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Abstract

In constraint-based causal discovery, existing algo-
rithms systematically use a series of conditional
independence (CI) relations observed in the data
to recover an equivalence class of causal graphs in
the large sample limit. One limitation of these algo-
rithms, such as the PC algorithm, is the reliance on
CI tests, which can quickly lose statistical power
due to finite samples as the conditioning set size
increases or the support of the conditioning set is
large. The idea of bounding the size of condition-
ing sets has been proposed for robust causal dis-
covery. However, the existing algorithms require
exhaustive testing of all CI relations with condi-
tioning set sizes up to a certain integer k. To fur-
ther relax this restriction, we propose using CI
tests where the conditioning sets are restricted to a
given set of conditioning sets including the empty
set. We call this set a conditionally closed set C.
We define the notion of C-Markov equivalence.
We propose a graphical representation to charac-
terize C-Markov equivalence between two causal
graphs. We propose a sound constraint-based algo-
rithm called the C-PC algorithm for learning the
C-Markov equivalence class. We demonstrate the
utility of the proposed algorithm via experiments
in scenarios where high-dimensional variables and
spurious correlations are present in the data.

1 INTRODUCTION

Constraint-based methods struggle with limited data as CI
tests are prone to have a high false positive rate, especially
when the conditioning set is large [Wille and Bühlmann,
2006, Shah and Peters, 2020]. Due to the sensitivity of CI
tests to sample noise, several ideas have been proposed to
enhance the accuracy of the algorithm outputs, including
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Figure 1: An example where learning causal graphs from a collec-
tion of conditioning sets is desired. A survey dataset consists of
some categorical variables, e.g. Q2, Q4, that show most partici-
pants respond in the same way, creating highly correlated variables
that pose challenges in testing conditional independence.

ensuring the output’s independence from the sequence of
CI tests conducted [Colombo et al., 2014], relaxing model
assumptions [Ramsey et al., 2006], ensuring the consis-
tency of conditioning sets used in CI tests [Li et al., 2019],
and characterizing and learning of causal graphs based on
small conditioning sets [Wienöbst and Liskiewicz, 2020, Ko-
caoglu, 2024]. Building on previous research that explores
learning causal graphs with small conditioning sets, our pa-
per aims to further relax the requirement of exhausting all
CI relations up to degree k. We achieve this by employing
CI tests with a conditionally closed set, which comprises
a specified collection of conditioning sets, including the
empty set.

1.1 MOTIVATING EXAMPLE

Consider a setting where one has collected some survey re-
sults and wants to understand the causal relations among the
variables observed from the survey questions. As shown by
Figure 1, the survey mostly consists of categorical variables.
Some of the survey questions, i.e., Q2, Q4, involve many
choices for participants to choose from and the majority of
the participants tend to select the same answer. This results
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Figure 2: An example shows the difference between a Markov equivalence class and a C-Markov equivalence class, where C = {∅, {Y }}.
(a)-(b): Two C-Markov equivalent DAGs, i.e., D ∼C D′. However, D and D′ are not Markov equivalent. (c)-(d): Two Markov equivalent
C-closure graphs SC(D),SC(D′). (e): The C-essential graph of D.
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Figure 3: Empirical cumulative distribution function of various F1
scores on 100 random DAGs with 60 edges and 30 nodes where
the number of states is assigned to be 2 or 30 with probability 0.7
and 0.3 respectively. The lower and farther from the left side the
better. k-PC (k = 0) performs comparably with C-PC at N = 500.
C-PC outperforms all baselines at N = 1500.

in a dataset that has highly correlated variables, which poses
challenges in testing conditional independence. Hence, it
is desirable to choose which variable to condition on for
constraint-based causal discovery.

2 RESULTS

In this section, we provide the definition of conditionally
closed sets C and the graphical representation of C-Markov
equivalence. Figure 2 illustrates all the relevant concepts.

