
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPENHANDS: AN OPEN PLATFORM FOR
AI SOFTWARE DEVELOPERS AS GENERALIST AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Software is one of the most powerful tools that we humans have at our disposal;
it allows a skilled programmer to interact with the world in complex and pro-
found ways. At the same time, thanks to improvements in large language models
(LLMs), there has also been a rapid development in AI agents that interact with
and affect change in their surrounding environments. In this paper, we introduce
OpenHands, f.k.a. OpenDevin, a platform for the development of powerful and
flexible AI agents that interact with the world in similar ways to those of a human
developer: by writing code, interacting with a command line, and browsing the
web. We describe how the platform allows for the implementation of new agents,
safe interaction with sandboxed environments for code execution, coordination
between multiple agents, and incorporation of evaluation benchmarks. Based on
our currently incorporated benchmarks, we perform an evaluation of agents over
15 challenging tasks, including software engineering (e.g., SWE-BENCH) and web
browsing (e.g., WEBARENA), among others. Released under the permissive MIT
license, OpenHands is a community project spanning academia and industry with
more than 2.1K contributions from over 188 contributors.

1 INTRODUCTION

Powered by large language models (LLMs; OpenAI 2024b; Team et al. 2023; Jiang et al. 2024;
Chang et al. 2024), user-facing AI systems (such as ChatGPT) have become increasingly capable
of performing complex tasks such as accurately responding to user queries, solving math problems,
and generating code. In particular, AI agents, systems that can perceive and act upon the external
environment, have recently received ever-increasing research focus. They are moving towards
performing complex tasks such as developing software (Jimenez et al., 2024), navigating real-world
websites (Zhou et al., 2023a), doing household chores (Ahn et al., 2022), or even performing scientific
research (Boiko et al., 2023; Tang et al., 2024a).

As AI agents become capable of tackling complex problems, their development and evaluation have
also become challenging. There are numerous recent efforts in creating open-source frameworks that
facilitate the development of agents (Hong et al., 2023; Chen et al., 2024; Wu et al., 2023). These
agent frameworks generally include: 1) interfaces through which agents interact with the world
(such as JSON-based function calls or code execution), 2) environments in which agents operate,
and 3) interaction mechanisms for human-agent or agent-agent communication. These frameworks
streamline and ease the development process in various ways (Tab. 1, §C).

When designing AI agents, we can also consider how human interacts with the world. The most
powerful way in which humans currently interact with the world is through software – software
powers every aspect of our life, supporting everything from the logistics for basic needs to the
advancement of science, technology, and AI itself. Given the power of software, as well as the
existing tooling around its efficient development, use, and deployment, it provides the ideal interface
for AI agents to interact with the world in complex ways. However, building agents that can effectively
develop software comes with its own unique challenges. How can we enable agents to effectively
create and modify code in complex software systems? How can we provide them with tools to gather
information on-the-fly to debug problems or gather task-requisite information? How can we ensure
that development is safe and avoids negative side effects on the users’ systems?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we introduce OpenHands (f.k.a, OpenDevin), a community-driven platform designed for
the development of generalist and specialist AI agents that interact with the world through software.1
It features:

(1) An interaction mechanism which allows user interfaces, agents, and environments to interact
through an event stream architecture that is powerful and flexible (§2.1).

(2) A runtime environment that consists of a docker-sandboxed operating system with a bash shell,
a web browser, and IPython server that the agents can interact with (§2.2).

(3) An interface allowing the agent to interact with the environment in a manner similar to actual
software engineers (§2.3). We provide the capability for agents to (a) create and edit com-
plex software, (b) execute arbitrary code in the sandbox, and (c) browse websites to collect
information.

(4) Multi-agent delegation, allowing multiple specialized agents to work together (§2.4).
(5) Evaluation framework, facilitating the evaluation of agents across a wide range of tasks (§4).

Importantly, OpenHands is not just a conceptual framework, but it also includes a comprehensive
and immediately usable implementation of agents, environments, and evaluations. As of this writing,
OpenHands includes an agent hub with over 10 implemented agents (§3), including a strong generalist
agent implemented based on the CodeAct architecture (Wang et al., 2024a), with additions for web
browsing (ServiceNow) and code editing specialists (Yang et al., 2024). Interaction with users is
implemented through a chat-based user interface that visualizes the agent’s current actions and allows
for real-time feedback (Fig. 1, §D). Furthermore, the evaluation framework currently supports 15
benchmarks, which we use to evaluate our agents (§4).

Released under a permissive MIT license allowing commercial use, OpenHands is poised to support
a diverse array of research and real-world applications across academia and industry. OpenHands
has gained significant traction, with 32K GitHub stars and more than 2.1K contributions from over
188 contributors. We envision OpenHands as a catalyst for future research innovations and diverse
applications driven by a broad community of practitioners.

2 OPENHANDS ARCHITECTURE

We describe, using OpenHands, (1) how to define and implement an agent (§2.1), (2) how each action
execution leads to an observation (§2.2), (3) how to reliably manage and extend commonly used skills
for agents (§2.3), and (4) how to compose multiple agents together for task solving (§2.4). Fig. 2
provides an overview.

2.1 AGENT DEFINITION AND IMPLEMENTATION

An agent can perceive the state of the environment (e.g., prior actions and observations) and produce
an action for execution while solving a user-specified task.

The State and Event Stream. In OpenHands, the state is a data structure that encapsulates all
relevant information for the agent’s execution. A key component of this state is the event stream,
which is a chronological collection of past actions and observations, including the agent’s own
actions and user interactions (e.g., instructions, feedback). In addition to the event stream, the state
incorporates auxiliary information for agent’s operation, such as the accumulative cost of LLM calls,
metadata to track multi-agent delegation (§2.4), and other execution-related parameters.

Actions. Inspired by CodeAct (Wang et al., 2024a), OpenHands connects an agent with
the environment through a core set of general actions. Actions IPythonRunCellAction
and CmdRunAction enable the agent to execute arbitrary Python code and bash com-
mands inside the sandbox environment (e.g., a securely isolated Linux operating system).
BrowserInteractiveAction enables interaction with a web browser with a domain-specific
language for browsing introduced by BrowserGym (Drouin et al., 2024). These actions were chosen
to provide a comprehensive yet flexible set of primitives covering most tasks performed by human

1While initially inspired by the AI software engineer Devin (Cognition.ai), OpenHands has quickly evolved
to support a much wider range of applications beyond software engineering through diverse community contri-
butions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: OpenHands User Interface (UI, §D) allows users to view files, check executed bash
commands/Python code, observe the agent’s browser activity, and directly interact with the agent.
Some information is redacted for anonymity.

Agent
produce new action

[1] Message (source=user)

Can you create a list of numbers from 1 to 10, and
create a web page to display them at port 5000?

[2] IPythonRunCellAction (source=agent)

Sure! Let me create a file first:

<execute_ipython>

</execute_ipython>

Event History

[Past Action(s) & Observation(s)]

[3] IPythonRunCellObservation

[File: /workspace/app.py (1 lines total)]

1|

[File app.py created.]

[4] IPythonRunCellAction (source=agent)

I will write the Python code for starting a server.

<execute_ipython>

</execute_ipython>

Action
EDITED_CODE=\"\"\"[Omitted for Brevity]\"\"\"
edit_file(start=1, end=1, content=EDITED_CODE)

create_file('app.py')

[5] IPythonRunCellObservation

[... Omitted for Brevity ...]

4|@app.route('/')

5|def index():

6| numbers = list(range(1, 11))

7| return str(numbers)

[... Omitted for Brevity ...] [File updated.]

[6] CmdRunAction (source=agent)

I have created a Python file `app.py` that will
display a list of numbers from 1 to 10 when you run
it. Let me run the server for you:

<execute_bash>

python3 app.py > server.log 2>&1 &

cat server.log

</execute_bash>

[7] CmdRunObservation

[1] 124

* Serving Flask app 'app'

 * Debug mode: off

WARNING: This is a development server. Do not
use it in a production deployment. Use a
production WSGI server instead.

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

[8] BrowseInteractiveAction (source=agent)

The server is running on port 5000 with PID 124. Let
me browse to the page at http://127.0.0.1:5000

<execute_browse>

goto("http://127.0.0.1:5000")

</execute_browse>

 [9] BrowserOutputObservation

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Docker Sandbox

Interactive Python
(IPython) Server

Bash Shell

Browser

Playwright Chromium

Observation

where each Action execution
leads to an Observation

Event Stream: List[Action_1,
Observation_1, Action_2, ...]

Agent: Event History -> Action

Runtime: Action -> Observation

Abstraction

where all Action-Observation(s) are tracked

Event Stream Agent RuntimeUser Interface
Command Line

Web UI

IDE Plugins

[...]

Multi-turn

User-Agent

Interaction

OpenHands-maintained

Action Execution API

Action

OpenHands automatically install
“action execution API” into user-
provided arbitrary docker images

Figure 2: OpenHands consists of 3 main components: 1) Agent abstraction where community can
contribute different implementation of agents (§2.1) into agenthub (§3); 2) Event stream for tracking
history of actions and observations; 3) Runtime to execute all actions into observations (§2.2).

software engineers and analysts. The action space based on programming languages (PL) is powerful
and flexible enough to perform any task with tools in different forms (e.g., Python function, REST
API, etc.) while being reliable and easy to maintain (Wang et al., 2024a) .

This design is also compatible with existing tool-calling agents that require a list of pre-defined
tools (Chase, 2022). That is, users can easily define tools using PL supported in primitive actions
(e.g., write a Python function for calculator) and make those tools available to the agent through
JSON-style function-calling experiences (Qin et al., 2023). Moreover, the framework’s powerful
PL-based primitives further make it possible for the agents to create tools by themselves (e.g., by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

generating Python functions, Yuan et al. 2023) when API to complete the task is unavailable. Refer
to §2.3 for how these core PL-based actions can be composed into a diverse set of tools.

