

000 001 002 003 004 005 ROBOOMNI: PROACTIVE ROBOT MANIPULATION IN 006 OMNI-MODAL CONTEXT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031 Recent advances in Multimodal Large Language Models (MLLMs) have driven
032 rapid progress in Vision–Language–Action (VLA) models for robotic manipulation.
033 Although effective in many scenarios, current approaches largely rely on
034 explicit instructions, whereas in real-world interactions, humans rarely issue in-
035 structions directly. Effective collaboration requires robots to infer user intentions
036 proactively. In this work, we introduce *cross-modal contextual instructions, a new*
037 *setting where intent is derived from spoken dialogue, environmental sounds, and*
038 *visual cues rather than explicit commands*. To address this new setting, we present
039 **RoboOmni**, a *Perceiver–Thinker–Talker–Executor* framework based on end-to-end
040 omni-modal LLMs that unifies intention recognition, interaction confirmation, and
041 action execution. RoboOmni fuses auditory and visual signals spatiotemporally
042 for robust intention recognition, while supporting direct speech interaction. To
043 address the absence of training data for proactive intention recognition in robotic
044 manipulation, we build **OmniAction**, comprising 140k episodes, 5k+ speakers,
045 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experi-
046 ments in simulation and real-world settings show that RoboOmni surpasses text-
047 and ASR-based baselines in success rate, inference speed, intention recognition,
048 and proactive assistance. All datasets, code, and real-world demonstration videos
049 will be released publicly.¹
050
051

1 INTRODUCTION

052 Vision–Language–Action (VLA) models (Zitkovich et al., 2023; Ghosh et al., 2024; Black et al.,
053 2024) have achieved remarkable advances in robotic manipulation, leveraging large-scale cross-
054 embodiment datasets (Padalkar et al., 2023; AgiBot-World-Contributors et al., 2025; Khazatsky
055 et al., 2024) and Multimodal Large Language Models (MLLMs) (Wang et al., 2024; Bai et al., 2025a;
056 Li et al., 2025). VLA models are generally categorized as (1) end-to-end models (Brohan et al.,
057 2023; Zitkovich et al., 2023; Black et al., 2024; Kim et al., 2024; 2025), which map vision–language
058 inputs directly to motor actions, and (2) modular Brain–Cerebellum models (Huang et al., 2023;
059 2024; Shi et al., 2025), which use LLMs or VLMs as planners to decompose tasks into sub-goals
060 for low-level controllers. While modular systems emphasize explicit planning, they suffer from
061 fragmentation and interface constraints. In contrast, end-to-end models unify vision, language, and
062 action in a shared latent space, enabling more natural and flexible responses.
063

064 Despite notable advances in VLA research, two fundamental limitations remain. (1) From the per-
065 spective of instruction type: most works (Kim et al., 2024) focus on direct commands (Fig. 1-(a)),
066 later extended to more complex (Fig. 1-(b)) yet explicit forms (Shi et al., 2025), while Xu et al.
067 (2025a) recently introduced a dataset for inferential text-based instructions (Fig. 1-(c)), but sys-
068 tem studies remain scarce. (2) From the perspective of the instruction source: current systems
069 (Kim et al., 2024; Zitkovich et al., 2023) predominantly rely on textual instructions (Fig. 1-(d))
070 or ASR-transcribed speech (Fig. 1-(e)), the latter discarding essential paralinguistic cues such as
071 tone, intonation, and affective signals. Recently, Zhao et al. (2025) investigated models that accept
072 speech instructions (Fig. 1-(f)) by converting existing textual commands into speech, but neglected
073 real-world environmental sounds. Overall, existing works assume that instructions are explicitly is-
074

075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340

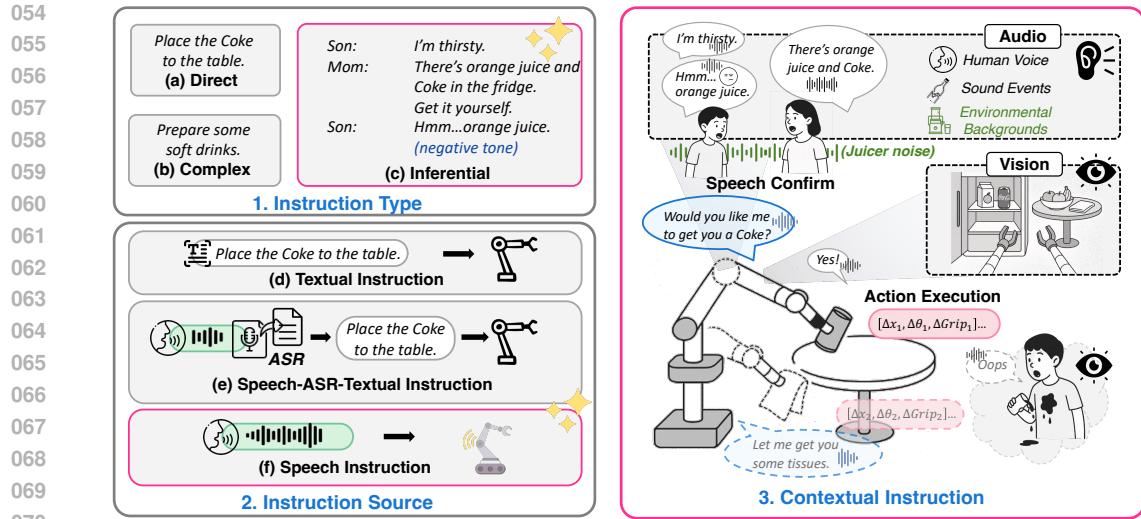


Figure 1: Overview of robotic manipulation models classified by instruction type and input. Our RoboOmni integrates contextual instruction with direct speech for end-to-end multimodal interaction and action execution.

sued, and there is a lack of study on jointly reasoning over speech, environmental sounds, and visual observations for proactive intent recognition and reasoning.

There arises a key research question: **Can a robot integrate cross-modal context, including speech, environmental audio, and visual observations, to proactively infer and verify user intent?** As illustrated in Fig. 1, in a living-room scene, the robot integrates dialogue (audio), refrigerator observation (vision), and the juicer sound (environmental audio) to infer that John prefers cola over hand-made sour juice, and proactively seeks confirmation rather than waiting for an explicit command. Since humans rarely issue direct instructions in daily life, we define such scenarios as *cross-modal contextual instructions*, where auditory (speech and environmental sound) and visual cues are fused to infer latent user intent and verified proactively by interaction, in contrast to conventional setups that assume explicit commands.

To address these challenge and answer the research question, we propose **RoboOmni**, an end-to-end omni-modal framework for manipulation that closes the loop of intent recognition, interaction confirmation, and action execution. Unlike prior approaches, RoboOmni supports direct speech interaction without ASR, infers latent commands by fusing human speech, environmental audio, and vision through spatiotemporal modeling, and verifies intent via interaction. To overcome data scarcity, we construct OmniAction, a dataset with 140k episodes, over 5k speakers, 2.4k event sounds, 640 background sounds, and six contextual instruction types.

Experiments in both simulation and real-world settings show that RoboOmni substantially outperforms text- and ASR-based baselines, achieving higher accuracy (Sec. 5.2 and Sec. 5.3), faster inference (Sec. 5.6), more effective proactive assistance (Sec. 5.5), and improved intention recognition (Sec. 5.5). Our contributions are fourfold:

1. We introduce *cross-modal contextual instructions*, a new setting for robotic manipulation that requires robots to proactively infer user commands from multimodal context (vision, environmental sounds, and speech) rather than passively await explicit instructions.
2. We propose RoboOmni, a *Perceiver-Thinker-Talker-Executor* framework based on end-to-end omni-modal LLMs that fuses auditory and visual inputs for intent reasoning, unifying intent recognition, confirmation, and action execution.
3. To address the lack of datasets for proactive intention reasoning, we introduce OmniAction, comprising 140k episodes with 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types, along with OmniAction-LIBERO for simulation-based evaluation.
4. Evaluation in both simulation and real-world scenarios demonstrates that RoboOmni exhibits emerging cognitive intelligence, outperforming baselines with higher success rates, faster inference, and more effective proactive assistance and intention recognition.

108 2 RELATED WORK

110 The rapid development of Large Language Models (LLMs) Achiam et al. (2023); Touvron et al.
 111 (2023a) has driven progress in multimodal extensions. Multimodal LLMs (MLLMs) (202, 2023; Bai
 112 et al., 2025a; Liu et al., 2023b; Chen et al., 2023) combine text reasoning with vision, while recent
 113 end-to-end omni-modal models (Hurst et al., 2024; Xu et al., 2025b; Xie & Wu, 2024) unify speech,
 114 vision, and text but remain focused on linguistic outputs. In parallel, Vision–Language–Action
 115 (VLA) models Brohan et al. (2023); Zitkovich et al. (2023); Li et al. (2023); Team et al. (2024); Kim
 116 et al. (2024; 2025); Black et al. (2024); Li et al. (2024a); Qu et al. (2025) map instructions to actions,
 117 yet mainly assume explicit commands and struggle with context-dependent or compositional tasks.
 118 Cascaded or hierarchical variants (Intelligence et al., 2025; Shi et al., 2025; Song et al., 2025b; Lin
 119 et al., 2025) decompose goals but ignore implicit cues such as dialogue or emotion, while ASR/TTS-
 120 based speech–action pipelines (Shi et al., 2025; Khan et al., 2025) discard paralinguistic signals.
 121 Some works incorporate environmental sounds as an additional modality (Yamakawa et al., 2011;
 122 Zhao et al., 2023; Liu et al., 2024; Jones et al., 2025), but they do not model spoken instructions or
 123 conversational intent. Although some recent efforts handle direct speech inputs (Zhao et al., 2025),
 124 they only output actions without conversational interaction. In contrast, we propose RoboOmni, an
 125 end-to-end omni-modal framework that integrates speech, environmental sounds, vision, and text for
 126 both embodied action and natural interaction. A detailed review of related work about Omni-Modal
 127 LLMs and Vision-Language-Action Model is provided in App. B.

