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ABSTRACT

Software is one of the most powerful tools that we humans have at our disposal;
it allows a skilled programmer to interact with the world in complex and pro-
found ways. At the same time, thanks to improvements in large language models
(LLMs), there has also been a rapid development in AI agents that interact with
and affect change in their surrounding environments. In this paper, we introduce
OpenHands, f.k.a. OpenDevin, a platform for the development of powerful and
flexible AI agents that interact with the world in similar ways to those of a human
developer: by writing code, interacting with a command line, and browsing the
web. We describe how the platform allows for the implementation of new agents,
safe interaction with sandboxed environments for code execution, coordination
between multiple agents, and incorporation of evaluation benchmarks. Based on
our currently incorporated benchmarks, we perform an evaluation of agents over
15 challenging tasks, including software engineering (e.g., SWE-BENCH) and web
browsing (e.g., WEBARENA), among others. Released under the permissive MIT
license, OpenHands is a community project spanning academia and industry with
more than 2.1K contributions from over 188 contributors.

1 INTRODUCTION

Powered by large language models (LLMs; OpenAI 2024b; Team et al. 2023; Jiang et al. 2024;
Chang et al. 2024), user-facing AI systems (such as ChatGPT) have become increasingly capable
of performing complex tasks such as accurately responding to user queries, solving math problems,
and generating code. In particular, AI agents, systems that can perceive and act upon the external
environment, have recently received ever-increasing research focus. They are moving towards
performing complex tasks such as developing software (Jimenez et al., 2024), navigating real-world
websites (Zhou et al., 2023a), doing household chores (Ahn et al., 2022), or even performing scientific
research (Boiko et al., 2023; Tang et al., 2024a).

As AI agents become capable of tackling complex problems, their development and evaluation have
also become challenging. There are numerous recent efforts in creating open-source frameworks that
facilitate the development of agents (Hong et al., 2023; Chen et al., 2024; Wu et al., 2023). These
agent frameworks generally include: 1) interfaces through which agents interact with the world
(such as JSON-based function calls or code execution), 2) environments in which agents operate,
and 3) interaction mechanisms for human-agent or agent-agent communication. These frameworks
streamline and ease the development process in various ways (Tab. 1, §C).

When designing AI agents, we can also consider how human interacts with the world. The most
powerful way in which humans currently interact with the world is through software – software
powers every aspect of our life, supporting everything from the logistics for basic needs to the
advancement of science, technology, and AI itself. Given the power of software, as well as the
existing tooling around its efficient development, use, and deployment, it provides the ideal interface
for AI agents to interact with the world in complex ways. However, building agents that can effectively
develop software comes with its own unique challenges. How can we enable agents to effectively
create and modify code in complex software systems? How can we provide them with tools to gather
information on-the-fly to debug problems or gather task-requisite information? How can we ensure
that development is safe and avoids negative side effects on the users’ systems?
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In this paper, we introduce OpenHands (f.k.a, OpenDevin), a community-driven platform designed for
the development of generalist and specialist AI agents that interact with the world through software.1
It features:

(1) An interaction mechanism which allows user interfaces, agents, and environments to interact
through an event stream architecture that is powerful and flexible (§2.1).

(2) A runtime environment that consists of a docker-sandboxed operating system with a bash shell,
a web browser, and IPython server that the agents can interact with (§2.2).

(3) An interface allowing the agent to interact with the environment in a manner similar to actual
software engineers (§2.3). We provide the capability for agents to (a) create and edit com-
plex software, (b) execute arbitrary code in the sandbox, and (c) browse websites to collect
information.

(4) Multi-agent delegation, allowing multiple specialized agents to work together (§2.4).
(5) Evaluation framework, facilitating the evaluation of agents across a wide range of tasks (§4).

Importantly, OpenHands is not just a conceptual framework, but it also includes a comprehensive
and immediately usable implementation of agents, environments, and evaluations. As of this writing,
OpenHands includes an agent hub with over 10 implemented agents (§3), including a strong generalist
agent implemented based on the CodeAct architecture (Wang et al., 2024a), with additions for web
browsing (ServiceNow) and code editing specialists (Yang et al., 2024). Interaction with users is
implemented through a chat-based user interface that visualizes the agent’s current actions and allows
for real-time feedback (Fig. 1, §D). Furthermore, the evaluation framework currently supports 15
benchmarks, which we use to evaluate our agents (§4).

Released under a permissive MIT license allowing commercial use, OpenHands is poised to support
a diverse array of research and real-world applications across academia and industry. OpenHands
has gained significant traction, with 32K GitHub stars and more than 2.1K contributions from over
188 contributors. We envision OpenHands as a catalyst for future research innovations and diverse
applications driven by a broad community of practitioners.

2 OPENHANDS ARCHITECTURE

We describe, using OpenHands, (1) how to define and implement an agent (§2.1), (2) how each action
execution leads to an observation (§2.2), (3) how to reliably manage and extend commonly used skills
for agents (§2.3), and (4) how to compose multiple agents together for task solving (§2.4). Fig. 2
provides an overview.

2.1 AGENT DEFINITION AND IMPLEMENTATION

An agent can perceive the state of the environment (e.g., prior actions and observations) and produce
an action for execution while solving a user-specified task.

The State and Event Stream. In OpenHands, the state is a data structure that encapsulates all
relevant information for the agent’s execution. A key component of this state is the event stream,
which is a chronological collection of past actions and observations, including the agent’s own
actions and user interactions (e.g., instructions, feedback). In addition to the event stream, the state
incorporates auxiliary information for agent’s operation, such as the accumulative cost of LLM calls,
metadata to track multi-agent delegation (§2.4), and other execution-related parameters.

Actions. Inspired by CodeAct (Wang et al., 2024a), OpenHands connects an agent with
the environment through a core set of general actions. Actions IPythonRunCellAction
and CmdRunAction enable the agent to execute arbitrary Python code and bash com-
mands inside the sandbox environment (e.g., a securely isolated Linux operating system).
BrowserInteractiveAction enables interaction with a web browser with a domain-specific
language for browsing introduced by BrowserGym (Drouin et al., 2024). These actions were chosen
to provide a comprehensive yet flexible set of primitives covering most tasks performed by human

1While initially inspired by the AI software engineer Devin (Cognition.ai), OpenHands has quickly evolved
to support a much wider range of applications beyond software engineering through diverse community contri-
butions.
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Figure 1: OpenHands User Interface (UI, §D) allows users to view files, check executed bash
commands/Python code, observe the agent’s browser activity, and directly interact with the agent.
Some information is redacted for anonymity.

Agent
produce new action

[1] Message (source=user)

Can you create a list of numbers from 1 to 10, and 
create a web page to display them at port 5000?

[2] IPythonRunCellAction (source=agent)

Sure! Let me create a file first:

<execute_ipython>



</execute_ipython>

Event History

[Past Action(s) & Observation(s)]

[3] IPythonRunCellObservation

[File: /workspace/app.py (1 lines total)]

1|

[File app.py created.]

[4] IPythonRunCellAction (source=agent)

I will write the Python code for starting a server.

<execute_ipython>



</execute_ipython>

Action
EDITED_CODE=\"\"\"[Omitted for Brevity]\"\"\"
edit_file(start=1, end=1, content=EDITED_CODE)

create_file('app.py')

[5] IPythonRunCellObservation

[... Omitted for Brevity ...]

4|@app.route('/')

5|def index():

6|    numbers = list(range(1, 11))

7|    return str(numbers)

[... Omitted for Brevity ...] [File updated.]

[6] CmdRunAction (source=agent)

I have created a Python file `app.py` that will 
display a list of numbers from 1 to 10 when you run 
it. Let me run the server for you:

<execute_bash>

python3 app.py > server.log 2>&1 &

cat server.log

</execute_bash>

[7] CmdRunObservation

[1] 124

* Serving Flask app 'app'

 * Debug mode: off

WARNING: This is a development server. Do not 
use it in a production deployment. Use a 
production WSGI server instead.

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

[8] BrowseInteractiveAction (source=agent)

The server is running on port 5000 with PID 124. Let 
me browse to the page at http://127.0.0.1:5000

<execute_browse>

goto("http://127.0.0.1:5000")

</execute_browse>

 [9] BrowserOutputObservation

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Docker Sandbox

Interactive Python 
(IPython) Server

Bash Shell

Browser

Playwright Chromium

Observation

where each Action execution 
leads to an Observation

Event Stream: List[Action_1, 
Observation_1, Action_2, ...]

Agent: Event History -> Action

Runtime: Action -> Observation

Abstraction

where all Action-Observation(s) are tracked

Event Stream Agent RuntimeUser Interface
Command Line

Web UI

IDE Plugins

[...]