Figure 3: Minimal example of implementing an agent in
OpenHands.
class MinimalAgent:

def reset(self) -> None:
self.system_message = "You are a helpful assistant ..."

def step(self, state: State):
messages: list[dict[str, str]] = [

{'role': 'system', 'content': self.system_message}
]
for prev_action, obs in state.history:

action_message = get_action_message(prev_action)
messages.append(action_message)
obs_message = get_observation_message(obs)
messages.append(obs_message)

use llm to generate response (e.g., thought, action)
response = self.llm.do_completion(messages)

parse and execute action in the runtime
action = self.parse_response(response)
if self.is_finish_command(action):

return AgentFinishAction()
elif self.is_bash_command(action):

return CmdRunAction(command=action.command)
elif self.is_python_code(action):

return IPythonRunCellAction(code=action.code)
elif self.is_browser_action(action):

return BrowseInteractiveAction(code=action.code)
else:

return MessageAction(content=action.message)

Observations. Observations describe
environmental changes (e.g., execu-
tion result of prior actions, text mes-
sages from human user) that the agent
observes.

Implement a New Agent. The agent
abstraction is designed to be simple
yet powerful, allowing users to create
and customize agents for various tasks
easily. The core of the agent abstrac-
tion lies in the step function, which
takes the current state as input and
generates an appropriate action based
on the agent’s logic. Simplified ex-
ample code for the agent abstraction
is illustrated in Fig. 3. By providing
this abstraction, OpenHands allows
the users to focus on defining desired
agent behavior and logic without wor-
rying about the low-level details of
how actions are executed (§2.2).

2.2 AGENT RUNTIME: HOW EXECUTION OF ACTIONS RESULTS IN OBSERVATIONS

Agent Runtime provides a general environment that equips the agent with an action space comparable
to that of human software developers, enabling OpenHands agents to tackle a wide range of software
development and web-based tasks, including complex software development workflows, data analysis
projects, web browsing tasks, and more. It allows the agent to access a bash terminal to run code and
command line tools, utilize a Jupyter notebook for writing and executing code on-the-fly, and interact
with a web browser for web-based tasks (e.g., information seeking).

Docker Sandbox. For each task session, OpenHands spins up a securely isolated docker container
sandbox, where all the actions from the event stream are executed. OpenHands connects to the
sandbox through a REST API server running inside it (i.e., the OpenHands action execution API),
executes arbitrary actions (e.g., bash command, python code) from the event stream, and returns the
execution results as observations. A configurable workspace directory containing files the user wants
the agent to work on is mounted into that secure sandbox for OpenHands agents to access.

OpenHands Action Execution API. OpenHands maintains an API server that runs inside the docker
sandbox to listen for action execution requests from the event stream. The API server maintains:

(1) A bash shell that connects with the operating system environment (specified by the docker image)
for command execution.

(2) A Jupyter IPython server to handle interactive python (IPython) code execution requests and
return the execution results back to the event stream.

(3) A Chromium browser based on Playwright. The provider provides a set of action primitives
defined by BrowserGym (ServiceNow; Drouin et al., 2024), such as navigation, clicking, typing,
and scrolling. The full set of actions is detailed in §J. After executing these actions, the browser
runtime provides a rich set of observations about the current state of the browser, including
HTML, DOM, accessibility tree (Mozilla), screenshot, opened tabs, etc.

Arbitrary Docker Image Support. OpenHands allows agents to run on arbitrary operating systems
with different software environments by supporting runtime based on arbitrary docker images.
OpenHands implements a build mechanism that takes a user-provided arbitrary docker image and
installs OpenHands action execution API into that image to allow for agent interactions. We include
a detailed description of OpenHands agent runtime in §F.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different AI agent frameworks (§C). SWE refers to ‘software engineering’.
Standardized tool library: if framework contains reusable tools for different agent implementations
(§2.3); Built-in sandbox & code execution: if it supports sandboxed execution of arbitrary agent-
generated code; Built-in web browser: if it provides agents access to a fully functioning web
browser; Human-AI collaboration: if it enables multi-turn human-AI collaboration (e.g., human
can interrupt the agent during task execution and/or provide additional feedback and instructions);
AgentHub: if it hosts implementations of various agents (§3); Evaluation Framework: if it offers
systematic evaluation of implemented agents on challenging benchmarks (§4); Agent QC (Quality
Control): if the framework integrates tests (§E) to ensure overall framework software quality.

Framework Domain Graphic
User Interface

Standardized
Tool Library

Built-in Sandbox
& Code Execution

Built-in Web
Browser

Multi-agent
Collaboration

Human-AI
Collaboration AgentHub Evaluation

Framework
Agent

QC

AutoGPT Gravitas (2023) General " % % % % % " % "

LangChain (Chase, 2022) General % " %∗ %∗ % % " % %

MetaGPT (Hong et al., 2023) General % " % " " % " % "

AutoGen (Wu et al., 2023) General % " " " " " " " %

AutoAgents (Chen et al., 2024) General % % % % " % % % %

Agents (Zhou et al., 2023b) General % % % % " " % % %

Xagents (Team, 2023) General " " % " " % " % %

OpenAgents (Xie et al., 2023) General " % " " % % " % %

GPTSwarm (Zhuge et al., 2024) General % " % % " " % % %

AutoCodeRover (Zhang et al., 2024b) SWE % % " % % % % % %

SWE-Agent (Yang et al., 2024) SWE % % " % % % % % %

OpenHands General " " " " " " " " "

* No native support. Third-party commercial options are available.

2.3 AGENT SKILLS: THE EXTENSIBLE AGENT-COMPUTER INTERFACE

SWE-Agent (Yang et al., 2024) highlights the importance of a carefully crafted Agent-Computer
Interface (ACI, i.e., specialized tools for particular tasks) in successfully solving complex tasks.
However, creating, maintaining, and distributing a wide array of tools can be a daunting engineering
challenge, especially when we want to make these tools available to different agent implementations
(§3). To tackle these, we build an AgentSkills library, a toolbox designed to enhance the capabilities
of agents, offering utilities not readily available through basic bash commands or python code.

Easy to create and extend tools. AgentSkills is designed as a Python package consisting of
different utility functions (i.e., tools) that are automatically imported into the Jupyter IPython
environment (§2.2). The ease of defining a Python function as a tool lowers the barrier for com-
munity members to contribute new tools to the library. The generality of Python packages also
allows different agent implementations to easily leverage these tools through one of our core action
IPythonRunCellAction (§2.1).

Rigorously tested and maintained. We follow best practices in software engineering and write
extensive unit tests for tools in AgentSkills to ensure their reliability and usability.

Inclusion criteria and philosophy. In the AgentSkills library, we do not aim to wrap every possible
Python package and re-teach agents their usage (e.g., LLM already knows pandas library that can
read CSV file, so we don’t need to re-create a tool that teaches the agent to read the same file format).
We only add a new skill when: (1) it is not readily achievable for LLM to write code directly (e.g.,
edit code and replace certain lines), and/or (2) it involves calling an external model (e.g., calling a
speech-to-text model, or model for code editing (Sanger)).

Currently supported skills. AgentSkills library includes file editing utilities adapted from SWE-
Agent (Yang et al., 2024) and Aider (Gauthier) like edit_file, which allows modifying an
existing file from a specified line; scrolling functions scroll_up and scroll_down for viewing
a different part of files. It also contains tools that support reading multi-modal documents, like
parse_image and parse_pdf for extracting information from images using vision-language
models (e.g., GPT-4V) and reading text from PDFs, respectively. A complete list of supported skills
can be found in §I.

2.4 AGENT DELEGATION: COOPERATIVE MULTI-AGENT INTERACTION

OpenHands allows interactions between multiple agents as well. To this end, we use a special action
type AgentDelegateAction, which enables an agent to delegate a specific subtask to another
agent. For example, the generalist CodeActAgent, with limited support for web-browsing, can use
AgentDelegateAction to delegate web browsing tasks to the specialized BrowsingAgent to
perform more complex browsing activity (e.g., navigate the web, click buttons, submit forms, etc.).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 AGENTHUB: A HUB OF COMMUNITY-CONTRIBUTED AGENTS

Based on our agent abstraction (§2.1), OpenHands supports a wide range of community-contributed
agent implementations for end users to choose from and act as baselines for different agent tasks.

CodeAct Agent. CodeActAgent is the default generalist agent based on the CodeAct framework
(Wang et al., 2024a). At each step, the agent can (1) converse to communicate with humans in natural
language to ask for clarification, confirmation, etc., or (2) to perform the task by executing code (a.k.a.,
CodeAct), including executing bash commands, Python code, or browser-specific programming
language (§2.2). This general action space allows the agent (v1.5 and above) to perform various tasks,
including editing files, browsing the web, running programs, etc.

Browsing Agent. We implemented a generalist web agent called Browsing Agent, to serve as a
simple yet effective baseline for web agent tasks. The agent is similar to that in WebArena (Zhou
et al., 2023a), but with improved observations and actions, with only zero-shot prompting. Full
prompts are in §K.

GPTSwarm Agent. GPTSwarm (Zhuge et al., 2024) pioneers the use of optimizable graphs to
construct agent systems, unifying language agent frameworks through modularity. Each node
represents a distinct operation, while edges define collaboration and communication pathways.
This design allows automatic optimization of nodes and edges, driving advancements in creating
multi-agent systems.

Micro Agent(s). In addition, OpenHands enables the creation of micro agent, an agent specialized
towards a particular task. A micro agent re-uses most implementations from an existing generalist
agent (e.g., CodeAct Agent). It is designed to lower the barrier to agent development, where
community members can share specialized prompts that work well for their particular use cases.

