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Abstract

Recombinant antibodies (rAbs) have emerged as a promising solution to tackle antigen specificity, enhancement of immunogenic
potential and versatile functionalization to treat human diseases. The development of single chain variable fragments has helped
accelerate treatment in cancers and viral infections, due to their favorable pharmacokinetics and human compatibility. However,
designing rAbs is traditionally viewed as a genetic engineering problem, with phage display and cell free systems playing a major
role in sequence selection for gene synthesis. The process of antibody engineering involves complex and time-consuming laboratory
techniques, which demand substantial resources and expertise. The success rate of obtaining desired antibody candidates through
experimental approaches can be modest, necessitating iterative cycles of selection and optimization. With ongoing advancements
in technology, in silico design of diverse antibody libraries, screening and identification of potential candidates for in vitro validation
can be accelerated. To meet this need, we have developed rAbDesFlow, a unified computational workflow for recombinant antibody
engineering with open-source programs and tools for ease of implementation. The workflow encompasses five computational modules
to perform antigen selection, antibody library generation, antigen and antibody structure modeling, antigen-antibody interaction
modeling, structure analysis, and consensus ranking of potential antibody sequences for synthesis and experimental validation. The
proposed workflow has been demonstrated through design of rAbs for the ovarian cancer antigen Mucin-16 (CA-125). This approach
can serve as a blueprint for designing similar engineered molecules targeting other biomarkers, allowing for a simplified adaptation to
different cancer types or disease-specific antigens.

Statement of Significance: A computational workflow, rAbDesFlow, was developed for template-based humanized recombinant anti-
body design. The workflow utilizes open-sourced databases and tools with existing antibody sequences as templates. This approach
can serve as a blueprint for designing similar engineered molecules targeting other biomarkers, allowing for a straightforward and
simplified adaptation.

Keywords: rAbDesFlow; recombinant antibody engineering; computational workflow; CA-125; ovarian cancer

Introduction Initially, the production of antibodies heavily relied on animal

Recombinant antibodies (rAbs) have indeed revolutionized
the field of medicine by overcoming the challenges posed by
hybridoma-derived monoclonal antibodies (mAbs), providing
higher affinity and antigen specificity along with capabilities
to withstand a wide range of functionalization elements [1]. The
groundbreaking advent of hybridoma technology in 1975 led to
the development of the first monoclonal antibody, which was
subsequently licensed in 1986 [2, 3]. Hybridoma technology fuses
mouse B cells producing specific antibodies with immortalized
myeloma cells, resulting in the generation of hybrid cells that
produce mAbs with specificity to the mouse-derived antigen.

immunization, employing experimental mice, rabbits, and other
laboratory animals until the late 1980s [4]. However, a significant
challenge encountered in the production and application of mAbs
lies in the inadequate immune response elicited against highly
toxic or conserved antigens. In addition, antibody-producing
immune response in hybridoma is initiated by proteolysis of the
antigen, leading to inadequate affinity of the derived mAbs to
the native antigen [1]. Consequently, most clinical antibodies are
either derived from human sources or undergo humanization
to mitigate potential immunogenicity concerns [5]. While the
development of transgenic mice and rabbits carrying human
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antibody genes has addressed the issue of immunogenicity,
it does not address the necessity of an effective immune
response following immunization. To transcend these challenges
in improving affinity, selectivity and scalability in antibody
production, a shift from monoclonal to recombinant antibody
engineering was initiated [6].

rAbs are obtained through an in vitro generation processes
using various antibody engineering technologies such as phage
display, construction of antibody fragments, immunomodulatory
antibodies, and cell-free systems [7], and through computational
approaches. Phage display technology utilizes bacteriophages to
present a vast library of antibody fragments, enabling the selec-
tion and production of mAbs with high specificity and affinity
against a target antigen [8]. Approaches have also emerged to
genetically engineer host cells to produce and secrete antibodies,
enabling scalable and customizable production of highly specific
therapeutic molecules [9]. The emergence of bispecific antibod-
ies with multiple engineered subdomains capable of recogniz-
ing multiple epitopes simultaneously showcases the capability
of genetic engineering to revolutionalize antibody-based therapy
[10]. Single chain variable fragment (scFv), nanobodies, supra-
bodies, and affibodies have also emerged as versatile antibody
formats. scFv offer smaller size and improved tissue penetra-
tion, nanobodies possess high stability and target accessibility,
while affibodies exhibit small size, stability, and broad target
recognition, collectively expanding the possibilities for targeted
therapies and diagnostics [11]. Collectively, recombinant antibody
production has also decreased the usage of animal models, while
maintaining high affinity and scalability to a wide range of anti-
genic fragments.

