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Abstract

The success of Al models relies on the availability of large, diverse, and high-
quality datasets, which can be challenging to obtain due to data scarcity,
privacy concerns, and high costs. Synthetic data has emerged as a promis-
ing solution by generating artificial data that mimics real-world patterns.
This paper provides an overview of synthetic data research, discussing
its applications, challenges, and future directions. We present empirical
evidence from prior art to demonstrate its effectiveness and highlight the
importance of ensuring its factuality, fidelity, and unbiasedness. We empha-
size the need for responsible use of synthetic data to build more powerful,
inclusive, and trustworthy language models.

1 Introduction

The rapid advancement of artificial intelligence (AI) technologies has led to their widespread
adoption across numerous domains, from assistant agents (e.g., ACT-1, from Adept AIIT[)
and software development (e.g., Devin, from Cognition Lalﬂ) to healthcare (Singhal et al.,
2022) and finance (Zheng et al.,|2022). However, the success of Al models heavily relies
on the availability of large, diverse, and high-quality datasets for training and evaluation.
Acquiring such datasets can be a significant challenge due to data scarcity (Babbar &
Scholkopf, [2019), privacy concerns (Abay et al., 2019), and the sheer cost of data collection
and annotation (Gilardi et al.,2023a). Pessimists predict that we will run out of fresh text
data in 2050 and image data in 2060 (Villalobos et al., 2022).

Synthetic data has emerged as a promising solution to address these challenges (Nikolenko,
2021). Synthetic data refers to artificially generated data that mimics the characteristics
and patterns of real-world data, but is created through algorithms (Saxton et al., 2019),
generative models (Borisov et al., 2022; Meng et al.|[2022), or even simulations (Vezhnevets
et al., 2023;|Liu et al.||2023c), rather than being directly created by humans. By leveraging
synthetic data, we can not only overcome the limitations of real-world data but also unlock
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the potential to develop more robust, reliable, and fair AI models (Lucini,2021;|Lu et al.,
2023).

One of the many benefits of synthetic data is that it can be generated at scale, providing an
abundant supply of training and testing data for Al models. This is particularly valuable in
domains where real-world data is scarce or difficult to obtain (e.g., weather data covering all
conditions (Li et al.}[2023a;|Lam et al.,|2023)). Second, synthetic data can be tailored to specific
requirements, such as ensuring a balanced representation of different classes by introducing
controlled variations (e.g., up-weighting low-resource languages in multilingual language
learning (Przystupa & Abdul-Mageed, [2019)). This level of control over data characteristics
can improve model performance and generalization. Third, synthetic data can help mitigate
privacy concerns by creating anonymized or de-identified datasets that do not contain
sensitive personal information (Howe et al., 2017 El Emam et al.|, 2020). This is crucial in
domains such as healthcare, where patient privacy is of utmost importance (Dahmen &
Cook, 2019; |Wei et al., [2019).

Despite its promise, synthetic data also presents challenges that need to be addressed. One of
them is ensuring the factuality and fidelity of synthetic data (Wood et al., 2021;Heusel et al.,
2017), as models trained on false, hallucinated or biased synthetic data may fail to generalize
to real-world scenarios (Van Breugel et al}|2023; Guarnera et al.,[2020). Researchers must
develop sophisticated generative models and evaluation metrics to create synthetic data
that accurately reflects the complex patterns and relationships found in real-world data.
Another challenge is the potential for synthetic data to amplify biases or introduce new
biases if not carefully designed and validated (Barbierato et al., 2022} |Gupta et al., 2021). We
believe rigorous testing and fairness assessments are necessary to mitigate these risks.

In this paper, we track the current state of synthetic data research and discuss current best
practices and lessons learned. The rest of the paper is organized as follows. Section
provides an overview of synthetic data generation techniques and their applications in
model training, presenting case studies and empirical evidence. Section [3| discusses the
usefulness of synthetic data in evaluation. Section ] discusses the challenges and limita-
tions of synthetic data, and in Section[5|we outline potential solutions and future research
directions.

2 Synthetic Data in Training

Synthetic data, which is generated by mimicking authentic data collected from the real
world, has proven to be an effective and relatively low-cost alternative of real data. This
section explores several notable domains that leverages synthetic training data.