Multi-turn 

User-Agent

Interaction

OpenHands-maintained

Action Execution API

Action

OpenHands automatically install 
“action execution API” into user-
provided arbitrary docker images

Figure 2: OpenHands consists of 3 main components: 1) Agent abstraction where community can
contribute different implementation of agents (§2.1) into agenthub (§3); 2) Event stream for tracking
history of actions and observations; 3) Runtime to execute all actions into observations (§2.2).

software engineers and analysts. The action space based on programming languages (PL) is powerful
and flexible enough to perform any task with tools in different forms (e.g., Python function, REST
API, etc.) while being reliable and easy to maintain (Wang et al., 2024a) .

This design is also compatible with existing tool-calling agents that require a list of pre-defined
tools (Chase, 2022). That is, users can easily define tools using PL supported in primitive actions
(e.g., write a Python function for calculator) and make those tools available to the agent through
JSON-style function-calling experiences (Qin et al., 2023). Moreover, the framework’s powerful
PL-based primitives further make it possible for the agents to create tools by themselves (e.g., by
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generating Python functions, Yuan et al. 2023) when API to complete the task is unavailable. Refer
to §2.3 for how these core PL-based actions can be composed into a diverse set of tools.

Figure 3: Minimal example of implementing an agent in
OpenHands.
class MinimalAgent:

def reset(self) -> None:
self.system_message = "You are a helpful assistant ..."

def step(self, state: State):
messages: list[dict[str, str]] = [

{'role': 'system', 'content': self.system_message}
]
for prev_action, obs in state.history:

action_message = get_action_message(prev_action)
messages.append(action_message)
obs_message = get_observation_message(obs)
messages.append(obs_message)

# use llm to generate response (e.g., thought, action)
response = self.llm.do_completion(messages)

# parse and execute action in the runtime
action = self.parse_response(response)
if self.is_finish_command(action):

return AgentFinishAction()
elif self.is_bash_command(action):

return CmdRunAction(command=action.command)
elif self.is_python_code(action):

return IPythonRunCellAction(code=action.code)
elif self.is_browser_action(action):

return BrowseInteractiveAction(code=action.code)
else:

return MessageAction(content=action.message)

Observations. Observations describe
environmental changes (e.g., execu-
tion result of prior actions, text mes-
sages from human user) that the agent
observes.

Implement a New Agent. The agent
abstraction is designed to be simple
yet powerful, allowing users to create
and customize agents for various tasks
easily. The core of the agent abstrac-
tion lies in the step function, which
takes the current state as input and
generates an appropriate action based
on the agent’s logic. Simplified ex-
ample code for the agent abstraction
is illustrated in Fig. 3. By providing
this abstraction, OpenHands allows
the users to focus on defining desired
agent behavior and logic without wor-
rying about the low-level details of
how actions are executed (§2.2).

2.2 AGENT RUNTIME: HOW EXECUTION OF ACTIONS RESULTS IN OBSERVATIONS

Agent Runtime provides a general environment that equips the agent with an action space comparable
to that of human software developers, enabling OpenHands agents to tackle a wide range of software
development and web-based tasks, including complex software development workflows, data analysis
projects, web browsing tasks, and more. It allows the agent to access a bash terminal to run code and
command line tools, utilize a Jupyter notebook for writing and executing code on-the-fly, and interact
with a web browser for web-based tasks (e.g., information seeking).

Docker Sandbox. For each task session, OpenHands spins up a securely isolated docker container
sandbox, where all the actions from the event stream are executed. OpenHands connects to the
sandbox through a REST API server running inside it (i.e., the OpenHands action execution API),
executes arbitrary actions (e.g., bash command, python code) from the event stream, and returns the
execution results as observations. A configurable workspace directory containing files the user wants
the agent to work on is mounted into that secure sandbox for OpenHands agents to access.

OpenHands Action Execution API. OpenHands maintains an API server that runs inside the docker
sandbox to listen for action execution requests from the event stream. The API server maintains:

(1) A bash shell that connects with the operating system environment (specified by the docker image)
for command execution.

(2) A Jupyter IPython server to handle interactive python (IPython) code execution requests and
return the execution results back to the event stream.

(3) A Chromium browser based on Playwright. The provider provides a set of action primitives
defined by BrowserGym (ServiceNow; Drouin et al., 2024), such as navigation, clicking, typing,
and scrolling. The full set of actions is detailed in §J. After executing these actions, the browser
runtime provides a rich set of observations about the current state of the browser, including
HTML, DOM, accessibility tree (Mozilla), screenshot, opened tabs, etc.

Arbitrary Docker Image Support. OpenHands allows agents to run on arbitrary operating systems
with different software environments by supporting runtime based on arbitrary docker images.
OpenHands implements a build mechanism that takes a user-provided arbitrary docker image and
installs OpenHands action execution API into that image to allow for agent interactions. We include
a detailed description of OpenHands agent runtime in §F.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different AI agent frameworks (§C). SWE refers to ‘software engineering’.
Standardized tool library: if framework contains reusable tools for different agent implementations
(§2.3); Built-in sandbox & code execution: if it supports sandboxed execution of arbitrary agent-
generated code; Built-in web browser: if it provides agents access to a fully functioning web
browser; Human-AI collaboration: if it enables multi-turn human-AI collaboration (e.g., human
can interrupt the agent during task execution and/or provide additional feedback and instructions);
AgentHub: if it hosts implementations of various agents (§3); Evaluation Framework: if it offers
systematic evaluation of implemented agents on challenging benchmarks (§4); Agent QC (Quality
Control): if the framework integrates tests (§E) to ensure overall framework software quality.

Framework Domain Graphic
User Interface

Standardized
Tool Library

Built-in Sandbox
& Code Execution

Built-in Web
Browser

Multi-agent
Collaboration

Human-AI
Collaboration AgentHub Evaluation

Framework
Agent

QC

AutoGPT Gravitas (2023) General " % % % % % " % "

LangChain (Chase, 2022) General % " %∗ %∗ % % " % %

MetaGPT (Hong et al., 2023) General % " % " " % " % "

AutoGen (Wu et al., 2023) General % " " " " " " " %

AutoAgents (Chen et al., 2024) General % % % % " % % % %

Agents (Zhou et al., 2023b) General % % % % " " % % %

Xagents (Team, 2023) General " " % " " % " % %

OpenAgents (Xie et al., 2023) General " % " " % % " % %

GPTSwarm (Zhuge et al., 2024) General % " % % " " % % %

AutoCodeRover (Zhang et al., 2024b) SWE % % " % % % % % %

SWE-Agent (Yang et al., 2024) SWE % % " % % % % % %

OpenHands General " " " " " " " " "

* No native support. Third-party commercial options are available.

2.3 AGENT SKILLS: THE EXTENSIBLE AGENT-COMPUTER INTERFACE

SWE-Agent (Yang et al., 2024) highlights the importance of a carefully crafted Agent-Computer
Interface (ACI, i.e., specialized tools for particular tasks) in successfully solving complex tasks.
However, creating, maintaining, and distributing a wide array of tools can be a daunting engineering
challenge, especially when we want to make these tools available to different agent implementations
(§3). To tackle these, we build an AgentSkills library, a toolbox designed to enhance the capabilities
of agents, offering utilities not readily available through basic bash commands or python code.

Easy to create and extend tools. AgentSkills is designed as a Python package consisting of
different utility functions (i.e., tools) that are automatically imported into the Jupyter IPython
environment (§2.2). The ease of defining a Python function as a tool lowers the barrier for com-
munity members to contribute new tools to the library. The generality of Python packages also
allows different agent implementations to easily leverage these tools through one of our core action
IPythonRunCellAction (§2.1).

Rigorously tested and maintained. We follow best practices in software engineering and write
extensive unit tests for tools in AgentSkills to ensure their reliability and usability.

Inclusion criteria and philosophy. In the AgentSkills library, we do not aim to wrap every possible
Python package and re-teach agents their usage (e.g., LLM already knows pandas library that can
read CSV file, so we don’t need to re-create a tool that teaches the agent to read the same file format).
We only add a new skill when: (1) it is not readily achievable for LLM to write code directly (e.g.,
edit code and replace certain lines), and/or (2) it involves calling an external model (e.g., calling a
speech-to-text model, or model for code editing (Sanger)).

Currently supported skills. AgentSkills library includes file editing utilities adapted from SWE-
Agent (Yang et al., 2024) and Aider (Gauthier) like edit_file, which allows modifying an
existing file from a specified line; scrolling functions scroll_up and scroll_down for viewing
a different part of files. It also contains tools that support reading multi-modal documents, like
parse_image and parse_pdf for extracting information from images using vision-language
models (e.g., GPT-4V) and reading text from PDFs, respectively. A complete list of supported skills
can be found in §I.

2.4 AGENT DELEGATION: COOPERATIVE MULTI-AGENT INTERACTION

OpenHands allows interactions between multiple agents as well. To this end, we use a special action
type AgentDelegateAction, which enables an agent to delegate a specific subtask to another
agent. For example, the generalist CodeActAgent, with limited support for web-browsing, can use
AgentDelegateAction to delegate web browsing tasks to the specialized BrowsingAgent to
perform more complex browsing activity (e.g., navigate the web, click buttons, submit forms, etc.).
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3 AGENTHUB: A HUB OF COMMUNITY-CONTRIBUTED AGENTS

Based on our agent abstraction (§2.1), OpenHands supports a wide range of community-contributed
agent implementations for end users to choose from and act as baselines for different agent tasks.