In past few years, there has been a notable surge in the approval
and investigation of engineered antibody drugs in phase II or III
clinical trials, demonstrating the accelerated progress and grow-
inginterestin utilizing these therapeutics for diverse diseases [12].
FDA-approved antibodies, including Necitumumab, Nivolumab,
and ramucirumab, have shown efficacy in treating various can-
cers by targeting specific antigens [3, 13]. Additionally, rAbs such
as Bamlanivimab [14] and mAbs such as Bebtelovimab, REGEN-
CoV, and others have received emergency use authorization for
the treatment of COVID-19 [15], further highlighting the broad
applications of engineered antibodies in addressing critical med-
ical needs. Two novel bispecific rAbs namely, Epcoritamab and
Glofitamab were approved in 2023 by FDA, to treat relapsed or
refractory diffuse large B-cell lymphoma [16]. In addition to engi-
neered antibodies, plasma therapy has garnered attention and
has been investigated for various infectious diseases, including
COVID-19 [17]. It involves using plasma derived from individuals
who have recovered from a particular disease to treat those
currently battling the same illness. This therapeutic approach
harnesses the presence of antibodies present in the plasma of
recovered individuals to provide passive immunity and aid in the
neutralization of the pathogen. Apart from the bispecific rAbs,
direct targeted engineered molecules for therapeutics include
antibody-drug conjugates and CAR-T cell therapies [18-20]. These
molecules are specifically designed to target and bind to specific
antigens or receptors on diseased cells, delivering therapeutic
agents or activating immune responses for targeted treatment.

Although antibody engineering has led to significant advance-
ments in the development of therapeutic antibodies, it is
important to recognize the constraints related to factors such
as time, antigen immunogenicity, production scale, and other
experimental approaches. The process of antibody engineering
involves complex and time-consuming laboratory techniques
such as protein expression, purification, and characterization,
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which demand substantial resources and expertise. Additionally,
traditional methods for generating antibody libraries, such
as immunization or hybridoma technology, have constraints
in terms of library diversity compared to computationally
designed libraries. Experimental screening methods, relying on
assays like Enzyme-Linked Immunosorbent Assay (ELISA) or
flow cytometry, can be laborious and slow, hindering high-
throughput screening for identifying antibodies with high affinity.
Furthermore, the success rate of obtaining desired antibody
candidates through experimental approaches can be modest,
necessitating iterative cycles of selection and optimization. How-
ever, ongoing advancements in technology and the integration
of computational methods could offer promising solutions to
overcome these limitations. Computational tools encompass
antibody design software [21], which allows for sequence
modifications and optimization of properties. Epitope prediction
tools [22, 23] aid in identifying potential binding sites on antigens,
while antibody-antigen docking tools [24, 25] simulate binding
interactions. Antibody library design tools [26] help to create
diverse libraries for screening, and sequence analysis tools [27]
enable the examination of antibody sequences. Additionally,
protein engineering and optimization tools [28, 29], although
not antibody-specific, assist in improving stability and designing
variants. Collectively, these tools streamline multiplex antibody
development, enabling the design of antibodies with enhanced
properties such as specificity, affinity, stability, and therapeutic
efficacy [30]. Therefore, there is a need for a pipeline that
integrates various computational tools and algorithms to handle
different aspects of antibody engineering, such as structure
prediction, epitope identification, and property optimization.

In this study, we focus on using the epithelial ovarian cancer
biomarker CA-125 as a model antigen to design and map an engi-
neered antibody for both onco-diagnostic and onco-therapeutic
purposes. In this regard, we developed a computational work-
flow, rAbDesFlow, for template-based humanized recombinant
antibody design. The workflow utilizes completely open-sourced
databases and tools and in silico site saturation mutagenesis using
existing antibody sequences as templates. The resulting antibod-
ies were extensively analyzed based on various profiling metrics
and humanness scores. The top 10 antibodies were selected and
used to model the antigen-antibody interaction through structure
prediction and docking methods. Through detailed analysis, we
identified four predominant epitopes on the antigen and prior-
itized the top 3 antibodies for further experimental validation
based on predicted binding energy. This approach can serve as
a blueprint for designing similar engineered molecules targeting
other biomarkers, allowing for a straightforward and simplified
adaptation to different cancer types or disease-specific antigens.
By leveraging this strategy, we can potentially enhance the accu-
racy and effectiveness of cancer diagnosis and treatment by
specifically targeting relevant biomarkers associated with differ-
ent malignancies.