2.1 Reasoning

Math. Recent advancements in mathematical reasoning for language models (LMs) have
led to the development of various approaches to improve performance on math-related tasks.
One approach is to train on math-targeted pre-training data, such as Minerva (Lewkowycz
et al}2022), Llemma (Azerbayev et al2023), and DeepSeekMath (Shao et al.|, 2024). Another
mainstream method is to generate synthetic questions and answers to imitate the training or
validation set of target benchmarks. For instance, WizardMath (Luo et al., 2023a) leverages a
series of operations to increase the complexity of questions and answers using GPT-3.5, while
MetaMath (Yu et al.,[2023) bootstraps the questions in MATH and GSM8K by rewriting them
in different ways, such as semantic rephrasing, self-verification, and backward reasoning.
GAIR-Abel (Chern et al.} 2023) found that the format of the augmented answers is crucial to
final performance, with answers that begin with a paraphrasing of the question followed
by a step-by-step solution showing better performance than those in vanilla format. Xwin-
Math (Li et al., [2024) further scaled up synthetic SFT data to one million examples and
found that the LLaMA-2 7B model (Touvron et al.,|2023) can still benefit from data scaling.
MMIQC (Liu & Yao, |2024) composed a bundle of datasets that infuse SFT style data (via
question-answer rephrasing or directly taken from MetaMath) with a subset of high-quality
mathematical pre-training data, such as OpenWebMath (Paster et al.,[2023).
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Scaling up the generation of synthetic math data is a straightforward process, but ensuring
the correctness of the generated math remains a significant challenge for practitioners.
AlphaGeometry (Irinh et al.,[2024) is a recent attempt to address this issue by training a
neural model using 100 million synthetic data points. The model proposes solutions and
guides a symbolic deduction engine in verifying the correctness of each branch when solving
complex geometry problems. By combining the power of synthetic data with a rigorous
verification process, AlphaGeometry achieves a problem-solving ability comparable to
that of a human Olympiad gold medalist, demonstrating the potential of this approach in
tackling complex mathematical reasoning tasks.

Code. Different from Math, synthetic data for code reasoning can naturally combine the
execution results with structured code, as one requirement of correct code is being executable.
In coding-enhanced models, CodeRL (Le et al.,[2022) presents an actor-critic approach to
improve pretrained language models with feedback signals on synthetic code samples.
Haluptzok et al.| (2022) propose a self-improvement strategy where the models generate
their own synthetic puzzle-solution pairs. These pairs are then verified and filtered by a
real interpreter before being used to finetune language models. Shypula et al.| (2023) further
propose a framework that leverages a simulated environment and adaptation strategies
like self-improvement synthetic data generation and CoT prompting for code optimization.
Yang et al.|(2024) developed InterCode, a framework designed to enhance interactive code
generation within a reinforcement learning environment, where code serves as actions and
execution feedback serves as observations. Reflexion (Shinn et al.,2024) employs external or
internally simulated linguistic feedback signals to improve the code reasoning capabilities
of language models. Regarding synthetic SFT data, Code Alpaca comprises a dataset of 20K
code instructions automatically generated by applying SELF-INSTRUCT (Wang et al.,|2022a)
to ChatGPT across 21 seed tasks. WizardCoder (Luo et al.,[2023b)) introduces Code Evol-
Instruct to guide ChatGPT with heuristic prompts to enhance the complexity and diversity
of synthetic data. Meanwhile, Magicoder (Wei et al.,|2023c) developed OSS-INSTRUCT,
which generates 75K diverse synthetic instruction samples from open-source code snippets.

Other reasoning tasks. Synthetic data also leads to impressive performance in other
reasoning tasks. For instance, Wei et al|(2023a) augmented existing natural language
datasets by replacing natural language labels with arbitrary symbols, generating over 500k
synthetic examples. Using these synthetic data for supervised finetuning significantly
improved model performance on unseen in-context learning and algorithmic-reasoning
tasks. STaR (Zelikman et al., 2022) generates synthetic chain-of-thought rationales and
filters out those leading to wrong answers for finetuning language models to improve their
reasoning. In the domain of physics reasoning, Mind’s Eye (Liu et al., 2022) takes a novel
approach by training a text-to-code model with synthetic “text-description — rendering
code” data. This enables the model to convert textual questions into rendering code, which
is then executed in a physical engine (i.e., DeepMind MuJoCo (Todorov et al.|,|[2012)). The
rendering results are injected into the context, allowing even small language models armed
with Mind’s Eye to achieve performance comparable to models 100 times larger.