128 3 OMNIACTION DATASET CONSTRUCTION

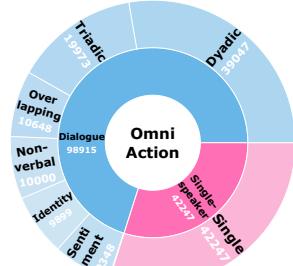
129 3.1 OVERVIEW

130 Proactive robots must infer implicit intent from audio and visual observations, yet existing datasets
 131 lack such a combination of modalities (most of them lack audio modality) and inferential instructions
 132 needed for intent reasoning. To address this gap, we introduce OmniAction, a large-scale corpus
 133 that encodes contextual instructions—latent intents grounded in speech, environmental audio, sound
 134 events, and vision. OmniAction covers six instruction categories and three non-speech sounds.

135 **Diverse Contextual Instructions.** (1) *Sentiment Cues*: Emotionally tinted expressions, or subtle vocalizations, that indirectly
 136 reveal user preferences or intentions (e.g., “Ugh, this juice is
 137 too sour” implying a request for an alternative). (2) *Overlapping Voices*: Multi-speaker audio segments with temporal overlaps,
 138 testing intent extraction under crosstalk and partial masking. (3) *Non-Verbal Cues*: Salient non-linguistic audio events
 139 (e.g., alarms, phone rings) that carry situational information relevant
 140 to the task. (4) *Identity Cues*: Speaker attributes such as age
 141 and gender, inferred from voice and not available from text, are
 142 needed to decide whose intent to satisfy. (5) *Dyadic Dialogue*:
 143 Two-participant dialogues where intent emerges from conversational flow rather than explicit commands. (6) *Triadic Dialogue*:
 144 Three participants interact with turn-taking and indirect
 145 references, increasing the complexity of intent attribution. To preserve general command-following
 146 ability beyond dialogue, we also include a portion of single-person text instructions during training.

147 **Diverse Non-Speech Sounds.** We also investigate three types of acoustic variation: (1) *Speaker*
 148 *Timbre*. 5,096 distinct voices spanning six categories by age (elderly, adult, child) and gender (male,
 149 female). Reference audio clips are used for timbre cloning to ensure within-dialogue consistency
 150 and cross-speaker diversity. (2) *Sound Events*. 2,482 non-verbal events (e.g., thunder, doorbell)
 151 were inserted at scripted anchors to provide cues beyond speech. (3) *Environmental Backgrounds*.
 152 640 ambient soundscapes (e.g., running water, stir-fry sizzling) mixed at controlled signal-to-noise
 153 ratios (SNRs) to mimic daily environments.

154 **Data Statistics and Formats.** OmniAction comprises 141,162 multimodal episodes, spanning 112
 155 skills (e.g., *pick-place*, *open/close*) and 748 objects (e.g., *can*), with 5,096 distinct speaker timbres,
 156 2,482 non-verbal sound events, and 640 environmental backgrounds. Each sample is represented
 157 as a triplet (C, V, A) : a multi-turn conversation C , a visual observation sequence V , and an action



158 Figure 2: Distribution of
 159 contextual instruction types in OmniAction.

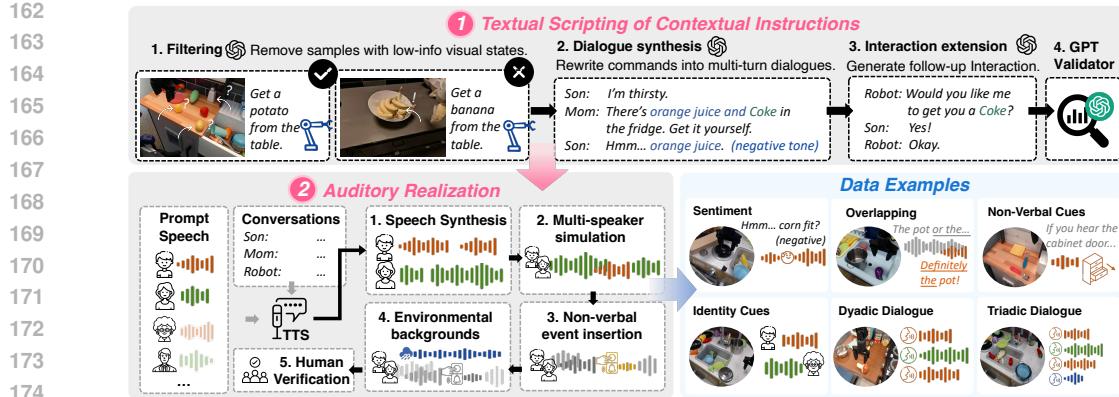


Figure 3: Overview of OmniAction Dataset Construction Pipelines and Examples.

trajectory $A = \{a_t\}_{t=1}^T$, where $a_t \in \mathbb{R}^7$ denotes the delta control vector of the end-effector. The distribution of instruction type is detailed in Fig. 2. More detailed statistics and examples are shown in Sec. C.1 and Sec. C.2.

3.2 CONSTRUCTION PROCESS

We construct OmniAction through a three-stage pipeline—textual scripting, auditory realization, and verification—illustrated in Fig. 3.

Textual Scripting. We sample tasks and trajectories from Open-X datasets (Padalkar et al., 2023) and transform each atomic instruction into a contextual one with GPT-4o through: (1) *Filtering*: removing trivial samples with low-information visual states. (2) *Dialogue synthesis*: rewriting instructions into multi-turn household dialogues that span six contextual instruction types. (3) *Interaction extension*: constructing follow-up human–robot exchanges that simulate natural interactions. (4) *Validation*: ensuring intent consistency with the original instruction.

Auditory Realization. To capture paralinguistic cues and environmental acoustics beyond text, we convert dialogues into audio that reflects real household conditions, augmented with diverse sound events and background environments. The conversion process includes four steps: (1) *Speech synthesis*: rendering user turns into audio via multiple TTS engines with voice cloning for timbre consistency and cross-dialogue diversity. (2) *Multi-speaker simulation*: generating each speaker’s turns separately, concatenating them on the timeline, and inserting overlaps at controlled offsets. (3) *Non-verbal event insertion*: mixing contextual sounds (e.g., alarms, utensil clatter) at scripted anchors. (4) *Environmental backgrounds*: adding ambient textures (e.g., water flow, frying, fan hum) at varying SNRs. Further implementation details are provided in Sec. C.3.

Verification. To ensure data quality, we conducted a manual evaluation on sampled speech dialogues and confirmed that task intent was reliably recoverable (98.7% agreement, detailed in Sec. C.4).

3.3 SIMULATION DATASET: OMNIACTION-LIBERO

To address the lack of simulation benchmarks, we construct **OmniAction-LIBERO** based on LIBERO (Liu et al., 2023a), with two variants. (1) **OmniAction-LIBERO-TTS** augments the LIBERO using the pipeline described above. Starting from 40 manipulation tasks across four suites (Spatial, Object, Goal, Long-Horizon), we generate six variants for each task based on the six contextual instruction types, yielding 240 evaluation tasks. Example dialogues and task scenes are provided in App. G. (2) **OmniAction-LIBERO-Real** evaluates RoboOmni under real speech conditions, where 10 volunteers provide spoken instructions collected in real environments.

4 METHODS

We propose RoboOmni, an end-to-end omni-modal LLM framework organized as Perceiver–Thinker–Talker–Executor, unifying speech, environmental audio, vision, and robotic actions within a single autoregressive model Fig. 4. RoboOmni employs a Perceiver for multimodal input,

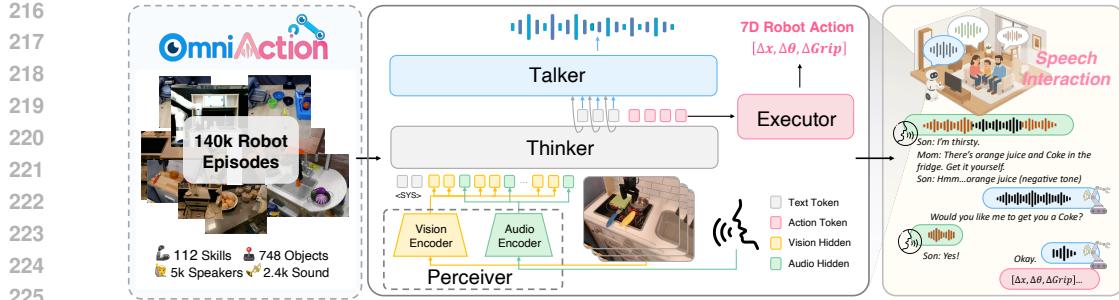


Figure 4: The framework of **RoboOmni**, a Perceiver-Thinker-Talker-Executor architecture that unifies vision, text, and audio in a shared token space to generate actions and speech.

a Thinker backbone, a Talker for speech, and an Executor for actions. To align inputs with linguistic and motor outputs, RoboOmni uses unified tokenization to encode all modalities into a shared semantic space, which the Thinker processes into high-level representations and specialized decoders render into speech and executable actions, enabling seamless perception-to-action generation.

4.1 TASK DEFINITION

We consider *cross-modal contextual instruction following*, where the robot receives multimodal input $X = \{V_{1:T}, S_{1:T}, C\}$, consisting of visual observations V_t and audio signals S_t (including human speech with varying identity, prosody, emotion, overlapping voices, and environmental sounds), and dialogue history C . The robot must use these cues to infer the user's latent intent, produce conversational responses $y_{1:L}$ when clarification is needed, and execute manipulation actions $A_{1:N}$. Unlike standard VLA tasks based on explicit textual commands, intent here is not explicitly spoken but emerges from the multimodal context.