Materials and methods

The workflow of rAbDesFlow involves five distinct modules
(Fig. 1), which provide an end-to-end solution for the compu-
tational antibody design problem from sequence engineering to
antigen-antibody binding mode prediction. Since the workflow
is based only on open-source programs and tools, it can be
readily implemented in laboratories for accelerating antibody
engineering studies. The functionality of each module in
rAbDesFlow is explained in detail below. The workflow was tested
on a case study to design antibodies against the ovarian cancer
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Figure 1. A schematic of the rAbDesFlow method showing the five computational modules (M1 to M5) developed for computational antibody design.
The different databases and tools used in each step of the workflow are provided as in supplementary information (Table S1).

antigen, Mucin-16 or CA-125 [31]. It is notable that the workflow
has been designed to use open-source standalone tools and web
servers only, for ease of accessibility. Also, wherever possible,
the same tool was repeatedly used for similar tasks to ensure
minimal resource overheads. The complete list of software used
in this workflow is provided in the Supplementary Information
(Table S1).

Module 1: Modeling the complete antigen
structure

The protein sequence of the antigen of interest is obtained from
the UniProt database [32] and it is compared with the protein
sequence obtained from experimentally determined structures,
if available. If there are missing residues in comparison with
the UniProt-derived sequence, the complete antigen structure is
modeled using multiple computational 3D structure prediction
methods such as ITASSER [33], AlphaFold?2 [34], and RoseTTAFold
[35]. The best model of the antigen is selected based on met-
rics specific to each structure prediction program such as C-
Score (ITASSER), confidence score (AlphaFold2), and energy value
(RoseTTAFold). The agreement between the three selected mod-
els from each structure prediction programs is quantified using
root-mean-square deviation (RMSD) and the model with better
terminal and loop region folding is chosen for further analysis.
Since AlphaFold2 has been shown to have poor performance in
modeling long loop regions [36, 37], only the RMSD of structured
domains of the antigen are considered during the comparison [37].

Module 2: Library preparation for antibody
sequences

The second module utilizes information from experimentally vali-
dated antibodies known against the antigen of interest to enumer-
ate a set of new antibody sequences, which can potentially elicit
better binding affinity and activity against the antigen in vitro. The
light and heavy chain sequences of the template antibodies are
collected from the TheraSAbDab database [38] or can be supplied
by the user. The complementarity determining regions (CDRs) of
the light and heavy chain sequences are mapped using the Kabat
CDR definitions [39] available via the ANARCI python package
[40]. Based on existing knowledge of the variability of CDR regions

among antibodies, the CDRH3 region is chosen for single residue
substitution, as this region is known to be highly variable [41] and
hence the predominant determinant of antibody specificity. Each
residue in CDRH3 region is substituted with the other 19 residues,
resulting in a library of antibody sequences per template antibody
utilized. The residue substitutions are automated using custom
Python scripts.

The enumerated antibody sequences within each library are
subject to five filtering metrics available in the Therapeutic Anti-
body Profiler (TAP) server [42]. The TAP metrics were developed
based on a database of therapeutic humanized mAbs and their
optimal ranges were taken from the TAP study [42]. Antibody
sequences which pass all five metrics from TAP were only con-
sidered for further analysis. Post-filtration with TAP metrics, the
humanness score of the antibody sequences is computed using
the HScore server [43]. The returned z-scores are used to prioritize
the antibody sequences for modeling their three-dimensional
structures. The top 10 antibodies in terms of their humanness z-
score are considered for detailed structure modeling studies and
antigen-antibody interaction analysis.

Module 3: Modeling the three-dimensional
antibody structure

The antibody structure can be modeled using two approaches:
scFv modeling and complete antibody modeling. scFv is similar to
camelid nanobodies in structure and includes only the Fab regions
of the light and heavy chains of the antibody, which is sufficient
for eliciting an immune response as proven by experiments [44].
The antibody grafting mode of the Rosetta ROSIE server [45] is
used for ab initio modeling of the scFv antibody structure. Rosetta
returns the top 1000 antibody models for a given sequence, by
performing extensive CDRH3 loop modeling and optimization.
The binding free energies of the top 1000 models are used to
prioritize the final antibody scFv model for antigen-antibody
docking. Using this procedure, the antibody scFv models for the
top 10 antibody sequences prioritized in module 2 are obtained,
along with the structures for the template antibodies considered.
The models obtained from Rosetta were also compared with the
scFv models from the OPIG antibody modeling server [40]. The
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Figure 2. (a) Crystal structure of the partial human CA-125 SEA domain homodimer (PDB ID: 7SA9); (b) the epitopes of known CA-125 antibodies (SE11,

0C125 and M11) mapped to the SEA domain monomer.

RMSD between the two models is analyzed for a good agreement
in the overall structure obtained.

