encoder parameters, i.e., W and bias, and θd the decoder, i.e., W , bias, and the inner product.
Since the L2 and L3 are an MSE based well defined in the literature, we focus on defining the L1

partial derivative (Equation 9). So that way, in Equation 10, we have a total partial derivative of

∂L1

∂θe
=

1

|V in|

|V in|∑
i=1

∂

θe
f(di), (9)

∂Ltotal

∂θ
=

∂L1

∂θe
+

∂L2

∂θd
+

∂L3

∂θd
. (10)

However, when combining two different loss functions, one potential issue is the lack of regular-
ization in their scales, where one loss could have a stronger influence on the network’s learning,
causing the other task to be ignored entirely. However, using hyperbolic tangents serves as a solu-
tion to this problem. Note that in the adjacency matrix represented by zeros and ones, both L2 and
L3 return values on a similar scale to those found in the matrix. In this sense, we need to focus on
the one-class loss function to solve the problem. The hyperbolic tangent restricts the problem space
to −1 and 1 across all its dimensions. Therefore, the distance used for calculating L1 is on a similar
scale as L2 and L3, avoiding the issue of imbalanced losses.

Once each dimension of the learned representation ranges between −1 and 1 due to the hyperbolic
tangent, the hypersphere’s radius will be in the range (0, 1]. In this scenario, the hypersphere volume
tends to 0 the larger the dimension explored (Smith & Vamanamurthy, 1989). Therefore, with high
dimensions, OLGA will learn representations for interest instances very close to the center until
OLGA learns representations at a single point to encapsulate the interest instances. Even if the task
is being solved in OCL, using these representations in a subtask becomes unfeasible.

If OLGA explores low dimensionality in its last layer (2 or 3), the volume of the hypersphere will not
tend to 0, which makes it possible for OLGA to learn representations that can be used in other tasks
and still solve the node classification. In addition, when using low dimensions, OLGA becomes an
interpretable representation learning method since we can visualize each learning stage by plotting
the representations at each epoch. This fact also makes OLGA a method more interpretive. In
addition, we can visualize the circle or sphere in the classification step.

4 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of this article. We present the used datasets, ex-
perimental settings, results, and discussion. Our goal is to demonstrate that our OLGA proposal
outperforms other state-of-the-art methods. Another goal is to demonstrate that our method learns
low-dimensional representations without losing classification performance and performing better
than other methods. The experimental evaluation codes are publicly available1.

4.1 DATASETS

We used one-class datasets from the literature from different domains, sources, and data types and
used the k-nn modeling given the lack of benchmarking homogeneous graph datasets for one-class
learning. We explored textual, image, and tabular datasets. We accurately choose one-class original
datasets, i.e., datasets that have an interest class. We explore two tabular datasets collected from the
UCI repository. The first is a dataset of musk and non-musk molecules (Chapman & Jain, 1994;
Dietterich et al., 1993). Our interest class was musk molecules. The second is a malware detection
dataset (Tuandromd) (Borah et al., 2020). Our interest class was malware in the Tuandromd dataset.

We also use three textual datasets. The first is a dataset about fake news detection (de Souza et al.,
2022; Gôlo et al., 2021a). This dataset has real and fake classes, and our interest class was fake news.
The dataset is called Fact Checked News (FCN) and is publicly available. The second is a dataset for
detecting interest events (Gôlo et al., 2021b). This dataset has terrorism and non-terrorism classes,
and our interest class was terrorism events. This dataset is also publicly available. The third textual
dataset is for detecting relevant software reviews (Stanik et al., 2019; Gôlo et al., 2022). Our interest
class was relevant reviews, while irrelevant reviews were considered outliers. The dataset is called
App Reviews in English (ARE) and is not publicly available. However, the dataset creators (Stanik
et al., 2019) make the datasets available for academic purposes upon request.

1Ommited by double-blind review.
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In addition, we explore three image datasets. The first dataset was collected from the Kaggle plat-
form (Antonov, 2019). This dataset is a dataset with food images and non-food images. We use
food images as our interest class. We also collected from Kaggle the second dataset with images
of lungs with and without pneumonia (Kermany et al., 2018). We used pneumonia images as an
interest class. Finally, we used a dataset with images of healthy and abnormal strawberries (Choi
et al., 2022). Healthy strawberries are our interest class.

