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Abstract

Knowledge Graphs (KGs) are fundamental re-001
sources in knowledge-intensive tasks in NLP.002
Due to the limitation of manually creating003
KGs, KG Completion (KGC) has an impor-004
tant role in automatically completing KGs by005
scoring their links with KG Embedding (KGE).006
To handle many entities in training, KGE re-007
lies on Negative Sampling (NS) loss that can008
reduce the computational cost by sampling.009
Since the appearance frequencies for each link010
are at most one in KGs, sparsity is an essen-011
tial and inevitable problem. The NS loss is012
no exception. As a solution, the NS loss in013
KGE relies on smoothing methods like Self-014
Adversarial Negative Sampling (SANS) and015
subsampling. However, it is uncertain what016
kind of smoothing method is suitable for this017
purpose due to the lack of theoretical under-018
standing. This paper provides theoretical in-019
terpretations of the smoothing methods for the020
NS loss in KGE and induces a new NS loss,021
Triplet Adaptive Negative Sampling (TANS),022
that can cover the characteristics of the con-023
ventional smoothing methods. Experimental024
results of TransE, DistMult, ComplEx, RotatE,025
HAKE, and HousE on FB15k-237, WN18RR,026
and YAGO3-10 datasets and their sparser sub-027
sets show the soundness of our interpretation028
and performance improvement by our TANS.029

1 Introduction030

Knowledge Graphs (KGs) represent human knowl-031

edge using various entities and their relationships032

as graph structures. KGs are fundamental resources033

for knowledge-intensive tasks like dialog (Moon034

et al., 2019), question answering (Reese et al.,035

2020), named entity recognition (Liu et al., 2019),036

open-domain questions (Hu et al., 2022), and rec-037

ommendation systems (Gao et al., 2020), etc.038

However, to create complete KGs, we need to039

consider a large number of entities and all their040

possible relationships. Taking into account the ex-041

plosively large number of combinations between042

entities, only relying on manual approaches is un- 043

realistic to make complete KGs. 044

Knowledge Graph Completion (KGC) is a task 045

to deal with this problem. KGC involves automat- 046

ically completing missing links corresponding to 047

relationships between entities in KGs. To complete 048

the KGs, we need to score each link between enti- 049

ties. For this purpose, current KGC commonly re- 050

lies on Knowledge Graph Embedding (KGE) (Bor- 051

des et al., 2011). KGE models predict the missing 052

relations, named link prediction, by learning struc- 053

tural representations. In the current KGE, mod- 054

els need to complete a link (triplet) (ei, rk, ej) of 055

entities ei and ej , and their relationship rk by an- 056

swering ei or ej from a given query (?, rk, ej) or 057

(ei, rk, ?), respectively. Hence, KGE needs to han- 058

dle a large number of entities and their relationships 059

during its training. 060

To handle a large number of entities and rela- 061

tionships in KGs, Negative Sampling (NS) loss 062

(Mikolov et al., 2013) is frequently used for train- 063

ing KGE models. The original NS loss is proposed 064

to approximate softmax cross-entropy loss to re- 065

duce computational costs by sampling false labels 066

from its noise distribution in training. Trouillon 067

et al. (2016) import the NS loss from word embed- 068

ding to KGE with utilizing uniform distribution 069

as its noise distribution. Sun et al. (2019) extend 070

the NS loss to Self-Adversarial Negative Sampling 071

(SANS) loss for efficient training of KGE. Unlike 072

the NS loss with uniform distribution, the SANS 073

loss utilizes the training model’s prediction as the 074

noise distribution. Since the negative samples in 075

the SANS loss become more difficult to discrimi- 076

nate for models in training, the SANS can extract 077

models’ potential compared with the NS loss with 078

uniform distribution. 079

One of the problems left for KGE is the sparsity 080

of KGs. Figure 1 shows the appearance frequency 081

of queries and answers (entities) in the training data 082

of FB15k-237, WN18RR and YAGO3-10 datasets. 083
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Figure 1: Appearance frequencies of queries and answers in the training data of FB15k-237, WN18RR, and
YAGO3-10. Note that the indices are sorted from high frequency to low.
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Figure 2: Performances of KGE models HousE, HAKE, RotatE, ComplEx, DistMult, and TransE on datasets
FB15k-237, WN18RR, and YAGO3-10 using NS, SANS, and subsampling methods (noted as Base, Freq, Uniq).

From the long-tail distribution of this figure, we084

can understand that both queries and answers nec-085

essary for training KGE models may suffer from086

the sparsity problem.087

As a solution, several smoothing methods are088

used in KGE. Sun et al. (2019) import subsampling089

from word2vec (Mikolov et al., 2013) to KGE. Sub-090

sampling can smooth the appearance frequency of091

triplets and queries in KGs. Kamigaito and Hayashi092

(2022a) show a general formulation that covers the093

basic subsampling of Sun et al. (2019) (Base), their094

frequency-based subsampling (Freq) and unique-095

based subsampling (Uniq) for KGE. Kamigaito and096

Hayashi (2021) indicate that SANS has a similar ef-097

fect of using label-smoothing (Szegedy et al., 2016)098

and thus SANS can smooth the frequencies of an-099

swers in training. Figure 2 shows the effectiveness100

of SANS and subsampling in KGC performance.101

From the figure, since FB15k-237 is more sparse102

(imbalanced) than WN18RR and YAGO3-10 based103

on Figure 1, we can understand that strategy in104

choosing smoothing methods have more consider-105

able influences than models when data is sparse.106

While SANS and subsampling can improve107

model performance by smoothing the appearance108

frequencies of triplets, queries, and answers, their109

theoretical relationship is not clear, leaving their ca- 110

pabilities and deficiencies a question. For example, 111

conventional works (Sun et al., 2019; Zhang et al., 112

2020b; Kamigaito and Hayashi, 2022a)1 jointly 113

use SANS and subsampling with no theoretical 114

background. Thus, there is a call for further inter- 115

pretability and performance improvement. 116

To solve the above problem, we theoretically 117

and empirically study the differences of SANS and 118

subsampling on three common datasets and their 119

sparser subsets with six popular KGE models2. Our 120

contributions are as follows: 121

• By focusing on the smoothing targets, we theo- 122

retically reveal the differences between SANS 123

and subsampling and induce a new NS loss, 124

Triplet Adaptive Negative Sampling (TANS), 125

that can cover the smoothing target of both 126

SANS and subsampling. 127

• We theoretically show that TANS with sub- 128

sampling can potentially cover the conven- 129

1Note that Sun et al. (2019); Zhang et al. (2020b) use sub-
sampling in their released implementation without referring
to it in their paper.