ITASSER server is used to model the complete antibody struc-
ture containing both the Fab and Fc regions. The sequence of the
Fc region of one of the four immunoglobulins (IgG1, IgG2, 1gG3,
or IgG4) can be considered for predicting the model, depending
on the predominance of the IgG subtype in related humanized
monoclonal antibodies. The Fab and Fc region sequences are com-
bined into the complete light chain and heavy chain sequence for
each antibody considered, and are provided as input to ITASSER.
ITASSER was chosen as the primary method of choice for com-
plete antibody design, as AlphaFold2 multimer [46] models did not
yield good results for the same set of sequences. Latest antibody-
specific deep learning models for structure prediction such as
IgFold [47] can also be used instead of ITASSER in this module.

Module 4: Antigen-antibody docking using
ClusPro advanced docking protocol

The antigen-antibody complex for the wild-type (template anti-
bodies) and top 10 prioritized antibodies are obtained using Clus-
Pro antibody docking mode [48]. During the docking process, the
antibody is used as the receptor and antigen is used as the ligand,
as suggested by the ClusPro documentation. Thirty models are
built for each complex and the final model is chosen based on an
analysis of the orientation of the antigen among all antibodies, to
ensure that the epitope region is nearly identical between them.
This will also ensure that the results of the residue substitution
will be comparable between the antibodies thereby, allowing the
identification of the substitution with maximal contribution to
the overall binding affinity of the complex. Based on the epi-
tope analysis, multiple competing orientations of the antigen
with respect to the antibody are identified. Further analysis is
performed on all orientations of the antigen-antibody complex
to understand the orientation, which provides a better binding
affinity compared with the selected template antibody.

Module 5: Computational prediction of the
antigen-antibody interaction

The predominant residue-residue interactions present at the
interface of the antigen-antibody complexes obtained from
ClusPro were extracted using the RING-3.0 stand-alone program
[49]. In terms of the interactions observed, the predominant
interaction types among the complexes are identified along with
their frequency of occurrence. The paratope and epitope residues
for each antigen-antibody complex are extracted from the
observed interactions and are compared to the known epitopes

characterized for the template antibodies utilized in module 1
and from literature. The top 10 antigen-antibody complexes
are further ranked on the basis of their predicted binding free
energies and dissociation constants (K4) from the PRODIGY server
[50]. A consensus ranking of the antibodies is derived based on
the predicted binding free energy of different orientations of the
antibody with respect to the antigen. The consensus ranking can
be used to prioritize antibodies based on their different predicted
binding modes in silico.

Further, the prioritized antibodies are also filtered based on the
observed overlap in the epitope regions, to avoid steric hindrance
upon binding to antibody during in vitro evaluation. The final set
of antibodies obtained are also substantiated with information on
potential glycosylation hotspots and solvent accessibility to opti-
mize the solubility of the antibody for experimental validation.

Results and discussion

The proposed workflow was validated through the design of scFv
antibodies against the human ovarian cancer antigen, Mucin-16,
also known as CA-125. The ovarian cancer antigen CA-125 has
been extensively studied as a therapeutic target and biomarker
for humanized monoclonal and rAbs, due to its essential role
in the carcinogenesis process [31]. Although most clinicians rec-
ommends CA-125 test for individuals with symptoms of ovarian
cancer, it is currently not recommended as a diagnostic marker
for screening women in general population [31]. The clinical
utility of this test is more effective as a follow up marker in
monitoring the treatment for ovarian cancer and for detecting
disease recurrence [51-53]. Unfortunately till date there is no
single specific biomarker available for early detection of ovarian
cancer. It is notable that, recently our group has reported a panel
of five plasma proteins (including CA-125) which has potential as
a diagnostic assay for epithelial ovarian cancer [54]. Globally the
market for CA-125 test is expected to grow at 5.80% annually for
the next decade and is projected to hit USD 1091.7 million by 2030
according to a recent market survey.

In terms of the protein structure, CA-125 is the second largest
protein in human proteome, made of ~14 000 residues. It is a
transmembrane protein with a long extracellular region consist-
ing of 60-70 tandem repeats of a Sperm protein, Enterokinase and
Agrin (SEA) domain made of 196 residues [55]. Different isoforms
of CA-125 exist, which vary primarily based on the number of
repeats of the SEA domain. Several popular antibodies such as
SE11 [S6], OC125 [57] and M11 have been designed to target the
SEA domain of CA-125. Recently, the partial crystal structure of
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Figure 3. Structural overlap of the ITASSER model of human CA-125 SEA domain with (a) the partial experimental structure from PDB; (b) the model

obtained using AlphaFold2 program.