We model the datasets using the similarity between nearest neighbors. In the graph, each node is
connected with its k nearest neighbors in this modeling. We use the values of k = {1, 2, 3}. The
modeling that generated the best result in the validation set was used in the test set. The graph nodes
must be represented to calculate the similarity between nodes. Tabular datasets have a natural and
initial representation. However, text and image datasets are naturally unstructured.

For the text datasets, we use the pre-trained model Bidirectional Encoder Representations from
Transformers (BERT) in the Multilingual version (Reimers & Gurevych, 2019) to represent the
textual nodes since the use of BERT to initialize the textual representations nodes in GNNs pre-
sented good performances (Huang et al., 2022a). We used the Contrastive Language Image Pre-
training (Radford et al., 2021) pre-trained model for the image datasets to represent the image nodes.
In addition to using the initial representations to model our graphs, we also use these initial repre-
sentations as input to methods based on OCGNNs, the unsupervised GAE, and our OLGA approach.

4.2 EXPERIMENTAL SETTINGS

We used three two-step baselines. In the first step, we generate the representations through an unsu-
pervised graph-based method. In the second, we use the OCL algorithm to classify the instances
based on the generated representations. As a representation method, we used DeepWalk (Per-
ozzi et al., 2014), Node2Vec (Grover & Leskovec, 2016), and Graph Autoencoder (GAE) (Kipf
& Welling, 2016). We used the One-Class Support Vector Machines (OCSVM) (Schölkopf et al.,
2001) to classify the representations. We also compare our method with three state-of-the-art end-
to-end algorithms based on the OCGNN proposed by (Wang et al., 2021). We use OCGCN, OC-
GAT, and OCSAGE, three OCGNN variations that consider the GCN (Kipf & Welling, 2017), the
GAT (Velickovic et al., 2017), and the GraphSAGE (Hamilton et al., 2017) as layers of the GNN.

We use the 10-fold cross-validation adapted for OCL. We divided only the interest instances into
10 folds in the procedure since we used only the interest class to train. We separate 1 fold for the
test and 9 folds for the training. Furthermore, all folders are used once as a test set. We add 50%
of non-interest instances to the test set. For the validation set of each iteration, we use 10% of the
training set and the other 50% of the non-interest instances. We use the f1-macro to compare all
models, as the f1-macro is not biased by imbalance which is natural in OCL.

4.3 RESULTS AND DISCUSSION

Tables 1 and 2 present the results for the methods in the eight datasets. Table 1 presents the compared
methods with embeddings of dimensions 128 (high) and OLGA with 2 or 3 (low). Table 2 presents
OLGA and the other methods with 2 and 3 dimensions (low). Bold values indicate the best results.
Underline values indicate second-best results. Our OLGA approach outperforms the other methods.
OLGA obtained higher values of f1-macro in four out of eight datasets considering Table 1 and five
out of eight for Table 2. The most competitive method with OLGA was DeepWalk, which obtained
better results in two datasets in the high embeddings scenario and two for low dimensions. OCGAT
and GAE outperform the other methods in the other three datasets for high and low dimensions.
OCGCN, OCSAGE, and GAE obtained the worst results in most cases.