CodeAct Agent. CodeActAgent is the default generalist agent based on the CodeAct framework
(Wang et al., 2024a). At each step, the agent can (1) converse to communicate with humans in natural
language to ask for clarification, confirmation, etc., or (2) to perform the task by executing code (a.k.a.,
CodeAct), including executing bash commands, Python code, or browser-specific programming
language (§2.2). This general action space allows the agent (v1.5 and above) to perform various tasks,
including editing files, browsing the web, running programs, etc.

Browsing Agent. We implemented a generalist web agent called Browsing Agent, to serve as a
simple yet effective baseline for web agent tasks. The agent is similar to that in WebArena (Zhou
et al., 2023a), but with improved observations and actions, with only zero-shot prompting. Full
prompts are in §K.

GPTSwarm Agent. GPTSwarm (Zhuge et al., 2024) pioneers the use of optimizable graphs to
construct agent systems, unifying language agent frameworks through modularity. Each node
represents a distinct operation, while edges define collaboration and communication pathways.
This design allows automatic optimization of nodes and edges, driving advancements in creating
multi-agent systems.

Micro Agent(s). In addition, OpenHands enables the creation of micro agent, an agent specialized
towards a particular task. A micro agent re-uses most implementations from an existing generalist
agent (e.g., CodeAct Agent). It is designed to lower the barrier to agent development, where
community members can share specialized prompts that work well for their particular use cases.

4 EVALUATION

Table 2: Evaluation benchmarks in OpenHands.
Category Benchmark Required Capability

Software

SWE-Bench (Jimenez et al., 2024) Fixing Github issues
HumanEvalFix (Muennighoff et al., 2024) Fixing Bugs
BIRD (Li et al., 2023b) Text-to-SQL
BioCoder (Tang et al., 2024c) Bioinformatics coding
ML-Bench (Tang et al., 2024b) Machine learning coding
Gorilla APIBench (Patil et al., 2023) Software API calling
ToolQA (Zhuang et al., 2024) Tool use

Web WebArena (Zhou et al., 2023a) Goal planning & realistic browsing
MiniWoB++ (Liu et al., 2018) Short trajectory on synthetic web

Misc. Assistance

GAIA (Mialon et al., 2023) Tool-use, browsing, multi-modality
GPQA (Rein et al., 2023) Graduate-level Google-proof Q&A
AgentBench (Liu et al., 2023) Operating system interaction (bash)
MINT (Wang et al., 2024b) Multi-turn math and code problems
Entity Deduction Arena (Zhang et al., 2024a) State tracking & strategic planning
ProofWriter (Tafjord et al., 2021) Deductive Logic Reasoning

To systematically track progress in
building generalist digital agents, as
listed in Tab. 2, we integrate 15 es-
tablished benchmarks into OpenHands.
These benchmarks cover software en-
gineering, web browsing, and miscel-
laneous assistance. In this section, we
compare OpenHands to open-source re-
producible baselines that do not perform
manual prompt engineering specifically
based on the benchmark content. Please
note that we use ‘OH’ as shorthand for
OpenHands for the rest of this section
for brevity reasons.

4.1 RESULT OVERVIEW

In OpenHands, our goal is to develop general digital agents capable of interacting with the world
through software interfaces (as exemplified by the code actions described in §2.1). We recognize that
a software agent should excel not only in code editing but also in web browsing and various auxiliary
tasks, such as answering questions about code repositories or conducting online research.

Tab. 3 showcases a curated set of evaluation results. While OpenHands agents may not achieve top
performance in every category, they are designed with generality in mind. Notably, the same CodeAct
agent, without any modifications to its system prompt, demonstrates competitive performance across
three major task categories: software development, web interaction, and miscellaneous tasks. This
is particularly significant when compared to the baseline agents, which are typically designed and
optimized for specific task categories.

6
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Table 3: Selected evaluation results for OpenHands agents (§4). See Tab. 4 (software), Tab. 5 (web),
Tab. 6 (miscellaneous assistance) for full results across benchmarks.

Software (§4.2) Web (§4.3) Misc. (§4.4)
Agent Model SWE-Bench Lite WebArena GPQA GAIA

Software Engineering Agents
SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 18.0 − − −
AutoCodeRover (Zhang et al., 2024b) gpt-4-0125-preview 19.0 − − −
Aider (Gauthier) gpt-4o & claude-3-opus 26.3 − − −
Moatless Tools (Örwall) claude-3.5-sonnet 26.7 − − −
Agentless (Xia et al., 2024) gpt-4o 27.3 − − −

Web Browsing Agents
Lemur (Xu et al., 2023) Lemur-chat-70b − 5.3 − −
Patel et al. (2024) Trained 72B w/ synthetic data − 9.4 − −
AutoWebGLM (Lai et al., 2024) Trained 7B w/ human/agent annotation − 18.2 − −
Auto Eval & Refine (Pan et al., 2024) GPT-4 + Reflexion w/ GPT-4V − 20.2 − −
WebArena Agent (Zhou et al., 2023a) gpt-4-turbo − 14.4 − −

Misc. Assistance Agents
AutoGPT (Gravitas, 2023) gpt-4-turbo − − − 13.2

Few-shot Prompting
+ Chain-of-Thought (Rein et al., 2023)

Llama-2-70b-chat − − 28.1 −
gpt-3.5-turbo-16k − − 29.6 −
gpt-4 − 38.8 −

OpenHands Agents

CodeActAgent v1.8
gpt-4o-mini-2024-07-18 6.3 8.3 − −
gpt-4o-2024-05-13 22.0 14.5 ∗53.1 −
claude-3-5-sonnet 26.0 15.3 52.0 −

GPTSwarm v1.0 gpt-4o-2024-05-13 − − − 32.1
* Numbers are reported from CodeActAgent v1.5.

4.2 SOFTWARE ENGINEERING

Next, we report results specifically for software engineering benchmarks in Tab. 4.

SWE-bench (Jimenez et al., 2024) is designed to assess agents’ abilities in solving real-world GitHub
issues, such as bug reports or feature requests. The agent interacts with the repository and attempts to
fix the issue provided through file editing and code execution. The agent-modified code repository
is tested against a test suite incorporating new tests added from human developers’ fixes for the
same issue. Each test instance accompanies a piece of “hint text” that consists of natural language
suggestions for how to solve the problem. Throughout this paper, we report all results without
using hint text. A canonical subset, SWE-bench Lite, is created to facilitate accessible and efficient
testing. We default to use this subset for testing for cost-saving consideration.2 Result. As shown in
Tab. 4, our most recent version of CodeActAgent v1.8, using claude-3.5-sonnet, achieves a
competitive resolve rate of 26% compared to other open-source software development specialists.

HumanEvalFix (Muennighoff et al., 2024) tasks agents to fix a bug in a provided function with the
help of provided test cases. The bugs are created to ensure one or more test cases fail. We focus on
the Python subset of the benchmark and allow models to solve the bugs by self-debug over multiple
turns, incorporating feedback from test execution. We follow the setup from Muennighoff et al.
(2024) using pass@k (Chen et al., 2021).

ML-Bench (Tang et al., 2024b) evaluates agents’ ability to solve machine learning tasks across 18
GitHub repositories. The benchmark comprises 9,641 tasks spanning 169 diverse ML problems,
requiring agents to generate bash scripts or Python code in response to user instructions. In the
sandbox environment, agents can iteratively execute commands and receive feedback, allowing them
to understand the repository context and fulfill user requirements progressively. Following the setup
from the original paper, we perform agent evaluation on the quarter subset of ML-Bench.

Gorilla APIBench (Patil et al., 2023) evaluates agents’ abilities to use APIs. it incorporates tasks on
TorchHub, TensorHub, and HuggingFace. During the evaluation, models are given a question related
to API usage, such as "identify an API capable of converting spoken language in a recording to text."
Correctness is evaluated based on whether the model’s API call is in the correct domain.