Table 1. Results from the comparison of the five threading
models of human CA-125 SEA domain from ITASSER with the
experimental structure of partial human SEA domain (PDB ID:
7SA9). The RMSD values were calculated using superposition of
the structures in PyMOL.

Model C-Score? RMSD (4)
Model 1 —2.45 0.826
Model 2 —2.61 0.740
Model 3 —2.83 0.864
Model 4 —-3.13 0.990
Model 5 —3.08 1.074

aC-score stands for the ITASSER confidence score used to quantify the
model quality. The values of this score range from [-5, 2], with higher
values indicating better confidence in the model.

Human SEA domain (residues 35 to 160) was solved to 1.69 A
resolution (PDB ID: 7SA9) [55] (Fig. 2). However, it is notable that
none of the antigen-antibody complexes involving CA-125 have
been experimentally solved earlier. Hence, with this partial struc-
ture of SEA domain from CA-125 as the basis for antibody design,
the application of each module of rAbDesFlow is detailed in the
sections below.

Module 1: Modeling the complete antigen
structure

Since only a partial structure of the human CA-125 SEA domain
was available experimentally, the ITASSER server was used to
model the complete antigen structure. The complete SEA domains
sequence of Mucin-16 protein was obtained from UniProt [32]
(UniProt ID: Q8WXI7). The C-scores [33] obtained for the top five
models from threading are tabulated below (Table 1). Based on the
results, Model 2 provided the best trade-off between the C-Score
and RMSD with respect to the crystal structure (Fig. 3a), and it was
chosen as the final model for further steps of antibody design.
The antigen structure was further confirmed using the ColabFold
model [58] from AlphaFold2 team (Fig. 3b). It is notable that the
long loops at the N- and C-terminal regions of the protein from
the AlphaFold2 program was not favorable for further analysis
with docking programs, and hence was discarded despite a good
overall structural agreement with an RMSD of 0.742 A between
the two models obtained.

Table 2. Basic statistics of the antibody sequences designed for
CA-125 antigen.

Antibody features Data

Final set of mutations D96G, D96P, D97G, D97P, D97R, DI7T,
D97Y, Y98G, D99G, M102F

Range of heavy chain —1.098 to —1.133 (WT = —1.142)

H-score?®

Heavy chain length 118 residues
Light chain length 112 residues
Fab? + Fc® region length 668 residues
(1 monomer)

2 monomers = 6682 = 1336 residues
(~150 kDa)

Total antibody length

@H-score—Humanness Z-score quantifies the ability of animal-derived or
synthetic antibodies to mimic endogenous human antibodies for better
immune response; Fab—Fragment-antigen binding region of the antibody;
Fc- Fragment crystallizable region of the antibody.

Module 2: Enumeration of CA-125 antibody
sequences

CA-125 being an extensively studied biomarker in ovarian cancer
has multiple humanized mAbs designed againstit, including 5E11,
0C125, M11, Sofituzumab, and Abagovomab. Among them the
binding epitopes of 5E11, OC125, and M11 have been extensively
characterized through experimental mutagenesis studies [59].
Therefore, the sequences of these three antibodies (specifically
the CDRH3 region) were considered as templates for enumeration
of novel antibody sequences with better binding affinity to CA-
125. Using the ANARCI package, the CDRH3 region sequence of
the template antibody was found to be SDDYDYGMDY. Some more
basic statistics of the antibody sequence are provided in Table 2.
The antibody sequences obtained were subject to TAP profiling
and humanness score filtering. The top 10 antibodies in terms of
their humanness z-score were considered for further analysis.

Module 3: Modeling the three-dimensional
antibody structure

The antibody structure was modeled using two approaches: scFv
modeling and complete antibody modeling. scFv stands for single
chain variable fragment, which is similar to camelid nanobodies
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Table 3. Rosetta scores of the scFv antibody structures obtained
from the Rosetta ROSIE server.

Antibody Mutation Rosetta score?
WT - —597.699
abl_26 D96G —565.436
abl_33 D96P —608.073
abl_46 D97G —618.948
ab1_53 D97P —595.807
abl_55 D97R —589.909
abl._57 Do7T —634.401
abl_60 D97Y —572.697
abl_66 Y98G —612.439
abl_86 D99G —646.430
ab1_145 M102F —597.086

aRosetta score corresponds to the energy of the antibody model. It is
obtained using a scoring function with energy terms and probabilities
tailored to achieve the allowed geometrical parameters of a protein
structure.