2Our code and data are available at https://github.
com/[innominated].
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tional usages of SANS and subsampling.130

• We empirically verify that TANS improves131

KGC performance on sparse KGs in terms of132

MRR.133

• We empirically verify that TANS with sub-134

sampling can cover the conventional usages135

of SANS and subsampling in terms of MRR.136

2 Background137

In this section, we describe the problem formu-138

lation for solving KGC by KGE and explain the139

conventional NS loss functions in KGE.140

2.1 Formulation of KGE141

KGC is a research topic for automatically inferring142

new links in a KG that are likely but not yet known143

to be true. To infer the new links by KGE, we de-144

compose KGs into a set of triplets (links). By using145

entities ei, ej and their relation rk, we represent the146

triplet as (ei, rk, ej). In a typical KGC task, a KGE147

model receives a query (ei, rk, ?) or (?, rk, ej) and148

predicts the entity corresponding to ? as an answer.149

In KGE, a KGE model scores a triplet (ei, rk, ej)150

by using a scoring function sθ(x, y), where θ de-151

notes model parameters. Here, using a softmax152

function, we represent the existence probability153

pθ(y|x) for an answer y of the query x as follows:154

pθ(y|x) =
exp(sθ(x, y))∑

y′∈Y exp(sθ(x, y′))
, (1)155

where Y is a set of entities.156

2.2 NS Loss in KGE157

To train sθ(x, y), we need to calculate losses for158

the observables D = {(x1, y1), · · · , (xn, yn)} that159

follow pd(x, y). Even if we can represent KGC160

by Eq. (1), it does not mean we can tractably per-161

form KGC due to the large number of Y in KGs.162

For the reason of the computational cost, the NS163

loss (Mikolov et al., 2013) is used to approximate164

Eq. (1) by sampling false answers.165

By modifying that of Mikolov et al. (2013), the166

following NS loss (Sun et al., 2019; Ahrabian et al.,167

2020) is commonly used in KGE:168

ℓNS(θ)169

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))170

+
1

ν

ν∑
yi∼U

log(σ(−sθ(x, yi)− τ))
]
, (2)171

where U is the noise distribution that follows uni- 172

form distribution, σ is the sigmoid function, ν is 173

the number of negative samples per positive sample 174

(x, y), and τ is a margin term to adjust the value 175

range decided by sθ(x, y). 176

2.3 Smoothing Methods for the NS Loss in 177

KGE 178

As shown in Figure 1, KGC needs to deal with the 179

sparsity problem caused by low frequent queries 180

and answers in KGs. Imposing smoothing on the 181

appearance frequencies of queries and answers can 182

mitigate this problem. The following subsections 183

introduce subsampling (Mikolov et al., 2013; Sun 184

et al., 2019; Kamigaito and Hayashi, 2022a) and 185

SANS (Sun et al., 2019), the conventional smooth- 186

ing methods for the NS loss in KGE. 187

2.3.1 Subsampling 188

Subsampling (Mikolov et al., 2013) is a method to 189

smooth the frequency of triplets or queries in the 190

NS loss. Sun et al. (2019) import this approach 191

from word embedding to KGE. Kamigaito and 192

Hayashi (2022b,a) add some variants to subsam- 193

pling for KGC and theoretically provide a unified 194

expression of them as follows: 195

ℓSUB(θ) 196

=− 1

|D|
∑

(x,y)∈D

[
A(x, y;α) log(σ(sθ(x, y)+τ)) 197

+
1

ν

ν∑
yi∼U

B(x, y;α)log(σ(−sθ(x, yi)−τ))
]
, (3) 198

where α is a temperature term to adjust the frequecy 199

of triplets and queries. Note that we incorporate α 200

into Eq. (3) to consider various loss functions even 201

though Kamigaito and Hayashi (2022b,a) do not 202

consider α. In this formulation, we can consider 203

several assumptions for deciding A(x, y;α) and 204

B(x, y;α). We introduce these assumptions in the 205

following paragraphs: 206

Base As a basic subsampling approach, Sun et al. 207

(2019) import the one originally used in word2vec 208

(Mikolov et al., 2013) to KGE, defined as follows: 209

A(x, y;α)=B(x, y;α)=
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,

(4) 210

where # is the symbol for frequency and #(x, y) 211

represents the frequency of (x, y). In word2vec, 212
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subsampling randomly discards a word by a proba-213

bility 1−
√
t/f , where t is a constant value and f is214

a frequency of a word. This is similar to randomly215

keeping a word with a probability
√

t/f . Thus,216

we can understand that Eq. (4) follows the original217

use in word2vec. Since the actual (x, y) occurs at218

most once in KGs, when (x, y) = (ei, rk, ej), they219

approximate the frequency of (x, y) as:220

#(x, y) ≈ #(ei, rk) + #(rk, ej), (5)221

based on the approximation of n-gram language222

modeling (Katz, 1987).223

Freq Kamigaito and Hayashi (2022a) propose224

frequency-based subsamping (Freq) by assuming a225

case that (x, y) originally has a frequency, but the226

observed one in the KG is at most 1.227

A(x, y;α) =
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
,228

B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (6)229

Uniq Kamigaito and Hayashi (2022a) also pro-230

pose unique-based subsamping (Uniq) by assum-231

ing a case that the originally frequency and the232

observed one in the KG are both 1.233

A(x, y;α) = B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (7)234

2.3.2 SANS Loss235

SANS is originally proposed as a kind of NS loss236

to train KGE models efficiently by considering neg-237

ative samples close to their corresponding positive238

ones. Kamigaito and Hayashi (2021) show that us-239

ing SANS is similar to imposing label-smoothing240

on Eq. (1). Thus, SANS is a method to smooth the241

frequency of answers in the NS loss. The SANS242

loss is represented as follows:243

ℓSANS(θ)244

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ))245

+

ν∑
yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (8)246

pθ(yi|x;β) ≈
exp(βsθ(x, yi))∑ν
j=1 exp(βsθ(x, yj))

, (9)247

where β is a temperature to adjust the distribu-248

tion of negative sampling. Different from subsam-249

pling, SANS uses pθ(yi|x;β) that is predicted by250

a model θ to adjust the frequency of the answer yi. 251

Since pθ(yi|x;β) is essentially a noise distribution, 252

it does not receive any gradient during training. 253

3 Triplet Adaptive Negative Sampling 254

In this section, we explain our proposed Triplet 255

Adaptive Negative Sampling (TANS) in detail. We 256

first show the overview of our TANS through the 257

comparison with the conventional smoothing meth- 258

ods of the NS loss for KGE (See §2.3) in §3.1 and 259

after that we explain the details of TANS through 260

its mathematical formulations in §3.2 and §3.3. 261

3.1 Overview 262

TANS is fundamentally different from SANS, with 263

SANS only taking into account the conditional 264

probability of negative samples and TANS being a 265

loss function that considers the joint probability of 266

the pair of queries and their answers. 267

Table 1 shows the characteristics of TANS and 268

the conventional smoothing methods of the NS loss 269

for KGE introduced in §2.3. These characteristics 270

are based on the decomposition of pd(x, y), the 271

appearance probability for the triplet (x, y), into 272

that of its answer pd(y|x) and query p(x): 273

pd(x, y) = pd(y|x)pd(x) (10) 274

In Eq. (10), smoothing both pd(y|x) and pd(x) is 275

similar to smoothing pd(x, y). However, smooth- 276

ing pd(x, y) does not ensure smoothing both pd(x) 277

and pd(y|x) considering the case of only one of 278

them being smoothed, and the left one being still 279

sparse. Similarly, smoothing only pd(x) or pd(y|x) 280

does not ensure pd(x, y) being smoothed due to 281

the case where one of them is still sparse. In Table 282

1, we denote such a case where the method can 283

influence the probability, but no guarantee of the 284

probability be smoothed as △. 285

In TANS, we aim to smooth pd(x, y) by smooth- 286

ing both pd(y|x) and pd(x) based on Eq. (10). 287

3.2 Formulation 288

Here, we induce TANS from SANS with targeting 289

to smooth pd(x, y) by smoothing both pd(y|x) and 290

pd(x). First, we assume a simple replacement from 291

pθ(y|x) to pθ(x, y) in ℓSANS(θ) of Eq. (9): 292

− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ)) 293

+

ν∑
yi∼U

pθ(x, yi) log(σ(−sθ(x, yi)− τ))
]
. (11) 294
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Method Smoothing Remarks
p(x, y) p(y|x) p(x)

Subsampling
Base ✓ △ △ p(y|x) and p(x) are influenced by p(x, y).
Uniq △ × ✓ p(x, y) is indirectly controlled by p(x).
Freq ✓ △ ✓ p(y|x) is indirectly controlled by p(x, y) or p(x).