2.2 Tool-using and Planning

Learning tool-using through synthetic trajectories. Synthetic data is also a powerful
approach to enable LMs to learn tool-using abilities through simulated trajectories, as
collecting real-world human tool-using data might be time-consuming, and the actual
distribution of calls to tools might be skewed. LaMDA (Thoppilan et al.,[2022), for instance,
was trained not only on web documents but also on interaction data between crowdworkers
and the model itself, with the synthetic data annotated with calls to appropriate tools. This
training process allowed LaMDA to develop the ability to use a calculator for arithmetic, a
search engine for real-time information seeking, and a machine translator for translation.
Similarly, Toolformer (Schick et al., 2024) learns to decide which APIs to call and what
arguments to pass by training on template-generated data, while Galactica (Taylor et al.,
2022) infuse API-calling data into pre-training mixture. ToolAlpaca (Tang et al.,2023) is a
novel framework designed to automatically generate a diverse tool-use corpus, by building a
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multi-agent simulation environment and letting agents select and use tools iteratively. These
examples demonstrate the potential of synthetic trajectories in enabling LMs to acquire
tool-using abilities and enhance their reasoning capabilities across various domains.

Learning to plan in synthetic environments. An important feature of the agent in Au-
tonomous Machine Intelligence (LeCun) [2022)) is planning—an ability of decomposing
complex tasks into subtasks and finishing the subtasks in a reward-optimal way (Kamb+{
hampati et al., 2024). Synthetic data can be a valuable tool here as it can serve as the
feedback signal collected from a simulator (Park et al.,[2023), and learning on it can make
the agent aware of affordances (Ahn et al., [2022; |Liang et al., 2022). For example, Inner
Monologue (Huang et al.,2022) leverages natural language form feedback generated by the
simulated environment to teach LLM-based robots planning. They find that such feedback
significantly improves high-level instruction completion on both simulated and real-world
domains. To compose a large number of realistic planning tasks (e.g., “Rearrange objects on a
table to match a given scene.”), VIMA (Jiang et al.|[2022)) creates a multi-modality simulated
environment called VIMA-Bench, which supports extensible collections of objects and tex-
tures. In the Minecraft game, Voyager (Wang et al.,2023) deploys a number of GPT-4 based
agents to interact with the synthetic environment and finds that the agents can unlock new
skills faster and complete planning more efficiently with the help of synthetic feedback.

2.3 Multimodality

Reverse rendering from vision to text. Vision-language alignment data focuses on ac-
curately grounding visual input to an LLM (usually via a vision encoder). Web-scraped
image-caption pairs have been the most popular MM alignment data in the past few years
since CLIP (Radford et al.,2021) and ALIGN (Jia et al.}|2021). However, web-scraped image-
text pairs are usually noisy and only have coarse-grained correspondence, insufficient for
grounding details of images in language. In domains such as documents, screens, figures,
and diagrams, such fine-grained alignment can most conveniently be obtained from data
synthesis pipelines built with image rendering engines. Pix2Struct (Lee et al.|,2023)) uses web
servers to render HTML code into website screenshots, and the training task is to derender
a masked screenshot to the full HTML code. MatCha (Liu et al., 2023b)) and DePlot (Liu
et al}|2023a) render tabular data into charts with Python plotting libraries and pretrain a
foundation model by giving the rendered image and producing the code and/or the tabular
data. [Si et al.| (2024) and |Laurencon et al.[(2024) train on synthetically generated HTML
and CSS files for the task of converting webpage screenshots into code implementation.
The models finetuned on the synthetic data can generalize reasonably well on realistic data
scraped from the Internet. [Borkman et al|(2021) propose to use physics engines or game
engines (e.g., Unity) as the synthetic data generator to help computer vision research.

Multi-modality instruction following. Downstream applications of multimodal LLMs
require reasoning and instruction following capabilities. Such data are usually long-form
question response pairs and are expensive for humans to create. LLaVA (Liu et al.,2024b)
uses existing image captions to prompt GPT-4 (in text-only mode) for writing diverse and
long-form prompt-answer pairs. During multimodal LLM training, images and prompts
are used as input while the captions and bounding box information can be hidden. Besides
image captions, other sources of image attribute information such as object bounding box
(Zhao et al 2023)), OCR (Zhang et al 2023c) and derendered charts (Masry et al., 2023;
Carbune et al.,[2024) can all fit into such as image attributes + text LLM rewriting synthetic
data pipeline.