[44]. Tt includes only the Fab regions of the light and heavy
chains of the antibody, which is sufficient for eliciting an immune
response as proven by experiments. The antibody grafting mode
of the Rosetta ROSIE server was used for ab initio modeling of the
scFv antibody structure. Rosetta returns the top 1000 antibody
models for a given sequence, by performing extensive CDRH3 loop
modeling and optimization. The binding free energies of the top
1000 models were used to prioritize the final antibody scFv model
for antigen-antibody docking (Table 3). Using this procedure, the
antibody scFv models for the top 10 antibody sequences priori-
tized earlier were obtained, along with the structure for the tem-
plate antibody considered (Supplementary Information—Fig. S5).
The models obtained from Rosetta were also compared with the
scFv models from the OPIG antibody modeling server (Fig. 4). It
was observed that all models showed an RMSD <0.5 A with the
OPIG models, indicating a good agreement in the overall structure
obtained. The complete antibody model, which contains both the
Fc and Fab regions, was also obtained using ITASSER. However,
since the overlap RMSD of scFv models with the Fab region of the
complete antibody was less than 0.4 A (Fig. S2), it was decided
to use only the scFv models of the antibody for further analysis.
This was also done to facilitate antigen-antibody docking, as
all the available docking programs can consider only the scFv
models of antibody as input, rather than the complete antibody
structure. The workflow for designing complete antibody models
is discussed in the Supplementary Information (Section S1 and
Fig. S1).

Module 4: Antigen-antibody docking using
ClusPro advanced docking mode

The antigen-antibody complex for the wild-type and top 10
mutants were obtained using ClusPro antibody docking mode.
During the docking process, the antibody was used as the receptor
and antigen was used as the ligand, as suggested by the ClusPro
server. Thirty models were built for each complex and the final
model was chosen based on an analysis of the orientation of the
antigen among all antibodies, to ensure that the epitope region
is nearly identical between them. This will also ensure that the
results of the residue substitution will be comparable between the
antibodies thereby, allowing the identification of the substitution
with maximal contribution to the overall binding affinity of the
complex. Based on the epitope analysis, four possible orientations
of the antigen with respect to the antibody were identified.
However, due to spatial overlap between the epitopes in the
predicted antigen structure, two orientations where the epitopes
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Figure 4. An example of the scFv antibody structure model against
CA-125 antigen, obtained from the Rosetta ROSIE server with light chain
in right and heavy chain in left. The scFv model obtained from the OPIG
server is overlapped on the Rosetta model using PyMOL. The scFv
models from ROSIE server for all 10 antibodies are provided in
supplementary information (Fig. S4).

were positioned without overlaps (Fig. S3) were only considered
as valid. Further analysis was performed on both the orientations
finalized, to understand which orientation provided a better
binding affinity compared to the template antibody considered.

Module 5: Analysis of the antigen-antibody
interaction

The predominant residue-residue interactions present at the
interface of the antigen-antibody complexes (Fig.5) obtained
from ClusPro were extracted using the RING-3.0 stand-alone
program. In terms of the interactions observed, hydrogen bonds
and van der Waals interactions were found to be predominant
among the complexes, followed by ionic, cation-pi and pi-pi
stacking interactions. No disulfide bridges (covalent interactions)
were observed between the antigen and antibody in the complex.
The paratope and epitope residues for each antigen-antibody
complex were identified based on the interacting residues and
are provided in Table 4 for epitope 1 and Table S2 for epitope
2. To understand the influence of potential glycosylation of the
residues part of the epitope, both sequence-based and structure-
based glycosylation prediction methods available in literature
were utilized. From the results it was observed that, no potential
N- and O-linked glycosylation sites were present within the
predicted epitope regions, indicating their potential to interact
with the antibody without glycan interference (Supplementary
Information Section S2). The frequency of various inter-residue
interactions at the antigen-antibody interface as identified
with the RING3.0 program were also studied in detail and are
summarized in Supplementary Tables S4 and S5.

The 10 antigen-antibody complexes designed for CA-125 were
further ranked on the basis of their predicted binding free energy
and dissociation constant (K4q) value from the PRODIGY server
(Table 5). A consensus binding free energy prediction was also per-
formed based on multiple sequence and structure-based methods
[50, 60-64], to establish a consistency in the antibody ranking
process (Supplementary Table S7). Based on the results observed,
it is conclusive that the designed antibodies provide ~1 kcal/-
mol improvement in binding affinity compared to the wild-type.
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Antigen-Antibody interface region

Figure 5. An example of the interactions observed at the human CA125 antigen-antibody interface region where the hydrogen bonds are highlighted in
the inset with dotted lines. The antigen is shown on top; antibody light chain is shown in bottom left and heavy chain is shown in bottom right. The
visualization was created using PyMOL.