4 EVALUATION

Table 2: Evaluation benchmarks in OpenHands.
Category Benchmark Required Capability

Software

SWE-Bench (Jimenez et al., 2024) Fixing Github issues
HumanEvalFix (Muennighoff et al., 2024) Fixing Bugs
BIRD (Li et al., 2023b) Text-to-SQL
BioCoder (Tang et al., 2024c) Bioinformatics coding
ML-Bench (Tang et al., 2024b) Machine learning coding
Gorilla APIBench (Patil et al., 2023) Software API calling
ToolQA (Zhuang et al., 2024) Tool use

Web WebArena (Zhou et al., 2023a) Goal planning & realistic browsing
MiniWoB++ (Liu et al., 2018) Short trajectory on synthetic web

Misc. Assistance

GAIA (Mialon et al., 2023) Tool-use, browsing, multi-modality
GPQA (Rein et al., 2023) Graduate-level Google-proof Q&A
AgentBench (Liu et al., 2023) Operating system interaction (bash)
MINT (Wang et al., 2024b) Multi-turn math and code problems
Entity Deduction Arena (Zhang et al., 2024a) State tracking & strategic planning
ProofWriter (Tafjord et al., 2021) Deductive Logic Reasoning

To systematically track progress in
building generalist digital agents, as
listed in Tab. 2, we integrate 15 es-
tablished benchmarks into OpenHands.
These benchmarks cover software en-
gineering, web browsing, and miscel-
laneous assistance. In this section, we
compare OpenHands to open-source re-
producible baselines that do not perform
manual prompt engineering specifically
based on the benchmark content. Please
note that we use ‘OH’ as shorthand for
OpenHands for the rest of this section
for brevity reasons.

4.1 RESULT OVERVIEW

In OpenHands, our goal is to develop general digital agents capable of interacting with the world
through software interfaces (as exemplified by the code actions described in §2.1). We recognize that
a software agent should excel not only in code editing but also in web browsing and various auxiliary
tasks, such as answering questions about code repositories or conducting online research.

Tab. 3 showcases a curated set of evaluation results. While OpenHands agents may not achieve top
performance in every category, they are designed with generality in mind. Notably, the same CodeAct
agent, without any modifications to its system prompt, demonstrates competitive performance across
three major task categories: software development, web interaction, and miscellaneous tasks. This
is particularly significant when compared to the baseline agents, which are typically designed and
optimized for specific task categories.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Selected evaluation results for OpenHands agents (§4). See Tab. 4 (software), Tab. 5 (web),
Tab. 6 (miscellaneous assistance) for full results across benchmarks.

Software (§4.2) Web (§4.3) Misc. (§4.4)
Agent Model SWE-Bench Lite WebArena GPQA GAIA

Software Engineering Agents
SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 18.0 − − −
AutoCodeRover (Zhang et al., 2024b) gpt-4-0125-preview 19.0 − − −
Aider (Gauthier) gpt-4o & claude-3-opus 26.3 − − −
Moatless Tools (Örwall) claude-3.5-sonnet 26.7 − − −
Agentless (Xia et al., 2024) gpt-4o 27.3 − − −

Web Browsing Agents
Lemur (Xu et al., 2023) Lemur-chat-70b − 5.3 − −
Patel et al. (2024) Trained 72B w/ synthetic data − 9.4 − −
AutoWebGLM (Lai et al., 2024) Trained 7B w/ human/agent annotation − 18.2 − −
Auto Eval & Refine (Pan et al., 2024) GPT-4 + Reflexion w/ GPT-4V − 20.2 − −
WebArena Agent (Zhou et al., 2023a) gpt-4-turbo − 14.4 − −

Misc. Assistance Agents
AutoGPT (Gravitas, 2023) gpt-4-turbo − − − 13.2

Few-shot Prompting
+ Chain-of-Thought (Rein et al., 2023)

Llama-2-70b-chat − − 28.1 −
gpt-3.5-turbo-16k − − 29.6 −
gpt-4 − 38.8 −

OpenHands Agents

CodeActAgent v1.8
gpt-4o-mini-2024-07-18 6.3 8.3 − −
gpt-4o-2024-05-13 22.0 14.5 ∗53.1 −
claude-3-5-sonnet 26.0 15.3 52.0 −

GPTSwarm v1.0 gpt-4o-2024-05-13 − − − 32.1
* Numbers are reported from CodeActAgent v1.5.

4.2 SOFTWARE ENGINEERING

Next, we report results specifically for software engineering benchmarks in Tab. 4.

SWE-bench (Jimenez et al., 2024) is designed to assess agents’ abilities in solving real-world GitHub
issues, such as bug reports or feature requests. The agent interacts with the repository and attempts to
fix the issue provided through file editing and code execution. The agent-modified code repository
is tested against a test suite incorporating new tests added from human developers’ fixes for the
same issue. Each test instance accompanies a piece of “hint text” that consists of natural language
suggestions for how to solve the problem. Throughout this paper, we report all results without
using hint text. A canonical subset, SWE-bench Lite, is created to facilitate accessible and efficient
testing. We default to use this subset for testing for cost-saving consideration.2 Result. As shown in
Tab. 4, our most recent version of CodeActAgent v1.8, using claude-3.5-sonnet, achieves a
competitive resolve rate of 26% compared to other open-source software development specialists.

HumanEvalFix (Muennighoff et al., 2024) tasks agents to fix a bug in a provided function with the
help of provided test cases. The bugs are created to ensure one or more test cases fail. We focus on
the Python subset of the benchmark and allow models to solve the bugs by self-debug over multiple
turns, incorporating feedback from test execution. We follow the setup from Muennighoff et al.
(2024) using pass@k (Chen et al., 2021).

ML-Bench (Tang et al., 2024b) evaluates agents’ ability to solve machine learning tasks across 18
GitHub repositories. The benchmark comprises 9,641 tasks spanning 169 diverse ML problems,
requiring agents to generate bash scripts or Python code in response to user instructions. In the
sandbox environment, agents can iteratively execute commands and receive feedback, allowing them
to understand the repository context and fulfill user requirements progressively. Following the setup
from the original paper, we perform agent evaluation on the quarter subset of ML-Bench.

Gorilla APIBench (Patil et al., 2023) evaluates agents’ abilities to use APIs. it incorporates tasks on
TorchHub, TensorHub, and HuggingFace. During the evaluation, models are given a question related
to API usage, such as "identify an API capable of converting spoken language in a recording to text."
Correctness is evaluated based on whether the model’s API call is in the correct domain.

ToolQA (Zhuang et al., 2024) evaluates agents’ abilities to use external tools. This benchmark
includes tasks on various topics like flight status, coffee price, Yelp data, and Airbnb data, requiring
the use of various tools such as text tools, database tools, math tools, graph tools, code tools, and

2Running the complete set of 2294 instances costs $6.9k, using a conservative estimate of $3 per instance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: OpenHands Software Engineering evaluation results (§4.2).
Agent Model Success Rate (%) $ Avg. Cost

SWE-Bench Lite (Jimenez et al., 2024), 300 instances, w/o Hint
SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 18.0 1.67
AutoCodeRover (Zhang et al., 2024b) gpt-4-0125-preview 19.0 −
Aider (Gauthier) gpt-4o & claude-3-opus 26.3 −

OH CodeActAgent v1.8
gpt-4o-mini-2024-07-18 7.0 0.01
gpt-4o-2024-05-13 22.0 1.72
claude-3-5-sonnet@20240620 26.0 1.10

HumanEvalFix (Muennighoff et al., 2024), 164 instances

Prompting, 0-shot

BLOOMZ-176B 16.6 −
OctoCoder-15B 30.4 −
DeepSeekCoder-33B-Instruct 47.5 −
StarCoder2-15B 48.6 −

SWE-agent, 1-shot (Yang et al., 2024) gpt-4-turbo 87.7 −

OH CodeActAgent v1.5, Generalist, 0-shot. gpt-3.5-turbo-16k-0613 20.1 0.11
gpt-4o-2024-05-13 79.3 0.14

BIRD (Li et al., 2023b), 300 instances

Prompting, 0-shot CodeLlama-7B-Instruct 18.3 -
CodeQwen-7B-Chat 31.3 -

OH CodeActAgent v1.5 gpt-4-1106-preview 42.7 0.19
gpt-4o-2024-05-13 47.3 0.11

ML-Bench (Tang et al., 2024b), 68 instances

prompting + BM25, 0-shot gpt-3.5-turbo 11.0 -
gpt-4-1106-preview 22.1 -
gpt-4o-2024-05-13 26.2 -

SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 42.6 1.91
Aider (Gauthier) gpt-4o 64.4 -

OH CodeActAgent v1.5
gpt-4o-2024-05-13 76.5 0.25
gpt-4-1106-preview 58.8 1.22
gpt-3.5-turbo-16k-0613 13.2 0.12

BioCoder (Python) (Tang et al., 2024b), 157 instances

prompting, 0-shot gpt-3.5-turbo 11.0 -
gpt-4-1106-preview 12.7 -

OH CodeActAgent v1.5 gpt-4o-2024-05-13 27.5 0.13

BioCoder (Java) (Tang et al., 2024b), 50 instances

prompting, 0-shot gpt-3.5-turbo 4.1 -
gpt-4-1106-preview 6.4 -

OH CodeActAgent v1.5 gpt-4o-2024-05-13 44.0 0.11

Gorilla APIBench (Patil et al., 2023), 1775 instances

Prompting, 0-shot
claude-v1 8.7 -
gpt-4-0314 21.2 -
gpt-3.5-turbo-0301 29.7 -

Gorilla, finetuned for API calls, 0-shot (Patil et al., 2023; Touvron et al., 2023) llama-7b 75.0 -

OH CodeActAgent v1.5 gpt-3.5-turbo-0125 21.6 0.002
gpt-4o-2024-05-13 36.4 0.04

ToolQA (Zhuang et al., 2024), 800 instances

Prompting, 0-shot
ChatGPT + CoT 5.1 -
ChatGPT 5.6 -
Chameleon 10.6 -

ReAct, 0-shot (Yao et al., 2023; OpenAI, 2024a) gpt-3.5-turbo 36.8 -
gpt-3 43.1 -

OH CodeActAgent v1.5 gpt-3.5-turbo-0125 2.3 0.03
gpt-4o-2024-05-13 47.2 0.91

system tools. It features two levels: easy and hard. Easy questions focus more on single-tool usage,
while hard questions emphasize reasoning. We adopt the easy subset for evaluation.