2.4 Multilingual

Back-translation augmentation. Many multilingual language models use back-translation
as a data augmentation method, creating synthetic parallel training data from monolingual
data sources (Sennrich et al., 2016; Zheng et al.| [2020; Caswell et al.}, |2019; Marie et al., 2020;
Bi et al., [2021;|Liao et al.,|2021;|Pham et al.,[2021; Xu et al.,[2022). For example, Sennrich
et al.| (2016) back-translate monolingual target data into source language data, providing
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additional parallel training samples for substantial translation task improvements. Re-
searchers have also explored different sampling methods for back-translation (e.g., beam
search, constrained sampling, unconstrained sampling) and their comparative effective-
ness (Sennrich et al., 2016; Edunov et al.||2018} Graca et al., 2019; Bannard & Callison-Burch)
2005). Xu et al. (2022) emphasize the importance of the weight and quality of synthetic data
for optimal NMT performance using back-translation. They propose a method to optimize
the ratio between search methods and a gamma score to balance estimated importance
weight and quality. However, some limitations exist with back-translation-based synthetic
data generation. For example, the quality and diversity of synthetic data depends on the
performance of the back-translation method. If the synthetic data is too noisy or not diverse,
the performance gain would be limited (Epaliyana et al., 2021;|Chauhan et al.,[2022).

Generating multilingual questions and answers at scale. Recent studies explore the
generation and utilization of synthetic multilingual question-answer (QA) pairs to improve
language models’ performance in multilingual and cross-lingual question answering (Asai
et al., 2021; Kumar et al., 2019; |Chi et al., 2020; Riabi et al., 2021} |Li & Callison-Burch, 2023;
Abulkhanov et al} [2023). One approach is to translate existing monolingual questions
and/or answers into other languages (Asai et al.,|2021). Another involves using Question
Generation (QG) models to produce synthetic questions in a cross-lingual fashion based on
answers and/or source texts (Kumar et al.,2019;|Chi et al.,|2020; Riabi et al.,2021). Recent
efforts also focus on jointly generating questions and answers in multiple languages for
greater flexibility (Shakeri et al.| 2021} Li & Callison-Burch), [2023)). For example, Shakeri
et al.| (2021) finetune a pretrained multilingual T5 model (Xue et al 2020) on a mixture
of a QA generation task and a multilingual masked language modeling task to produce
synthetic QA pairs in multiple languages. These efforts generally show that language
models trained on synthetic QA pairs demonstrate improved performance on multilingual
QA and information retrieval benchmarks.

2.5 Alignment

Instruction Following. Synthetic data can serve as a promising approach for training
instruction-following models, particularly in scenarios where real-world data is scarce,
expensive, or challenging to obtain. Self-instruct (Wang et al., 2022a) and Stanford Al-
paca (Taori et al.,2023) are both using LLMs to generate instruction following data which
covers a wide range of scenarios. They first pick a small set of “seed instruction following
samples” and then ask the LLMs to imitate the format to generate more demonstrations.
One concern of this type of method is how to keep the generated data high quality, which
involves the complexity of queries (Liu et al} 2023d), the diversity of semantics (Ding
et al.,2023), and the scale of the synthetic dataset (Yuan et al., 2023). To this end, Xu et al.
(2023) propose Evol-Instruct which adds complexity to simple instructions via prompting.
Mukherjee et al.[(2023) leverage LLMs to revise the instructions and responses iteratively to
include high-quality explanation traces in the FLAN dataset (Wei et al.} 2022), and they find
the trained model has improved performance in many NLP tasks. UltraChat (Ding et al.,
2023) is large-scale and multi-round synthetic dialogue dataset, which is generated by two
separate ChatGPT Turbo API models—one serves as the user role while the other serves as
the assistant. They instruct the user model with carefully designed prompts to mimic real
human user behaviors.

Many language models are supervised finetuned to learn how to follow instructions, but
in learning this behavior, they may inadvertently also learn to be sycophantic (Perez et al.,
2023), tailoring their responses to follow a user’s viewpoint, even if that viewpoint is not
objectively correct (Wei et al.,[2023b)). [Sharma et al.|(2024) find evidence that the preference
models (i.e., the reward model used for RLHF training) and even humans prefer sycophantic
responses sometimes. On this front, Wei et al.| (2023b) generates synthetic data to encourage
models to be robust to user opinions and adds these data in a finetuning step to reduce
sycophantic behavior on held-out prompts.