Definition 2.1 (Conditionally Closed Sets). For a DAG
D = (V,E), let I = {Ii} be a set of CI statements of
the form Ii = (X,Z, Y ), i.e., (X ⊥⊥ Y |Z) or (X ⊥̸⊥ Y |Z),
where X,Y ∈ V,Z ⊂ V. A set C is called conditionally
closed if the following holds

1. ∅ ∈ C and

2. ∃X,Y ∈ V, (X,C, Y ) ∈ I ⇒ (A,C, B) ∈ I for all
A,B ∈ V and for all C ∈ C.

Definition 2.2 (C-Markov equivalence). Two DAGs D1, D2

are C-Markov equivalent if for any three disjoint subsets
X ⊂ V, Y ⊂ V,Z ∈ C, X and Y are d-separated by
Z in D1 if and only if X and Y are d-separated by Z in
D2, where C is conditionally closed. The set of DAGs that
encode the same set of conditional independence induced
only by the causal Markov assumption with conditioning
sets from C is called the C-Markov equivalence class. We

denote two DAGs D1, D2 that are C-Markov equivalent as
D1 ∼C D2.

Definition 2.3 (C-closure). For a DAG D and a condition-
ally closed set C, the C-closure of D, denoted as SC(D), is
a graph that has the following properties:

1. If: ̸ ∃C ∈ C s.t. C d-separates X and Y in D
(i) if X ∈ AnD(Y ), then X → Y in SC(D), (ii)
if Y ∈ AnD(X), then Y → X in SC(D), (iii) else
X ↔ Y in SC(D).

2. Else: X,Y are not adjacent in SC(D).

Lemma 2.1. C-closure graph SC(D) of a DAG D entails
the same d-separation statements conditioned any C ∈ C as
the DAG, i.e., (X ⊥⊥ Y |C)D ⇔ (X ⊥⊥ Y |C)SC(D),∀C ∈
C.

Theorem 2.4. Two DAGs D1, D2 are C-Markov equivalent
if and only if SC(D1) and SC(D2) are Markov equivalent.

Definition 2.5 (edge unions: —, o—o, o→). The edge union
operations of a set of C-closure graphs are defined as: (i)
X — Y := X → Y ∪X ← Y , (ii) X o—o Y := X → Y ∪
X ← Y ∪X ↔ Y , (iii) X o→ Y := X → Y ∪X ↔ Y .

Definition 2.6 (C-essential graph). For any DAG D, the
edge union of all C-closure graphs that are Markov equiva-
lent to SC(D) is called the C-essential graph of D, denoted
as εC(D).

Theorem 2.7. C-PC algorithm is sound for learning C-
essential graph given a conditional independence oracle un-
der the causal Markov and C-faithfulness assumptions, i.e.,
if C-PC returns M , we have εC(D) ⊆M ⊆ PAG(SC(D)).

The pseudocode of C-PC is in Appendix 1. We conduct
synthetic experiments to evaluate the performance of C-
PC when high-dimensional variables are present in data.
We include the baselines: k-PC [Kocaoglu, 2024], GES
[Chickering, 2002], and GRaSP [Lam et al., 2022]. The
results are shown in Figure 3.

3 CONCLUSION

In conclusion, we propose a sound algorithm called C-PC
for learning causal graphs from a collection of conditioning
sets known as conditionally closed sets.
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A DISCUSSION

A.1 DIFFERENCES BETWEEN A MARKOV EQUIVALENCE CLASS AND A C-MARKOV EQUIVALENCE
CLASS

In this section, we give an example to show that two DAGs that share the same d-separation statements based on a
conditionally closed set C and do not have the same skeleton and the same set of unshielded colliders. We use Figure 2 to
illustrate the difference between the Markov equivalence class and the C-Markov equivalence class. As shown by Figures
2(a) and 2(b), both D1 and D2 have different skeletons and different sets of unshielded colliders. Nonetheless, D1 and D2

are C-Markov equivalent when C = {∅, {Y }} because both D1 and D2 entail the same CI statement of degree 0 and the
same CI statements with conditioning set {Y }.

A.2 INTUITION ABOUT C-CLOSURE GRAPHS

When two variables X,Y are C-covered and none of them is an ancestor of another, it is as if there exists a confounder
between them that is not observed, resulting in X ↔ Y . When one is an ancestor of another, C-closure graphs preserve
this ancestral relationship. Figures 2(c) and 2(d) show an example of C-closure graphs. Lemma 2.1 gives the relationship
between the CI statements entailed by a DAG and the CI statements entailed by a C-closure graph based on a conditionally
closed set.