4.2 ARCHITECTURE COMPONENTS

Perceiver: Multimodal Input Encoding. The Perceiver handles the encoding of heterogeneous input modalities into a unified embedding space. Following the multimodal processing pipeline of Qwen2.5-Omni (Xu et al., 2025b), at each timestep t the robot receives a visual frame V_t , an audio segment S_t , and the dialogue history up to that point C_t . Modality-specific encoders produce embeddings $\mathbf{v}_t = f_v(V_t)$, $\mathbf{s}_t = f_s(S_t)$, and $\mathbf{c}_t = f_c(C_t)$, which are combined into a unified representation $\mathbf{X}_t = [\mathbf{v}_t; \mathbf{s}_t; \mathbf{c}_t]$ that serves as input to the Thinker backbone.

Thinker: Omni-Modal Reasoning. The Thinker serves as the central reasoning engine, built upon the LLM backbone. It processes the unified multimodal representations from the Perceiver and generates contextually appropriate outputs in the joint vocabulary space $\mathcal{V} \cup \mathcal{A}$. The Thinker autoregressively produces sequences that seamlessly interleave text tokens, speech representations, and action tokens, enabling unified reasoning across perception, language, and robotic control.

Talker: Speech Generation. The Talker component enables the system to generate natural speech responses through a hierarchical architecture design. The Talker receives high-level semantic representations and text token from the Thinker and converts them into speech waveforms, allowing for seamless voice interaction in robotic scenarios.

Executor: Action Generation. To enable seamless integration of robotic control within the language model framework, we extend the vocabulary of the Thinker with a set \mathcal{A} of 2048 discrete action tokens introduced by the FAST+ tokenizer (Pertsch et al., 2025). Rather than mapping each action dimension to a separate token, FAST+ represents a continuous action vector $a_t \in \mathbb{R}^7$ (e.g., 7-DoF control) by a short sequence of discrete symbols $r_t \subset \mathcal{A}$. This enables the model to autoregressively generate from the joint space $\mathcal{V} \cup \mathcal{A}$, where \mathcal{V} represents the text vocabulary, seamlessly bridging language understanding and robotic control within a single sequence. The Executor then decodes these action tokens back into executable robot commands.

270 4.3 DUAL-MODE GENERATION
271272 **Text and Speech Generation.** For conversational responses, the Thinker autoregressively generates
273 text tokens $\mathbf{y}_{1:L} = (y_1, y_2, \dots, y_L)$:

274
$$p_{\theta}(\mathbf{y}_{1:L} | \mathbf{X}_t) = \prod_{\ell=1}^L p_{\theta}(y_{\ell} | \mathbf{X}_t, \mathbf{y}_{<\ell}). \quad (1)$$

275
276

277 The generated text can optionally be converted to speech through the Talker module, which receives
278 the discrete text tokens and high-level semantic representations from the Thinker.279 **Action Generation.** For robotic control, the Thinker autoregressively predicts discrete action tokens
280 $\mathbf{r}_{t:t+N}$ of chunk length N , which are decoded into continuous actions $\mathbf{a}_{t:t+N}$ by inverse transform.

281
$$\mathbf{a}_{t:t+N} = \text{Executor}(\mathbf{r}_{t:t+N}), \quad p_{\theta}(\mathbf{r}_{t:t+N} | \mathbf{X}_t) = \prod_{i=0}^N p_{\theta}(r_{t+i} | \mathbf{X}_t, \mathbf{r}_{t:t+i-1}). \quad (2)$$

282
283

284 4.4 TRAINING PARADIGMS
285286 We train RoboOmni using a unified autoregressive objective that handles both conversational and
287 manipulation capabilities within the same framework. Given a training episode, the model receives
288 multimodal input \mathbf{X}_t and learns to predict appropriate responses—either conversational replies for
289 dialogue or action sequences for manipulation.290 For conversational interactions, the model optimizes the likelihood of generating appropriate text
291 responses $\mathbf{y}_{1:L}$ given the multimodal context:

292
$$\mathcal{L}_{\text{chat}}(\theta) = -\mathbb{E} \sum_{\ell=1}^L \log p_{\theta}(y_{\ell} | \mathbf{X}_t, \mathbf{y}_{<\ell}). \quad (3)$$

293
294

295 For action generation, the model learns to generate action token sequences $\mathbf{r}_{t:t+N}$ that correspond
296 to expert trajectory:

297
$$\mathcal{L}_{\text{act}}(\theta) = -\mathbb{E} \sum_{i=0}^N \log p_{\theta}(r_{t+i} | \mathbf{X}_t, \mathbf{r}_{t:t+i-1}). \quad (4)$$

298
299

300 The complete training objective combines both modalities through batch interleaving:

301
$$\mathcal{L}(\theta) = \mathcal{L}_{\text{chat}}(\theta) + \mathcal{L}_{\text{act}}(\theta) = -\mathbb{E} \sum_{k=1}^K \log p_{\theta}(z_k | \mathbf{X}_t, z_{<k}), \quad z_k \in \mathcal{V} \cup \mathcal{A}, \quad (5)$$

302

303 which highlights that both conversational and action supervision reduce to the same autoregressive
304 maximum-likelihood objective over a unified token space.305 5 EXPERIMENT
306308 5.1 EXPERIMENT SETUP
309310 **Baseline Models** As current open-source Vision-Language-Action (VLA) models are primarily
311 designed for textual instructions and cannot directly process audio inputs, we construct two base-
312 line paradigms to validate the necessity of end-to-end audio processing: (i) **Ground-truth Textual**
313 **Prompt**, which directly feeds pre-annotated transcriptions of speech instructions into VLA models;
314 (ii) **Speech-ASR-Textual Prompt**, where speech instructions are first transcribed to text using the
315 ASR model Whisper large-v3 (Radford et al., 2023), then fed into VLA models. We conduct eval-
316 uations comparing RoboOmni with four representative VLA baselines representing both paradigms:
317 **OpenVLA** (Kim et al., 2024), **OpenVLA-OFT** (Kim et al., 2025), π_0 (Black et al., 2024), and
318 **NORA** (Hung et al., 2025). Details of these baselines are in App. D.319 **Implementation Details** We train the model with an input image resolution of 224×224 , an audio
320 sampling rate of 16,000 Hz, and an action chunk size of 6. For large-scale pretraining, RoboOmni
321 is optimized on a cluster of 64 A100 GPUs over 10 days, corresponding to a total of 15,360 A100-
322 hours, with a batch size of 512. The training runs for 10 epochs using a learning rate of 5×10^{-5} ,
323 with the first 1k steps reserved for warm-up. For downstream task supervised fine-tuning (SFT), we
adopt a learning rate of 5×10^{-5} and train with 8 A100 GPUs for 10-30k steps.

324 Table 1: Performance of different robot manipulation models on the OmniAction-LIBERO-TTS
 325 benchmark, evaluated across four task suites (Spatial, Goal, Object, Long-Horizon) under six con-
 326 textual instruction types. Values in **bold** denote the best performance.

328	329	Task	Ground-truth Textual Prompt				Audio \rightarrow ASR \rightarrow Text Prompt				RoboOmni	
			OpenVLA	OFT	NORA	π_0	OpenVLA	OFT	NORA	π_0		
330	331	332	<i>Sentiment</i>	4.0	9.0	40.0	8.0	1.0	8.0	43.0	11.0	93.0
			<i>Non-Verbal</i>	2.0	8.0	61.0	7.0	3.0	8.0	68.0	14.0	91.0
			<i>Identity</i>	1.0	8.0	53.0	4.0	2.0	18.0	56.0	7.0	92.0
			<i>Overlapping</i>	6.0	7.0	43.0	7.0	11.0	6.0	58.0	18.0	93.0
			<i>Dyadic</i>	7.0	6.0	51.0	5.0	4.0	17.0	57.0	3.0	95.0
			<i>Triadic</i>	1.0	7.0	51.0	6.0	2.0	6.0	57.0	6.0	94.0
			Avg	3.5	7.5	49.8	6.2	3.8	10.5	56.5	9.8	93.0
335	336	337	<i>Sentiment</i>	0.0	0.0	11.0	0.0	0.0	0.0	9.0	3.0	89.0
			<i>Non-Verbal</i>	0.0	0.0	18.0	0.0	1.0	0.0	22.0	4.0	79.0
			<i>Identity</i>	0.0	0.0	11.0	3.0	0.0	0.0	11.0	1.0	82.0
			<i>Overlapping</i>	0.0	0.0	21.0	0.0	0.0	0.0	23.0	1.0	97.0
			<i>Dyadic</i>	0.0	0.0	7.0	1.0	1.0	10.0	18.0	0.0	85.0
			<i>Triadic</i>	0.0	0.0	7.0	2.0	0.0	0.0	15.0	0.0	83.0
			Avg	0.0	0.0	12.5	1.0	0.3	1.7	16.3	1.5	85.8
341	342	343	<i>Sentiment</i>	1.0	0.0	9.0	4.0	2.0	0.0	5.0	6.0	83.0
			<i>Non-Verbal</i>	2.0	0.0	7.0	1.0	3.0	0.0	17.0	8.0	82.0
			<i>Identity</i>	4.0	0.0	4.0	5.0	5.0	0.0	15.0	8.0	85.0
			<i>Overlapping</i>	14.0	7.0	1.0	6.0	26.0	0.0	16.0	9.0	84.0
			<i>Dyadic</i>	20.0	0.0	14.0	7.0	20.0	10.0	19.0	7.0	88.0
			<i>Triadic</i>	2.0	0.0	3.0	5.0	2.0	10.0	11.0	2.0	82.0
			Avg	7.2	1.2	6.3	4.7	9.7	3.3	13.8	6.7	84.0
346	347	348	<i>Sentiment</i>	0.0	0.0	26.0	4.0	0.0	0.0	50.0	5.0	76.0
			<i>Non-Verbal</i>	0.0	0.0	35.0	1.0	0.0	0.0	57.0	2.0	76.0
			<i>Identity</i>	0.0	0.0	29.0	4.0	1.0	0.0	43.0	4.0	79.0
			<i>Overlapping</i>	0.0	0.0	35.0	5.0	3.0	0.0	56.0	6.0	79.0
			<i>Dyadic</i>	1.0	0.0	42.0	1.0	1.0	0.0	59.0	5.0	85.0
			<i>Triadic</i>	0.0	0.0	27.0	5.0	2.0	10.0	41.0	8.0	82.0
			Avg	0.2	0.0	32.3	3.3	1.2	1.7	51.0	5.0	79.5
351	352	Avg	2.6	0.4	16.3	3.0	3.9	2.3	25.9	4.4	85.6	