Mitigating hallucination. Many widely-used language models utilize supervised fine-
tuning (SFT) to learn to align their interactions with users (Wang et al., 2022b;|Zhang et al.,
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2023b). In particular, there exist many methods of generating synthetic SFT data that can
improve capabilities such as reasoning and alignment (Wei et al [2023a;b). It has been
shown, however, that these synthetic data can induce hallucinations into language models
by containing nontrivial amounts of hallucinated answers or by forcing models to learn to
answer questions that they do not know the answer to (Zhang et al.,[2023d). These cases
demonstrate that synthetic data, if not applied correctly, can actually increase hallucinations
in language models.

On the other hand, recent work has also shown promising results in mitigating hallucina-
tions using synthetic data. For example, GPT-4 (OpenAl, 2023) was trained using a reward
model that leveraged synthetic hallucination data in order to perform reinforcement learn-
ing (Zhang et al.|,[2023d). This method resulted in a significant improvement in performance
on the TruthtulQA (Lin et al.} 2022)) dataset (Zhang et al.,|2023d). Similarly, Jones et al.|(2023)
designed a synthetic task where hallucinations can be readily evaluated, utilizing this task
to optimize LLM outputs by learning a continuous postfix via prefix-tuning. [Tian et al.
(2023)) uses automated fact-checking and confidence scores to rank factuality scores of model
response pairs, which are then used to finetune language models with DPO (Rafailov et al.,
2023) to improve their factuality. Continued research in using synthetic data to mitigate
hallucinations is still limited, however, by the lack of synthetic tasks for which hallucinations
can be scalably evaluated.

Aligning with shared human preference and values. Directly finetuning on value-aligned
or human-preferred data is a straightforward method for aligning language models, but this
method often requires substantial human annotation, which can be prohibitively expensive
at scale. Additionally, such annotation frequently exhibits varying styles and inconsistent
quality, particularly in the case of poorly annotated samples at the lower end of the quality
spectrum (Meta, 2023; |Gilardi et al) 2023a). To address these practical challenges, an
advanced technique known as “reinforcement learning from human feedback (RLHF)” has
been proposed (Leike et al., 2018;|Christiano et al}2017; Ouyang et al., 2022). This approach
involves training a reward model with human data to act as a proxy of human judgment,
which guides the optimization of the LM generation policy.

Recent studies have proposed a mixture of synthetic data and real human data to train
more robust reward models (Gao et al.|,[2023). Constitutional Al (Bai et al.,2022) proposes
to use a small set of principles to steer the Al generated critiques and feedback, and use
such synthetic data to replace the real human data in the typical RLHF pipeline. The
model trained with this RLAIF (i.e., reinforcement learning from Al feedback) method
shows similar strong performance as RLHF baselines. In general, synthetic data offers a
powerful solution for human values and preferences alignment by allowing researchers
to generate large-scale, diverse, and controlled training datasets in a low-cost way (Cui
et al.,|2023;/Ganguli et al., 2022). By simulating a wide range of scenarios involving ethical
dilemmas (Perez et al.,[2022)), social interactions (Liu et al.,2023c), and cultural norms (Ziems
et al., 2023), synthetic data enables comprehensive and systematic testing of AI models’
alignment with human values (Askell et al., 2021). This approach helps identify and mitigate
issues related to bias (Liu et al.,[2021;[Ntoutsi et al.,|2020), fairness (Zhao et al., 2018;|Landers
& Behrend| |2023)), and unintended consequences before Al systems are deployed in real-
world settings (Ye et al.,[2024).

However, it is important to acknowledge that low-fidelity synthetic human preference data
might be limited in accurately reflecting nuanced human judgment (Argyle et al.,2023).
Consequently, the resulting models may be less robust under “jail-breaking attacks” (Huang
et al}[2023a; Deshpande et al,,[2023), and may reveal strategically deceptive behavior even
through safety training (Pan et al., 2022} |Steinhardt, 2022; |[Everitt et al.,[2021). To mitigate
these risks, researchers must continuously refine and improve the quality and diversity
of synthetic data, incorporating more complex and comprehensive scenarios that better
capture the intricacies of human values and preferences. Additionally, combining synthetic
data with real-world data, and creating synthetic data in an interactive environment which
can be synced with the real world, are promising remedies. As the need for effective Al gov-
ernance and regulation grows, synthetic data will play an increasingly vital role in enabling
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scalable oversight mechanisms that promote trust, accountability, and the development of
Al technologies that are aligned with human values and societal expectations.