BioCoder (Tang et al., 2024c) is a repository-level code generation benchmark that evaluates agents’
performance on bioinformatics-related tasks, specifically the ability to retrieve and accurately utilize
context. The original prompts contain the relevant context of the code; however, in this study,
we have removed them to demonstrate the capability of OpenHands to perform context retrieval,
self-debugging, and reasoning in multi-turn interactions. BioCoder consists of 157 Python and 50
Java functions, each targeting a specific area in bioinformatics, such as proteomics, genomics, and
other specialized domains. The benchmark targets real-world code by generating code in existing
repositories where the relevant code has been masked out.

BIRD (Li et al., 2023b) is a benchmark for text-to-SQL tasks (i.e., translate natural language into
executable SQL) aimed at realistic and large-scale database environments. We select 300 samples
from the dev set to integrate into OpenHands and evaluate on execution accuracy. Additionally, we
extend the setting by allowing the agent to engage in multi-turn interactions to arrive at the final SQL
query, enabling it to correct historical results by observing the results of SQL execution.

4.3 WEB BROWSING

We report evaluation results for web browsing benchmarks in Tab. 5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: OpenHands Web Browsing Evaluation Results (§4.3).

Agent Model Success Rate (%) $ Avg. Cost
WebArena (Zhou et al., 2023a), 812 instances

Lemur (Xu et al., 2023) Lemur-chat-70b 5.3 −
Patel et al. (2024) Trained 72B with self-improvement synthetic data 9.4 −
AutoWebGLM (Lai et al., 2024) Trained 7B with human/agent hybrid annotation 18.2 −
Auto Eval & Refine (Pan et al., 2024) GPT-4 + Reflexion w/ GPT-4V reward model 20.2 −

WebArena Agent (Zhou et al., 2023a)

Llama3-chat-8b 3.3 −
Llama3-chat-70b 7.0 −
gpt-3.5-turbo 6.2 −
gpt-4-turbo 14.4 −

OH BrowsingAgent v1.0

gpt-3.5-turbo-0125 5.2 0.02
gpt-4o-mini-2024-07-18 8.5 0.01
gpt-4o-2024-05-13 14.8 0.15
claude-3-5-sonnet-20240620 15.5 0.10

OH CodeActAgent v1.8
via delegation to BrowsingAgent v1.0

gpt-4o-mini-2024-07-18 8.3 −
gpt-4o-2024-05-13 14.5 −
claude-3-5-sonnet-20240620 15.3 −

MiniWoB++ (Liu et al., 2018), 125 environments
Workflow Guided Exploration (Liu et al., 2018) Trained specialist model with environment exploration 34.6 −
CC-NET (Humphreys et al., 2022) Trained specialist model with RL and human annotated BC 91.1 −

OH BrowsingAgent v1.0 gpt-3.5-turbo-0125 27.2 0.01
gpt-4o-2024-05-13 40.8 0.05

OH CodeActAgent v1.8
via delegation to BrowsingAgent v1.0 gpt-4o-2024-05-13 39.8 −

WebArena (Zhou et al., 2023a) is a self-hostable, execution-based web agent benchmark that allows
agents to freely choose which path to take in completing their given tasks. WebArena comprises
812 human-curated task instructions across various domains, including shopping, forums, developer
platforms, and content management systems. Each task is paired with a handwritten test case that
verifies agent success, e.g., by checking the status of a web page element against a reference or the
textual answer returned by the agent. Results. From Tab. 5, we can see that our BrowsingAgent
achieves competitive performance among agents that use LLMs with domain-general prompting
techniques. Some agents (e.g., AutoWebGLM) require manual effort tailored to the WebArena
task domain. This showcases the performance trade-off between a generalist vs. a domain-tailored
specialist web agent, and we opt for a more general browsing agent as a building block in OpenHands.

MiniWoB++ (Liu et al., 2018) is an interactive web benchmark, with built-in reward functions. The
tasks are synthetically initialized on 125 different minimalist web interfaces. Unlike WebArena,
tasks are easier without page changes, require fewer steps, and provide low-level step-by-step task
directions. Note that it contains a portion of environments that require vision capability to tackle
successfully, and many existing work choose to focus only on a subset of the tasks (Kim et al., 2024;
Li et al., 2023c; Shaw et al., 2023). Still, we report the performance on the full set and only include
baselines that are evaluated on the full set. Results. From Tab. 5, we see that our BrowsingAgent
finishes nearly half of the tasks without any adaptation to the environment. However, due to the
synthetic nature of MiniWoB++, the state-of-the-art agents explicitly trained for the environments
with reinforcement learning and/or human behavior cloning have almost saturated the performance.

4.4 MISCELLANEOUS ASSISTANCE

Results for miscellaneous assistance benchmarks are reported in Tab. 6.

GAIA (Mialon et al., 2023) evaluates agents’ general task-solving skills, covering different real-world
scenarios. It requires various agent capabilities, including reasoning, multi-modal understanding,
web browsing, and coding. GAIA consists of 466 curated tasks across three levels. Setting up GAIA
is traditionally challenging due to the complexity of integrating various tools with the agent, but
OpenHands’s infrastructure (e.g., runtime §2.2, tools §2.3) simplifies the integration significantly.

GPQA (Rein et al., 2023) evaluates agents’ ability for coordinated tool use when solving challenging
graduate-level problems. It consists of 448 curated and difficult multiple-choice questions in biology,
physics, and chemistry. Tool use (e.g., python) and web search are often useful to assist agents in
answering these questions since they provide accurate calculations that LLMs are often incapable of
and access to information outside of the LLM’s parametric knowledge base.

AgentBench (Liu et al., 2023) evaluates agents’ reasoning and decision-making abilities in a multi-
turn, open-ended generation setting. We selected the code-grounded operating system (OS) subset

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: OpenHands miscellaneous assistance evaluation results (§4.4).

Agent Model Success Rate (%) $ Avg. Cost
GAIA (Mialon et al., 2023), L1 validation set, 53 instances

AutoGPT (Gravitas, 2023) gpt-4-turbo 13.2 −

OH GPTSwarm v1.0 gpt-4-0125-preview 30.2 0.110
gpt-4o-2024-05-13 32.1 0.050

GPQA (Rein et al., 2023), diamond set, 198 instances (refer to §G, Tab. 7 for other subsets)

Human (Rein et al., 2023) Expert human 81.3 −
Non-expert human 21.9 −

Few-shot Prompting + Chain-of-Thought (Rein et al., 2023) gpt-3.5-turbo-16k 29.6 −
gpt-4 38.8 −

OH CodeActAgent v1.8 claude-3-5-sonnet-20240620 52.0 0.065

AgentBench (Liu et al., 2023), OS (bash) subset, 144 instances

AgentBench Baseline Agent (Liu et al., 2023) gpt-4 42.4 −
gpt-3.5-turbo 32.6 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 57.6 0.085
gpt-3.5-turbo-0125 11.8 0.006

MINT (Wang et al., 2024b): math subset, 225 instances
MINT Baseline Agent gpt-4-0613 65.8 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 77.3 0.070
gpt-3.5-turbo-16k-0613 33.8 0.048

MINT (Wang et al., 2024b): code subset, 136 instances
MINT Baseline Agent gpt-4-0613 59.6 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 50.0 0.087
gpt-3.5-turbo-16k-0613 5.2 0.030

ProofWriter (Tafjord et al., 2021), 600 instances
Few-shot Prompting + Chain-of-Thought (Pan et al., 2023) gpt4 68.1 −
Logic-LM (Pan et al., 2023) gpt4 + symbolic solver 79.6 −
OH CodeActAgent v1.5 gpt-4o-2024-05-13 78.8 −

Entity Deduction Arena (Zhang et al., 2024a), 200 instances
Human - 21.0 −

Zero-shot Prompting (Zhang et al., 2024a) gpt-4-0314 40.0 −
gpt-3.5-turbo-0613 27.0 −

OH CodeActAgent v1.5 gpt-4o-2024-05-13 38.0 −
gpt-3.5-turbo-16k-0613 24.0 −

with 144 tasks. Agents from OpenHands interact directly with the task-specific OS using bash
commands in a multi-turn manner, combining interaction and reasoning to automate task completion.

MINT (Wang et al., 2024b) is a benchmark designed to evaluate agents’ ability to solve challenging
tasks through multi-turn interactions using tools and natural language feedback simulated by GPT-4.
We use coding and math subsets used in Yuan et al. (2024). We follow the original paper and allow
the agent to interact with up to five iterations with two chances to propose solutions.

ProofWriter (Tafjord et al., 2021) is a synthetic dataset created to assess deductive reasoning abilities
of LLMs. Same as Logic-LM (Pan et al., 2023), we focus on the most challenging subset, which
contains 600 instances requiring 5-hop reasoning. To minimize the impact of potential errors in
semantic parsing, we use the logical forms provided by Logic-LM.

Entity Deduction Arena (EDA) (Zhang et al., 2024a) evaluates agents’ ability to deduce unknown
entities through strategic questioning, akin to the 20 Questions game. This benchmark tests the agent’s
state tracking, strategic planning, and inductive reasoning capabilities over multi-turn conversations.
We evaluate two datasets “Things” and “Celebrities”, each comprising 100 instances, and report the
average success rate over these two datasets.