353 354 5.2 EVALUATION ON CROSS-MODAL CONTEXTUAL INSTRUCTIONS

356 To comprehensively evaluate RoboOmni on diverse cross-modal contextual instructions, we conduct
 357 extensive experiments on the OmniAction-LIBERO across four task suites with six audio variants.
 358 Tab. 1 demonstrates that RoboOmni achieves an overall 85.6% success rate, substantially outper-
 359 forming the strongest baseline (NORA, 25.9%) and other cascaded methods (all below 10%). Our
 360 analysis yields three key insights: (1) **End-to-end auditory integration is crucial for paraling-
 361 guistic cues**. Text-only models, whether using ASR transcripts or ground-truth text, fail to capture
 362 paralinguistic cues (e.g., prosody, overlapping speech), with best scores of 25.9% (textual baseline).
 363 In contrast, RoboOmni’s direct audio processing enables it to consistently exceed 76% across all
 364 types, demonstrating the importance of preserving acoustic information. (2) **Auditory integration
 365 enhances robust intent recognition under ambiguity**. Goal and Object suites are challenging due
 366 to multiple manipulable objects and valid actions, where baselines collapse (averaging 16.3% and
 367 13.8% for the best baselines), exposing limits in contextual instruction understanding. RoboOmni
 368 sustains high performance (Goal: 85.8% v.s. Object: 84.0%), demonstrating robust generalization
 369 under semantic ambiguity. (3) **Instruction type complexity reveals varying cognitive demands**.
 370 For end-to-end models, *dyadic* and *overlapping* tasks are easier, averaging \sim 88%. *Non-verbal* in-
 371 structions are hardest (\sim 82%), as they require recognizing non-verbal sounds and integrating them
 372 with visual and speech cues. The remaining tasks average \sim 85%, reflecting moderate complexity.

373 374 5.3 EVALUATION ON REAL HUMAN AUDIO DIRECT INSTRUCTIONS

375 We further evaluate RoboOmni’s robustness under real human-recorded speech with direct audio in-
 376 structions. As shown in Tab. 2, on the OmniAction-LIBERO-Real benchmark, RoboOmni achieves
 377 the highest average performance (76.6%), surpassing strong text-based VLAs including π_0 (73.8%),
 OpenVLA (40.1%), and NORA (17.4%). ASR-based VLAs suffer from acoustic variability:

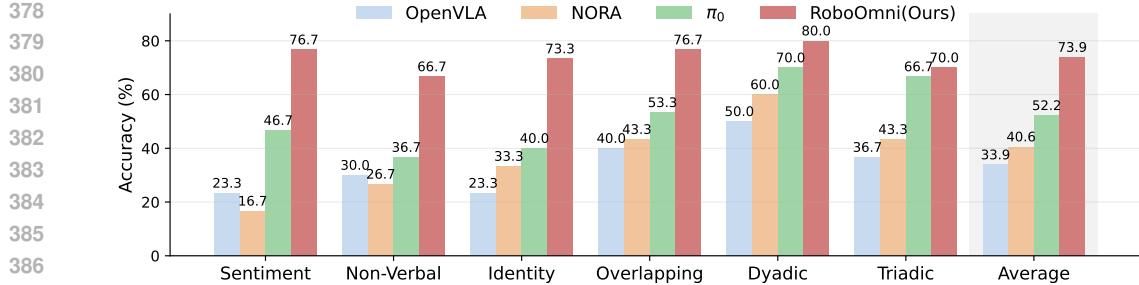


Figure 5: Real-world contextual-instruction performance with human speech. RoboOmni surpasses ASR+VLA baselines by directly grounding raw audio and vision and retaining paralinguistic cues.

Figure 6: Demonstration of success cases of RoboOmni on the real-world WidowX 250S robot arm.

403 accents, coarticulation, and background noise frequently cause recognition errors, and even minor
404 word deviations can degrade VLAs’ performance.
405 π_0 shows some robustness, likely due to large-scale
406 co-training on diverse web data. In contrast, RoboOmni processes speech directly, avoiding ASR
407 pipeline errors. Pretraining on diverse speakers and
408 sounds improves robustness to acoustic variability
409 and paralinguistic cues, yielding more consistent
410 performance.

Table 2: Performance comparison on OmniAction-LIBERO-Real.

	Spatial	Goal	Object	Long	Avg
Audio → ASR → Text Prompt					
OpenVLA	51.6	38.2	38.0	32.4	40.1
OpenVLA-OFT	6.6	9.8	9.8	0.0	6.5
NORA	2.0	5.6	26.8	35.4	17.4
π_0	86.0	60.0	70.0	79.0	73.8
Ours (Audio Input)					
RoboOmni	89.0	71.6	75.1	75.0	76.6

5.4 REAL-WORLD EXPERIMENTS

To verify that RoboOmni’s capabilities transfer beyond simulation, we fine-tune our pretrained model by utilizing our demonstration dataset on WidowX 250S, where speech was recorded by 10 volunteers in real environments. This enables RoboOmni to run on real robots and handle diverse speech instructions (e.g., sentiment, overlapping cues). We compare RoboOmni against several ASR+VLA baselines trained with the same data. Each task is executed for 10 trials, and we report the mean task success rate. As shown in Fig. 5, RoboOmni achieves 73.9% success, substantially outperforming the best ASR+VLA baseline (52.2%). This performance gain primarily comes from two advantages of the unified architecture: (1) RoboOmni directly reasons over raw audio and vision, making it robust to natural speech variations, whereas cascaded systems are prone to ASR errors and to VLA brittleness under small transcription changes. (2) The end-to-end multimodal design preserves paralinguistic cues—sentiment, speaker identity, and non-verbal events—essential for contextual-intent inference, while ASR pipelines inevitably discard them.

Fig. 6 highlights RoboOmni’s real-world competence across three dimensions: (1) strong intent recognition, accurately inferring user intention from both visual and auditory cues (e.g., identifying the object based on audio and determining the receptacle is the pot from the visual scene); (2) effective interaction, proactively asking clarifying questions after inferring the user’s latent intent (e.g., “should I . . . ?”) and executing the action after receiving confirmation; (3) reliable execution, successfully carrying out the confirmed action. More detailed cases are provided in Sec. E.1

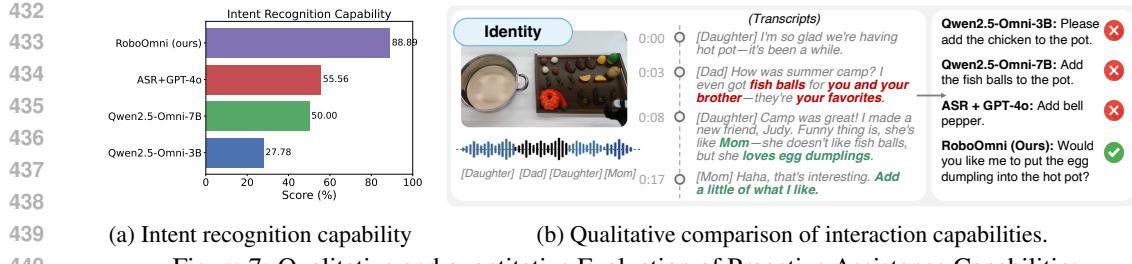


Figure 7: Qualitative and quantitative Evaluation of Proactive Assistance Capabilities.

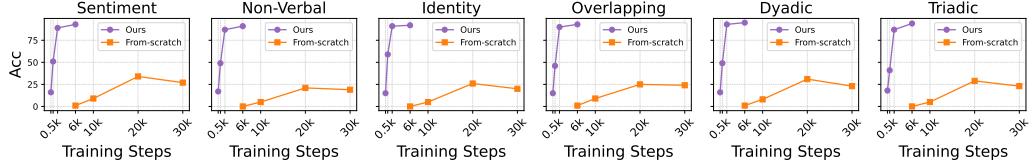


Figure 8: Training efficiency comparison between OmniAction-pretrained + SFT vs. from-scratch SFT on OmniAction-LIBERO (Spatial).

5.5 EVALUATION OF PROACTIVE ASSISTANCE CAPABILITIES

Intent Recognition Capability. We further evaluate the models’ ability to recognize user intent under contextual instructions, shown in Fig. 7a. Specifically, we compare Qwen2.5-Omni-3B (our backbone), Qwen2.5-Omni-7B, and ASR+GPT-4o, against our proposed RoboOmni. We observe that RoboOmni achieves the highest accuracy (88.9%), confirming the advantage of end-to-end speech–action modeling that preserves paralinguistic cues and dialogue context. Notably, although ASR introduces recognition noise compared with end-to-end models, GPT-4o still surpasses the smaller Omni models (55.6% vs. 27.8%/50.0%) because its stronger multimodal reasoning compensates for transcription loss. This highlights that contextual instructions cannot be resolved by acoustic modeling alone, but also demand robust reasoning capabilities

Interaction Capability. We qualitatively assess models’ interaction capability in handling contextual instructions. As shown in Fig. 7b, RoboOmni excels by proactively clarifying, integrating cross-modal signals, and sustaining natural dialogue, whereas baselines often fail in one or more aspects. Additional case studies for all instruction types appear in Sec. E.2.