ToolQA (Zhuang et al., 2024) evaluates agents’ abilities to use external tools. This benchmark
includes tasks on various topics like flight status, coffee price, Yelp data, and Airbnb data, requiring
the use of various tools such as text tools, database tools, math tools, graph tools, code tools, and

2Running the complete set of 2294 instances costs $6.9k, using a conservative estimate of $3 per instance.
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Table 4: OpenHands Software Engineering evaluation results (§4.2).
Agent Model Success Rate (%) $ Avg. Cost

SWE-Bench Lite (Jimenez et al., 2024), 300 instances, w/o Hint
SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 18.0 1.67
AutoCodeRover (Zhang et al., 2024b) gpt-4-0125-preview 19.0 −
Aider (Gauthier) gpt-4o & claude-3-opus 26.3 −

OH CodeActAgent v1.8
gpt-4o-mini-2024-07-18 7.0 0.01
gpt-4o-2024-05-13 22.0 1.72
claude-3-5-sonnet@20240620 26.0 1.10

HumanEvalFix (Muennighoff et al., 2024), 164 instances

Prompting, 0-shot

BLOOMZ-176B 16.6 −
OctoCoder-15B 30.4 −
DeepSeekCoder-33B-Instruct 47.5 −
StarCoder2-15B 48.6 −

SWE-agent, 1-shot (Yang et al., 2024) gpt-4-turbo 87.7 −

OH CodeActAgent v1.5, Generalist, 0-shot. gpt-3.5-turbo-16k-0613 20.1 0.11
gpt-4o-2024-05-13 79.3 0.14

BIRD (Li et al., 2023b), 300 instances

Prompting, 0-shot CodeLlama-7B-Instruct 18.3 -
CodeQwen-7B-Chat 31.3 -

OH CodeActAgent v1.5 gpt-4-1106-preview 42.7 0.19
gpt-4o-2024-05-13 47.3 0.11

ML-Bench (Tang et al., 2024b), 68 instances

prompting + BM25, 0-shot gpt-3.5-turbo 11.0 -
gpt-4-1106-preview 22.1 -
gpt-4o-2024-05-13 26.2 -

SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 42.6 1.91
Aider (Gauthier) gpt-4o 64.4 -

OH CodeActAgent v1.5
gpt-4o-2024-05-13 76.5 0.25
gpt-4-1106-preview 58.8 1.22
gpt-3.5-turbo-16k-0613 13.2 0.12

BioCoder (Python) (Tang et al., 2024b), 157 instances

prompting, 0-shot gpt-3.5-turbo 11.0 -
gpt-4-1106-preview 12.7 -

OH CodeActAgent v1.5 gpt-4o-2024-05-13 27.5 0.13

BioCoder (Java) (Tang et al., 2024b), 50 instances

prompting, 0-shot gpt-3.5-turbo 4.1 -
gpt-4-1106-preview 6.4 -

OH CodeActAgent v1.5 gpt-4o-2024-05-13 44.0 0.11

Gorilla APIBench (Patil et al., 2023), 1775 instances

Prompting, 0-shot
claude-v1 8.7 -
gpt-4-0314 21.2 -
gpt-3.5-turbo-0301 29.7 -

Gorilla, finetuned for API calls, 0-shot (Patil et al., 2023; Touvron et al., 2023) llama-7b 75.0 -

OH CodeActAgent v1.5 gpt-3.5-turbo-0125 21.6 0.002
gpt-4o-2024-05-13 36.4 0.04

ToolQA (Zhuang et al., 2024), 800 instances

Prompting, 0-shot
ChatGPT + CoT 5.1 -
ChatGPT 5.6 -
Chameleon 10.6 -

ReAct, 0-shot (Yao et al., 2023; OpenAI, 2024a) gpt-3.5-turbo 36.8 -
gpt-3 43.1 -

OH CodeActAgent v1.5 gpt-3.5-turbo-0125 2.3 0.03
gpt-4o-2024-05-13 47.2 0.91

system tools. It features two levels: easy and hard. Easy questions focus more on single-tool usage,
while hard questions emphasize reasoning. We adopt the easy subset for evaluation.

BioCoder (Tang et al., 2024c) is a repository-level code generation benchmark that evaluates agents’
performance on bioinformatics-related tasks, specifically the ability to retrieve and accurately utilize
context. The original prompts contain the relevant context of the code; however, in this study,
we have removed them to demonstrate the capability of OpenHands to perform context retrieval,
self-debugging, and reasoning in multi-turn interactions. BioCoder consists of 157 Python and 50
Java functions, each targeting a specific area in bioinformatics, such as proteomics, genomics, and
other specialized domains. The benchmark targets real-world code by generating code in existing
repositories where the relevant code has been masked out.

BIRD (Li et al., 2023b) is a benchmark for text-to-SQL tasks (i.e., translate natural language into
executable SQL) aimed at realistic and large-scale database environments. We select 300 samples
from the dev set to integrate into OpenHands and evaluate on execution accuracy. Additionally, we
extend the setting by allowing the agent to engage in multi-turn interactions to arrive at the final SQL
query, enabling it to correct historical results by observing the results of SQL execution.

4.3 WEB BROWSING

We report evaluation results for web browsing benchmarks in Tab. 5.
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Table 5: OpenHands Web Browsing Evaluation Results (§4.3).

Agent Model Success Rate (%) $ Avg. Cost
WebArena (Zhou et al., 2023a), 812 instances

Lemur (Xu et al., 2023) Lemur-chat-70b 5.3 −
Patel et al. (2024) Trained 72B with self-improvement synthetic data 9.4 −
AutoWebGLM (Lai et al., 2024) Trained 7B with human/agent hybrid annotation 18.2 −
Auto Eval & Refine (Pan et al., 2024) GPT-4 + Reflexion w/ GPT-4V reward model 20.2 −

WebArena Agent (Zhou et al., 2023a)

Llama3-chat-8b 3.3 −
Llama3-chat-70b 7.0 −
gpt-3.5-turbo 6.2 −
gpt-4-turbo 14.4 −

OH BrowsingAgent v1.0

gpt-3.5-turbo-0125 5.2 0.02
gpt-4o-mini-2024-07-18 8.5 0.01
gpt-4o-2024-05-13 14.8 0.15
claude-3-5-sonnet-20240620 15.5 0.10

OH CodeActAgent v1.8
via delegation to BrowsingAgent v1.0

gpt-4o-mini-2024-07-18 8.3 −
gpt-4o-2024-05-13 14.5 −
claude-3-5-sonnet-20240620 15.3 −

MiniWoB++ (Liu et al., 2018), 125 environments
Workflow Guided Exploration (Liu et al., 2018) Trained specialist model with environment exploration 34.6 −
CC-NET (Humphreys et al., 2022) Trained specialist model with RL and human annotated BC 91.1 −

OH BrowsingAgent v1.0 gpt-3.5-turbo-0125 27.2 0.01
gpt-4o-2024-05-13 40.8 0.05

OH CodeActAgent v1.8
via delegation to BrowsingAgent v1.0 gpt-4o-2024-05-13 39.8 −

WebArena (Zhou et al., 2023a) is a self-hostable, execution-based web agent benchmark that allows
agents to freely choose which path to take in completing their given tasks. WebArena comprises
812 human-curated task instructions across various domains, including shopping, forums, developer
platforms, and content management systems. Each task is paired with a handwritten test case that
verifies agent success, e.g., by checking the status of a web page element against a reference or the
textual answer returned by the agent. Results. From Tab. 5, we can see that our BrowsingAgent
achieves competitive performance among agents that use LLMs with domain-general prompting
techniques. Some agents (e.g., AutoWebGLM) require manual effort tailored to the WebArena
task domain. This showcases the performance trade-off between a generalist vs. a domain-tailored
specialist web agent, and we opt for a more general browsing agent as a building block in OpenHands.

MiniWoB++ (Liu et al., 2018) is an interactive web benchmark, with built-in reward functions. The
tasks are synthetically initialized on 125 different minimalist web interfaces. Unlike WebArena,
tasks are easier without page changes, require fewer steps, and provide low-level step-by-step task
directions. Note that it contains a portion of environments that require vision capability to tackle
successfully, and many existing work choose to focus only on a subset of the tasks (Kim et al., 2024;
Li et al., 2023c; Shaw et al., 2023). Still, we report the performance on the full set and only include
baselines that are evaluated on the full set. Results. From Tab. 5, we see that our BrowsingAgent
finishes nearly half of the tasks without any adaptation to the environment. However, due to the
synthetic nature of MiniWoB++, the state-of-the-art agents explicitly trained for the environments
with reinforcement learning and/or human behavior cloning have almost saturated the performance.

4.4 MISCELLANEOUS ASSISTANCE

Results for miscellaneous assistance benchmarks are reported in Tab. 6.

GAIA (Mialon et al., 2023) evaluates agents’ general task-solving skills, covering different real-world
scenarios. It requires various agent capabilities, including reasoning, multi-modal understanding,
web browsing, and coding. GAIA consists of 466 curated tasks across three levels. Setting up GAIA
is traditionally challenging due to the complexity of integrating various tools with the agent, but
OpenHands’s infrastructure (e.g., runtime §2.2, tools §2.3) simplifies the integration significantly.

GPQA (Rein et al., 2023) evaluates agents’ ability for coordinated tool use when solving challenging
graduate-level problems. It consists of 448 curated and difficult multiple-choice questions in biology,
physics, and chemistry. Tool use (e.g., python) and web search are often useful to assist agents in
answering these questions since they provide accurate calculations that LLMs are often incapable of
and access to information outside of the LLM’s parametric knowledge base.