5 CONCLUSION

We introduce OpenHands, a community-driven platform that enables the development of agents that
interact with the world through software interfaces. By providing a powerful interaction mechanism,
a safe sandboxed environment, essential agent skills, multi-agent collaboration capabilities, and a
comprehensive evaluation framework, OpenHands accelerates research innovations and real-world
applications of agentic AI systems. Despite challenges in developing safe and reliable agents (§A),
we are excited about our vibrant community and look forward to OpenHands’s continued evolution.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/langchain.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Cognition.ai. Introducing devin, the first ai software engineer. URL https://www.cognition.ai/blog/
introducing-devin.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. Chatlaw: Open-source legal large
language model with integrated external knowledge bases, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024.

Paul Gauthier. How aider scored sota 26.3% on swe bench lite | aider. https://aider.chat/2024/05/22/
swe-bench-lite.html. Accessed: 2024-06-05.

Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment, 2023. URL https://github.
com/Significant-Gravitas/Auto-GPT, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation, 2024.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning, pp.
9466–9482. PMLR, 2022.

IPython. Jupyter and the future of IPython — IPython. URL https://ipython.org.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can Language Models Resolve Real-world Github Issues? In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

11

https://github.com/langchain-ai/langchain
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://ipython.org
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large language
model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

Hareton K. N. Leung and Lee J. White. A study of integration testing and software regression at
the integration level. In Proceedings of the Conference on Software Maintenance, ICSM 1990,
San Diego, CA, USA, 26-29 November, 1990, pp. 290–301. IEEE, 1990. doi: 10.1109/ICSM.1990.
131377. URL https://doi.org/10.1109/ICSM.1990.131377.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for" mind" exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023a.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. Can LLM already serve as a database interface? a BIg bench for
large-scale database grounded text-to-SQLs. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023b.

Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for computer
control with structured reflection. arXiv preprint arXiv:2310.08740, 2023c.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. arXiv preprint arXiv: 2308.03688, 2023.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. GAIA: a benchmark for general AI assistants. CoRR, abs/2311.12983, 2023. doi:
10.48550/ARXIV.2311.12983. URL https://doi.org/10.48550/arXiv.2311.12983.

Mozilla. Accessibility tree - MDN Web Docs Glossary: Definitions of Web-related terms | MDN.
URL https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models, 2024.

Y Nakajima. Babyagi. URL https://github.com/yoheinakajima/babyagi, 2023.

OpenAI. Chatgpt: May 2024 version. https://www.openai.com/chatgpt, 2024a. Accessed: 2024-05-
29.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024b. Accessed: 2024-05-15.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike

12

https://doi.org/10.1109/ICSM.1990.131377
https://arxiv.org/abs/1802.08802
https://doi.org/10.48550/arXiv.2311.12983
https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree
https://www.openai.com/chatgpt
https://openai.com/index/hello-gpt-4o/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. Large language models can self-improve at web agent tasks. arXiv
preprint arXiv:2405.20309, 2024.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Playwright. Fast and reliable end-to-end testing for modern web apps | Playwright. URL https:
//playwright.dev/.

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan Dang, Jiahao Li,
Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Communicative agents for software
development, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. CoRR, abs/2307.16789, 2023. doi: 10.48550/ARXIV.2307.16789. URL
https://doi.org/10.48550/arXiv.2307.16789.

13

https://playwright.dev/
https://playwright.dev/
https://doi.org/10.48550/arXiv.2307.16789

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark. arXiv preprint arXiv:2311.12022, 2023.

Aman Sanger. Near-instant full-file edits. https://www.cursor.com/blog/instant-apply. Accessed:
2024-06-05.

ServiceNow. BrowserGym: a Gym Environment for Web Task Automation. URL https://github.com/
ServiceNow/BrowserGym.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems, 36:
34354–34370, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs,
and abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli (eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pp. 3621–3634, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.findings-acl.317. URL https://aclanthology.org/2021.findings-acl.317.

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng Qu,
Yilun Zhao, Jian Tang, Zhuosheng Zhang, et al. Prioritizing safeguarding over autonomy: Risks of
llm agents for science. arXiv preprint arXiv:2402.04247, 2024a.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. ML-Bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024b. URL https://arxiv.org/abs/2311.09835.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark B Gerstein. BioCoder: a
benchmark for bioinformatics code generation with large language models. Bioinformatics, 40
(Supplement_1):i266–i276, 06 2024c. ISSN 1367-4811.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning, 2024d.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

XAgent Team. Xagent: An autonomous agent for complex task solving, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable Code Actions Elicit Better LLM Agents. In ICML, 2024a.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. MINT:
Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback. In ICLR, 2024b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

14

https://www.cursor.com/blog/instant-apply
https://github.com/ServiceNow/BrowserGym
https://github.com/ServiceNow/BrowserGym
https://aclanthology.org/2021.findings-acl.317
https://arxiv.org/abs/2311.09835

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the wild.
arXiv preprint arXiv:2310.10634, 2023.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language agents. arXiv
preprint arXiv:2310.06830, 2023.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=WE_
vluYUL-X.

Yining Ye, Xin Cong, Shizuo Tian, Jiannan Cao, Hao Wang, Yujia Qin, Yaxi Lu, Heyang Yu, Huadong
Wang, Yankai Lin, et al. Proagent: From robotic process automation to agentic process automation.
arXiv preprint arXiv:2311.10751, 2023.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. CRAFT: customizing
llms by creating and retrieving from specialized toolsets. CoRR, abs/2309.17428, 2023. doi:
10.48550/ARXIV.2309.17428. URL https://doi.org/10.48550/arXiv.2309.17428.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees, 2024.

Yizhe Zhang, Jiarui Lu, and Navdeep Jaitly. Probing the multi-turn planning capabilities of llms via
20 question games. 2024a.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024b.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In The Twelfth International Conference on Learning Representations, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru
Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source
framework for autonomous language agents, 2023b.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36,
2024.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.

Albert Örwall. Moatless tools. URL https://github.com/aorwall/moatless-tools.

15

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2309.17428
https://github.com/aorwall/moatless-tools

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORK

We are excited about the foundations our vibrant community has laid in OpenHands and look forward
to its continued evolution. We identify several directions for future work:

Enhanced multi-modality support. While our current implementation already supports a wide
range of file formats through predefined agent skills, we are interested in enabling multi-modality
in a principled way through standard IPython and browser integration, such as viewing images and
videos using vision-language model through a browser or processing XLSX files with code.

Stronger agents. Current agents still struggle with complex tasks, and we are interested in building
better agents through both training and inference time techniques.

Agent editing improvements. Current agent suffers a lot when editing long files, and we are
interested in exploring different approaches to improve the file editing performance of agents.

Web browsing improvements. Due to the extensible nature of OpenHands, orthogonal components
that could improve agents can be integrated easily. For example, thanks to OpenHands’s extensible
architecture, Auto Eval & Refine Pan et al. (2024), an agent retry-on-error strategy with Reflex-
ion Shinn et al. (2024) prompts and task completion reward models, will be integrated as an optional
component attached to our browsing agent.

Automatic workflow generation. Currently, OpenHands’s workflow still requires a substantial hand-
crafted workload. We believe that graph-based frameworks such as GPTSwarm Zhuge et al. (2024)
and LangGraph Chase (2022) could serve as alternative solutions for building agents. Particularly
in GPTSwarm, when agents are constructed using graphs, it becomes easier to incorporate various
optimization methods (e.g., reinforcement learning, meta-prompting). OpenHands considers these
methods to lay the groundwork for promising solutions in automatic workflow generation in future
versions.

B ETHICS STATEMENT

Most AI agents today are still research artifacts and lack the ability to perform complex, long-horizon
tasks in the real world reliably. However, as their performance continues to improve and they are
increasingly deployed in real world, they have the potential to boost productivity while also posing
security risks to society significantly. OpenHands helps mitigate risks by:

(1) Enabling systematic evaluation of these agents, which can identify and address risks before they
are widely deployed.

(2) Facilitating human-agent interaction rather than allowing agents to operate autonomously without
oversight.

(3) More importantly, we hope OpenHands allows researchers worldwide to access the best suites of
agents to conduct frontier safety research towards building safe and helpful agents.

C RELATED WORK

The breakthroughs in large language models (LLMs) like ChatGPT OpenAI (2024a) and GPT-
4 OpenAI et al. (2024) have significantly enhanced the capabilities of autonomous agents across
various domains Ye et al. (2023); Tang et al. (2024d); Park et al. (2023); Cui et al. (2023). These
advances have spurred a multitude of generalist agent proposals Gravitas (2023); Nakajima (2023);
Wu et al. (2023) aimed at performing diverse user tasks and have gained attention from both developers
and broader audiences. Notable works such as Auto-GPT Gravitas (2023) harness LLMs for task
completion by decomposing user goals into executable steps. Multi-agent collaboration systems
leverage LLMs for elements like role-playing and task-solving capabilities Zhuge et al. (2023); Li
et al. (2023a); Zhou et al. (2023b); Team (2023), with MetaGPT Hong et al. (2023) emphasizing
standardized operating procedures, and AutoGen Wu et al. (2023) providing a conversation framework
for interactive systems. AGENTS Zhou et al. (2023b) and AutoAgents Chen et al. (2024) offer new
paradigms for customizable agent architecture, while XAgent Team (2023) and GPTSwarm Zhuge
et al. (2024) introduce complex management systems and optimizable graphs, respectively, for
enhanced agent operations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Software development, a front-runner in applying LLM-based agents, has seen advancements in
frameworks for facilitating the development processes Hong et al. (2023); Qian et al. (2023). In-
novations such as ChatDev Qian et al. (2023) automate the software development lifecycle akin to
the waterfall model, and AutoCodeRover Zhang et al. (2024b) addresses GitHub issues via code
search and abstract syntax tree manipulation. AgentCoder Huang et al. (2024) iteratively refines
code generation with integrated testing and feedback, while SWE-Agent Yang et al. (2024) integrates
LLMs for automated Github issue fixing, streamlining software engineering.