5.6 FURTHER ANALYSIS

What components of the input drive RoboOmni’s gains? To understand which multimodal inputs drive RoboOmni’s performance, we conduct input-controlled ablations on the intent-recognition experiment, keeping the architecture fixed while specific inputs are removed: (1) w/o vision, removing visual input; (2) w/o audio, removing the audio; (3) w/o paralinguistic cues, where audio is re-recorded by a single neutral speaker without prosody, emotion, or non-verbal events; and (4) Full Input (ours).

As shown in Tab. 3, Full Input achieves 88.89%, while performance drops to 58.89% without vision, 50.56% without paralinguistic cues, and 11.11% without audio. These results reveal that: (1) Audio provides the core semantic instruction, as removing it eliminates actionable content; (2) Vision is essential for contextual grounding, especially when tasks involve spatial relations or object attributes; (3) Paralinguistic cues significantly aid disambiguation across identity-, emotion-, and sound event-dependent cases. Overall, RoboOmni’s gains stem from the complementary integration of vision, speech semantics, and paralinguistic signals, underscoring the need for unified end-to-end multimodal modeling.

Does OmniAction Pretraining Improve Training Efficiency? To evaluate the benefit of pretraining on OmniAction, we compare finetuning efficiency on the six Spatial variants in OmniAction-LIBERO, contrasting OmniAction-pretrained + SFT with from-scratch SFT (Fig. 8). The pre-trained model converges rapidly, reaching nearly 90% accuracy within 2k steps, while the

Table 3: Ablation study on intent recognition under different configurations.

Setting	Accuracy (%)
Full Input (ours)	88.89
w/o vision	58.89
w/o audio	11.11
w/o paralinguistics	50.56

486 from-scratch counterpart only attains $\sim 30\%$ after 20k steps
 487 and even degrades at 30k steps. This highlights that pre-
 488 training on OmniAction providing strong generalizable pri-
 489 ors for fast and stable adaptation with minimal fine-tuning.
 490

491 **Can Cascaded Pipelines Handle Contextual Instruc-
 492 tions Effectively with High-level Planner?** We com-
 493 pare RoboOmni with planner-controller pipelines, where
 494 Qwen2.5-Omni-3B serves as the planner and text-based
 495 VLAs as controllers, shown in Fig. 9, evaluated on the
 496 OmniAction-LIBERO benchmark. RoboOmni outperforms all
 497 cascaded pipelines, demonstrating the advantage of end-to-
 498 end speech-action learning: jointly modeling audio, vision,
 499 and action avoids the lossy planner-controller interface and
 500 preserves intent fidelity. Cascaded pipelines perform worse
 501 due to (1) semantic drift, as planners are not co-trained
 502 with VLAs and generate commands controllers cannot ex-
 503 ecute, and (2) poor handling of speaker identity, since Qwen-
 504 Omni fails to capture paralinguistic cues, leading to the weakest
 505 results on *Identity Cues*.
 506

507 **Does End-to-End Modeling Improve Inference Effi-
 508 ciency?** To assess whether end-to-end modeling improves
 509 runtime efficiency, we measure per-inference latency on a
 510 single RTX 4090 GPU. Using ASR + OpenVLA as the
 511 baseline ($1.0\times$), we find that other cascaded pipelines (ASR
 512 + Nora: $1.02\times$, ASR + π_0 : $0.96\times$) incur similar costs since
 513 the ASR stage dominates computation. In contrast, RoboOmni
 514 runs at $0.49\times$ latency, showing that end-to-end
 515 audio-action modeling eliminates the ASR bottleneck and
 516 substantially improves efficiency (Fig. 10).
 517

518 **Failure Analysis** A task is counted as successful only when robots
 519 both *infers the correct intent* and *executes the action*. To understand
 520 where failures occur, we categorize all error cases of real-world ex-
 521 periment into nine interpretable types spanning intention-level and
 522 execution-level errors. As shown in Fig. 11, 42.6% intention-related
 523 failures mainly come from identity attribution errors, sentiment cue
 524 misreading. The remaining 57.4% cases arise from execution issues,
 525 dominated by grasp failures, followed by pose estimation drift and
 526 reachability constraints. This breakdown clarifies RoboOmni’s cur-
 527 rent bottlenecks and highlights where future improvements in audio
 528 grounding and low-level control are most needed.
 529

530 6 CONCLUSION

531 In conclusion, we introduced cross-modal contextual instructions, a new paradigm for robotic ma-
 532 nipulation where robots proactively infer user intent from multimodal context—vision, envi-
 533 ronmental sounds, and speech—rather than passively awaiting explicit commands. Building on this
 534 setting, we proposed RoboOmni, a Perceiver–Thinker–Talker–Executor framework built on end-to-
 535 end omni-modal LLMs that integrates auditory and visual inputs, unifying intention recognition,
 536 confirmation, and action execution. To address data scarcity, we constructed OmniAction, a large-
 537 scale corpus of 140k episodes with diverse speakers, event sounds, and backgrounds, together with
 538 OmniAction-LIBERO for simulation-based evaluation. Comprehensive experiments in both simu-
 539 lation and the real world demonstrate that RoboOmni exhibits emerging cognitive intelligence, sig-
 540 nificantly outperforming text- and ASR-based baselines in success rate, inference speed, proactive
 541 assistance, and intention recognition.

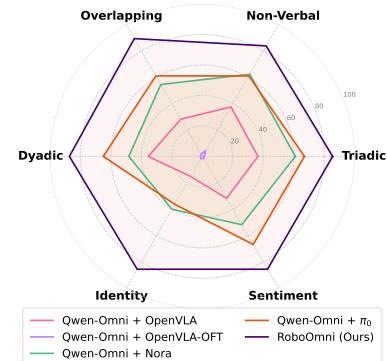


Figure 9: Comparison between end-to-end RoboOmni and cascaded planner-controller pipelines across six contextual instruction types.

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

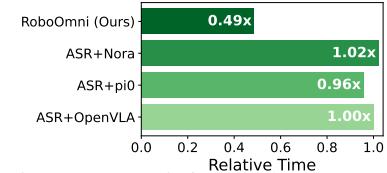


Figure 10: Per-inference latency comparing cascaded pipelines and RoboOmni.

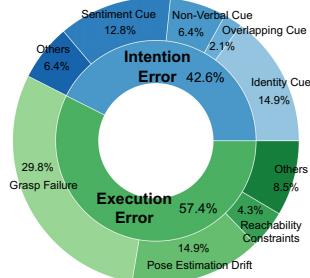


Figure 11: Failure analysis of real-world experiments.

540
541
ETHICS STATEMENT

542 This work equips robots with extended contextual instructions, including family speech dialogues,
 543 environmental sounds, and visual observations, to enable more natural multimodal interaction.
 544 While such data enhances robotic intelligence, we recognize the importance of protecting user pri-
 545 vacy when scaling to broader deployments. All collected dialogue and audio data are restricted to
 546 academic research use only and will not be shared for other purposes. Future applications must
 547 carefully manage privacy, consent, and secure handling of user interactions to ensure compliance
 548 with ethical and legal standards.

549
550
REPRODUCIBILITY STATEMENT

551
552 We will open-source the OmniAction dataset, model checkpoints, and training code to facilitate
 553 further research in this field. Training details are described in Sec. 5.1, and the complete OmniAction
 554 data construction process is documented in Sec. 3 and App. C.

555
556
REFERENCES

557
558 Gpt-4v(ision) system card. 2023. URL <https://api.semanticscholar.org/>
 559 CorpusID:263218031.
 560
 561 OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 562 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 563 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff
 564 Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
 565 donoff, Oleg Boiko, Made laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
 566 Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
 567 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
 568 Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
 569 Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
 570 Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
 571 Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim'on Posada Fish-
 572 man, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
 573 Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
 574 Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Har-
 575 rris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Pe-
 576 ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
 577 Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jo-
 578 moto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitschei-
 579 der, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim,
 580 Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz
 581 Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
 582 Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Li, Rachel
 583 Lim, Molly Lin, Stephanie Lin, Matheusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
 584 Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Mar-
 585 tlin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey,
 586 Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, An drey
 587 Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu,
 588 Mira Murati, Oleg Murk, David M'ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
 589 Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O'Keefe, Jakub W. Pa-
 590 chocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish,
 591 Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
 592 Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
 593 Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
 594 Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 595 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders,
 596 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 597 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,

594 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 595 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 596 Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 597 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer'on Uribe, Andrea Vallone, Arun Vi-
 598 jayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
 599 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
 600 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
 601 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing
 602 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 603 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. 2023. URL
 604 <https://api.semanticscholar.org/CorpusID:257532815>.

605 AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng,
 606 Shenyuan Gao, Xindong He, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang Li, Jialu
 607 Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu, Yixuan Pan,
 608 Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen, Chengshi
 609 Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao Wang,
 610 Dafeng Wei, Chengan Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang, Maoqing
 611 Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, and Jianchao
 612 Zhu. Agibot world colosseo: A large-scale manipulation platform for scalable and intelligent
 613 embodied systems. *CoRR*, abs/2503.06669, 2025. doi: 10.48550/ARXIV.2503.06669. URL
 614 <https://doi.org/10.48550/arXiv.2503.06669>.

615 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 616 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
 617 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
 618 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
 619 *CoRR*, abs/2502.13923, 2025a. doi: 10.48550/ARXIV.2502.13923. URL <https://doi.org/10.48550/arXiv.2502.13923>.

620 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 621 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
 622 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
 623 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
 624 *ArXiv*, abs/2502.13923, 2025b. URL <https://api.semanticscholar.org/CorpusID:276449796>.

625 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel M.
 626 Salz, Maxim Neumann, Ibrahim M. Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello,
 627 Thomas Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey A.
 628 Gritsenko, Neil Houlsby, Manoj Kumar, Keran Rong, Julian Martin Eisenschlos, Rishabh
 629 Kabra, Matthias Bauer, Matko Bovsnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender,
 630 Ioana Bica, Ivana Balazevic, Joan Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong,
 631 Radu Soricut, Jeremiah Harmsen, and Xiao-Qi Zhai. Paligemma: A versatile 3b vlm for
 632 transfer. *ArXiv*, abs/2407.07726, 2024. URL <https://api.semanticscholar.org/CorpusID:271088378>.