3 Synthetic Data in Evaluation

Synthetic data is widely used in evaluations of different perspectives:

Factuality. Al systems may generate information or responses that are not grounded in
factual knowledge or data, leading to the creation of misleading or false content, formally
known as hallucination (Ji et al.,2023). Factuality evaluation aims to ensure the consistency
of the knowledge in the Al system’s output with the knowledge provided by its training
data and knowledge base (Ji et al.,[2023;|Zhang et al.,|2023d). Early statistical-based halluci-
nation evaluation methods relied on n-grams to directly calculate the overlap of vocabulary
between the input and output content (Dhingra et al.,2019; Wang et al.,2020). However,
these methods have limitations, as they only consider lexical overlap and do not account for
semantics or sentence meaning (Ji et al}[2023), making them unsuitable for evaluating more
complex forms of hallucination. Subsequent assurance methods shifted from statistical
approaches to model-based methods, which are more robust compared to token-difference-
based methods (Honovich et al.,[2021). While these model-based evaluation methods are
more advanced than their predecessors, they still have limitations. For example, the models
can only output the degree of hallucination and may struggle to pinpoint specific errors
(Falke et al.,[2019). [Feng et al.| (2023a) propose to combine LLMs generation with random
walks on knowledge graphs to generate synthetic evaluation data for factuality, which is
aware of entities and relations on the graphs. Wei et al.| (2024) created a synthetic dataset
called LongFact for long-form factuality evaluation and used Google Search as the ground-
ing source and LLM for the automated judgement, to achieve human-level accuracy but
with significally lower cost (Min et al.,[2023).

Safety. Red teaming is a powerful technique for evaluating the safety and robustness of
Al models (Ganguli et al., 2022} |Casper et al.,|2023b). By generating diverse and realistic
scenarios designed to elicit unaligned or harmful outputs (Casper et al|[2023a), red teaming
can expose vulnerabilities and weaknesses in Al systems (Perez et al., 2022). For example,
Perez et al.| (2023) use LMs to generate datasets for evaluating the behavior of other LMs.
They end up producing 154 high-quality datasets which are verified by humans, and
discover new cases of inverse scaling where LMs get worse with size. [Hubinger et al.[(2024)
leverage synthetic data to trigger backdoor attacks to LMs at scale; they find LMs can exhibit
deceptive behavior and create a false impression of safety under such attacks, and standard
“safety training” could not remove such deception easily. These methods demonstrate the
feasibility of using Al assistance to scale up human oversight (Bowman et al., 2022) over
complex problems and unseen domains.

Assisting human evaluation. Recent studies have shown that in many cases, synthetic
judgements from large-scale LMs (LLMs) can serve as qualified, fast, and low-cost alterna-
tives to actual human evaluation (Gilardi et al.,[2023b). Using GPT-4 as the judge, Alpaca
Eval (Li et al., 2023b) and MT Bench (Zheng et al.| [2023) are two popular benchmarks
that measure the comprehensive abilities of LM-based ChatBot. In coding tasks, synthetic
environment is a common choice to aid human evaluation, as humans can make the as-
sessment more efficiently via actual executions and analysis on running logs. |Gu et al.
(2024) propose CRUXEval, a code execution reasoning benchmark consisting of 800 Python
functions generated by CodeLLaMA-34B. Similarly, |Liu et al.|(2024a) introduce CodeMind,
a framework to gauge the code reasoning abilities of LLMs on Independent Execution
Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR).
All these evaluations based on synthetic data show strong correlation with real human
judgements.
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4 Challenges and Limitations of Synthetic Data

While synthetic data offers numerous benefits and applications, it is crucial to acknowledge
and address the potential challenges and limitations associated with its use. This section
delves into three significant concerns surrounding synthetic data:

Misuse of synthetic data might proliferate misinformation. The potential misuse of
synthetic data is a significant concern that must be addressed to ensure the responsible
development of Al systems. Current Al models become increasingly capable of generating
human-like data ranging from text (Gemini-Team et al.,2024;2023), images (Saharia et al.,