SANS △ ✓ × p(x, y) is indirectly controlled by p(y|x).

TANS ✓ ✓ ✓

Table 1: The characteristics of each smoothing method for the NS loss in KGE (See §2.3 for the details.) and our
proposed TANS. ✓ and △ respectively denote the method smooths the probability directly and indirectly. × denotes
the method does not smooth the probability.

However, using Eq. (11) causes an imbalanced loss295

between the first and second terms since the sum296

of pθ(x, yi) on all negative samples is not always297

1. Thus, Eq. (11) is impractical as a loss function.298

As a solution, we focus on the decomposition299

pθ(x, y) = pθ(y|x)pθ(x) and the fact that the sum300

of pθ(y|x) of all negative samples is always 1. By301

using pθ(x) to make a balance between the first302

and second loss term, we can modify Eq. (11) and303

induce our TANS as follows:304

ℓTANS(θ)305

=− 1

|D|
∑

(x,y)∈D

pθ(x; γ)
[
log(σ(sθ(x, y) + τ))306

+
ν∑

yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)−τ))
]
, (12)307

pθ(x; γ) =
∑
yi∈D

pθ(x, yi; γ),308

pθ(x, yi; γ)=
exp (γsθ(x, yi))∑

(x′,y′)∈Dexp(γsθ(x
′, y′))

, (13)309

where γ is a temperature to smooth the frequency310

of queries. Since TANS uses a noise distribution de-311

cided by pθ(x; γ) and pθ(yi|x;β), it does not prop-312

agate gradients through probabilities for negative313

samples, and thus, memory usage is not increased.314

3.3 Theoretical Interpretation315

In this subsection, we discuss the difference and316

similarities among TANS and other smoothing317

methods for the NS loss in KGE. As shown in318

Table 1, the subsampling methods, Base and Freq,319

can smooth triplet frequencies similar to our TANS.320

To investigate TANS from the view point of sub-321

sampling, we reformulate Eq. (12) as follows: 322

ℓTANS(θ) 323

=− 1

|D|
∑

(x,y)∈D

A(x, y; γ)
[
log(σ(sθ(x, y)+τ)) 324

+
ν∑

yi∼U

B(x, y;β, γ) log(σ(−sθ(x, yi)−τ))
]
,

(14)

325

A(x, y; γ) = pθ(x; γ), 326

B(x, y;β, γ) = pθ(yi|x;β)pθ(x; γ). (15) 327

Apart from the temperature terms, α, β, and γ, we 328

can see that the general formulation of subsampling 329

in Eq. (3) and the above Eq. (14) has the same for- 330

mulation. Thus, TANS is not merely an extension 331

of SANS but also a novel subsampling method. 332

Even though their similar characteristic, TANS 333

and subsampling have an essential difference: 334

TANS smooths the frequencies by model-predicted 335

distributions as in Eq. (13), and the subsampling 336

methods smooth them by counting appearance fre- 337

quencies on the observed data as in Eq. (4), (5), (6), 338

and (7). For instance, TANS can work even when 339

the entity or relations included in the target triplet 340

appear more than once, which is theoretically dif- 341

ferent from conventional approaches. 342

Since the superiority of using either model-based 343

or count-based frequencies depends on the model 344

and dataset, we empirically investigate this point 345

through our experiments. 346

4 Unified Interpretation of SANS and 347

Subsampling 348

In the previous section, we understand that our 349

TANS can smooth triplets, queries, and answers 350

partially covered by SANS and subsampling meth- 351

ods. On the other hand, TANS only relies on model- 352

predicted frequencies to smooth the frequencies. 353
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Temperature Induced NS Loss
α β γ

= 0 = 0 = 0 Equivalent to ℓNS(θ), the basic NS loss in KGE (Eq. (2))
= 0 = 0 ̸= 0 Currently does not exist
= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9))
= 0 ̸= 0 ̸= 0 Equivalent to our ℓTANS(θ), the TANS loss (Eq. (12))
̸= 0 = 0 = 0 Proportional to ℓNS(θ), the basic NS loss in KGE (Eq. (2)) with subsampling in §2.3
̸= 0 = 0 ̸= 0 Currently does not exist
̸= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9)) with subsampling in §2.3
̸= 0 ̸= 0 ̸= 0 Equivalent to our ℓUNI(θ), the unified NS loss in KGE (Eq. (16))

and also equivalent to our ℓTANS(θ), the TANS loss (Eq. (12)) with subsampling in §2.3

Table 2: The relationship among the loss functions from the viewpoint of the unified NS loss, ℓUNI(θ) in Eq. (16).

Neubig and Dyer (2016) point out the benefits of354

combining count-based and model-predicted fre-355

quencies in language modeling. This section inte-356

grates smoothing methods for the NS loss in KGE357

from a unified interpretation.358

4.1 Formulation359

We formulate the unified loss function by introduc-360

ing subsampling into our TANS as follows:361

ℓUNI(θ)362

=− 1

|D|
∑

(x,y)∈D

pθ(x; γ)
[
A(x, y;α)log(σ(sθ(x, y)+τ))363

+η
ν∑

yi∼U

B(x, y;α)pθ(yi|x;β)log(σ(−sθ(x, yi)−τ))
]
,

(16)