633 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
 634 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
 635 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
 636 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
 637 language-action flow model for general robot control. *CoRR*, abs/2410.24164, 2024. doi: 10.
 638 48550/ARXIV.2410.24164. URL <https://doi.org/10.48550/arXiv.2410.24164>.

639 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 640 Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian
 641 Ichter, Alex Ipan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
 642 nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
 643 sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
 644 Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi,

648 Kevin Sayed, Jaspair Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong T. Tran, Vin-
 649 cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
 650 and Brianna Zitkovich. RT-1: robotics transformer for real-world control at scale. In Kostas E.
 651 Bekris, Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), *Robotics: Science and Systems XIX*,
 652 *Daegu, Republic of Korea, July 10-14, 2023*, 2023. doi: 10.15607/RSS.2023.XIX.025. URL
 653 <https://doi.org/10.15607/RSS.2023.XIX.025>.

654 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
 655 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Intern
 656 vl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. 2024
 657 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 24185–24198,
 658 2023. URL <https://api.semanticscholar.org/CorpusID:266521410>.

659 Zhihao Du, Changfeng Gao, Yuxuan Wang, Fan Yu, Tianyu Zhao, Hao Wang, Xiang Lv, Hui Wang,
 660 Xian Shi, Keyu An, et al. Cosyvoice 3: Towards in-the-wild speech generation via scaling-up and
 661 post-training. *arXiv preprint arXiv:2505.17589*, 2025.

662 Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
 663 Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang Chen, Quan
 664 Vuong, Ted Xiao, Pannag R. Sanketi, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An
 665 open-source generalist robot policy. In Dana Kulic, Gentiane Venture, Kostas E. Bekris, and
 666 Enrique Coronado (eds.), *Robotics: Science and Systems XX, Delft, The Netherlands, July 15-19*,
 667 2024, 2024. doi: 10.15607/RSS.2024.XX.090. URL <https://doi.org/10.15607/RSS.2024.XX.090>.

668 Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber. Connectionist
 669 temporal classification: labelling unsegmented sequence data with recurrent neural networks.
 670 *Proceedings of the 23rd international conference on Machine learning*, 2006. URL <https://api.semanticscholar.org/CorpusID:9901844>.

671 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 672 Composable 3d value maps for robotic manipulation with language models. In Jie Tan, Marc Tou-
 673 ssaint, and Kourosh Darvish (eds.), *Conference on Robot Learning, CoRL 2023, 6-9 November*
 674 *2023, Atlanta, GA, USA*, volume 229 of *Proceedings of Machine Learning Research*, pp. 540–562.
 675 PMLR, 2023. URL <https://proceedings.mlr.press/v229/huang23b.html>.

676 Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal
 677 reasoning of relational keypoint constraints for robotic manipulation. In Pulkit Agrawal, Oliver
 678 Kroemer, and Wolfram Burgard (eds.), *Conference on Robot Learning, 6-9 November 2024*,
 679 *Munich, Germany*, volume 270 of *Proceedings of Machine Learning Research*, pp. 4573–4602.
 PMLR, 2024. URL <https://proceedings.mlr.press/v270/huang25g.html>.

680 Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U-Xuan Tan, Navonil Majumder,
 681 and Soujanya Poria. Nora: A small open-sourced generalist vision language action model for
 682 embodied tasks. *ArXiv*, abs/2504.19854, 2025. URL <https://api.semanticscholar.org/CorpusID:278165428>.

683 OpenAI Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 684 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mkadry, Alex
 685 Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alexander Kirillov,
 686 Alex Nichol, Alex Paino, Alex Renzin, Alexandre Passos, Alexander Kirillov, Alexi Christakis,
 687 Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
 688 Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
 689 Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
 690 loch, An drey Mishchenko, Angela Baek, Angela Jiang, An toine Pelisse, Antonia Woodford,
 691 Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, B. Ghor-
 692 bani, Ben Leimberger, Ben Rossen, Benjamin Sokolowsky, Ben Wang, Benjamin Zweig, Beth
 693 Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
 694 Brandon Walkin, Brendan Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
 695 Camillo Lugaressi, Carroll L. Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
 696 Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng

702 Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 703 Christine Choi, Christine McLeavey, Chris Hesse, Claudia Fischer, Clemens Winter, Coley Czar-
 704 necki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel
 705 Levin, Daniel Levy, David Carr, David Farhi, David Mély, David Robinson, David Sasaki, Denny
 706 Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Phong Duc Nguyen, Duncan Findlay, Edede
 707 Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
 708 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
 709 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel
 710 Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Hai-Biao Bao,
 711 Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Hee woo Jun,
 712 Hendrik Kirchner, Henrique Pondé de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
 713 Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai
 714 Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Ja-
 715 cob Menick, Jakub W. Pachocki, James Aung, James Betker, James Crooks, James Lennon,
 716 Jamie Ryan Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
 717 Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
 718 Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quiñonero Candela, Joe Beutler, Joe
 719 Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
 720 Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
 721 Joshua Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
 722 Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singh, Katy Shi, Kavin Karthik, Kayla Wood,
 723 Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu,
 724 Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren
 725 Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamit-
 726 suka, Lilian Weng, Lindsay McCallum, Lindsey Held, Ouyang Long, Louis Feuvrier, Lu Zhang,
 727 Lukasz Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Mad-
 728 die Simens, Madeleine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray,
 729 Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Ma teusz Litwin, Matthew Zeng, Max John-
 730 son, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Ali Yatbaz, Mengxue Yang, Mengchao
 731 Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael
 732 Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Castro, Mikhail
 733 Pavlov, Miles Brundage, Miles Wang, Mina Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
 734 Yesildal, Nacho Soto, Natalia Gimelshein, Na talie Cone, Natalie Staudacher, Natalie Summers,
 735 Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nikolas A. Tezak,
 736 Niko Felix, Nithanth Kudige, Nitish Shirish Keskar, Noah Deutsch, Noel Bundick, Nora Puck-
 737 ett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier
 738 Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter
 739 Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
 740 Pronin, Phil Tillet, Prafulla Dhariwal, Qim ing Yuan, Rachel Dias, Rachel Lim, Rahul Arora,
 741 Rajan Troll, Randall Lin, Raphael Gontijo Lopes, Raul Puri, Reah Miyara, Reimar H. Leike,
 742 Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan
 743 Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby
 744 Chen, Ruslan Ramilevich Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
 745 Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
 746 Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
 747 Jomoto, Shirong Wu, Shuaiqi Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Cof-
 748 fey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
 749 Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunningham, Thomas Degry, Thomas
 750 Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
 751 Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
 752 Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
 753 Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba,
 754 Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yu-
 755 jia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card. *ArXiv*, abs/2410.21276, 2024. URL
<https://api.semanticscholar.org/CorpusID:273662196>.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, Manuel Y. Galliker, Dibya Ghosh,
 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin

756 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 757 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 758 Quan Vuong, Homer Rich Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky.
 759 π 0.5: a vision-language-action model with open-world generalization. *ArXiv*, abs/2504.16054,
 760 2025. URL <https://api.semanticscholar.org/CorpusID:277993634>.

761
 762 Joshua Jones, Oier Mees, Carmelo Sferrazza, Kyle Stachowicz, Pieter Abbeel, and Sergey Levine.
 763 Beyond sight: Finetuning generalist robot policies with heterogeneous sensors via language
 764 grounding. 2025 *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 5961–
 765 5968, 2025. URL <https://api.semanticscholar.org/CorpusID:275357963>.

766
 767 Muhamamd Haris Khan, Selamawit Asfaw, Dmitrii Iarchuk, Miguel Altamirano Cabrera, Luis
 768 Moreno, Issatay Tokmurziyev, and Dzmitry Tsetserukou. Shake-vla: Vision-language-action
 769 model-based system for bimanual robotic manipulations and liquid mixing. 2025 *20th ACM/IEEE*
 770 *International Conference on Human-Robot Interaction (HRI)*, pp. 1393–1397, 2025. URL
 771 <https://api.semanticscholar.org/CorpusID:275470965>.

772
 773 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 774 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 775 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
 776 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
 777 woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
 778 Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan-
 779 nagi R. Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
 780 Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Bai-
 781 jal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
 782 Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovan Jack-
 783 son, Charlotte Le, Yunshuang Li, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchan-
 784 dani, Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor Son,
 785 Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin,
 786 Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta,
 787 Abhishek Gupta, Dinesh Jayaraman, Joseph J. Lim, Jitendra Malik, Roberto Martín-Martín, Sub-
 788 ramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu,
 789 Thomas Kollar, Sergey Levine, and Chelsea Finn. DROID: A large-scale in-the-wild robot ma-
 790 nipulation dataset. In Dana Kulic, Gentiane Venture, Kostas E. Bekris, and Enrique Coronado
 791 (eds.), *Robotics: Science and Systems XX, Delft, The Netherlands, July 15–19, 2024*, 2024. doi:
 792 10.15607/RSS.2024.XX.120. URL <https://doi.org/10.15607/RSS.2024.XX.120>.

793
 794 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 795 Rafael Rafailov, Ethan Paul Foster, Pannag R. Sanketi, Quan Vuong, Thomas Kollar, Benjamin
 796 Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
 797 An open-source vision-language-action model. In Pulkit Agrawal, Oliver Kroemer, and Wolfram
 798 Burgard (eds.), *Conference on Robot Learning, 6–9 November 2024, Munich, Germany*, volume
 799 270 of *Proceedings of Machine Learning Research*, pp. 2679–2713. PMLR, 2024. URL <https://proceedings.mlr.press/v270/kim25c.html>.

800
 801 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimiz-
 802 ing speed and success. *CoRR*, abs/2502.19645, 2025. doi: 10.48550/ARXIV.2502.19645. URL
 803 <https://doi.org/10.48550/arXiv.2502.19645>.

804
 805 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 806 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer.
 807 *Trans. Mach. Learn. Res.*, 2025, 2025. URL <https://openreview.net/forum?id=zKv8qULV6n>.