AgentBench (Liu et al., 2023) evaluates agents’ reasoning and decision-making abilities in a multi-
turn, open-ended generation setting. We selected the code-grounded operating system (OS) subset

9
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Table 6: OpenHands miscellaneous assistance evaluation results (§4.4).

Agent Model Success Rate (%) $ Avg. Cost
GAIA (Mialon et al., 2023), L1 validation set, 53 instances

AutoGPT (Gravitas, 2023) gpt-4-turbo 13.2 −

OH GPTSwarm v1.0 gpt-4-0125-preview 30.2 0.110
gpt-4o-2024-05-13 32.1 0.050

GPQA (Rein et al., 2023), diamond set, 198 instances (refer to §G, Tab. 7 for other subsets)

Human (Rein et al., 2023) Expert human 81.3 −
Non-expert human 21.9 −

Few-shot Prompting + Chain-of-Thought (Rein et al., 2023) gpt-3.5-turbo-16k 29.6 −
gpt-4 38.8 −

OH CodeActAgent v1.8 claude-3-5-sonnet-20240620 52.0 0.065

AgentBench (Liu et al., 2023), OS (bash) subset, 144 instances

AgentBench Baseline Agent (Liu et al., 2023) gpt-4 42.4 −
gpt-3.5-turbo 32.6 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 57.6 0.085
gpt-3.5-turbo-0125 11.8 0.006

MINT (Wang et al., 2024b): math subset, 225 instances
MINT Baseline Agent gpt-4-0613 65.8 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 77.3 0.070
gpt-3.5-turbo-16k-0613 33.8 0.048

MINT (Wang et al., 2024b): code subset, 136 instances
MINT Baseline Agent gpt-4-0613 59.6 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 50.0 0.087
gpt-3.5-turbo-16k-0613 5.2 0.030

ProofWriter (Tafjord et al., 2021), 600 instances
Few-shot Prompting + Chain-of-Thought (Pan et al., 2023) gpt4 68.1 −
Logic-LM (Pan et al., 2023) gpt4 + symbolic solver 79.6 −
OH CodeActAgent v1.5 gpt-4o-2024-05-13 78.8 −

Entity Deduction Arena (Zhang et al., 2024a), 200 instances
Human - 21.0 −

Zero-shot Prompting (Zhang et al., 2024a) gpt-4-0314 40.0 −
gpt-3.5-turbo-0613 27.0 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 38.0 −
gpt-3.5-turbo-16k-0613 24.0 −

with 144 tasks. Agents from OpenHands interact directly with the task-specific OS using bash
commands in a multi-turn manner, combining interaction and reasoning to automate task completion.

MINT (Wang et al., 2024b) is a benchmark designed to evaluate agents’ ability to solve challenging
tasks through multi-turn interactions using tools and natural language feedback simulated by GPT-4.
We use coding and math subsets used in Yuan et al. (2024). We follow the original paper and allow
the agent to interact with up to five iterations with two chances to propose solutions.

ProofWriter (Tafjord et al., 2021) is a synthetic dataset created to assess deductive reasoning abilities
of LLMs. Same as Logic-LM (Pan et al., 2023), we focus on the most challenging subset, which
contains 600 instances requiring 5-hop reasoning. To minimize the impact of potential errors in
semantic parsing, we use the logical forms provided by Logic-LM.

Entity Deduction Arena (EDA) (Zhang et al., 2024a) evaluates agents’ ability to deduce unknown
entities through strategic questioning, akin to the 20 Questions game. This benchmark tests the agent’s
state tracking, strategic planning, and inductive reasoning capabilities over multi-turn conversations.
We evaluate two datasets “Things” and “Celebrities”, each comprising 100 instances, and report the
average success rate over these two datasets.

5 CONCLUSION

We introduce OpenHands, a community-driven platform that enables the development of agents that
interact with the world through software interfaces. By providing a powerful interaction mechanism,
a safe sandboxed environment, essential agent skills, multi-agent collaboration capabilities, and a
comprehensive evaluation framework, OpenHands accelerates research innovations and real-world
applications of agentic AI systems. Despite challenges in developing safe and reliable agents (§A),
we are excited about our vibrant community and look forward to OpenHands’s continued evolution.
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A LIMITATIONS AND FUTURE WORK

We are excited about the foundations our vibrant community has laid in OpenHands and look forward
to its continued evolution. We identify several directions for future work:

Enhanced multi-modality support. While our current implementation already supports a wide
range of file formats through predefined agent skills, we are interested in enabling multi-modality
in a principled way through standard IPython and browser integration, such as viewing images and
videos using vision-language model through a browser or processing XLSX files with code.

Stronger agents. Current agents still struggle with complex tasks, and we are interested in building
better agents through both training and inference time techniques.

Agent editing improvements. Current agent suffers a lot when editing long files, and we are
interested in exploring different approaches to improve the file editing performance of agents.

Web browsing improvements. Due to the extensible nature of OpenHands, orthogonal components
that could improve agents can be integrated easily. For example, thanks to OpenHands’s extensible
architecture, Auto Eval & Refine Pan et al. (2024), an agent retry-on-error strategy with Reflex-
ion Shinn et al. (2024) prompts and task completion reward models, will be integrated as an optional
component attached to our browsing agent.

Automatic workflow generation. Currently, OpenHands’s workflow still requires a substantial hand-
crafted workload. We believe that graph-based frameworks such as GPTSwarm Zhuge et al. (2024)
and LangGraph Chase (2022) could serve as alternative solutions for building agents. Particularly
in GPTSwarm, when agents are constructed using graphs, it becomes easier to incorporate various
optimization methods (e.g., reinforcement learning, meta-prompting). OpenHands considers these
methods to lay the groundwork for promising solutions in automatic workflow generation in future
versions.

B ETHICS STATEMENT

Most AI agents today are still research artifacts and lack the ability to perform complex, long-horizon
tasks in the real world reliably. However, as their performance continues to improve and they are
increasingly deployed in real world, they have the potential to boost productivity while also posing
security risks to society significantly. OpenHands helps mitigate risks by:

(1) Enabling systematic evaluation of these agents, which can identify and address risks before they
are widely deployed.

(2) Facilitating human-agent interaction rather than allowing agents to operate autonomously without
oversight.

(3) More importantly, we hope OpenHands allows researchers worldwide to access the best suites of
agents to conduct frontier safety research towards building safe and helpful agents.

C RELATED WORK

The breakthroughs in large language models (LLMs) like ChatGPT OpenAI (2024a) and GPT-
4 OpenAI et al. (2024) have significantly enhanced the capabilities of autonomous agents across
various domains Ye et al. (2023); Tang et al. (2024d); Park et al. (2023); Cui et al. (2023). These
advances have spurred a multitude of generalist agent proposals Gravitas (2023); Nakajima (2023);
Wu et al. (2023) aimed at performing diverse user tasks and have gained attention from both developers
and broader audiences. Notable works such as Auto-GPT Gravitas (2023) harness LLMs for task
completion by decomposing user goals into executable steps. Multi-agent collaboration systems
leverage LLMs for elements like role-playing and task-solving capabilities Zhuge et al. (2023); Li
et al. (2023a); Zhou et al. (2023b); Team (2023), with MetaGPT Hong et al. (2023) emphasizing
standardized operating procedures, and AutoGen Wu et al. (2023) providing a conversation framework
for interactive systems. AGENTS Zhou et al. (2023b) and AutoAgents Chen et al. (2024) offer new
paradigms for customizable agent architecture, while XAgent Team (2023) and GPTSwarm Zhuge
et al. (2024) introduce complex management systems and optimizable graphs, respectively, for
enhanced agent operations.
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Software development, a front-runner in applying LLM-based agents, has seen advancements in
frameworks for facilitating the development processes Hong et al. (2023); Qian et al. (2023). In-
novations such as ChatDev Qian et al. (2023) automate the software development lifecycle akin to
the waterfall model, and AutoCodeRover Zhang et al. (2024b) addresses GitHub issues via code
search and abstract syntax tree manipulation. AgentCoder Huang et al. (2024) iteratively refines
code generation with integrated testing and feedback, while SWE-Agent Yang et al. (2024) integrates
LLMs for automated Github issue fixing, streamlining software engineering.

D GRAPHICAL USER INTERFACE

Besides running from the command line, OpenHands features a rich graphical user interface that
visualizes the agent’s current actions (e.g., browsing the web, executing base commands or Python
code, etc.) and allows for real-time feedback from the user. Screenshots of the UI are shown in
Fig. 1. The user may interrupt the agent at any moment to provide additional feedback, comments, or
instruction while the agent is working. This user interface directly connects with the event streams
(§2.1) to control and visualize the agents and runtime, making it agent and runtime agnostic.