OLGA outperforms the other methods in the two tabular datasets in Table 2 and in the Musk dataset
in Table 1. Furthermore, OLGA also outperforms the other methods in datasets with textual content,
obtaining higher f1-macro in the Relevant Reviews dataset in Table 1 and 2. OLGA was able
to detect relevant reviews satisfactorily. In the dataset with texts on terrorism and non-terrorism,
Deepwalk + OCSVM outperformed OLGA. In the dataset with texts on fake and real news, GAE +
OCSVM outperformed OLGA. Still, in the image datasets, OLGA obtains higher f1-macro in two
out of three datasets. We detected images of food and pneumonia satisfactorily. In the dataset with
strawberry images, Deepwalk + OCSVM outperformed OLGA.
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Table 1: 10-fold average for f1-macro in the test set for high dimension results. Each line represents
a dataset, and each column a method.
Datasets GAE Deepwalk Node2Vec OCGCN OCGAT OCSAGE OLGA
Fakenews 0.942 0.879 0.829 0.746 0.884 0.824 0.940
Terrorism 0.727 0.981 0.800 0.845 0.900 0.785 0.921
Relevant R. 0.728 0.598 0.644 0.592 0.691 0.623 0.750
Food 0.982 0.752 0.960 0.901 0.994 0.985 0.997
Pneumonia 0.639 0.878 0.645 0.505 0.752 0.655 0.914
Strawberry 0.516 0.961 0.584 0.435 0.629 0.635 0.647
Musk 0.623 0.774 0.640 0.666 0.620 0.603 0.785
Tuandromd 0.904 0.689 0.905 0.898 0.978 0.974 0.974

Table 2: 10-fold average for f1-macro in the test set for low dimension results. Each line represents
a dataset, and each column a method.
Datasets GAE Deepwalk Node2Vec OCGCN OCGAT OCSAGE OLGA
Fakenews 0.950 0.868 0.892 0.635 0.506 0.486 0.940
Terrorism 0.624 0.978 0.671 0.824 0.744 0.640 0.921
Relevant R. 0.742 0.614 0.707 0.546 0.541 0.521 0.750
food 0.995 0.768 0.980 0.787 0.635 0.526 0.997
Pneumonia 0.394 0.878 0.787 0.588 0.664 0.661 0.914
Strawberry 0.531 0.942 0.544 0.594 0.598 0.557 0.647
Musk 0.478 0.726 0.526 0.505 0.437 0.477 0.785
Tuandromd 0.863 0.689 0.823 0.756 0.598 0.854 0.974

In the two datasets in which we were competitive with Deepwalk + OCSVM, we observed a not
natural imbalance, i.e., we have more interest instances in the test than non-interest (see Table 3).
This imbalance is not natural in the real world since the interest class is usually a small sample of
a larger universe. Also, one difference between OLGA and OCSVM is that OCSVM is inductive
while OLGA is transductive. Therefore, our transductive method was not robust enough for this
unbalanced scenario, while the OCSVM was not harmed because it is inductive.

Table 1 presents OLGA’s performance considering low dimensions compared with the results from
other methods with high dimensions. OLGA obtains better performances in four datasets (food,
musk, pneumonia, and relevant reviews) with the advantage of being interpretable, explainable, and
with the power of visualization. OLGA has competitive results in the other four datasets since OLGA
obtains the second-best results when other methods outperform OLGA. We observe in table 2 that
when another method obtains the highest f1, OLGA obtains the second best result, i.e., compared to
methods with high or low dimensionality, OLGA is competitive.

We performed Friedman’s statistical test with Nemenyi’s post-test (Trawinski et al., 2012) to com-
pare the methods considering the low and high scenarios. Figure 3 presents a critical difference
diagram generated through the Friedman test with Nemenyi’s post-test result. The diagram presents
the methods’ average rankings. Methods connected by a line do not present statistically significant
differences between them with 95% of confidence. The OLGA has the best average ranking with
a statistically significant difference from all methods except Deepwalk. The Deepwalk obtained
the second-best average ranking without statistically significant differences from the other methods.
OCGCN and OCSAGE obtained the worst average rankings.

We chose a dataset of each data type, textual, image, and tabular, to present the representations
generated by the OLGA learning. In this sense, Figure 4 presents the OLGA representations in the
experimental evaluation on the relevant review, food, and tuandromd datasets. We present OLGA’s
learning process, i.e., four learning epochs at different stages. The first stage is epoch 0. The second
is epoch 150. We chose 150 because the patience for this analysis was 300. The fourth stage is the
epoch when the model converges, and the third stage is the average epoch between the second and
fourth stages. Blue points represent the interest class, and green points the non-interest class.
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OLGA
Deepwalk
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OCGCN
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Figure 3: Critical difference diagram of Friedman’s statistical test with Nemenyi post-test consider-
ing f1-macro for low and high dimensional scenarios.