Table 4. Paratope and epitope residues for each antigen—antibody ScFv region model with orientation 1. The residues were extracted
based on the results from PPI analysis using the RING3.0 stand-alone program.

Antibody Mutation Antigen residues (Epitope)? Antibody residues (Paratope)?

WT - ASP122A, THR176A, GLU129A, VAL121A, GLN132A, SER177A, ASN30L, TYR92L, ASP97H, PHES8H, SER30L,
GLY120A, THR179A, GLU124A, ASP173A, PRO167A, PHE40A, THRO3L, TYR100H, TYR94L, ASN54H, ASP56H,
LEU114A, SER118A, HIS157A, LEU133A, PRO119A, TRP128A, TYR30L, TYR32L, LYS30L, ASN52H, TRPSOL, LYS64H
ARG123A, GLN125A, LYS117A

abl_26 D96G PRO119A, GLU129A, THR176A, GLU124A, ASP122A, LEU133A, GLN27L, TYR33H, GLN61H, TYR32L, ASN54H,
PRO167A, THR179A, LYS117A, ASP173A, TRP128A, SER177A, LYS64H, TYR30L, SER30L, PHES8H, ASP99H,
GLY120A, ARG123A, PHE196A, HIS157A, GLN125A THRO3L, TYR94L, TYR98H, TYR92L, ASPO7H

abl_33 D96P ASNB8OA, ASN153A, GLN125A, LYS117A, SER118A, ARG123A, TYR94L, TYR33H, PHE58H, THRO3L, TYR92L,
GLU124A, GLU129A, ASP122A, THR176A, VAL121A, LEU133A, ASP97H, ASPS6H, TYR98H, GLN27L, SER30L,
SER82A, TRP128A, GLN132A, PRO119A LYS64H, ASP99H, TYR32L, TYR30L, LYS30L

abl_46 D97G VAL121A, SER177A, VAL172A, PRO119A, GLU124A, HIS157A, ASP56H, THR93L, TYR32L, GLN27L, GLN61H,
ARG123A, TRP128A, GLY120A, GLN132A, GLN125A, ASP173A, ASP99H, TYR30L, LYS30L, TYR94L, TYR98H,
GLU129A, THR176A, PRO167A, ASP122A THRS7H, SER30L, PHE58H, ASN30L, LYS64H,

TYR33H, TYR92L

abl_53 D97P LEU114A, GLY120A, GLN132A, GLU124A, TRP128A, LYS117A, TYR30L, TYR92L, ASN54H, ASN30L, SER30L,
PHE40A, SER177A, GLU129A, ARG123A, VAL121A, THR179A, THRO3L, TYR94L, TYR98H, PHES8H, TYR33H,
ASP173A, ASN153A, PRO119A, LEU133A, THR176A, ASP122A, TYR100H, ASP99H, TYR32L, TRP50L, GLN27L,
PHE196A ASP56H

abl1_55 D97R GLU129A, THR179A, LYS117A, ASP173A, SER177A, LEU133A, ASP56H, PHES8H, TYR33H, SER30L, TYR32L,
SER82A, THR176A, GLN132A, GLN125A, PHE196A, PHE40A, TYR30L, TYR92L, ASP99H, GLN27L, TYR100H,
LEU114A, SER118A, GLY120A, ASP122A, ARG123A, TRP128A, ASNS4H, LYS30L, TYR94L, TYR98H, ASN30L
PRO119A

ab1_57 D97T ASN153A, GLN125A, GLU124A, SER177A, THR176A, THR179A, TYR98H, TYR30L, ASP99H, TYR94L, PHE58H,
ARG123A, GLU129A, GLN132A, PRO119A, PHE196A, GLY120A, ASNS54H, ASN52H, THR97H, TYR92L, THRO3L,
HIS157A, LYS117A, LEU133A, TRP128A, ASP173A ASP56H, SER30L, LYS64H

abl_60 D97Y ASNB8OA, LYS79A, LYS117A, GLN125A, GLU124A, SER82A, LEU133A, TYR32H, TYR94L, ASN54H, SER30L, TYR30L,
THR176A, GLU129A, SER177A, ASP122A TYR92L, PHES8H, ASP56H, TYR33H, THR93L,