E QUALITY CONTROL: INTEGRATION TESTS FOR AGENTS

Integration tests Leung & White (1990) have long been used by software developers to ensure
software quality. Unlike large language models with simple input-output schema, agents are typically
complex pieces of software where minor errors can be easily introduced during the development
process and hurt final task performance. While running a full suite evaluation (§4) is the ultimate
measure of performance degradation, running them for every code changes can be prohibitively
slow and expensive. 3. In OpenHands, we pioneer an end-to-end agent test framework that tests
prompt regression, actions, and sandbox environments. It combines integration testing from software
engineering and foundation model mocking for deterministic behavior to prevent the accidental
introduction of bugs during agent development.

Defining an integration test. The integration test framework for OpenHands is structured to validate
end-to-end functionality by automating task execution and result verification. Developers define
tasks and expected results; for instance, a task might involve correcting typos in a document named
"bad.txt". Upon task execution through OpenHands, outputs are compared against a predefined "gold
file" to ensure accuracy.

Mocking LLM for deterministic behavior. Addressing the challenge of non-determinism in large
language models (LLMs) and the associated high costs, the framework intercepts all LLM calls
and supplies predefined responses based on exact prompt matches. This method not only ensures
consistency in test outcomes but also reduces operational costs by minimizing the reliance on real
LLMs.

Regenerate LLM responses on breaking changes. Prompt-response pairs are managed through
a script that generates and stores these pairs when new tests are introduced or existing prompts are
modified. For routine tests, the framework attempts to reuse existing LLM responses by slightly
adjusting the prompts. Substantial changes that affect task handling require regeneration of these
pairs using real LLMs.

Benefits of integration tests. The framework offers several advantages, including 1) Prompt regres-
sion testing: Stored prompt-response pairs facilitate change tracking and provide a reference for new
team members to understand LLM interactions, 2) Multi-platform support: Tests are automatically
scheduled for every pull request and commit on the main branch, running across multiple platforms,
environments, and agents, including Linux and Mac, and in local, SSH, and exec sandboxes, and
3) Comprehensive error detection: It captures errors in prompt generation, message passing, and
sandbox execution, thereby maintaining a high test coverage.

3Running a SWE-Bench Lite Jimenez et al. (2024) evaluation with gpt-4o costs around 600 USD.
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Figure 4: OpenHands runtime workflow.

F HOW OPENHANDS RUNTIME WORK

F.1 WORKFLOW

The OpenHands Runtime system uses a client-server architecture implemented with Docker contain-
ers. See Fig. 4 for an overview of how it works.

(1) User Input: The user provides a custom base Docker image.
(2) Image Building: OpenHands builds a new Docker image (the "OH runtime image") based on the

user-provided image. This new image includes OpenHands-specific code, primarily the "runtime
client" (i.e., runtime API server described in §2.2).

(3) Container Launch: When OpenHands starts, it launches a Docker container using the OH
runtime image.

(4) Communication: The OpenHands backend (runtime.py) communicates with the runtime
client over RESTful API, sending actions and receiving observations

(5) Action Execution: The runtime client receives actions from the backend, executes them in the
sandboxed environment, and sends back observations

(6) Observation Return: The client sends execution results back to the OpenHands backend event
stream as observations.

The role of the client:

• It acts as an intermediary between the OpenHands backend and the sandboxed environment

• It executes various types of actions (shell commands, file operations, Python code, etc.)
safely within the container

• It manages the state of the sandboxed environment, including the current working directory
and loaded plugins
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• It formats and returns observations to the backend, ensuring a consistent interface for
processing results

F.2 HOW OPENHANDS BUILDS AND MAINTAINS RUNTIME IMAGES

OpenHands’ approach to building and managing runtime images ensures efficiency, consistency,
and flexibility in creating and maintaining Docker images for both production and development
environments.

F.2.1 IMAGE TAGGING SYSTEM

OpenHands uses a dual-tagging system for its runtime images to balance reproducibility with
flexibility:

(1) Hash-based tag: {target_image_repo}:{target_image_hash_tag}. Example:
runtime:abc123def456

– This tag is based on the MD5 hash of the Docker build folder, which includes the source
code (of runtime client and related dependencies) and Dockerfile

– Identical hash tags guarantee that the images were built with exactly the same source code
and Dockerfile

– This ensures reproducibility; the same hash always means the same image contents

(2) Generic tag: {target_image_repo}:{target_image_tag}. Example:
runtime:oh_v0.9.3_ubuntu_tag_22.04

– This tag follows the format: runtime:oh_v{VERSION}_{BASE_IMAGE}_tag_{IMAGE_TAG}
– It represents the latest build for a particular base image and OpenHands version combination
– This tag is updated whenever a new image is built from the same base image, even if the

source code changes

The hash-based tag ensures reproducibility, while the generic tag provides a stable reference to
the latest version of a particular configuration. This dual-tagging approach allows OpenHands to
efficiently manage both development and production environments.

F.2.2 BUILD PROCESS

(1) Image Naming Convention:

– Hash-based tag: target_image_repo:target_image_hash_tag. Example:
runtime:abc123def456

– Generic tag: target_image_repo:target_image_tag. Example:
runtime:oh_v0.9.3_ubuntu_tag_22.04

(2) Build Process:

a. Convert the base image name to an OH runtime image name Example: ubuntu:22.04
-> runtime:oh_v0.9.3_ubuntu_tag_22.04

b. Generate a build context (Dockerfile and OpenHands source code) and calculate its hash
c. Check for an existing image with the calculated hash
d. If not found, check for a recent compatible image to use as a base
e. If no compatible image exists, build from scratch using the original base image
f. Tag the new image with both hash-based and generic tags

(3) Image Reuse and Rebuilding Logic: The system follows these steps to determine whether
to build a new image or use an existing one from a user-provided (base) image (e.g.,
ubuntu:22.04):

a. If an image exists with the same hash (e.g., runtime:abc123def456), it will be reused
as is

b. If the exact hash is not found, the system will try to rebuild using the latest generic image
(e.g., runtime:oh_v0.9.3_ubuntu_tag_22.04) as a base. This saves time by
leveraging existing dependencies
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Figure 5: OpenHands Runtime Image Build Workflow.

c. If neither the hash-tagged nor the generic-tagged image is found, the system will build the
image completely from scratch

Caching and Efficiency. The system attempts to reuse existing images when possible to save build
time. If an exact match (by hash) is found, it’s used without rebuilding. If a compatible image is
found, it’s used as a base for rebuilding, saving time on dependency installation.

A flowchart illustrating the build process is shown in Fig. 5

G ADDITIONAL RESULTS FOR GPQA BENCHMARK

We showcase more detailed results, including performance on other subsets for GPQA benchmark
in Tab. 7.
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Table 7: Full Evaluation Results on the GPQA Benchmark Rein et al. (2023) (§4.4).

Evaluation Method and Model Accuracy by subset (%) Avg Cost ($)
Diamond Set Main Set Extended Set

Expert Human Validators 81.2 72.5 65.4 N/A
Non-Expert Human Validators 21.9 30.5 33.9 N/A

Few-Shot CoT Llama-2-70B-chat 28.1 29.1 30.4 N/A
Few-Shot CoT GPT-3.5-turbo-16k 29.6 28.0 28.2 N/A
Few-Shot CoT GPT-4 38.8 39.7 38.7 N/A
GPT-4 with search (backoff to CoT on abstention) 38.8 41.0 39.4 N/A

OpenHands + CodeActAgent v1.5 + GPT3.5-turbo 27.9 23.4 26.1 0.012
OpenHands + CodeActAgent v1.5 + GPT4-turbo 51.8 47.4 42.4 0.501
OpenHands + CodeActAgent v1.5 + GPT4o 53.1 49.3 52.8 0.054

H IN-CONTEXT DEMONSTRATION FOR CODEACTSWEAGENT

The prompt is re-adopted from the SWE-agent’s released trajectory (https://github.com/princeton-nlp/
SWE-agent/tree/main/trajectories/demonstrations). The prompt can be found at https://github.com/
ANONYMIZED.

I SUPPORTED AGENTSKILLS

As of OpenHands v0.6, we support the following list of skills. Please refer to the source code for the
most up-to-date list of skills: https://github.com/ANONYMIZED

def open_file(path: str, line_number: Optional[int] = None) ->
None:↪→

"""
Opens the file at the given path in the editor. If line_number

is provided, the window will be moved to include that
line.

↪→

↪→

Args:
path: str: The path to the file to open.
line_number: Optional[int]: The line number to move to.

"""
pass

def goto_line(line_number: int) -> None:
"""
Moves the window to show the specified line number.

Args:
line_number: int: The line number to move to.

"""
pass

def scroll_down() -> None:
"""Moves the window down by 100 lines.

Args:
None

"""
pass

def scroll_up() -> None:
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"""Moves the window up by 100 lines.

Args:
None

"""
pass

def create_file(filename: str) -> None:
"""Creates and opens a new file with the given name.

Args:
filename: str: The name of the file to create.

"""
pass

def edit_file(start: int, end: int, content: str) -> None:
"""Edit a file.

It replaces lines `start` through `end` (inclusive) with the
given text `content` in the open file. Remember, the file
must be open before editing.