Food

Tuandromd

Relevant reviews

Epoch 0 Epoch 150 Third stage Model Convergence

Epoch 0 Epoch 150 Third stage Model Convergence

Epoch 0 Epoch 150 Third stage Model Convergence

Figure 4: Two-dimensional representations of OLGA last layer consider the learned representations
in three datasets. The colors indicate the interest class (blue) and the non-interest class (green).

We observe the entire learning process through representations of our method, shown in Figure 4.
During stages one and two, we observe the method ignoring the hypersphere and focusing only on
graph reconstruction (loss L2), which really is the OLGA goal. In the third stage, we observe multi-
task learning since the interest instances get closer to the hypersphere while non-interest instances
are outside the hypersphere (losses L1 and L3). Finally, in the fourth stage, we observed that the one-
class loss L1 encouraged the instances to continue coming to the hypersphere center, as proposed.

OLGA learns non-agnostic and customized representations for OCL, as shown in Figure 4. OLGA
obtains the best performances, as shown above, with a representation with less overlap between
classes, a one-class visualization more promising, and an interpretable representation learning
model. We emphasize that combining OLGA loss functions in a multi-task way and using low
dimensions allowed our proposal to be interpretable, explicable, and used for visualization.

5 CONCLUSIONS AND FUTURE WORK

We propose OLGA, an end-to-end graph neural network for OCL. OLGA combines a hypersphere
and reconstruction loss functions. We also introduce a novel hypersphere loss function that encap-
sulates the interest instances and encourages these instances to approach the center even within the
hypersphere. The learning process of OLGA allows us to explore low-dimensional representations
during the classification process without harming the classification performance, providing inter-
pretability and visualization. Our approach outperforms other state-of-the-art methods, showing
statistically significant differences from five out of six compared methods, and generates visually
meaningful representations suitable for OCL.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Shamshe Alam, Sanjay Kumar Sonbhadra, Sonali Agarwal, and P Nagabhushan. One-class support
vector classifiers: A survey. Knowledge-Based Systems, 2020.

Aleksandr Antonov. Food-5k image dataset. Kaggle Repository, 2019. URL:
https://www.kaggle.com/datasets/trolukovich/food5k-image-dataset.

Parthajit Borah, DK Bhattacharyya, and JK Kalita. Malware dataset generation and evaluation. In
CICT, 2020.

David Chapman and Ajay Jain. Musk (Version 2). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C51608.

Taeyeong Choi, Owen Would, Adrian Salazar-Gomez, and Grzegorz Cielniak. Self-supervised rep-
resentation learning for reliable robotic monitoring of fruit anomalies. In ICRA. IEEE, 2022.

Angelo da Silva, Marcos Gôlo, and Ricardo Marcacini. Unsupervised heterogeneous graph neural
network for hit song prediction through one class learning. In KDMiLe. SBC, 2022.

Mariana Caravanti de Souza, Bruno Magalhães Nogueira, Rafael Geraldeli Rossi, Ricardo Mar-
condes Marcacini, Brucce Neves Dos Santos, and Solange Oliveira Rezende. A network-based
positive and unlabeled learning approach for fake news detection. Machine Learning, 2022.

Fatemeh Deldar, Mahdi Abadi, and Mohammad Ebrahimifard. Android malware detection using
one-class graph neural networks. ISeCure, 2022.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Causality enhanced societal event forecasting
with heterogeneous graph learning. In ICDM. IEEE, 2022.

Thomas Dietterich, Ajay Jain, Richard Lathrop, and Tomas Lozano-Perez. A comparison of dy-
namic reposing and tangent distance for drug activity prediction. NeurIPS, 1993.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Int. Conf. on Information
& Knowledge Management, 2020.

Frank Emmert-Streib and Matthias Dehmer. Taxonomy of machine learning paradigms: A data-
centric perspective. WIREs Data Mining and Knowledge Discovery, 2022.

Yong Feng, Jinglong Chen, Zijun Liu, Haixin Lv, and Jun Wang. Full graph autoencoder for one-
class group anomaly detection of iiot system. IoT Journal, 2022.

Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C Prati, Bartosz Krawczyk, and Fran-
cisco Herrera. Learning from imbalanced data sets. Springer, 2018.