2022; |Ramesh et al., 2022), songs [’} to even videos (e.g., OpenAl SORA [*). This can be
particularly dangerous when synthetic data is used to impersonate real people, manipulate
public opinion, or influence political processes. Moreover, the dissemination of synthetic
data-driven misinformation can erode trust in legitimate information sources, making
it increasingly difficult for people to distinguish between truth and falsehood (Byman
et al.| 2023; Rid), 2020). To mitigate these risks, it is crucial for researchers, developers, and
policymakers to establish clear guidelines and best practices for the ethical generation and
use of synthetic data, including robust mechanisms for detecting and countering synthetic
misinformation (Groh et al., 2022). By proactively addressing these challenges, we can
harness the benefits of synthetic data while minimizing its potential for harm.

Synthetic data might cause ambiguity in Al alignment. The increasing use of synthetic
data in aligning Al models (e.g., Constitutional Al (Bai et al., 2022)) can introduce significant
ambiguity and uncertainty. The goal of Al alignment is to ensure that Al systems behave in
ways that are aligned with human values and intentions. However, synthetic data, which
is artificially generated rather than collected from real-world sources, may not accurately
represent the nuances and complexities of human values and preferences (Zhou et al.,
2024). This discrepancy can lead to AI models learning from data that is biased (Feng
et al., 2023b; |Liu et al 2021), ungrounded (Liu et al., 2022} [Patel & Pavlick, [2022), or
misrepresentative of real-world scenarios (Weidinger et al,[2021;|Ji et al., 2023). As a result,
Al systems trained on synthetic data may exhibit behaviors that are misaligned with human
expectations, potentially leading to unintended consequences or even harmful actions (Zou
et al.,2023; |Anderljung et al., 2023). Moreover, the ambiguity introduced by synthetic data
can make it challenging to interpret and understand the decision-making processes of Al
models (Lightman et al.|, 2023), further complicating the task of ensuring alignment. To
mitigate these risks, it is crucial for researchers to carefully consider the limitations and
potential drawbacks of using synthetic data in alignment research and to develop robust
methods for validating and testing AI models trained on such data.

Training with synthetic data makes evaluation decontamination harder. The use of
synthetic data in model training poses significant challenges to fair evaluation. Evaluation
benchmarks are often created by referring to public text sources, such as coursework web-
sites or forums. Consequently, it is arguable that all publicly available benchmark test cases
might occasionally be included in the pre-training data of LLMs (Hoffmann et al. 2022;
Gao et al} 2021). The use of synthetic data exacerbates this issue rather than mitigating
it. Although the community has proposed several techniques to detect such evaluation
contamination, such as min-k% prob (Shi et al.,2023), which checks the probabilities of k
long-tail tokens, these token-level decontamination methods are inadequate when the model
is trained with synthetic data. Synthetic data might include rephrased versions of the bench-
mark data (Oren et al., 2023; Mattern et al., 2023), rendering token-level decontamination
ineffective. In addition to developing more advanced evaluation contamination detection
techniques, we recommend that model developers invest in creating and maintaining in-
house and protected evaluation benchmarks. These proprietary benchmarks should be
carefully safeguarded to prevent leakage and ensure the integrity of the evaluation process.

3Make songs with Suno Al: https://app.suno.ai/
4OpenAI Sora: https://openai.com/research/video-generation-models-as-world-simulators
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5 Directions for Future Work

As the field of synthetic data continues to evolve, there are several promising directions for
future research and development. This section outlines three key areas that warrant further
exploration:

Synthetic data scaling. The impressive performance of many over-trained small language
models (e.g., Mistral series models (Jiang et al., 2023), and Gemma series models (Gemma+{
Team et al., 2024), inter aliz) demonstrates the necessity of training with large amount of
tokens (even passing the compute-optimal chinchilla law (Rae et al., 2021)). However,
whether we have similar conclusions on the training with synthetic data is still an open
question, as the quality of synthetic data may not be as consistent as real-world data (Yu
et al., [2024). Future research should investigate the scaling laws for synthetic data and
determine the optimal balance between the quantity and quality of synthetic samples. This
exploration could help us understand the most effective strategies for leveraging synthetic
data in training large-scale language models, potentially leading to more efficient and
cost-effective approaches (Muennighotf et al.,[2024).