364

where η is a hyperparamter that can be any value365

to absorb the difference among the three different366

subsampling methods, Base, Uniq, and Freq.367

Here, we can induce the NS losses shown in our368

paper from Eq. (16) by changing the temperature369

parameters α, β, and γ. Table 2 shows the induced370

losses from our ℓUNI(θ). Note that since pθ(x; γ)371

only appears in our TANS, canceling pθ(x; γ) by372

γ = 0 induces an inequivalent but a proportional373

relationship to the conventional NS loss.374

4.2 Theoretical Interpretation375

As shown in Table 2, TANS w/ subsampling has376

characteristics of all smoothing methods for the NS377

loss in KGE introduced in this paper. Therefore,378

we can expect higher performance of TANS w/379

subsampling than the combination of conventional380

methods, the basic NS, SANS, and subsampling.381

However, because TANS w/ subsampling uses sub-382

sampling in §2.3, we need to choose the one from383

Base, Uniq, and Freq for TANS w/ subsampling.384

Since this part is out of the scope of our theoret-385

ical interpretation, we investigate this part in the 386

experiments. 387

5 Experiments 388

In this section, we investigate our theoretical inter- 389

pretation in §3.3 and §4.2 through experiments. 390

5.1 Experimental Settings 391

Datasets We used three common datasets, FB15k- 392

237 (Toutanova and Chen, 2015), WN18RR, and 393

YAGO3-10 (Dettmers et al., 2018) 3. 394

Comparison Methods As comparison methods, 395

we used TransE (Bordes et al., 2013), Dist- 396

Mult (Yang et al., 2015), ComplEx (Trouillon et al., 397

2016), RotatE (Sun et al., 2019), HAKE (Zhang 398

et al., 2020a), and HousE (Li et al., 2022). We fol- 399

lowed the original settings of Sun et al. (2019) for 400

TransE, DistMult, ComplEx, and RotatE with their 401

implementation4, the original settings of Zhang 402

et al. (2020a) for HAKE with their implementa- 403

tion5, and the original settings of Li et al. (2022) for 404

HousE with their implementation6. We tuned tem- 405

perature γ on the validation split for each dataset. 406

Metrics We employed conventional metrics in 407

KGC, i.e., MRR, Hits@1 (H@1), Hits@3 (H@3), 408

and Hits@10 (H@10) and reported the average 409

scores and their standard deviations by three differ- 410

ent runs with fixed random seeds. 411

5.2 Results 412

Since the result tables are large7, we discuss them 413

individually, focusing on important information in 414

3Table 3 in Appendix A shows the dataset statistics.
4https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding
5https://github.com/MIRALab-USTC/

KGE-HAKE
6https://github.com/rui9812/HousE
7The full experimental results are listed in Appendix B.

The scores are included in Table 5, 6, and 7 of Appendix B.1.
The training loss curves and validation MRR curves for each
smoothing method are in Figure 6, 7, and 8 of Appendix B.2.
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Figure 3: KGC performance on common KGs (Notations are the same as in Figure 2).

the following subsections.415

5.2.1 Effectiveness of TANS416

Figure 3a shows the MRR scores of each method.417

From the result, we can understand the effective-418

ness of considering triplet information in SANS419

as conducted in TANS. Thus, the result is along420

with our expectation in §3.3 that TANS can cover421

the role of subsampling methods. However, as the422

result of HAKE on WN18RR shows, there is a423

case that subsampling methods outperform TANS.424

As discussed in §3.3, using only TANS does not425

cover all combinations of NS loss and subsampling.426

Considering this theoretical fact, we further com-427

pare TANS with subsampling and the NS loss with428

subsampling.429

5.2.2 Validity of the Unified Interpretation430

Figure 3b shows the result for each configuration.431

We can see performance improvements by using432

subsampling in both SANS and TANS. Further-433

more, in almost all cases, TANS with subsampling434

achieve the highest MRR. This observation is along435

with the theoretical conclusion in §3.3 that TANS436

with subsampling can cover the characteristic of 437

other NS loss in terms of smoothing. On the other 438

hand, the results of HAKE on YAGO3-10 show the 439

different tendency that SANS with subsampling 440

achieves the best MRR instead of TANS. Because 441

the model prediction estimates the triplet frequen- 442

cies, TANS is influenced by the selected model. 443

Therefore, carefully choosing the combination of 444

a loss function and model is still effective in im- 445

proving KGC performance on the NS loss with 446

subsampling. 447

6 Analysis 448

We analyze how TANS mitigates the sparsity prob- 449

lem in imbalanced KGs commonly caused by low 450

frequent triplets in KGC. By considering that all 451

triplets in KGs appear at most once, we focus on 452

queries. We extracted 0.5% triplets with the highest 453

or lowest frequent queries in training, validation, 454

and test splits as the sparser subsets FB15k-237- 455

HL, WN18RR-HL, and YAGO3-10-HL, respec- 456

7
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Figure 4: KGC performance on filtered sparser KGs, i.e., FB15k-237-HL, WN18RR-HL, and YAGO3-10-HL
(Notations are the same as in Figure 2).

tively 8 from original data, for the investigation.457

Figure 4 shows MRRs for each model on each458

sparser dataset. From the result, we can under-459

stand that TANS can perform even much better in460

KGC when KGs get more imbalanced. You can461

see further detailed results in Table 8, 9, and 10462

of Appendix C.3.463

7 Related Work464

Mikolov et al. (2013) initially propose the NS loss465

of the frequent words to train their word embedding466

model, word2vec. Trouillon et al. (2016) introduce467

the NS loss to KGE to speed up training. Melamud468

et al. (2017) use the NS loss to train the language469

model. In contextualized pre-trained embeddings,470

Clark et al. (2020a) indicate that a BERT(Devlin471

et al., 2019)-like model ELECTRA (Clark et al.,472

2020b) uses the NS loss to perform better and faster473

than language models.474

Sun et al. (2019) extend the NS loss to SANS475

loss for KGE and proposed their noise distribution,476

which is subsampled by a uniformed probability477

pθ(yi|x). Kamigaito and Hayashi (2021) point out478

the sparseness problem of KGs through their the-479

oretical analysis of the NS loss in KGE. Further-480

more, Kamigaito and Hayashi (2022a) reveal that481

subsampling (Mikolov et al., 2013) can alleviate482

the sparseness problem in the NS for KGE and483

conclude three assumptions for subsampling, i.e.,484

Base, Freq, and Uniq.485

Through our work, we theoretically clarify the486

position of the previous works on SANS loss and487

subsampling from the viewpoint of smoothing488

8Note that we show their appearance frequencies of queries
and answers in the training data in Figure 5 and detailed
statistics in Table 4 of Appendix C.1 and C.2, respectively.

methods for the NS loss in KGE. Since our work 489

unitedly interprets SANS loss and subsampling, our 490

proposed TANS inherits the advantages of conven- 491

tional works and can deal with the sparsity problem 492

in the NS loss for KGE. 493

8 Conclusion 494

We reveal the relationships between SANS loss and 495

subsampling for the KG completion task through 496

theoretical analysis. We explain that SANS loss 497

and subsampling under three assumptions, Base, 498

Freq, and Uniq have similar roles to mitigate the 499

sparseness problem of queries and answers of KGs 500

by smoothing the frequencies of queries and an- 501

swers. Furthermore, based on our interpretation, 502

we induce a new loss function, Triplet Adaptive 503

Negative Sampling (TANS), by integrating SANS 504

loss and subsampling. We also introduce a theoreti- 505

cal interpretation that TANS with subsampling can 506

cover all conventional combinations of SANS loss 507

and subsampling. 508

We verified our interpretation by empirical 509

experiments in three common datasets, FB15k- 510

237, WN18RR, and YAGO3-10, and six popular 511

KGE models, TransE, DistMult, ComplEx, Ro- 512

tatE, HAKE, and HousE. The experimental results 513

show that our TANS loss can outperform subsam- 514

pling and SANS loss with many models in terms 515

of MRR as expected by our theoretical interpreta- 516

tion. Furthermore, the combinatorial use of TANS 517

and subsampling achieved comparable or better 518

performance than other combinations and showed 519

the validity of our theoretical interpretation that 520

TANS with subsampling can cover all conventional 521

combinations of SANS loss and subsampling in 522

KGE. 523
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Limitations524

Our experiments are conducted exclusively on pub-525

lic datasets, which are relatively well-balanced.526

Consequently, we anticipate that our TANS will527

perform better on real-world KGs.528

Ethics Statement529

We used the publicly available datasets, FB15k-530

237, WN18RR, and YAGO3-10, to train and evalu-531

ate KGE models, and there is no ethical considera-532

tion.533

Reproducibility Statement534

We used the publicly available code to implement535

KGE models, TransE, DistMult, ComplEx, RotatE,536

HAKE, and HousE with the author-provided hy-537

perparameters as described in §5.1. Regarding the538

temperature parameter γ, we tuned it on the valida-539

tion split for each dataset and reported the values540

in Table 5, 6, and 7 of Appendix B. Our code and541

data are available at https://github.com/542

[innominated].543
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A Dataset Statistics 701