Tom Ganz, Inaam Ashraf, Martin Härterich, and Konrad Rieck. Detecting backdoors in collabora-
tion graphs of software repositories. In CODASPY, 2023.

Marcos Gôlo, Mariana Caravanti, Rafael Rossi, Solange Rezende, Bruno Nogueira, and Ricardo
Marcacini. Learning textual representations from multiple modalities to detect fake news through
one-class learning. In Webmedia, 2021a.

Marcos PS Gôlo, Rafael G Rossi, and Ricardo M Marcacini. Triple-vae: A triple variational autoen-
coder to represent events in one-class event detection. In ENIAC. SBC, 2021b.

Marcos PS Gôlo, Adailton F Araújo, Rafael G Rossi, and Ricardo M Marcacini. Detecting relevant
app reviews for software evolution and maintenance through multimodal one-class learning. IST,
2022.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD,
2016.

Marcos Gôlo, Leonardo Moraes, Rudinei Goularte, and Ricardo Marcacini. One-class recommen-
dation through unsupervised graph neural networks for link prediction. In KDMiLe. SBC, 2022.

10



Under review as a conference paper at ICLR 2024

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017.

Bin Huang, Xuhong Wang, Ping Cui, Wenjian Jiang, Yupu Yang, and Qifu Fan. One-class temporal
graph attention neural network for dynamic graph anomaly detection. In CECIT. IEEE, 2021.

Yen-Hao Huang, Yi-Hsin Chen, and Yi-Shin Chen. Contexting: Granting document-wise contextual
embeddings to graph neural networks for inductive text classification. In Int. Conf. Computational
Linguistics, 2022a.

Zeqi Huang, Yonghao Gu, and Qing Zhao. One-class directed heterogeneous graph neural network
for intrusion detection. In ICIAI, 2022b.

Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diag-
noses and treatable diseases by image-based deep learning. cell, 2018.

Shehroz S Khan and Michael G Madden. One-class classification: taxonomy of study and review of
techniques. Knowledge Engineering Review, 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. stat, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Bo Liu, Haoxin Xie, and Yanshan Xiao. Multi-task analysis discriminative dictionary learning for
one-class learning. Knowledge-Based Systems, 2021.

Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Chuan Zhou, Hao Peng,
Quan Z Sheng, and Charu C Aggarwal. Dagad: Data augmentation for graph anomaly detection.
In ICDM. IEEE, 2022a.

Zipeng Liu, Yang Wang, Jürgen Bernard, and Tamara Munzner. Visualizing graph neural networks
with corgie: Corresponding a graph to its embedding. IEEE Transactions on Visualization and
Computer Graphics, 2022b.

Jiaqi Ma and Qiaozhu Mei. Graph representation learning via multi-task knowledge distillation. In
NeurIPS, 2019.

Thien Nguyen and Ralph Grishman. Graph convolutional networks with argument-aware pooling
for event detection. In AAAI, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In SIGKDD, 2014.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP. ACL, 2019.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In ICML, 2018.

Mirza Tanzim Sami, Da Yan, Bhadhan Roy Joy, Jalal Khalil, Ricardo Cevallos, Md Emon Hossain,
Kejin Hu, and Yang Zhou. Center-based ipsc colony counting with multi-task learning. In ICDM.
IEEE, 2022.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 2001.

David J Smith and Mavina K Vamanamurthy. How small is a unit ball? Mathematics Magazine, 62
(2):101–107, 1989.

11



Under review as a conference paper at ICLR 2024

Christoph Stanik, Marlo Haering, and Walid Maalej. Classifying multilingual user feedback using
traditional machine learning and deep learning. In REW. IEEE, 2019.

David Martinus Johannes Tax. One-class classification: Concept learning in the absence of counter-
examples. PhD thesis, Universiteit Delft, 2001.

David MJ Tax and Robert PW Duin. Support vector data description. Machine learning, 2004.

Bogdan Trawinski, Magdalena Smetek, Zbigniew Telec, and Tadeusz Lasota. Nonparametric statis-
tical analysis for multiple comparison of machine learning regression algorithms. Applied Math-
ematics and Computer Science, 2012.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. stat, 2017.

Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, Yingshui Tan, and Yupu Yang. One-class graph
neural networks for anomaly detection in attributed networks. Neural computing and applications,
2021.

Jialin Wu and Raymond Mooney. Faithful multimodal explanation for visual question answering.
In Workshop BlackboxNLP, 2019.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:
A survey. IEEE Transactions on Artificial Intelligence, 2021.

Yu Xie, Maoguo Gong, Yuan Gao, AK Qin, and Xiaolong Fan. A multi-task representation learning
architecture for enhanced graph classification. Frontiers in neuroscience, 2020.

Yongjian Xue and Pierre Beauseroy. Multi-task learning for one-class svm with additional new
features. In ICPR. IEEE, 2016.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 2018.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 2020.

A APPENDIX

A.1 EXPERIMENTAL EVALUATION DETAILS

We use the following parameters for the methods:

• DeepWalk and Node2Vec: window size = 10, embedding size = {2, 3, 128}, walks per
node = 15, walk length = 10, q=1 and p=4;

• GAE: epochs=100, learning rate=0.01, optimizer=Adam, embedding size = {2, 3, 128};
• OCSVM: degree for polynomial kernel ={2}, γ = {scale, auto}, ν = {0.05 ∗ ι, 0.005 ∗
ι; ι ∈ [1..17]}, and kernels = {rbf, linear, sigmoid, polynomial};

• OCGCN, OCGAT, OCSAGE and OLGA: epoch = 5000, patience = {300, 500}, learning
rate= {0.0001, 0.0005}, and optimizer=Adam;

• OCGCN, OCGAT, and OCSAGE: ν = {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5}, weight de-
cay = 0.0005, dropout = 0.5, and activation = {ReLU}, embedding size = {2, 3, 128};

• OLGA: embedding size = {2, 3}, center = 0, radius = {0.3, 0.35, 0.4}, and activation =
{TanH}. Until the patience/2 epoch, we use α = 0, β = 1, and δ = 0. After the patience/2
epoch, we use α = 1, β = 0, and δ = 1.

Table 3 presents the details of the datasets such as dataset type, number of interest instances (#I),
number of non-interest instances (#NI), number of interest instances for training (#Tr), number of
interest instances for the test (#TeI), and number of non-interest instances for the test (#TeNI). We
obtain these values according to the 10-fold cross-validation.
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Table 3: dataset properties.
Datasets Type #I #NI #Tr #TeI #TeNI
FakeNews Text 1044 1020 940 104 510
Terrorism Text 5926 721 5333 593 360
Relevant R. Text 2537 3855 2283 254 1927
Food Image 2500 2500 2250 250 1025
Pneumonia Image 4273 1583 3846 427 791
Strawberry Image 3367 153 3030 337 76
Musk Tabular 1224 5850 1102 122 2925
Tuandromd Tabular 3565 899 3209 356 449

A.2 DIMENSION ANALYSIS FOR OUR HYPERSPHERE LOSS FUNCTION

We show the hypersphere volume for the OLGA loss function considering the values of the radius
used (0.3, 0.45, 0.5). We show the volume considering dimensions from 1 to 40. Figure 5 shows
the analysis result. The green line represents the 0.5 radius, the orange represents the 0.45, and the
blue represents the 0.3. The axis y represents the volume, and the axis x represents the dimension.
We use a red line to indicate the volume obtained with our dimensions numbers. We note that with
dimensions higher than 15, the volume tends to be 0 regardless of radius. With smaller dimensions,
we observe that the volume does not tend to be 0, allowing OLGA to better represent learning.

The volume was generated by:

Vn(r) =
πn/2

Γ(n2 + 1)
rn, (11)

in which, r is the radius, n is number of dimension and Γ is the Euler’s gamma function.
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Figure 5: Relations between the hypersphere volume and the dimension of the representation used.

A.3 RESULTS WITH STANDARD DEVIATION AND COMPLETE 2D PLOT
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Table 4: Averages and standard deviation for f1-macro in the test set for high dimension results. Each line represents a dataset, and each column a method. Bold
values indicate the best results.