Further improving quality and diversity of synthetic data. While existing methods for
generating synthetic data have shown promise, there is still room for improvement in terms
of creating high-quality, attributed synthetic samples that closely mimic real-world data.
Future research should focus on developing new advanced techniques (or based on existing
ones such as Generative Adversarial Networks (GANs) (Goodfellow et al.,2020) or Diffusion
Models (Ho et al 2020), inter alia) that can control and manipulate specific attributes of
the generated data, enabling the creation of diverse and customizable synthetic datasets.
Additionally, researchers should explore methods that can incorporate domain-specific
knowledge to ensure the generated data adheres to the underlying constraints and patterns
present in the target domain (e.g., via Retrieval Augmented Generation (RAG) (Lewis
et al.,|2020; Borgeaud et al.,[2022)) while maintaining the data quality. By advancing the
state-of-the-art in attributed synthetic data generation, we can unlock new opportunities for
privacy-preserving analysis (Assefa et al.,2020), and model training across various fields,
from healthcare (e.g., synthetic medical images (Frid-Adar et al.,2018; |Wei et al.,[2019)) and
finance (e.g., simulated trading trajectories (Zheng et al.| 2022)) to social sciences (Argyle
et al.|[2023; Park et al.,[2023) and beyond.

Towards high-fidelity and more efficient scalable oversight. As Al models become
increasingly complex and autonomous, it becomes challenging to monitor and assess their
behavior using traditional oversight methods that rely on human supervision or real-world
data (Amodei et al., 2016). Future research should explore the use of synthetic data for high-
fidelity scalable oversight of these advanced systems. Existing methods typically simulate
a certain scenario in social iterations, such as debate (Leike et al.| [2018), reflection (Zhang
et al.,2023a), or revisions (Liu et al.|,[2023c) to obtain synthetic data, while new approaches
could cover more comprehensive scenarios and more modalities (Sun et al.,[2023), as recent
studies have found many issues of simulation that only covers a narrowed down (Cheng
et al., 2023) or over-simplified (Zhou et al., 2024) scenes. Looking forward, another growing
direction could be how to achieve scalable oversight more efficiently—given that we have
the full control over the synthetic data generation, we can probably provide more targeted
oversights with less synthetic data. As the need for effective Al governance and regulation
grows, synthetic data will play an increasingly vital role in enabling more trustworthy
scalable oversight mechanisms that promote robust, accountable, and safe deployment of
Al technologies for the benefit of society (Askell et al., 2021; Bowman et al.,[2022).

The emergent self-improvement capability. We typically choose the most capable model
to generate synthetic data, as its generation is of higher quality. However, an intriguing ques-
tion arises: can a model generate synthetic data that is better than the data it was trained on,
thus enabling it to improve itself? This concept of self-improvement through synthetic data
generation is an exciting avenue for future research. If a model can generate higher-quality
data than its original training set, it could potentially bootstrap its own performance by iter-
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atively learning from the enhanced synthetic data (Chen et al., 2024). This self-improvement
capability could lead to the emergence of more advanced Al systems that can autonomously
refine their skills and knowledge over time (Burns et al.,[2023;|Huang et al.,2023b). Although
recent work shows encouraging progress in this direction (Chen et al., 2024} Yuan et al.,
2024), the upper bound of self-improvement and the underlying reasons for its effectiveness
remain open questions. Future research should investigate the theoretical underpinnings
and practical feasibility of self-improvement through synthetic data generation in more
diverse scenarios, examining the necessary conditions, potential limitations, and associated
risks. By unlocking the potential of emergent self-improvement capabilities, we could
enable more adaptable, efficient, and autonomous learning processes (LeCun) 2022).

6 Conclusion

Synthetic data has emerged as a promising solution to address the challenges of data scarcity,
privacy concerns, and high costs in Al development. By generating realistic and diverse
datasets, synthetic data enables the training and evaluation of Al models at scale across
various domains. As we approach human-level or even superhuman-level intelligence,
obtaining synthetic data becomes even more crucial, given that models need better-than-
average-human quality data to progress. However, ensuring the factuality, fidelity, and lack
of bias in synthetic data remains a critical challenge.

Future research directions on synthetic data could focus on improving the fidelity and
controllability of generative models and developing standardized evaluation and contam-
ination protocols and tools. We could also explore the integration of synthetic data with
other techniques and its application in other domains. Despite the challenges, the potential
benefits of synthetic data in advancing Al research are significant. By leveraging synthetic
data responsibly and effectively, we can build more powerful, inclusive, and trustworthy Al
systems that benefit society as a whole.
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