Table 3 shows the dataset statistics for dataset 702

FB15k-237, WN18RR, and YAGO3-10, introduced 703

in §5.1. 704

B Full Experimental Results 705

B.1 Results Tables 706

Table 5, 6, and 7 list all results on FB15k-237, 707

WN18RR, and YAGO3-10, explained in §5.2. In 708

these tables, the bold scores are the best results 709

for each subsampling type (e.g. None, Base, Freq, 710

and Uniq.), † indicates the best scores for each 711

model, SD denotes the standard deviation of the 712

three trials, and γ denotes the temperature chosen 713

by development data. 714

B.2 Training Loss and Validation MRR Curve 715

Figure 6, 7, and 8 show the training loss curves and 716

validation MRR curves for each smoothing method. 717

From these figures, we can understand that the 718

convergence of TANS loss is as well as SANS and 719

NS loss on datasets FB15k-237, WN18RR, and 720

YAGO3-10 for each KGE model. Meanwhile, the 721

time complexity of TANS is the same with SANS 722

and NS loss too. 723

C Sparse Queries 724

C.1 Appearance Frequencies of Queries and 725

Answers 726

Figure 5 shows the appearance frequencies of 727

queries and answers in the training set of our fil- 728

tered sparser data FB15k-237-HL, WN18RR-HL, 729

and YAGO3-10-HL, expained in §6. 730
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Figure 5: Appearance frequencies of queries and answers in the training data of the sparser subsets FB15k-237-HL,
WN18RR-HL, and YAGO3-10-HL. Note that the indices are sorted from high frequency to low.

Dataset Split Tuple Query Entity Relation

FB15k-237

Total 310,116 150,508 14,541 237

#Train 272,115 138,694 14,505 237

#Valid 17,535 19,750 9,809 223

#Test 20,466 22,379 10,348 224

WN18RR

Total 93,003 77,479 40,943 11

#Train 86,835 74,587 40,559 11

#Valid 3,034 5,431 5,173 11

#Test 3,134 5,565 5,323 11

YAGO3-10

Total 1,089,040 372,775 123,182 37

#Train 1,079,040 371,077 123,143 37

#Valid 5,000 8,534 7,948 33

#Test 5,000 8,531 7,937 34

Table 3: Statistics for each public dataset.

Dataset Split Tuple Query Entity Relation

FB15k-237-HL

Total 111,631 63,330 11,828 155

#Train 95,244 55,923 11,600 155

#Valid 7,571 6,918 4,933 90

#Test 8,816 7,830 5,406 89

WN18RR-HL

Total 14,697 14,675 12,973 10

#Train 13,758 13,785 12,275 10

#Valid 465 619 613 9

#Test 474 623 619 8

YAGO3-10-HL

Total 366,079 182,274 95,788 29

#Train 362,728 181,196 95,432 29

#Valid 1,662 2,316 2,113 13

#Test 1,689 2,359 2,135 14

Table 4: Statistics of the filtered sparser datasets.

C.2 Data Statistics731

Table 4 shows detailed statistics of our filtered732

sparser data FB15k-237-HL, WN18RR-HL, and733

YAGO3-10-HL, expained in §6.734

C.3 Detailed Results735

Table 8, 9, and 10 shows the detailed results on736

our filtered sparser data FB15k-237-HL, WN18RR-737

HL, and YAGO3-10-HL, expained in §6. Notations738

are as those described in §B.1.739
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FB15k-237

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 23.9 0.2 15.8 0.1 26.1 0.3 40.0 0.2 -
SANS 22.3 0.1 13.8 0.1 24.2 0.0 39.5 0.2 -
TANS 32.8 0.2 23.2 0.1 36.2 0.2 52.2 0.1 -2

Base

NS 27.2 0.1 19.1 0.1 29.5 0.1 43.0 0.2 -
SANS 32.3 0.0 23.0 0.1 35.4 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.1 †36.9 0.1 †52.7 0.0 -1

Freq

NS 25.1 0.2 17.1 0.3 27.4 0.2 41.0 0.2 -
SANS 32.7 0.1 23.6 0.1 36.0 0.1 51.2 0.1 -

TANS †33.3 0.0 †23.8 0.0 36.8 0.1 52.1 0.2 -0.5

Uniq

NS 22.8 0.4 14.7 0.5 24.7 0.4 39.0 0.1 -
SANS 32.6 0.0 23.5 0.1 35.8 0.1 51.2 0.1 -
TANS 33.0 0.1 23.5 0.1 36.5 0.1 52.1 0.1 -0.5

DistMult

None

NS 23.3 0.1 15.6 0.1 25.7 0.1 38.4 0.1 -
SANS 22.3 0.1 14.0 0.2 24.1 0.1 39.2 0.0 -
TANS 31.0 0.1 21.7 0.1 34.0 0.1 49.6 0.1 -1

Base

NS 25.4 0.1 17.9 0.1 27.6 0.1 40.4 0.1 -
SANS 30.8 0.1 21.9 0.1 33.6 0.1 48.4 0.1 -

TANS †31.5 0.1 †22.4 0.1 †34.6 0.1 †49.7 0.0 -0.5

Freq

NS 24.0 0.1 16.7 0.2 25.9 0.1 38.4 0.1 -
SANS 29.9 0.0 21.2 0.1 32.8 0.0 47.5 0.1 -
TANS 30.7 0.0 21.6 0.0 34.0 0.0 49.0 0.0 -1

Uniq

NS 21.0 0.1 13.5 0.2 22.8 0.2 36.3 0.2 -
SANS 29.2 0.0 20.5 0.1 31.9 0.0 46.7 0.0 -
TANS 30.7 0.1 21.5 0.1 33.8 0.1 49.3 0.1 -2

TransE

None

NS 30.4 0.0 21.3 0.1 33.4 0.1 48.5 0.0 -

SANS 33.0 0.1 22.9 0.1 37.2 0.1 †53.0 0.1 -

TANS 33.6 0.0 23.9 0.0 37.3 0.0 †53.0 0.1 -0.5

Base

NS 29.4 0.1 20.0 0.1 32.8 0.0 48.1 0.0 -
SANS 33.0 0.1 23.1 0.1 36.8 0.1 52.7 0.1 -
TANS 33.0 0.0 23.1 0.0 36.8 0.1 52.7 0.1 -0.1

Freq

NS 29.3 0.1 20.0 0.1 32.8 0.1 47.8 0.1 -
SANS 33.5 0.0 23.9 0.1 37.2 0.1 52.8 0.1 -
TANS 33.5 0.1 23.9 0.1 37.2 0.0 52.8 0.1 -0.1