ASP99H

abl_66 Y98G SER177A, ARG123A, SER118A, PRO119A, LEU133A, THR81A, TYR33H, ASN52H, ASN53H, PHES8H, TYR100H,
ASP122A, THR176A, GLU124A, SER82A, ASN8OA, GLN125A, TYR92L, THR93L, ASN30L, ASPS7H, TYR32L,
GLU129A, LEU114A, LYS117A, TRP128A ASNS54H, TYR30L

abl_86 D99G ASP173A, SER177A, LEU133A, PRO119A, LEU114A, THR179A, LYS64H, TYR100H, LYS30L, ASN54H, GLN61H,
HIS157A, TRP128A, PHE40A, PRO167A, ASP122A, LYS117A, TYR92L, TYR98H, TYR30L, ASN30L, GLN27L,
ARG123A, GLN132A, GLU124A, GLN125A, PHE196A, GLY120A, TYR32L, SER30L, TYR94L, TYR33H, PHE58H,
VAL121A, SER118A, ASN153A, THR176A, GLU129A THRI93L, ASPS6H

abl_145 M102F ASP122A, GLU129A, GLN132A, TRP128A, THR176A, ARG123A, ASP97H, TYR98H, SER30L, TYR92L, ASN54H,

SER177A, PHE40A, VAL121A, GLY120A, SER118A, PRO119A,
ASP173A, LEU133A, LYS117A, GLN125A, PHE196A, LEU114A

LYS30L, TYR30L, TYR33H, ASP56H, TYR94L,
TYR100H, PHE58H, GLN27L, TYR32L, LEU30L,
ASN30L

aThe chain to which each residue belongs has the following nomenclature: A—antigen; L—antibody light chain; H—antibody heavy chain.
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Table 5. Overall rank of the 10 proposed antibodies (orientation 1) with respect to the wild-type antibody for CA125. The ranks are
assigned based on the interaction energy values predicted by PRODIGY program. The three energy values in bold indicate the top three

antibodies predicted by rAbDesFlow against CA-125.

Antibody Mutation in CDRH3 region PRODIGY predicted Ky (M) at 25 °C  PRODIGY energy (kcal/mol)
WT - 2.2E-09 -11.8
abl_26 D96G 2.0E-09 -11.9
ab1.33 D96P 3.7E-09 -115
abl_46 D97G 3.9E-10 -12.8
ab1_53 D97P 1.4E-08 -10.7
abl_55 D97R 1.9E-08 -10.5
abl_57 D97T 1.1E-08 -10.8
abl_60 D97Y 5.8E-08 -9.9
abl_66 Y98G 3.4E-08 -10.2
abl_86 D99G 1.1E-09 -12.2
abl_145 M102F 1.3E-08 -10.7

Further, replacement of aspartic acid residue (D) seems to be the
most favorable substitution, with D97G being consistently ranked
as the topmost substitution among the selected antibodies. Since
the lower energy of orientation 2 indicates more stable complex
being formed between the antigen and antibody, the consensus
rank was used to prioritize complexes with higher rank (see
Supplementary Information Table S3) in orientation 2. abl_46,
abl_33 and ab1_145 are proposed to be the best antibodies from
the analysis for further experimental validation. Based on con-
sensus glycosylation prediction, no potential N- and O-linked gly-
cosylation sites were found within the predicted epitope regions,
indicating their potential to interact with the antibody without
glycan interference (Supplementary Information Section S2 and
Table S6). To investigate potential off-target binding effects of the
top three antibodies, a set of secretory cancer-associated proteins
were curated (Supplementary Table S8) and their interaction with
the antibodies were predicted using ClusPro program. The results
from this analysis indicate that, for all the tested antigens, the
binding affinity values of the best antigen—antibody docking pose
obtained from ClusPro is not as high as that of the Mucin-16
(Supplementary Table S9). This justifies that, the chances of off-
target binding for the top three antibodies identified in this study
are very low. The complete nucleotide and protein sequences
of all 10 antibodies analyzed in this work are provided in the
Supplementary Information (Section S3).

Conclusions

In this study, a computational workflow for template-based
humanized recombinant antibody design named, rAbDesFlow,
was created. The workflow is based on completely open-
sourced databases and tools enabling researchers worldwide to
implement the workflow flexibly upon their needs. The proposed
method was validated through design of antibodies specific
to the human ovarian cancer antigen, CA-125 or Mucin-16,
using existing antibody sequences as templates for in silico site
saturation mutagenesis. From an extensive analysis of various
antibody profiling metrics and humanness scores, the top 10
antibodies were identified and used to model the antigen-
antibody interaction through structure prediction and docking
methods. A detailed analysis of the interfacial interactions and
orientations of the antigen and antibody enabled identification
of two predominant epitopes in the antigen. Finally, their
predicted binding energy and dissociation constant were used to
prioritize the top 3 antibodies for further experimental validation.
rAbDesFlow will enable significant acceleration in prioritization

of potential antibody sequences for experimental validation
and hence, is the first of many steps toward fully automated
computational antibody design.
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