808
 809 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 810 Sicheng Xu, Yizhong Zhang, Xiaofan Wang, Bei Liu, Jianlong Fu, Jianmin Bao, Dong Chen,
 811 Yuanchun Shi, Jiaolong Yang, and Baining Guo. Cogact: A foundational vision-language-action
 812 model for synergizing cognition and action in robotic manipulation. *ArXiv*, abs/2411.19650,
 813 2024a. URL <https://api.semanticscholar.org/CorpusID:274423241>.

810 Shunlei Li, Jin Wang, Rui Dai, Wanyu Ma, Wing Yin Ng, Yingbai Hu, and Zheng Li. Robonurse-
 811 vla: Robotic scrub nurse system based on vision-language-action model. *ArXiv*, abs/2409.19590,
 812 2024b. URL <https://api.semanticscholar.org/CorpusID:272987845>.

813 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chi-Hou Cheang,
 814 Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation
 815 models as effective robot imitators. *ArXiv*, abs/2311.01378, 2023. URL <https://api.semanticscholar.org/CorpusID:264935429>.

816 Fanqi Lin, Ruiqian Nai, Yingdong Hu, Jiacheng You, Junming Zhao, and Yang Gao. Onetwovla:
 817 A unified vision-language-action model with adaptive reasoning. *ArXiv*, abs/2505.11917, 2025.
 818 URL <https://api.semanticscholar.org/CorpusID:278740010>.

819 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone.
 820 LIBERO: benchmarking knowledge transfer for lifelong robot learning. In Alice Oh, Tris-
 821 tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 822 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
 823 formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
 824 - 16, 2023*, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/8c3c666820ea055a77726d66fc7d447f-Abstract-Datasets_and_Benchmarks.html.

825 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *ArXiv*,
 826 abs/2304.08485, 2023b. URL <https://api.semanticscholar.org/CorpusID:258179774>.

827 Zeyi Liu, Cheng Chi, Eric Cousineau, Naveen Kuppuswamy, Benjamin Burchfiel, and Shuran
 828 Song. Maniwav: Learning robot manipulation from in-the-wild audio-visual data. *arXiv preprint
 829 arXiv:2406.19464*, 2024.

830 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
 831 Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with
 832 vision, language, audio, and action. *2024 IEEE/CVF Conference on Computer Vision and Pattern
 833 Recognition (CVPR)*, pp. 26429–26445, 2023. URL <https://api.semanticscholar.org/CorpusID:266573555>.

834 Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
 835 language-action models for embodied ai. *ArXiv*, abs/2405.14093, 2024. URL <https://api.semanticscholar.org/CorpusID:269983009>.

836 OpenMOSS. Text to spoken dialogue generation. 2025.

837 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khali-
 838 dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Ass-
 839 ran, Nicolas Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li,
 840 Ishan Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou,
 841 Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning ro-
 842 bust visual features without supervision. *ArXiv*, abs/2304.07193, 2023. URL <https://api.semanticscholar.org/CorpusID:258170077>.

843 Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexan-
 844 der Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, Antonin Raffin, Ayzaan Wahid, Ben
 845 Burgess-Limerick, Beomjoon Kim, Bernhard Schölkopf, Brian Ichter, Cewu Lu, Charles Xu,
 846 Chelsea Finn, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Chuer Pan, Chuyuan
 847 Fu, Coline Devin, Danny Driess, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dmitry Kalash-
 848 nikov, Dorsa Sadigh, Edward Johns, Federico Ceola, Fei Xia, Freek Stulp, Gaoyue Zhou, Gau-
 849 rav S. Sukhatme, Gautam Salhotra, Ge Yan, Giulio Schiavi, Hao Su, Haoshu Fang, Haochen
 850 Shi, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer Rich Walke, Hongjie Fang,
 851 Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jaehyung Kim, Jan Schneider, Jas-
 852 mine Hsu, Jeannette Bohg, Jeff Bingham, Jiajun Wu, Jialin Wu, Jianlan Luo, Jiayuan Gu,
 853 Jie Tan, Jihoon Oh, Jitendra Malik, Jonathan Tompson, Jonathan Yang, Joseph J. Lim, João
 854 Silvério, Junhyek Han, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana

864 Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
 865 Zhang, Keyvan Majd, Krishan Rana, Krishna Parasuram Srinivasan, Lawrence Yunliang Chen,
 866 Lerrel Pinto, Liam Tan, Lionel Ott, Lisa Lee, Masayoshi Tomizuka, Maximilian Du, Michael
 867 Ahn, Mingtong Zhang, Mingyu Ding, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim,
 868 Muhammad Zubair Irshad, Naoaki Kanazawa, Nicklas Hansen, Nicolas Manfred Otto Heess,
 869 Nikhil J. Joshi, Niko Suenderhauf, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier
 870 Mees, Oliver Kroemer, Pannag R. Sanketi, Paul Wohlhart, Peng Xu, Pierre Sermanet, Priya
 871 Sundaresan, Quan Ho Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Russell Mendonca, Rutav
 872 Shah, Ryan Hoque, Ryan C. Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Sherry
 873 Moore, Shikhar Bahl, Shivin Dass, Shuran Song, Sichun Xu, Siddhant Haldar, Simeon Adebola,
 874 Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Sudeep Dasari,
 875 Suneel Belkhale, Takayuki Osa, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Tianhe Yu,
 876 Tianli Ding, Todor Davchev, Tony Zhao, Travis Armstrong, Trevor Darrell, Vidhi Jain, Vincent
 877 Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong Wang, Xinghao
 878 Zhu, Xuanlin Li, Yao Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Ying Xu, Yixuan Wang,
 879 Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yueh hua Wu, Yujin Tang, Yuke
 880 Zhu, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zhuo Xu, and Zichen Jeff Cui. Open x-
 881 embodiment: Robotic learning datasets and rt-x models. *ArXiv*, abs/2310.08864, 2023. URL
 882 <https://api.semanticscholar.org/CorpusID:263626099>.

883 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 884 Chelsea Finn, and Sergey Levine. FAST: efficient action tokenization for vision-language-action
 885 models. *CoRR*, abs/2501.09747, 2025. doi: 10.48550/ARXIV.2501.09747. URL <https://doi.org/10.48550/arXiv.2501.09747>.

886 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yani Ding, Zhigang Wang, Ji-
 887 ayuan Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvla: Exploring spatial representa-
 888 tions for visual-language-action model. *ArXiv*, abs/2501.15830, 2025. URL <https://api.semanticscholar.org/CorpusID:275921131>.

889 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 890 Robust speech recognition via large-scale weak supervision. In Andreas Krause, Emma Brunskill,
 891 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International
 892 Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, vol-
 893 ume 202 of *Proceedings of Machine Learning Research*, pp. 28492–28518. PMLR, 2023. URL
 894 <https://proceedings.mlr.press/v202/radford23a.html>.

895 Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
 896 Tanner, Anna Walling, Haohuan Wang, Niccolò Fusai, Adrian Li-Bell, Danny Driess, Lachy
 897 Groom, Sergey Levine, and Chelsea Finn. Hi robot: Open-ended instruction following with hi-
 898 erarchical vision-language-action models. *CoRR*, abs/2502.19417, 2025. doi: 10.48550/ARXIV.
 899 2502.19417. URL <https://doi.org/10.48550/arXiv.2502.19417>.

900 Haoming Song, Delin Qu, Yuanqi Yao, Qizhi Chen, Qi Lv, Yiwen Tang, Modi Shi, Guanghui
 901 Ren, Maoqing Yao, Bin Zhao, Dong Wang, and Xuelong Li. Hume: Introducing system-
 902 2 thinking in visual-language-action model. *ArXiv*, abs/2505.21432, 2025a. URL <https://api.semanticscholar.org/CorpusID:278911967>.

903 Wenzuan Song, Jiayi Chen, Wenxue Li, Xu He, Han Zhao, Can Cui, Pengxiang Ding, Shiyan
 904 Su, Feilong Tang, Xuelian Cheng, Donglin Wang, Zongyuan Ge, Xinhua Zheng, Zhe Liu, Hes-
 905 heng Wang, and Haoang Li. Rationalvla: A rational vision-language-action model with dual
 906 system. *ArXiv*, abs/2506.10826, 2025b. URL <https://api.semanticscholar.org/CorpusID:279318281>.

907 Octo Model Team, Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees,
 908 Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Pan-
 909 ntag R. Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
 910 Octo: An open-source generalist robot policy. *ArXiv*, abs/2405.12213, 2024. URL <https://api.semanticscholar.org/CorpusID:266379116>.

918 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 919 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’élien Rodriguez, Ar-
 920 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation lan-
 921 guage models. *ArXiv*, abs/2302.13971, 2023a. URL <https://api.semanticscholar.org/CorpusID:257219404>.

923 Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
 924 Niko lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
 925 Blecher, Cris tian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
 926 des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
 927 thony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
 928 dian Khabsa, Isabel M. Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
 929 Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
 930 Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
 931 Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subrama-
 932 nian, Xia Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu
 933 Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melissa Hall Melanie Kambadur, Sharan Narang,
 934 Aur’élien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open
 935 foundation and fine-tuned chat models. *ArXiv*, abs/2307.09288, 2023b. URL <https://api.semanticscholar.org/CorpusID:259950998>.

937 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 938 Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
 939 Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
 940 Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
 941 need. *CoRR*, abs/2409.18869, 2024. doi: 10.48550/ARXIV.2409.18869. URL <https://doi.org/10.48550/arXiv.2409.18869>.

943 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
 944 modal lilm. *ArXiv*, abs/2309.05519, 2023. URL <https://api.semanticscholar.org/CorpusID:261696650>.

947 Zhipeng Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 948 streaming. *ArXiv*, abs/2408.16725, 2024. URL <https://api.semanticscholar.org/CorpusID:272146286>.