Uniq

NS 30.1 0.1 21.0 0.1 33.6 0.0 48.0 0.0 -
SANS 33.5 0.0 23.9 0.0 37.3 0.2 52.7 0.1 -

TANS †34.0 0.1 †24.5 0.1 †37.7 0.1 †53.0 0.1 0.5

RotatE

None

NS 30.3 0.0 21.4 0.1 33.2 0.1 48.4 0.1 -
SANS 32.9 0.1 22.8 0.1 36.8 0.0 53.1 0.2 -

TANS 34.1 0.1 24.6 0.1 37.7 0.1 †53.3 0.1 -0.5

Base

NS 29.5 0.0 20.3 0.0 32.7 0.1 47.9 0.0 -
SANS 33.6 0.1 23.9 0.1 37.3 0.1 53.1 0.0 -
TANS 33.8 0.0 24.2 0.0 37.4 0.0 53.0 0.1 -0.5

Freq

NS 29.4 0.1 20.2 0.1 32.6 0.1 47.6 0.1 -
SANS 34.0 0.1 24.6 0.0 37.7 0.0 53.0 0.0 -
TANS 34.1 0.0 24.6 0.0 37.7 0.0 53.1 0.1 -0.01

Uniq

NS 30.1 0.0 21.2 0.1 33.3 0.1 47.7 0.1 -
SANS 33.9 0.1 24.4 0.1 37.6 0.1 52.9 0.1 -

TANS †34.2 0.0 †24.7 0.1 †37.8 0.0 53.1 0.1 0.5

HAKE

None

NS 30.8 0.1 21.8 0.1 33.8 0.1 48.6 0.1 -
SANS 32.8 0.2 22.7 0.3 36.9 0.1 52.8 0.1 -
TANS 34.4 0.1 24.9 0.1 37.9 0.2 53.6 0.0 -0.5

Base

NS 30.4 0.1 21.6 0.1 33.3 0.1 48.2 0.0 -
SANS 34.1 0.1 24.4 0.1 37.9 0.1 53.6 0.2 -
TANS 34.1 0.0 24.4 0.0 37.9 0.0 53.7 0.0 -0.05

Freq

NS 30.2 0.1 21.5 0.0 33.1 0.0 47.7 0.1 -
SANS 34.7 0.0 25.2 0.1 38.2 0.0 53.8 0.1 -
TANS 34.6 0.0 25.0 0.1 38.2 0.2 53.7 0.1 0.05

Uniq

NS 30.7 0.1 22.2 0.1 33.5 0.1 48.0 0.1 -
SANS 34.7 0.1 25.1 0.1 38.3 0.1 53.9 0.1 -

TANS †34.9 0.0 †25.4 0.0 †38.6 0.1 †54.0 0.1 0.5

HousE

None

NS 29.1 0.1 20.6 0.1 31.6 0.1 46.3 0.1 -
SANS 34.7 0.2 24.8 0.2 38.5 0.3 54.4 0.2 -
TANS 35.6 0.1 26.1 0.1 39.4 0.1 54.5 0.1 -1

Base

NS 28.1 0.1 19.6 0.1 30.9 0.2 45.1 0.2 -
SANS 35.2 0.2 25.6 0.2 39.0 0.2 54.4 0.3 -
TANS 35.6 0.1 26.1 0.1 39.4 0.2 54.5 0.1 -0.5

Freq

NS 27.9 0.1 19.2 0.1 30.7 0.2 45.2 0.1 -
SANS 35.9 0.2 26.4 0.2 39.5 0.2 54.7 0.1 -
TANS 35.8 0.2 26.4 0.2 39.6 0.2 54.7 0.1 -0.01

Uniq

NS 28.8 0.1 20.2 0.2 31.9 0.1 45.7 0.0 -

SANS 36.1 0.1 †26.7 0.2 39.8 0.1 †54.8 0.2 -

TANS †36.2 0.1 †26.7 0.2 †39.9 0.1 †54.8 0.1 0.1

Table 5: Results on FB15k-237.
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WN18RR

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 44.5 0.1 38.1 0.2 48.3 0.2 55.5 0.1 -
SANS 45.0 0.1 41.0 0.1 46.5 0.3 53.3 0.3 -
TANS 47.3 0.0 43.3 0.0 49.1 0.1 55.7 0.1 -2

Base

NS 45.0 0.1 38.9 0.1 48.6 0.2 55.7 0.1 -
SANS 46.9 0.1 42.7 0.2 48.5 0.2 55.5 0.2 -
TANS 47.7 0.2 43.6 0.1 49.3 0.2 55.9 0.3 -2

Freq

NS 45.1 0.1 38.9 0.1 48.8 0.2 56.0 0.2 -
SANS 47.4 0.1 43.2 0.1 49.2 0.2 56.0 0.2 -

TANS 48.0 0.1 43.9 0.1 †49.7 0.1 56.1 0.1 -2

Uniq

NS 45.0 0.1 38.7 0.1 48.8 0.1 56.0 0.3 -
SANS 47.5 0.1 43.3 0.1 49.1 0.2 56.2 0.2 -

TANS †48.3 0.1 †44.4 0.2 49.6 0.1 †56.3 0.2 -1

DistMult

None

NS 38.5 0.2 30.6 0.3 42.9 0.2 52.5 0.1 -
SANS 42.4 0.0 38.2 0.1 43.7 0.0 51.0 0.2 -
TANS 44.2 0.1 40.1 0.1 45.3 0.1 53.2 0.2 -2

Base

NS 39.3 0.2 31.9 0.2 43.3 0.1 53.0 0.2 -
SANS 43.9 0.1 39.4 0.1 45.2 0.1 53.3 0.2 -
TANS 44.6 0.0 40.5 0.2 45.7 0.1 53.9 0.1 -2

Freq

NS 39.0 0.2 31.2 0.2 43.2 0.1 52.9 0.2 -
SANS 44.5 0.1 40.0 0.1 46.0 0.1 54.2 0.2 -
TANS 44.7 0.1 40.5 0.2 45.8 0.0 54.0 0.2 -2

Uniq

NS 38.8 0.2 30.8 0.2 43.1 0.1 53.0 0.2 -

SANS 44.7 0.1 40.1 0.1 †46.2 0.3 54.3 0.0 -

TANS †45.0 0.1 †40.7 0.1 46.1 0.2 †54.5 0.2 -0.5

TransE

None

NS 21.1 0.0 2.1 0.1 36.5 0.2 50.4 0.2 -
SANS 22.5 0.1 1.7 0.1 40.2 0.1 52.5 0.2 -
TANS 22.7 0.0 2.5 0.0 39.5 0.2 53.4 0.1 0.5

Base

NS 20.3 0.1 1.6 0.1 35.1 0.2 49.9 0.2 -
SANS 22.3 0.0 1.3 0.1 40.2 0.1 52.9 0.1 -
TANS 22.4 0.1 1.4 0.1 40.1 0.1 53.0 0.1 0.1