D GRAPHICAL USER INTERFACE

Besides running from the command line, OpenHands features a rich graphical user interface that
visualizes the agent’s current actions (e.g., browsing the web, executing base commands or Python
code, etc.) and allows for real-time feedback from the user. Screenshots of the UI are shown in
Fig. 1. The user may interrupt the agent at any moment to provide additional feedback, comments, or
instruction while the agent is working. This user interface directly connects with the event streams
(§2.1) to control and visualize the agents and runtime, making it agent and runtime agnostic.

E QUALITY CONTROL: INTEGRATION TESTS FOR AGENTS

Integration tests Leung & White (1990) have long been used by software developers to ensure
software quality. Unlike large language models with simple input-output schema, agents are typically
complex pieces of software where minor errors can be easily introduced during the development
process and hurt final task performance. While running a full suite evaluation (§4) is the ultimate
measure of performance degradation, running them for every code changes can be prohibitively
slow and expensive. 3. In OpenHands, we pioneer an end-to-end agent test framework that tests
prompt regression, actions, and sandbox environments. It combines integration testing from software
engineering and foundation model mocking for deterministic behavior to prevent the accidental
introduction of bugs during agent development.

Defining an integration test. The integration test framework for OpenHands is structured to validate
end-to-end functionality by automating task execution and result verification. Developers define
tasks and expected results; for instance, a task might involve correcting typos in a document named
"bad.txt". Upon task execution through OpenHands, outputs are compared against a predefined "gold
file" to ensure accuracy.

Mocking LLM for deterministic behavior. Addressing the challenge of non-determinism in large
language models (LLMs) and the associated high costs, the framework intercepts all LLM calls
and supplies predefined responses based on exact prompt matches. This method not only ensures
consistency in test outcomes but also reduces operational costs by minimizing the reliance on real
LLMs.

Regenerate LLM responses on breaking changes. Prompt-response pairs are managed through
a script that generates and stores these pairs when new tests are introduced or existing prompts are
modified. For routine tests, the framework attempts to reuse existing LLM responses by slightly
adjusting the prompts. Substantial changes that affect task handling require regeneration of these
pairs using real LLMs.

Benefits of integration tests. The framework offers several advantages, including 1) Prompt regres-
sion testing: Stored prompt-response pairs facilitate change tracking and provide a reference for new
team members to understand LLM interactions, 2) Multi-platform support: Tests are automatically
scheduled for every pull request and commit on the main branch, running across multiple platforms,
environments, and agents, including Linux and Mac, and in local, SSH, and exec sandboxes, and
3) Comprehensive error detection: It captures errors in prompt generation, message passing, and
sandbox execution, thereby maintaining a high test coverage.

3Running a SWE-Bench Lite Jimenez et al. (2024) evaluation with gpt-4o costs around 600 USD.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 4: OpenHands runtime workflow.

F HOW OPENHANDS RUNTIME WORK

F.1 WORKFLOW

The OpenHands Runtime system uses a client-server architecture implemented with Docker contain-
ers. See Fig. 4 for an overview of how it works.

(1) User Input: The user provides a custom base Docker image.
(2) Image Building: OpenHands builds a new Docker image (the "OH runtime image") based on the

user-provided image. This new image includes OpenHands-specific code, primarily the "runtime
client" (i.e., runtime API server described in §2.2).

(3) Container Launch: When OpenHands starts, it launches a Docker container using the OH
runtime image.

(4) Communication: The OpenHands backend (runtime.py) communicates with the runtime
client over RESTful API, sending actions and receiving observations

(5) Action Execution: The runtime client receives actions from the backend, executes them in the
sandboxed environment, and sends back observations

(6) Observation Return: The client sends execution results back to the OpenHands backend event
stream as observations.

The role of the client:

• It acts as an intermediary between the OpenHands backend and the sandboxed environment

• It executes various types of actions (shell commands, file operations, Python code, etc.)
safely within the container

• It manages the state of the sandboxed environment, including the current working directory
and loaded plugins

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• It formats and returns observations to the backend, ensuring a consistent interface for
processing results

F.2 HOW OPENHANDS BUILDS AND MAINTAINS RUNTIME IMAGES

OpenHands’ approach to building and managing runtime images ensures efficiency, consistency,
and flexibility in creating and maintaining Docker images for both production and development
environments.

F.2.1 IMAGE TAGGING SYSTEM

OpenHands uses a dual-tagging system for its runtime images to balance reproducibility with
flexibility:

(1) Hash-based tag: {target_image_repo}:{target_image_hash_tag}. Example:
runtime:abc123def456

– This tag is based on the MD5 hash of the Docker build folder, which includes the source
code (of runtime client and related dependencies) and Dockerfile

– Identical hash tags guarantee that the images were built with exactly the same source code
and Dockerfile

– This ensures reproducibility; the same hash always means the same image contents

(2) Generic tag: {target_image_repo}:{target_image_tag}. Example:
runtime:oh_v0.9.3_ubuntu_tag_22.04

– This tag follows the format: runtime:oh_v{VERSION}_{BASE_IMAGE}_tag_{IMAGE_TAG}
– It represents the latest build for a particular base image and OpenHands version combination
– This tag is updated whenever a new image is built from the same base image, even if the

source code changes

The hash-based tag ensures reproducibility, while the generic tag provides a stable reference to
the latest version of a particular configuration. This dual-tagging approach allows OpenHands to
efficiently manage both development and production environments.

F.2.2 BUILD PROCESS

(1) Image Naming Convention:

– Hash-based tag: target_image_repo:target_image_hash_tag. Example:
runtime:abc123def456

– Generic tag: target_image_repo:target_image_tag. Example:
runtime:oh_v0.9.3_ubuntu_tag_22.04

(2) Build Process:

a. Convert the base image name to an OH runtime image name Example: ubuntu:22.04
-> runtime:oh_v0.9.3_ubuntu_tag_22.04

b. Generate a build context (Dockerfile and OpenHands source code) and calculate its hash
c. Check for an existing image with the calculated hash
d. If not found, check for a recent compatible image to use as a base
e. If no compatible image exists, build from scratch using the original base image
f. Tag the new image with both hash-based and generic tags

(3) Image Reuse and Rebuilding Logic: The system follows these steps to determine whether
to build a new image or use an existing one from a user-provided (base) image (e.g.,
ubuntu:22.04):

a. If an image exists with the same hash (e.g., runtime:abc123def456), it will be reused
as is

b. If the exact hash is not found, the system will try to rebuild using the latest generic image
(e.g., runtime:oh_v0.9.3_ubuntu_tag_22.04) as a base. This saves time by
leveraging existing dependencies

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 5: OpenHands Runtime Image Build Workflow.

c. If neither the hash-tagged nor the generic-tagged image is found, the system will build the
image completely from scratch

Caching and Efficiency. The system attempts to reuse existing images when possible to save build
time. If an exact match (by hash) is found, it’s used without rebuilding. If a compatible image is
found, it’s used as a base for rebuilding, saving time on dependency installation.

A flowchart illustrating the build process is shown in Fig. 5

G ADDITIONAL RESULTS FOR GPQA BENCHMARK

We showcase more detailed results, including performance on other subsets for GPQA benchmark
in Tab. 7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Full Evaluation Results on the GPQA Benchmark Rein et al. (2023) (§4.4).

Evaluation Method and Model Accuracy by subset (%) Avg Cost ($)
Diamond Set Main Set Extended Set

Expert Human Validators 81.2 72.5 65.4 N/A
Non-Expert Human Validators 21.9 30.5 33.9 N/A

Few-Shot CoT Llama-2-70B-chat 28.1 29.1 30.4 N/A
Few-Shot CoT GPT-3.5-turbo-16k 29.6 28.0 28.2 N/A
Few-Shot CoT GPT-4 38.8 39.7 38.7 N/A
GPT-4 with search (backoff to CoT on abstention) 38.8 41.0 39.4 N/A

OpenHands + CodeActAgent v1.5 + GPT3.5-turbo 27.9 23.4 26.1 0.012
OpenHands + CodeActAgent v1.5 + GPT4-turbo 51.8 47.4 42.4 0.501
OpenHands + CodeActAgent v1.5 + GPT4o 53.1 49.3 52.8 0.054

H IN-CONTEXT DEMONSTRATION FOR CODEACTSWEAGENT

The prompt is re-adopted from the SWE-agent’s released trajectory (https://github.com/princeton-nlp/
SWE-agent/tree/main/trajectories/demonstrations). The prompt can be found at https://github.com/
ANONYMIZED.

I SUPPORTED AGENTSKILLS

As of OpenHands v0.6, we support the following list of skills. Please refer to the source code for the
most up-to-date list of skills: https://github.com/ANONYMIZED

def open_file(path: str, line_number: Optional[int] = None) ->
None:↪→

"""
Opens the file at the given path in the editor. If line_number

is provided, the window will be moved to include that
line.

↪→

↪→

Args:
path: str: The path to the file to open.
line_number: Optional[int]: The line number to move to.

"""
pass

def goto_line(line_number: int) -> None:
"""
Moves the window to show the specified line number.

Args:
line_number: int: The line number to move to.

"""
pass

def scroll_down() -> None:
"""Moves the window down by 100 lines.

Args:
None

"""
pass

def scroll_up() -> None:

21

https://github.com/princeton-nlp/SWE-agent/tree/main/trajectories/demonstrations
https://github.com/princeton-nlp/SWE-agent/tree/main/trajectories/demonstrations
https://github.com/ANONYMIZED
https://github.com/ANONYMIZED
https://github.com/ANONYMIZED

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

"""Moves the window up by 100 lines.