Datasets GAE Deepwalk Node2Vec OCGCN OCGAT OCSAGE OLGA
Fakenews 0.942 (0.011) 0.879 (0.016) 0.829 (0.022) 0.746 (0.045) 0.884 (0.017) 0.824 (0.015 0.940 (0.016)
Terrorism 0.727 (0.038) 0.981(0.003) 0.800 (0.015) 0.845 (0.021) 0.900 (0.007) 0.785 (0.020) 0.921 (0.007)
Relevant R. 0.728 (0.009) 0.598 (0.023) 0.644 (0.009) 0.592 (0.010) 0.691 (0.006) 0.623 (0.010) 0.750 (0.007)
Food 0.982 (0.004) 0.752 (0.012) 0.960 (0.007) 0.901 (0.009) 0.994 (0.003) 0.985 (0.003) 0.997 (0.002)
Pneumonia 0.639 (0.012) 0.878 (0.010) 0.645 (0.012) 0.505 (0.012) 0.752 (0.011) 0.655 (0.014) 0.914 (0.010)
Strawberry 0.516 (0.021) 0.961 (0.007) 0.584 (0.031) 0.435 (0.093) 0.629 (0.020) 0.635 (0.025) 0.647 (0.101)
Musk 0.623 (0.063) 0.774 (0.006) 0.640 (0.019) 0.666 (0.018) 0.620 (0.008) 0.603 (0.013) 0.785 (0.029)
Tuandromd 0.904 (0.011) 0.689 (0.007) 0.905 (0.007) 0.898 (0.008) 0.978 (0.004) 0.974 (0.004) 0.974 (0.006)

Table 5: Averages and standard deviation for f1-macro in the test set for low dimension results. Each line represents a dataset, and each column a method. Bold
values indicate the best results.

Datasets GAE Deepwalk Node2Vec OCGCN OCGAT OCSAGE OLGA
Fakenews 0.950 (0.010) 0.868 (0.018) 0.892 (0.015) 0.635 (0.014) 0.506 (0.013) 0.486 (0.022) 0.940 (0.016)
Terrorism 0.624 (0.011) 0.978 (0.004) 0.671 (0.014) 0.824 (0.012) 0.744 (0.012) 0.640 (0.010) 0.921 (0.007)
Relevant R. 0.742 (0.009) 0.614 (0.017) 0.707 (0.008) 0.546 (0.007) 0.541 (0.005) 0.521 (0.008) 0.750 (0.007)
food 0.995 (0.003) 0.768 (0.012) 0.980 (0.003) 0.787 (0.016) 0.635 (0.015) 0.526 (0.012) 0.997 (0.002)
Pneumonia 0.394 (0.000) 0.878 (0.009) 0.787 (0.010) 0.588 (0.010) 0.664 (0.013) 0.661 (0.006) 0.914 (0.010)
Strawberry 0.531 (0.017) 0.942 (0.013) 0.544 (0.022) 0.594 (0.023) 0.598 (0.015) 0.557 (0.013) 0.647 (0.101)
Musk 0.478 (0.068) 0.726 (0.015) 0.526 (0.013) 0.505 (0.008) 0.437 (0.007) 0.477 (0.011) 0.785 (0.029)
Tuandromd 0.863 (0.020) 0.689 (0.009) 0.823 (0.012) 0.756 (0.011) 0.598 (0.016) 0.854 (0.012) 0.974 (0.006)
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Figure 6: Two-dimensional representations of each method consider the learned representations
in three datasets. The colors indicate the interest class (blue) and the non-interest class (green).
Representation methods that show less overlap between classes and a one-class visualization are
more promising.

Figure 6 shows that the two-step methods generated non-customized representations for one-class
learning. Even GAE generates some good representations, which partially separate the interest and
non-interest classes in most cases, these representations are not customized because they are ag-
nostic to the classification model. End-to-end methods based on OCGNN generate representations
non-agnostic to the classification model. However, OCGNN does not customize the representa-
tions enough for a hypersphere to classify interest and non-interest instances. OLGA also learns
non-agnostic representations such as OCGNNs. On the other hand, OLGA generates customized
representations for one-class learning, obtaining the best performances, as shown above.
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