Freq

NS 21.0 0.1 1.8 0.1 36.4 0.2 51.0 0.2 -
SANS 23.0 0.0 1.9 0.1 40.9 0.2 53.6 0.0 -

TANS 23.1 0.0 2.1 0.0 †41.0 0.1 53.8 0.0 0.1

Uniq

NS 21.5 0.1 2.2 0.0 37.2 0.1 51.4 0.2 -
SANS 23.2 0.0 2.3 0.1 40.9 0.2 53.6 0.1 -

TANS †23.3 0.1 †3.0 0.0 40.2 0.2 †54.4 0.1 0.5

RotatE

None

NS 47.0 0.1 42.5 0.2 48.6 0.2 55.8 0.3 -
SANS 47.2 0.1 42.6 0.1 49.1 0.1 56.7 0.0 -
TANS 47.3 0.1 42.6 0.1 49.1 0.1 56.7 0.1 -0.01

Base

NS 47.0 0.0 42.2 0.1 48.7 0.1 56.3 0.1 -
SANS 47.5 0.1 42.7 0.2 49.3 0.1 57.2 0.1 -
TANS 47.5 0.1 42.7 0.2 49.3 0.1 57.1 0.1 0.01

Freq

NS 47.1 0.1 42.3 0.1 48.7 0.1 56.4 0.1 -

SANS 47.7 0.1 †42.9 0.2 49.6 0.0 57.4 0.1 -
TANS 47.7 0.1 42.8 0.2 49.7 0.1 57.4 0.1 0.1

Uniq

NS 47.2 0.2 42.7 0.2 48.7 0.1 56.3 0.1 -

SANS 47.7 0.1 †42.9 0.1 49.6 0.1 57.2 0.1 -

TANS †47.8 0.2 42.8 0.3 †49.8 0.1 †57.6 0.1 0.5

HAKE

None

NS 48.8 0.1 44.5 0.1 50.5 0.2 57.3 0.1 -
SANS 48.9 0.0 44.5 0.2 50.6 0.3 57.7 0.1 -
TANS 48.9 0.0 44.4 0.1 50.5 0.3 57.8 0.1 0.01

Base

NS 49.2 0.0 44.6 0.1 51.1 0.1 57.9 0.2 -
SANS 49.5 0.1 45.0 0.2 51.2 0.2 58.2 0.2 -
TANS 49.5 0.1 45.0 0.2 51.2 0.3 58.4 0.2 0.1

Freq

NS 49.3 0.1 44.8 0.1 51.3 0.2 58.0 0.2 -
SANS 49.7 0.1 45.2 0.2 51.5 0.1 58.4 0.2 -
TANS 49.7 0.0 45.2 0.2 51.6 0.3 58.4 0.2 -0.01

Uniq

NS 49.4 0.2 44.9 0.2 51.3 0.2 57.8 0.2 -

SANS †49.9 0.0 45.3 0.1 †51.8 0.2 †58.6 0.2 -

TANS †49.9 0.1 †45.4 0.1 †51.8 0.2 58.5 0.2 0.05

HousE

None

NS 47.4 0.1 41.7 0.1 50.2 0.1 57.3 0.1 -
SANS 49.7 0.1 44.8 0.2 51.5 0.1 59.5 0.1 -
TANS 50.2 0.1 45.3 0.1 52.0 0.1 60.0 0.1 -0.5

Base

NS 48.1 0.1 42.4 0.1 50.9 0.1 58.5 0.2 -
SANS 51.2 0.1 46.7 0.1 53.0 0.2 60.3 0.1 -
TANS 51.3 0.1 46.7 0.2 53.0 0.0 60.4 0.1 0.05

Freq

NS 48.1 0.2 42.5 0.3 50.9 0.2 58.5 0.2 -

SANS †51.4 0.1 †46.8 0.1 †53.2 0.3 †60.5 0.1 -

TANS 51.3 0.2 46.7 0.2 53.1 0.3 †60.5 0.1 0.05

Uniq

NS 48.1 0.1 42.5 0.1 50.8 0.2 58.1 0.1 -

SANS 51.2 0.2 †46.8 0.2 52.7 0.1 60.1 0.1 -
TANS 51.1 0.3 46.7 0.5 52.7 0.1 60.0 0.1 -0.1

Table 6: Results on WN18RR.
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YAGO3-10

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

RotatE

None

NS 43.5 0.1 32.8 0.2 49.1 0.2 63.7 0.3 -
SANS 49.6 0.2 39.9 0.1 55.3 0.3 67.3 0.2 -
TANS 49.6 0.2 40.0 0.2 55.4 0.5 67.2 0.3 -0.05

Base

NS 44.8 0.1 34.5 0.3 50.0 0.2 64.7 0.2 -
SANS 49.6 0.3 40.1 0.3 55.2 0.4 67.4 0.3 -
TANS 49.5 0.3 40.1 0.3 55.0 0.5 67.3 0.3 -0.05

Freq

NS 44.8 0.2 34.5 0.3 50.0 0.1 64.7 0.2 -
SANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.3 -
TANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.2 0.01

Uniq

NS 44.4 0.2 34.0 0.3 49.8 0.2 64.3 0.2 -
SANS 50.0 0.3 40.6 0.2 55.6 0.3 67.5 0.2 -

TANS †50.1 0.2 †40.7 0.1 †55.7 0.3 †67.6 0.3 0.05

HAKE

None

NS 47.4 0.3 36.6 0.5 53.9 0.1 67.0 0.1 -
SANS 53.5 0.2 44.6 0.3 59.1 0.4 69.0 0.2 -
TANS 53.7 0.1 45.3 0.3 59.0 0.1 68.8 0.1 0.05

Base

NS 48.8 0.3 38.4 0.4 55.0 0.2 68.1 0.3 -
SANS 54.6 0.2 46.2 0.3 59.9 0.2 69.6 0.2 -
TANS 54.5 0.2 45.9 0.3 59.9 0.2 69.9 0.1 -0.1

Freq

NS 49.3 0.2 39.1 0.3 55.4 0.1 68.1 0.2 -
SANS 54.6 0.4 46.0 0.7 60.2 0.1 69.6 0.3 -
TANS 54.8 0.2 46.4 0.3 60.1 0.1 69.6 0.3 0.05

Uniq

NS 45.2 0.1 34.3 0.1 51.1 0.1 65.8 0.3 -

SANS †55.2 0.3 †46.8 0.5 †60.5 0.2 †70.0 0.3 -

TANS 55.1 0.2 †46.8 0.3 60.3 0.1 69.9 0.2 -0.1

HousE

None

NS 29.2 0.0 18.3 0.1 33.6 0.2 50.1 0.2 -
SANS 54.8 1.3 46.8 1.3 59.7 1.2 68.9 1.2 -
TANS 54.8 1.2 46.9 1.2 59.6 1.2 68.8 1.1 0.01

Base

NS 29.6 0.1 19.8 0.1 33.6 0.2 48.9 0.1 -
SANS 56.7 0.1 48.6 0.2 61.7 0.2 71.3 0.1 -

TANS 57.0 0.2 49.0 0.4 61.9 0.3 †71.5 0.2 -0.1

Freq

NS 27.3 0.8 17.5 0.9 31.0 0.8 46.6 0.8 -
SANS 57.0 0.1 49.0 0.2 62.0 0.1 71.4 0.1 -

TANS 57.2 0.1 49.3 0.1 †62.3 0.1 71.4 0.1 -0.1

Uniq

NS 28.1 0.2 18.2 0.4 31.8 0.1 47.6 0.0 -
SANS 57.2 0.1 49.3 0.2 62.0 0.0 71.4 0.2 -

TANS †57.3 0.2 †49.5 0.3 62.2 0.1 †71.5 0.1 -0.05

Table 7: Results on YAGO3-10.
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FB15k-237-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 38.1 0.3 28.4 0.5 -