Args:
None

"""
pass

def create_file(filename: str) -> None:
"""Creates and opens a new file with the given name.

Args:
filename: str: The name of the file to create.

"""
pass

def edit_file(start: int, end: int, content: str) -> None:
"""Edit a file.

It replaces lines `start` through `end` (inclusive) with the
given text `content` in the open file. Remember, the file
must be open before editing.

↪→

↪→

Args:
start: int: The start line number. Must satisfy start >=

1.↪→

end: int: The end line number. Must satisfy start <= end
<= number of lines in the file.↪→

content: str: The content to replace the lines with.
"""
pass

def search_dir(search_term: str, dir_path: str = './') -> None:
"""Searches for search_term in all files in dir. If dir is not

provided, searches in the current directory.↪→

Args:
search_term: str: The term to search for.
dir_path: Optional[str]: The path to the directory to

search.↪→

"""
pass

def search_file(search_term: str, file_path: Optional[str] = None)
-> None:↪→

"""Searches for search_term in file. If file is not provided,
searches in the current open file.↪→

Args:
search_term: str: The term to search for.
file_path: Optional[str]: The path to the file to search.

"""
pass

def find_file(file_name: str, dir_path: str = './') -> None:
"""Finds all files with the given name in the specified

directory.↪→

Args:
file_name: str: The name of the file to find.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

dir_path: Optional[str]: The path to the directory to
search.↪→

"""
pass

def parse_pdf(file_path: str) -> None:
"""Parses the content of a PDF file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_docx(file_path: str) -> None:
"""
Parses the content of a DOCX file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_latex(file_path: str) -> None:
"""
Parses the content of a LaTex file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

def parse_audio(file_path: str, model: str = 'whisper-1') -> None:
"""
Parses the content of an audio file and prints it.

Args:
file_path: str: The path to the audio file to transcribe.
model: Optional[str]: The audio model to use for

transcription. Defaults to 'whisper-1'.↪→

"""
pass

def parse_image(
file_path: str, task: str = 'Describe this image as detail as

possible.'↪→

) -> None:
"""
Parses the content of an image file and prints the

description.↪→

Args:
file_path: str: The path to the file to open.
task: Optional[str]: The task description for the API

call. Defaults to 'Describe this image as detail as
possible.'.

↪→

↪→

"""
pass

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

def parse_video(
file_path: str,
task: str = 'Describe this image as detail as possible.',
frame_interval: int = 30,

) -> None:
"""
Parses the content of an image file and prints the

description.↪→

Args:
file_path: str: The path to the video file to open.
task: Optional[str]: The task description for the API

call. Defaults to 'Describe this image as detail as
possible.'.

↪→

↪→

frame_interval: Optional[int]: The interval between frames
to analyze. Defaults to 30.↪→

"""
pass

def parse_pptx(file_path: str) -> None:
"""
Parses the content of a pptx file and prints it.

Args:
file_path: str: The path to the file to open.

"""
pass

J BROWSERGYM ACTIONS

The following are all the supported actions defined in BrowserGym4 as of v0.3.4. The actions can
be categorized into several types and can be configured to use only a subset of the functionality.
There are agent control actions, navigation actions, page element-based actions, coordinate-based
actions, as well as tab-related actions. We use these actions from the BrowserGym library as our
main browsing action primitives.

def send_msg_to_user(text: str):
"""
Sends a message to the user.

Examples:
send_msg_to_user("Based on the results of my search, the

city was built in 1751.")↪→

"""
pass

def report_infeasible(reason: str):
"""
Notifies the user that their instructions are infeasible.

Examples:
report_infeasible("I cannot follow these instructions

because there is no email field in this form.")↪→

"""
pass

4https://github.com/ServiceNow/BrowserGym/blob/main/core/src/browsergym/core/action/functions.py

24

https://github.com/ServiceNow/BrowserGym/blob/main/core/src/browsergym/core/action/functions.py

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def noop(wait_ms: float = 1000):
"""
Do nothing, and optionally wait for the given time (in

milliseconds).↪→

Examples:
noop()
noop(500)

"""
pass

https://playwright.dev/docs/input#text-input
def fill(bid: str, value: str):

"""
Fill out a form field. It focuses the element and triggers an

input event with the entered text.↪→

It works for <input>, <textarea> and [contenteditable]
elements.↪→

Examples:
fill('237', 'example value')
fill('45', "multi-line\\nexample")
fill('a12', "example with \\"quotes\\"")

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-check↪→

def check(bid: str):
"""
Ensure a checkbox or radio element is checked.

Examples:
check('55')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-uncheck↪→

def uncheck(bid: str):
"""
Ensure a checkbox or radio element is unchecked.

Examples:
uncheck('a5289')

"""
pass

https://playwright.dev/docs/input#select-options
def select_option(bid: str, options: str | list[str]):

"""
Select one or multiple options in a <select> element. You can

specify↪→

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

option value or label to select. Multiple options can be
selected.↪→

Examples:
select_option('a48', "blue")
select_option('c48', ["red", "green", "blue"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-click↪→

def click(
bid: str,
button: Literal["left", "middle", "right"] = "left",
modifiers: list[Literal["Alt", "Control", "Meta", "Shift"]] =

[],↪→

):
"""
Click an element.

Examples:
click('a51')
click('b22', button="right")
click('48', button="middle", modifiers=["Shift"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-dblclick↪→

def dblclick(
bid: str,
button: Literal["left", "middle", "right"] = "left",
modifiers: list[Literal["Alt", "Control", "Meta", "Shift"]] =

[],↪→

):
"""
Double click an element.

Examples:
dblclick('12')
dblclick('ca42', button="right")
dblclick('178', button="middle", modifiers=["Shift"])

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-hover↪→

def hover(bid: str):
"""
Hover over an element.

Examples:
hover('b8')

"""
pass

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

https://playwright.dev/python/docs/input#keys-and-shortcuts
def press(bid: str, key_comb: str):

"""
Focus the matching element and press a combination of keys. It

accepts↪→

the logical key names that are emitted in the
keyboardEvent.key property↪→

of the keyboard events: Backquote, Minus, Equal, Backslash,
Backspace,↪→

Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert,
PageDown, PageUp,↪→

ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc. You can↪→

alternatively specify a single character you'd like to produce
such as "a"↪→

or "#". Following modification shortcuts are also supported:
Shift, Control,↪→

Alt, Meta.

Examples:
press('88', 'Backspace')
press('a26', 'Control+a')
press('a61', 'Meta+Shift+t')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-focus↪→

def focus(bid: str):
"""
Focus the matching element.

Examples:
focus('b455')

"""
pass

#
https://playwright.dev/python/docs/api/class-locator#locator-clear↪→

def clear(bid: str):
"""
Clear the input field.

Examples:
clear('996')

"""
pass

https://playwright.dev/python/docs/input#drag-and-drop
def drag_and_drop(from_bid: str, to_bid: str):

"""
Perform a drag & drop. Hover the element that will be dragged.

Press↪→

left mouse button. Move mouse to the element that will receive
the↪→

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

drop. Release left mouse button.

Examples:
drag_and_drop('56', '498')

"""
pass

https://playwright.dev/python/docs/api/class-mouse#mouse-wheel
def scroll(delta_x: float, delta_y: float):

"""
Scroll horizontally and vertically. Amounts in pixels,

positive for right or down scrolling, negative for left or
up scrolling. Dispatches a wheel event.

↪→

↪→

Examples:
scroll(0, 200)
scroll(-50.2, -100.5)

"""
pass

https://playwright.dev/python/docs/api/class-mouse#mouse-move
def mouse_move(x: float, y: float):

"""
Move the mouse to a location. Uses absolute client coordinates

in pixels.↪→

Dispatches a mousemove event.

Examples:
mouse_move(65.2, 158.5)

"""
pass

https://playwright.dev/python/docs/api/class-mouse#mouse-up
def mouse_up(x: float, y: float, button: Literal["left", "middle",

"right"] = "left"):↪→

"""
Move the mouse to a location then release a mouse button.

Dispatches↪→

mousemove and mouseup events.

Examples:
mouse_up(250, 120)
mouse_up(47, 252, 'right')

"""
pass

https://playwright.dev/python/docs/api/class-mouse#mouse-down
def mouse_down(x: float, y: float, button: Literal["left",

"middle", "right"] = "left"):↪→

"""
Move the mouse to a location then press and hold a mouse

button. Dispatches↪→

mousemove and mousedown events.

Examples:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

mouse_down(140.2, 580.1)
mouse_down(458, 254.5, 'middle')

"""
pass

https://playwright.dev/python/docs/api/class-mouse#mouse-click
def mouse_click(x: float, y: float, button: Literal["left",

"middle", "right"] = "left"):↪→

"""
Move the mouse to a location and click a mouse button.

Dispatches mousemove,↪→

mousedown and mouseup events.

Examples:
mouse_click(887.2, 68)
mouse_click(56, 712.56, 'right')

"""
pass

#
https://playwright.dev/python/docs/api/class-mouse#mouse-dblclick↪→

def mouse_dblclick(x: float, y: float, button: Literal["left",
"middle", "right"] = "left"):↪→

"""
Move the mouse to a location and double click a mouse button.

Dispatches↪→

mousemove, mousedown and mouseup events.

Examples:
mouse_dblclick(5, 236)
mouse_dblclick(87.5, 354, 'right')

"""
pass

def mouse_drag_and_drop(from_x: float, from_y: float, to_x: float,
to_y: float):↪→

"""
Drag and drop from a location to a location. Uses absolute

client↪→

coordinates in pixels. Dispatches mousemove, mousedown and
mouseup↪→

events.