↪→

↪→

Args:
start: int: The start line number. Must satisfy start >=

1.↪→

end: int: The end line number. Must satisfy start <= end
<= number of lines in the file.↪→

content: str: The content to replace the lines with.
"""
pass

def search_dir(search_term: str, dir_path: str = './') -> None:
"""Searches for search_term in all files in dir. If dir is not

provided, searches in the current directory.↪→

Args:
search_term: str: The term to search for.
dir_path: Optional[str]: The path to the directory to

search.↪→

"""
pass

def search_file(search_term: str, file_path: Optional[str] = None)
-> None:↪→

"""Searches for search_term in file. If file is not provided,
searches in the current open file.↪→

Args:
search_term: str: The term to search for.
file_path: Optional[str]: The path to the file to search.

"""
pass

def find_file(file_name: str, dir_path: str = './') -> None:
"""Finds all files with the given name in the specified

directory.↪→

Args:
file_name: str: The name of the file to find.
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dir_path: Optional[str]: The path to the directory to
search.↪→

"""
pass

def parse_pdf(file_path: str) -> None:
"""Parses the content of a PDF file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_docx(file_path: str) -> None:
"""
Parses the content of a DOCX file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_latex(file_path: str) -> None:
"""
Parses the content of a LaTex file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_audio(file_path: str, model: str = 'whisper-1') -> None:
"""
Parses the content of an audio file and prints it.

Args:
file_path: str: The path to the audio file to transcribe.
model: Optional[str]: The audio model to use for

transcription. Defaults to 'whisper-1'.↪→

"""
pass

def parse_image(
file_path: str, task: str = 'Describe this image as detail as

possible.'↪→

) -> None:
"""
Parses the content of an image file and prints the

description.↪→

Args:
file_path: str: The path to the file to open.
task: Optional[str]: The task description for the API

call. Defaults to 'Describe this image as detail as
possible.'.

↪→

↪→

"""
pass
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def parse_video(
file_path: str,
task: str = 'Describe this image as detail as possible.',
frame_interval: int = 30,

) -> None:
"""
Parses the content of an image file and prints the

description.↪→

Args:
file_path: str: The path to the video file to open.
task: Optional[str]: The task description for the API

call. Defaults to 'Describe this image as detail as
possible.'.

↪→

↪→

frame_interval: Optional[int]: The interval between frames
to analyze. Defaults to 30.↪→

"""
pass

def parse_pptx(file_path: str) -> None:
"""
Parses the content of a pptx file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

J BROWSERGYM ACTIONS

The following are all the supported actions defined in BrowserGym4 as of v0.3.4. The actions can
be categorized into several types and can be configured to use only a subset of the functionality.
There are agent control actions, navigation actions, page element-based actions, coordinate-based
actions, as well as tab-related actions. We use these actions from the BrowserGym library as our
main browsing action primitives.

def send_msg_to_user(text: str):
"""
Sends a message to the user.

Examples:
send_msg_to_user("Based on the results of my search, the

city was built in 1751.")↪→

"""
pass

def report_infeasible(reason: str):
"""
Notifies the user that their instructions are infeasible.

Examples:
report_infeasible("I cannot follow these instructions

because there is no email field in this form.")↪→

"""
pass

4https://github.com/ServiceNow/BrowserGym/blob/main/core/src/browsergym/core/action/functions.py

24

https://github.com/ServiceNow/BrowserGym/blob/main/core/src/browsergym/core/action/functions.py


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def noop(wait_ms: float = 1000):
"""
Do nothing, and optionally wait for the given time (in

milliseconds).↪→

Examples:
noop()
noop(500)

"""
pass

# https://playwright.dev/docs/input#text-input
def fill(bid: str, value: str):

"""
Fill out a form field. It focuses the element and triggers an

input event with the entered text.↪→

It works for <input>, <textarea> and [contenteditable]
elements.↪→

Examples:
fill('237', 'example value')
fill('45', "multi-line\\nexample")
fill('a12', "example with \\"quotes\\"")

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-check↪→

def check(bid: str):
"""
Ensure a checkbox or radio element is checked.

Examples:
check('55')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-uncheck↪→

def uncheck(bid: str):
"""
Ensure a checkbox or radio element is unchecked.

Examples:
uncheck('a5289')

"""
pass

# https://playwright.dev/docs/input#select-options
def select_option(bid: str, options: str | list[str]):

"""
Select one or multiple options in a <select> element. You can

specify↪→
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option value or label to select. Multiple options can be
selected.↪→

Examples:
select_option('a48', "blue")
select_option('c48', ["red", "green", "blue"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-click↪→

def click(
bid: str,
button: Literal["left", "middle", "right"] = "left",
modifiers: list[Literal["Alt", "Control", "Meta", "Shift"]] =

[],↪→

):
"""
Click an element.

Examples:
click('a51')
click('b22', button="right")
click('48', button="middle", modifiers=["Shift"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-dblclick↪→

def dblclick(
bid: str,
button: Literal["left", "middle", "right"] = "left",
modifiers: list[Literal["Alt", "Control", "Meta", "Shift"]] =

[],↪→

):
"""
Double click an element.

Examples:
dblclick('12')
dblclick('ca42', button="right")
dblclick('178', button="middle", modifiers=["Shift"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-hover↪→

def hover(bid: str):
"""
Hover over an element.

Examples:
hover('b8')

"""
pass
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# https://playwright.dev/python/docs/input#keys-and-shortcuts
def press(bid: str, key_comb: str):

"""
Focus the matching element and press a combination of keys. It

accepts↪→

the logical key names that are emitted in the
keyboardEvent.key property↪→

of the keyboard events: Backquote, Minus, Equal, Backslash,
Backspace,↪→

Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert,
PageDown, PageUp,↪→

ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc. You can↪→

alternatively specify a single character you'd like to produce
such as "a"↪→

or "#". Following modification shortcuts are also supported:
Shift, Control,↪→

Alt, Meta.

Examples:
press('88', 'Backspace')
press('a26', 'Control+a')
press('a61', 'Meta+Shift+t')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-focus↪→

def focus(bid: str):
"""
Focus the matching element.

Examples:
focus('b455')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-clear↪→

def clear(bid: str):
"""
Clear the input field.

Examples:
clear('996')

"""
pass

# https://playwright.dev/python/docs/input#drag-and-drop
def drag_and_drop(from_bid: str, to_bid: str):

"""
Perform a drag & drop. Hover the element that will be dragged.

Press↪→

left mouse button. Move mouse to the element that will receive
the↪→
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drop. Release left mouse button.

Examples:
drag_and_drop('56', '498')

"""
pass

# https://playwright.dev/python/docs/api/class-mouse#mouse-wheel
def scroll(delta_x: float, delta_y: float):

"""
Scroll horizontally and vertically. Amounts in pixels,

positive for right or down scrolling, negative for left or
up scrolling. Dispatches a wheel event.

↪→

↪→

Examples:
scroll(0, 200)
scroll(-50.2, -100.5)

"""
pass

# https://playwright.dev/python/docs/api/class-mouse#mouse-move
def mouse_move(x: float, y: float):

"""
Move the mouse to a location. Uses absolute client coordinates

in pixels.↪→

Dispatches a mousemove event.

Examples:
mouse_move(65.2, 158.5)

"""
pass

# https://playwright.dev/python/docs/api/class-mouse#mouse-up
def mouse_up(x: float, y: float, button: Literal["left", "middle",

"right"] = "left"):↪→

"""
Move the mouse to a location then release a mouse button.

Dispatches↪→

mousemove and mouseup events.

Examples:
mouse_up(250, 120)
mouse_up(47, 252, 'right')

"""
pass

# https://playwright.dev/python/docs/api/class-mouse#mouse-down
def mouse_down(x: float, y: float, button: Literal["left",

"middle", "right"] = "left"):↪→

"""
Move the mouse to a location then press and hold a mouse

button. Dispatches↪→

mousemove and mousedown events.

Examples:
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mouse_down(140.2, 580.1)
mouse_down(458, 254.5, 'middle')

"""
pass

# https://playwright.dev/python/docs/api/class-mouse#mouse-click
def mouse_click(x: float, y: float, button: Literal["left",

"middle", "right"] = "left"):↪→

"""
Move the mouse to a location and click a mouse button.

Dispatches mousemove,↪→

mousedown and mouseup events.

Examples:
mouse_click(887.2, 68)
mouse_click(56, 712.56, 'right')

"""
pass

#
https://playwright.dev/python/docs/api/class-mouse#mouse-dblclick↪→

def mouse_dblclick(x: float, y: float, button: Literal["left",
"middle", "right"] = "left"):↪→

"""
Move the mouse to a location and double click a mouse button.

Dispatches↪→

mousemove, mousedown and mouseup events.

Examples:
mouse_dblclick(5, 236)
mouse_dblclick(87.5, 354, 'right')

"""
pass

def mouse_drag_and_drop(from_x: float, from_y: float, to_x: float,
to_y: float):↪→

"""
Drag and drop from a location to a location. Uses absolute

client↪→

coordinates in pixels. Dispatches mousemove, mousedown and
mouseup↪→

events.