SANS 35.2 0.2 24.5 0.3 -

TANS 41.1 0.1 33.0 0.1 -1

Base

NS 40.5 0.1 31.8 0.2 -

SANS 38.4 0.2 28.9 0.2 -

TANS 41.8 0.1 33.6 0.2 -1

Freq

NS 41.1 0.1 32.8 0.1 -

SANS 40.2 0.0 31.5 0.1 -

TANS †42.0 0.1 †33.7 0.1 -1

Uniq

NS 41.5 0.1 33.2 0.1 -

SANS 41.1 0.0 32.8 0.0 -

TANS 41.9 0.2 33.5 0.2 -0.1

RotatE

None

NS 40.0 0.1 30.8 0.1 -

SANS 36.3 0.1 25.3 0.2 -

TANS 41.5 0.0 33.1 0.1 -1

Base

NS 41.8 0.1 33.6 0.1 -

SANS 40.7 0.1 31.7 0.2 -

TANS 42.0 0.1 33.8 0.1 -0.5

Freq

NS 41.3 0.1 33.2 0.1 -

SANS 42.0 0.2 33.6 0.3 -

TANS †42.3 0.0 †34.1 0.1 -0.5

Uniq

NS 41.7 0.1 33.7 0.2 -

SANS 42.2 0.1 33.8 0.2 -

TANS 42.1 0.1 33.8 0.2 -0.05

HousE

None

NS 39.1 0.2 29.8 0.2 -

SANS 37.0 0.2 26.2 0.4 -

TANS 42.3 0.1 34.1 0.2 -2

Base

NS 40.3 0.1 31.3 0.2 -

SANS 40.5 0.4 31.3 0.4 -

TANS 42.4 0.2 34.2 0.3 -2

Freq

NS 39.8 0.3 31.0 0.3 -

SANS 42.1 0.2 33.8 0.2 -

TANS †42.8 0.3 †34.8 0.4 -1

Uniq

NS 40.5 0.2 31.9 0.2 -

SANS 42.4 0.2 34.4 0.2 -

TANS 42.5 0.1 34.5 0.0 -1

Table 8: Results on FB15k-237-HL.

WN18RR-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 10.8 0.1 8.7 0.2 -

SANS 10.3 0.1 7.8 0.1 -

TANS 13.9 0.2 †12.1 0.2 -2

Base

NS 12.1 0.2 9.5 0.3 -

SANS 11.1 0.1 9.1 0.1 -

TANS 13.7 0.1 11.7 0.3 -2

Freq

NS 12.4 0.1 10.4 0.1 -

SANS 11.9 0.2 9.5 0.2 -

TANS †14.2 0.5 11.9 0.4 -2

Uniq

NS 13.3 0.3 11.3 0.3 -

SANS 11.9 0.2 9.7 0.2 -

TANS 14.1 0.2 11.7 0.2 -2

RotatE

None

NS 14.2 0.2 11.8 0.3 -

SANS 13.9 0.3 11.7 0.3 -

TANS 14.4 0.1 11.8 0.2 -2

Base

NS 13.9 0.2 11.5 0.2 -

SANS 14.1 0.3 11.7 0.3 -

TANS 14.5 0.1 11.7 0.1 -2

Freq

NS 14.4 0.1 12.0 0.1 -

SANS 14.3 0.4 12.0 0.3 -

TANS †15.1 0.1 12.2 0.1 -2

Uniq

NS 14.4 0.2 12.2 0.1 -

SANS 14.2 0.2 11.9 0.2 -

TANS †15.1 0.2 †12.3 0.3 -2

HousE

None

NS 10.7 1.8 8.4 1.4 -

SANS 11.7 1.1 9.5 0.9 -

TANS 13.4 0.4 11.0 0.4 -2

Base

NS 9.9 0.4 8.4 0.4 -

SANS 11.5 0.2 9.5 0.2 -

TANS 13.4 0.2 11.3 0.3 -2

Freq

NS †13.9 0.1 11.8 0.2 -

SANS 13.8 0.2 11.9 0.3 -

TANS †13.9 0.3 †12.0 0.2 0.1

Uniq

NS 13.7 0.1 11.6 0.1 -

SANS 13.8 0.2 11.6 0.2 -

TANS 13.8 0.2 11.7 0.3 -0.05

Table 9: Results on WN18RR-HL.
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YAGO3-10-HL

Model
Subsampling MRR H@1

γAssumption Loss Mean SD Mean SD

HAKE

None

NS 45.9 0.0 36.9 0.1 -

SANS 47.8 0.4 40.0 0.6 -

TANS 49.2 0.4 39.8 0.7 -0.5

Base

NS 50.2 0.3 43.0 0.3 -

SANS 47.7 0.4 40.5 0.7 -

TANS 50.1 0.3 41.4 0.3 -0.5

Freq

NS †50.8 0.3 †43.3 0.2 -

SANS 48.8 0.1 41.3 0.2 -

TANS 49.7 0.3 41.0 0.2 -0.5

Uniq

NS 49.4 0.2 40.8 0.2 -

SANS 46.9 0.4 39.8 0.5 -

TANS 49.4 0.6 40.6 0.8 -0.5

RotatE

None

NS 38.0 0.1 28.7 0.3 -

SANS 41.3 0.1 32.3 0.2 -

TANS 43.5 0.1 34.8 0.2 -0.5

Base

NS 40.6 0.2 31.8 0.5 -

SANS 43.8 0.2 35.1 0.1 -

TANS 43.8 0.2 35.2 0.1 -0.05

Freq

NS 40.3 0.2 31.4 0.4 -

SANS 43.5 0.2 34.6 0.1 -

TANS 43.7 0.0 35.1 0.1 -0.1

Uniq

NS 40.2 0.0 31.3 0.2 -

SANS 43.9 0.1 35.1 0.2 -

TANS †44.1 0.1 †35.4 0.3 -0.1

HousE

None

NS 37.8 0.3 26.9 0.4 -

SANS 50.3 0.1 40.7 0.3 -

TANS †52.5 0.5 †45.4 0.3 -0.5

Base

NS 42.8 1.2 34.3 1.9 -

SANS 51.9 0.3 44.4 0.2 -

TANS 51.9 0.6 44.3 0.8 0.05

Freq

NS 39.7 0.8 29.9 1.5 -

SANS 48.6 1.7 40.0 1.4 -

TANS 52.0 0.1 44.5 0.3 -1

Uniq

NS 41.0 0.1 31.6 0.1 -

SANS 49.4 0.3 41.1 1.1 -

TANS 52.2 0.1 44.7 0.1 -0.05

Table 10: Results on YAGO3-10-HL.
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Figure 6: Training loss and validation MRR Curve on FB15k-237.
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Figure 7: Training loss and validation MRR Curve on WN18RR.
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Figure 8: Training loss and validation MRR Curve on YAGO3-10.
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