Examples:
mouse_drag_and_drop(10.7, 325, 235.6, 24.54)

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-press↪→

def keyboard_press(key: str):
"""
Press a combination of keys. Accepts the logical key names

that are↪→

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

emitted in the keyboardEvent.key property of the keyboard
events:↪→

Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete,
Escape,↪→

ArrowDown, End, Enter, Home, Insert, PageDown, PageUp,
ArrowRight,↪→

ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc. You can
alternatively specify a single character you'd like to produce

such↪→

as "a" or "#". Following modification shortcuts are also
supported:↪→

Shift, Control, Alt, Meta.

Examples:
keyboard_press('Backspace')
keyboard_press('Control+a')
keyboard_press('Meta+Shift+t')
page.keyboard.press("PageDown")

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-up↪→

def keyboard_up(key: str):
"""
Release a keyboard key. Dispatches a keyup event. Accepts the

logical↪→

key names that are emitted in the keyboardEvent.key property
of the↪→

keyboard events: Backquote, Minus, Equal, Backslash,
Backspace, Tab,↪→

Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown,
PageUp,↪→

ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc.↪→

You can alternatively specify a single character you'd like to
produce↪→

such as "a" or "#".

Examples:
keyboard_up('Shift')
keyboard_up('c')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-down↪→

def keyboard_down(key: str):
"""
Press and holds a keyboard key. Dispatches a keydown event.

Accepts the↪→

logical key names that are emitted in the keyboardEvent.key
property of↪→

the keyboard events: Backquote, Minus, Equal, Backslash,
Backspace, Tab,↪→

Delete, Escape, ArrowDown, End, Enter, Home, Insert, PageDown,
PageUp,↪→

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ,
etc. You can↪→

alternatively specify a single character such as "a" or "#".

Examples:
keyboard_up('Shift')
keyboard_up('c')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-type↪→

def keyboard_type(text: str):
"""
Types a string of text through the keyboard. Sends a keydown,

keypress/input,↪→

and keyup event for each character in the text. Modifier keys
DO NOT affect↪→

keyboard_type. Holding down Shift will not type the text in
upper case.↪→

Examples:
keyboard_type('Hello world!')

"""
pass

#
https://playwright.dev/python/docs/api/class-keyboard#keyboard-insert-text↪→

def keyboard_insert_text(text: str):
"""
Insert a string of text in the currently focused element.

Dispatches only input↪→

event, does not emit the keydown, keyup or keypress events.
Modifier keys DO NOT↪→

affect keyboard_insert_text. Holding down Shift will not type
the text in upper↪→

case.

Examples:
keyboard_insert_text('Hello world!')

"""
pass

https://playwright.dev/python/docs/api/class-page#page-goto
def goto(url: str):

"""
Navigate to a url.

Examples:
goto('http://www.example.com')

"""
pass

https://playwright.dev/python/docs/api/class-page#page-go-back
def go_back():

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

"""
Navigate to the previous page in history.

Examples:
go_back()

"""
pass

#
https://playwright.dev/python/docs/api/class-page#page-go-forward↪→

def go_forward():
"""
Navigate to the next page in history.

Examples:
go_forward()

"""
pass

#
https://playwright.dev/python/docs/api/class-browsercontext#browser-context-new-page↪→

def new_tab():
"""
Open a new tab. It will become the active one.

Examples:
new_tab()

"""
global page
set the new page as the active page
page = page.context.new_page()
trigger the callback that sets this page as active in

browsergym↪→

pass

https://playwright.dev/python/docs/api/class-page#page-close
def tab_close():

"""
Close the current tab.

Examples:
tab_close()

"""
pass

#
https://playwright.dev/python/docs/api/class-page#page-bring-to-front↪→

def tab_focus(index: int):
"""
Bring tab to front (activate tab).

Examples:
tab_focus(2)

"""
pass

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

https://playwright.dev/python/docs/input#upload-files
def upload_file(bid: str, file: str | list[str]):

"""
Click an element and wait for a "filechooser" event, then

select one↪→

or multiple input files for upload. Relative file paths are
resolved↪→

relative to the current working directory. An empty list
clears the↪→

selected files.

Examples:
upload_file("572", "my_receipt.pdf")
upload_file("63", ["/home/bob/Documents/image.jpg",

"/home/bob/Documents/file.zip"])↪→

"""
pass

https://playwright.dev/python/docs/input#upload-files
def mouse_upload_file(x: float, y: float, file: str | list[str]):

"""
Click a location and wait for a "filechooser" event, then

select one↪→

or multiple input files for upload. Relative file paths are
resolved↪→

relative to the current working directory. An empty list
clears the↪→

selected files.

Examples:
mouse_upload_file(132.1, 547, "my_receipt.pdf")
mouse_upload_file(328, 812,

["/home/bob/Documents/image.jpg",
"/home/bob/Documents/file.zip"])

↪→

↪→

"""
pass

K BROWSING AGENT DETAILS

The following shows an example prompt containing all the information required for the current step
to make a prediction about the next browsing actions. Note that we also instruct the agent to predict
multiple actions in one turn if the agent thinks they are meant to be executed sequentially without any
feedback from the page. This could save turns for common workflows that consist of a sequence of
actions on the same page without any observation change, such as filling the username and password
and submit in a login page.

Instructions
Review the current state of the page and all other information to

find the best possible next action to accomplish your goal.
Your answer will be interpreted and executed by a program,
make sure to follow the formatting instructions.

↪→

↪→

↪→

Goal:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Browse localhost:8000, and tell me the ultimate answer to life. Do
not ask me for confirmation at any point.↪→

Action Space

16 different types of actions are available.

noop(wait_ms: float = 1000)
Examples:

noop()

noop(500)

send_msg_to_user(text: str)
Examples:

send_msg_to_user('Based on the results of my search, the
city was built in 1751.')↪→

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)

scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill('237', 'example value')

fill('45', 'multi-line\nexample')

fill('a12', 'example with "quotes"')

select_option(bid: str, options: str | list[str])
Examples:

select_option('48', 'blue')

select_option('48', ['red', 'green', 'blue'])

click(bid: str, button: Literal['left', 'middle', 'right'] =
'left', modifiers: list[typing.Literal['Alt', 'Control',
'Meta', 'Shift']] = [])

↪→

↪→

Examples:
click('51')

click('b22', button='right')

click('48', button='middle', modifiers=['Shift'])

dblclick(bid: str, button: Literal['left', 'middle', 'right'] =
'left', modifiers: list[typing.Literal['Alt', 'Control',
'Meta', 'Shift']] = [])

↪→

↪→

Examples:
dblclick('12')

dblclick('ca42', button='right')

dblclick('178', button='middle', modifiers=['Shift'])

hover(bid: str)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Examples:
hover('b8')

press(bid: str, key_comb: str)
Examples:

press('88', 'Backspace')

press('a26', 'Control+a')

press('a61', 'Meta+Shift+t')

focus(bid: str)
Examples:

focus('b455')

clear(bid: str)
Examples:

clear('996')

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop('56', '498')

upload_file(bid: str, file: str | list[str])
Examples:

upload_file('572', 'my_receipt.pdf')

upload_file('63', ['/home/bob/Documents/image.jpg',
'/home/bob/Documents/file.zip'])↪→

go_back()
Examples:

go_back()

go_forward()
Examples:

go_forward()

goto(url: str)
Examples:

goto('http://www.example.com')

Multiple actions can be provided at once. Example:
fill('a12', 'example with "quotes"')
click('51')
click('48', button='middle', modifiers=['Shift'])
Multiple actions are meant to be executed sequentially without any

feedback from the page.↪→

Don't execute multiple actions at once if you need feedback from
the page.↪→

Current Accessibility Tree:
RootWebArea 'The Ultimate Answer', focused

[8] heading 'The Ultimate Answer'
[9] paragraph ''

StaticText 'Click the button to reveal the answer
to life, the universe, and everything.'↪→

[10] button 'Click me', clickable

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Previous Actions
goto('http://localhost:8000')

Here is an example with chain of thought of a valid action when
clicking on a button:↪→

"
In order to accomplish my goal I need to click on the button with

bid 12↪→

```click("12")```

And an example response to the above prompt is:

In order to accomplish my goal, I need to click on the button with
bid 10 to reveal the answer to life, the universe, and
everything.

↪→

↪→

```click("10")```

For the evaluation on WebArena benchmark, since some of the tasks require checking for answer
exact match on the agent’s message back to the user, we add the following instruction to let the agent
reply with only a concise answer string when messaging the user to prevent the agent from failing the
test due to extra text:

Here is another example with chain of thought of a valid action
when providing a concise answer to user:↪→

"
In order to accomplish my goal I need to send the information

asked back to the user. This page list the information of HP
Inkjet Fax Machine, which is the product identified in the
objective. Its price is $279.49. I will send a message back to
user with the answer.

↪→

↪→

↪→

↪→

```send_msg_to_user("$279.49")```
"

36


	Introduction
	OpenHands Architecture
	Agent Definition and Implementation
	Agent Runtime: How Execution of Actions Results in Observations
	Agent Skills: The Extensible Agent-Computer Interface
	Agent Delegation: Cooperative Multi-agent Interaction

	AgentHub: A Hub of Community-Contributed Agents
	Evaluation
	Result Overview
	Software Engineering
	Web Browsing
	Miscellaneous Assistance

	Conclusion
	Limitations and Future Work
	Ethics Statement
	Related Work
	Graphical User Interface
	Quality Control: Integration Tests for Agents
	How OpenHands Runtime work
	Workflow
	How OpenHands builds and maintains runtime images
	Image Tagging System
	Build Process


	Additional Results For GPQA Benchmark
	In-context Demonstration for CodeActSWEAgent
	Supported AgentSkills
	BrowserGym Actions
	Browsing Agent Details