Examples:
mouse_drag_and_drop(10.7, 325, 235.6, 24.54)

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-press↪→

def keyboard_press(key: str):
"""
Press a combination of keys. Accepts the logical key names

that are↪→
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emitted in the keyboardEvent.key property of the keyboard
events:↪→

Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete,
Escape,↪→

ArrowDown, End, Enter, Home, Insert, PageDown, PageUp,
ArrowRight,↪→

ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc. You can
alternatively specify a single character you'd like to produce

such↪→

as "a" or "#". Following modification shortcuts are also
supported:↪→

Shift, Control, Alt, Meta.

Examples:
keyboard_press('Backspace')
keyboard_press('Control+a')
keyboard_press('Meta+Shift+t')
page.keyboard.press("PageDown")

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-up↪→

def keyboard_up(key: str):
"""
Release a keyboard key. Dispatches a keyup event. Accepts the

logical↪→

key names that are emitted in the keyboardEvent.key property
of the↪→

keyboard events: Backquote, Minus, Equal, Backslash,
Backspace, Tab,↪→

Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown,
PageUp,↪→

ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc.↪→

You can alternatively specify a single character you'd like to
produce↪→

such as "a" or "#".

Examples:
keyboard_up('Shift')
keyboard_up('c')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-down↪→

def keyboard_down(key: str):
"""
Press and holds a keyboard key. Dispatches a keydown event.

Accepts the↪→

logical key names that are emitted in the keyboardEvent.key
property of↪→

the keyboard events: Backquote, Minus, Equal, Backslash,
Backspace, Tab,↪→

Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown,
PageUp,↪→
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ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc. You can↪→

alternatively specify a single character such as "a" or "#".

Examples:
keyboard_up('Shift')
keyboard_up('c')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-type↪→

def keyboard_type(text: str):
"""
Types a string of text through the keyboard. Sends a keydown,

keypress/input,↪→

and keyup event for each character in the text. Modifier keys
DO NOT affect↪→

keyboard_type. Holding down Shift will not type the text in
upper case.↪→

Examples:
keyboard_type('Hello world!')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-insert-text↪→

def keyboard_insert_text(text: str):
"""
Insert a string of text in the currently focused element.

Dispatches only input↪→

event, does not emit the keydown, keyup or keypress events.
Modifier keys DO NOT↪→

affect keyboard_insert_text. Holding down Shift will not type
the text in upper↪→

case.

Examples:
keyboard_insert_text('Hello world!')

"""
pass

# https://playwright.dev/python/docs/api/class-page#page-goto
def goto(url: str):

"""
Navigate to a url.

Examples:
goto('http://www.example.com')

"""
pass

# https://playwright.dev/python/docs/api/class-page#page-go-back
def go_back():
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"""
Navigate to the previous page in history.

Examples:
go_back()

"""
pass

#
https://playwright.dev/python/docs/api/class-page#page-go-forward↪→

def go_forward():
"""
Navigate to the next page in history.

Examples:
go_forward()

"""
pass

#
https://playwright.dev/python/docs/api/class-browsercontext#browser-context-new-page↪→

def new_tab():
"""
Open a new tab. It will become the active one.

Examples:
new_tab()

"""
global page
# set the new page as the active page
page = page.context.new_page()
# trigger the callback that sets this page as active in

browsergym↪→

pass

# https://playwright.dev/python/docs/api/class-page#page-close
def tab_close():

"""
Close the current tab.

Examples:
tab_close()

"""
pass

#
https://playwright.dev/python/docs/api/class-page#page-bring-to-front↪→

def tab_focus(index: int):
"""
Bring tab to front (activate tab).

Examples:
tab_focus(2)

"""
pass
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# https://playwright.dev/python/docs/input#upload-files
def upload_file(bid: str, file: str | list[str]):

"""
Click an element and wait for a "filechooser" event, then

select one↪→

or multiple input files for upload. Relative file paths are
resolved↪→

relative to the current working directory. An empty list
clears the↪→

selected files.

Examples:
upload_file("572", "my_receipt.pdf")
upload_file("63", ["/home/bob/Documents/image.jpg",

"/home/bob/Documents/file.zip"])↪→

"""
pass

# https://playwright.dev/python/docs/input#upload-files
def mouse_upload_file(x: float, y: float, file: str | list[str]):

"""
Click a location and wait for a "filechooser" event, then

select one↪→

or multiple input files for upload. Relative file paths are
resolved↪→

relative to the current working directory. An empty list
clears the↪→

selected files.

Examples:
mouse_upload_file(132.1, 547, "my_receipt.pdf")
mouse_upload_file(328, 812,

["/home/bob/Documents/image.jpg",
"/home/bob/Documents/file.zip"])

↪→

↪→

"""
pass

K BROWSING AGENT DETAILS

The following shows an example prompt containing all the information required for the current step
to make a prediction about the next browsing actions. Note that we also instruct the agent to predict
multiple actions in one turn if the agent thinks they are meant to be executed sequentially without any
feedback from the page. This could save turns for common workflows that consist of a sequence of
actions on the same page without any observation change, such as filling the username and password
and submit in a login page.

# Instructions
Review the current state of the page and all other information to

find the best possible next action to accomplish your goal.
Your answer will be interpreted and executed by a program,
make sure to follow the formatting instructions.

↪→

↪→

↪→

# Goal:

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Browse localhost:8000, and tell me the ultimate answer to life. Do
not ask me for confirmation at any point.↪→

# Action Space

16 different types of actions are available.

noop(wait_ms: float = 1000)
Examples:

noop()

noop(500)

send_msg_to_user(text: str)
Examples:

send_msg_to_user('Based on the results of my search, the
city was built in 1751.')↪→

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)

scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill('237', 'example value')

fill('45', 'multi-line\nexample')

fill('a12', 'example with "quotes"')

select_option(bid: str, options: str | list[str])
Examples:

select_option('48', 'blue')

select_option('48', ['red', 'green', 'blue'])

click(bid: str, button: Literal['left', 'middle', 'right'] =
'left', modifiers: list[typing.Literal['Alt', 'Control',
'Meta', 'Shift']] = [])

↪→

↪→

Examples:
click('51')

click('b22', button='right')

click('48', button='middle', modifiers=['Shift'])

dblclick(bid: str, button: Literal['left', 'middle', 'right'] =
'left', modifiers: list[typing.Literal['Alt', 'Control',
'Meta', 'Shift']] = [])

↪→

↪→

Examples:
dblclick('12')

dblclick('ca42', button='right')

dblclick('178', button='middle', modifiers=['Shift'])

hover(bid: str)
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Examples:
hover('b8')

press(bid: str, key_comb: str)
Examples:

press('88', 'Backspace')

press('a26', 'Control+a')

press('a61', 'Meta+Shift+t')

focus(bid: str)
Examples:

focus('b455')

clear(bid: str)
Examples:

clear('996')

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop('56', '498')

upload_file(bid: str, file: str | list[str])
Examples:

upload_file('572', 'my_receipt.pdf')

upload_file('63', ['/home/bob/Documents/image.jpg',
'/home/bob/Documents/file.zip'])↪→

go_back()
Examples:

go_back()

go_forward()
Examples:

go_forward()

goto(url: str)
Examples:

goto('http://www.example.com')

Multiple actions can be provided at once. Example:
fill('a12', 'example with "quotes"')
click('51')
click('48', button='middle', modifiers=['Shift'])
Multiple actions are meant to be executed sequentially without any

feedback from the page.↪→

Don't execute multiple actions at once if you need feedback from
the page.↪→

# Current Accessibility Tree:
RootWebArea 'The Ultimate Answer', focused

[8] heading 'The Ultimate Answer'
[9] paragraph ''

StaticText 'Click the button to reveal the answer
to life, the universe, and everything.'↪→

[10] button 'Click me', clickable
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# Previous Actions
goto('http://localhost:8000')

Here is an example with chain of thought of a valid action when
clicking on a button:↪→

"
In order to accomplish my goal I need to click on the button with

bid 12↪→

```click("12")```

And an example response to the above prompt is:

In order to accomplish my goal, I need to click on the button with
bid 10 to reveal the answer to life, the universe, and
everything.

↪→

↪→

```click("10")```

For the evaluation on WebArena benchmark, since some of the tasks require checking for answer
exact match on the agent’s message back to the user, we add the following instruction to let the agent
reply with only a concise answer string when messaging the user to prevent the agent from failing the
test due to extra text:

Here is another example with chain of thought of a valid action
when providing a concise answer to user:↪→

"
In order to accomplish my goal I need to send the information

asked back to the user. This page list the information of HP
Inkjet Fax Machine, which is the product identified in the
objective. Its price is $279.49. I will send a message back to
user with the answer.

↪→

↪→

↪→

↪→

```send_msg_to_user("$279.49")```
"
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