A.3 INTUITION ABOUT EDGE UNION AND C-ESSENTIAL GRAPH

To understand the edge union operation in Definition 2.5 and its connection to the construction of the C-essential graph,
consider two Markov equivalent C-closure graphs SC(D),SC(D′) shown by Figures 2(c) and 2(d). We can take the union of
the edge Z ↔ Y in SC(D) and the edge Z → Y in SC(D′) to derive the edge Zo→ Y in the C-essential graph shown in
Figure 2(e). From both Definition 2.5 and Definition 2.6, we see that a directed edge→ appears in a C-essential graph only if
such directed edge appears in all C-closure graphs that are Markov equivalent. It is important to know the difference between
the edges o—o and — from a causal viewpoint. The former says that there exists a C-closure graph in the equivalence
class where two variables cannot be a cause of each other. The latter indicates that there exists a C-closure graph in the
equivalence class where one variable is a cause of another variable.

A.4 FUTURE WORK

For future work, we want to further relax the restriction of a conditionally closed set and investigate whether one can
systematically leverage arbitrary CI statements on top of all marginal independence relations for learning causal graphs.
This feature is desirable because one can then directly avoid testing certain CI statements that are very likely to be unreliable
when spurious correlations are present in practice. Another interesting direction is to study the orientation rules with respect
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to the conditionally closed set. It is also worthwhile to explore how side information and data preprocessing techniques can
be used to construct the conditionally closed set for C-PC to increase the robustness of the proposed method.

B ALGORITHMS

Algorithm 1 C-PC
input Observational data V, a conditionally closed set C, CI tester
1: Initiate a complete graph M among the set of observed variables with circle edge o—o.
2: Find separating sets SX,Y for every pair X,Y ∈ V by conditioning on C ∈ C.
3: Update M by removing the edges between pairs that are separable.
4: Orient unshielded colliders of M : For any induced subgraph Xo—oZo—oY , set Xo→ Z ←oY for any non-adjacent pair X,Y

where SX,Y does not contain Z.
5: M ← kPC_Orient(M ) {see Algorithm 3}
6: return M

Algorithm 2 k-PC Kocaoglu [2024]
input Observational data V, k, CI tester
1: Initiate a complete graph M among the set of observed variables with circle edge o—o.
2: Find separating sets SX,Y for every pair X,Y ∈ V by conditioning on subsets Z ⊂ V of size at most k.
3: Update M by removing the edges between pairs that are separable.
4: Orient unshielded colliders of M : For any induced subgraph Xo—oZo—oY , set Xo→ Z ←oY for any non-adjacent pair X,Y

where SX,Y does not contain Z.
5: M ← kPC_Orient(M ) {See Algorithm 3}
6: return M

Algorithm 3 kPC_Orient Kocaoglu [2024]
input Mixed graph M
1: M ← FCI_Orient(M ) {See Algorithm 4}
2: For any variable X that has no incoming edges, construct the sets B,Q :

B = {Y ∈ Ne(X) : Xo→ Y },Q = {Z ∈ Ne(X) : Xo—oZ}

and define sets B⋆ as the set of variables that are non-adjacent to any of the nodes in Q and Q⋆ as the set of variables that are
non-adjacent to other variables inQ:

B⋆ = {Y ∈ B : Y,Z are non-adjacent ∀Z ∈ Q},Q⋆ = {Z′ ∈ Q : Z′, Z are non-adjacent ∀Z′ ̸= Z,Z′ ∈ Q}

3: R11 : Orient Xo→ Y as X → Y , ∀Y ∈ B⋆

4: R12 : Orient Xo—oY as X—Y , ∀Z ∈ Q⋆

5: return M

Algorithm 4 FCI_Orient Kocaoglu [2024]
1: Apply the orientation rules ofR1,R2,R3 of Zhang [2008] to M until none applies.
2: Apply the orientation rules ofR8,R9,R10 of [Zhang, 2008] to M .
3: return M
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