951 Haifeng Xu, Chunwen Li, Xiaohu Yuan, Tao Zhi, and Huaping Liu. A simulated dataset for proactive
 952 robot task inference from streaming natural language dialogues. *Scientific Data*, 12(1):1405,
 953 2025a.

954 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang,
 955 Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni
 956 technical report. *ArXiv*, abs/2503.20215, 2025b. URL <https://api.semanticscholar.org/CorpusID:277322543>.

959 Nobuhide Yamakawa, Toru Takahashi, Tetsuro Kitahara, Tetsuya Ogata, and Hiroshi G Okuno.
 960 Environmental sound recognition for robot audition using matching-pursuit. In *International
 961 Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems*, pp.
 962 1–10. Springer, 2011.

963 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 964 image pre-training. 2023 *IEEE/CVF International Conference on Computer Vision (ICCV)*,
 965 pp. 11941–11952, 2023. URL <https://api.semanticscholar.org/CorpusID:257767223>.

968 Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin
 969 Yuan, Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yu-Gang Jiang,
 970 and Xipeng Qiu. Anygpt: Unified multimodal lilm with discrete sequence modeling. In *An-
 971 nual Meeting of the Association for Computational Linguistics*, 2024. URL <https://api.semanticscholar.org/CorpusID:267750101>.

972 Wei Zhao, Pengxiang Ding, Min Zhang, Zhefei Gong, Shuanghao Bai, Han Zhao, and Donglin
 973 Wang. Vlas: Vision-language-action model with speech instructions for customized robot ma-
 974 nipulation. *ArXiv*, abs/2502.13508, 2025. URL <https://api.semanticscholar.org/CorpusID:276450134>.
 975

976 Xufeng Zhao, Mengdi Li, Cornelius Weber, Muhammad Burhan Hafez, and Stefan Wermter. Chat
 977 with the environment: Interactive multimodal perception using large language models. In *2023*
 978 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 3590–3596.
 979 IEEE, 2023.
 980

981 Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuan-
 982 fei Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, Zhiqian Qi, Yitao Liang, Yuanpei Chen,
 983 and Yaodong Yang. A survey on vision-language-action models: An action tokenization per-
 984 spective. *ArXiv*, abs/2507.01925, 2025. URL <https://api.semanticscholar.org/CorpusID:280147327>.
 985

986 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 987 Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong T. Tran, Radu Soricut,
 988 Anikait Singh, Jaspia Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
 989 Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk Michalewski, Yao
 990 Lu, Sergey Levine, Lisa Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalash-
 991 nikov, Ryan Julian, Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Herzog,
 992 Karol Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete Florence, Chelsea Finn, Ku-
 993 mar Avinava Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin Choromanski, Xi Chen, Yev-
 994 gen Chebotar, Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and
 995 Kehang Han. RT-2: vision-language-action models transfer web knowledge to robotic control.
 996 In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.), *Conference on Robot Learning, CoRL*
 997 *2023, 6-9 November 2023, Atlanta, GA, USA*, volume 229 of *Proceedings of Machine Learn-
 998 ing Research*, pp. 2165–2183. PMLR, 2023. URL <https://proceedings.mlr.press/v229/zitkovich23a.html>.
 999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

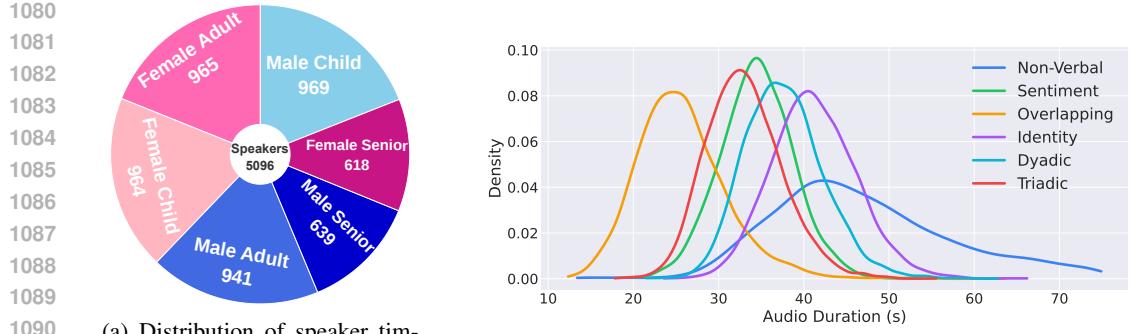
1022

1023

1024

1025

1026 **A LLM USAGE**
1027
10281029 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
1030 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
1031 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
1032 grammar checking, and enhancing the overall flow of the text.1033 It is important to note that the LLM was not involved in the ideation, research methodology, or
1034 experimental design. All research concepts, ideas, and analyses were developed and conducted by
1035 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
1036 of the paper, with no involvement in the scientific content or data analysis.1037 The authors take full responsibility for the content of the manuscript, including any text generated
1038 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
1039 and does not contribute to plagiarism or scientific misconduct.1040
1041 **B DETAILED RELATED WORK**
1042
10431044 **Omni-Modal LLMs** The rapid development of Large Language Models (LLMs) Achiam et al.
1045 (2023); Touvron et al. (2023a) has spurred progress in multimodal extensions. Multimodal LLMs
1046 (MLLMs) (202, 2023; Bai et al., 2025a; Liu et al., 2023b; Chen et al., 2023) augment text-based
1047 reasoning with visual perception, enabling instruction following grounded in images. Early attempts
1048 toward omni-modality relied on modular pipelines that separately process speech and vision (Wu
1049 et al., 2023; Zhan et al., 2024; Lu et al., 2023), which makes temporal alignment across modalities
1050 difficult and limits accurate understanding of situated semantics. More recent work has shifted
1051 toward end-to-end omni-modal models (Hurst et al., 2024; Xu et al., 2025b; Xie & Wu, 2024), which
1052 can jointly model speech, vision, and text in a unified representation. However, these models remain
1053 oriented toward linguistic outputs (text or audio) and do not generate embodied actions, restricting
1054 their applicability in robotics. In contrast, our work brings omni-modality into the embodied domain
1055 by introducing RoboOmni, an end-to-end framework that integrates speech, environmental sounds,
1056 visual context, and text for both action execution and proactive human–robot interaction.1057
1058
1059
1060
1061 **Vision-Language-Action Model** Recent studies have explored the application of large Vi-
1062 sion–Language Models (VLMs) in robotics (Ma et al., 2024; Zhong et al., 2025), leveraging their
1063 ability to align linguistic instructions with visual scenes. Building on large-scale demonstrations,
1064 recent works develop end-to-end Vision–Language–Action (VLA) models that map vision and lan-
1065 guage to actions Brohan et al. (2023); Zitkovich et al. (2023); Li et al. (2023); Team et al. (2024);
1066 Kim et al. (2024; 2025); Black et al. (2024); Li et al. (2024a); Qu et al. (2025), but these typically
1067 assume short, explicit commands and fail on compositional or context-dependent tasks. Cascaded
1068 or hierarchical extensions (Intelligence et al., 2025; Shi et al., 2025; Song et al., 2025b; Lin et al.,
1069 2025; Song et al., 2025a) decompose instructions into sub-goals, yet remain fragmented and rigid,
1070 and neither paradigm captures *contextual instructions*—implicit intent conveyed by dialogue, tone,
1071 or visual context, which is common in human–robot interaction.1072 Additionally, most prior studies further treat text as the main channel, using ASR/TTS cascades to
1073 bridge speech and action (Shi et al., 2025; Khan et al., 2025; Li et al., 2024b). Such pipelines discard
1074 paralinguistic cues (e.g., emotion, speaker identity), add latency, and disrupt temporal alignment
1075 with vision. A few recent efforts (Zhao et al., 2025) extend VLAs to handle direct speech-based
1076 commands, yet these remain restricted to atomic or complex speech instructions and can only output
1077 actions, without the ability to respond through speech. In contrast, our work introduces an end-
1078 to-end omni-modal framework that directly integrates speech, environmental sounds, vision, and
1079 text, enabling both action execution and cross-modal contextual instruction following for natural
human–robot interaction.



(a) Distribution of speaker timbres across six demographic categories.

(b) Distribution of audio segment lengths across contextual instruction types.

Figure 12: Speaker and audio segment lengths statistics in OmniAction..

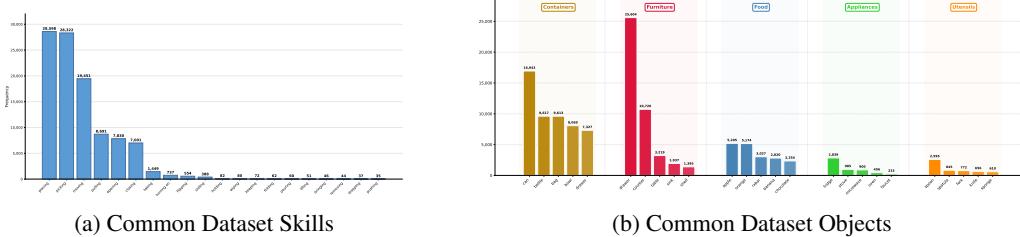


Figure 13: The OmniAction dataset contains a great diversity of skills and target objects.

C DETAILS OF OMNIACTION

C.1 DATA STATICS

From the Open-X dataset, we filter out a subset of **74,645 base trajectories**, which are then expanded into **141,162 multimodal episodes**.

To closely approximate real conversational scenarios, **OmniAction** incorporates a diverse set of speakers covering **5,096 distinct timbres**. These span six demographic categories: male senior, female senior, male adult, female adult, male child, and female child. Fig. 12a illustrates the overall distribution of speaker timbres.

1116 In terms of contextual instruction, Fig. 12b presents the distribution of audio segment lengths across
1117 different types of instructions. The majority of clips range from **10 to 80 seconds**. Overlapping
1118 dialogues tend to be shorter in duration, while non-verbal sequences are longer due to the insertion
1119 of sound events.

1120 On the action-execution side, we applied natural language processing tools to the **70k trajectories** in
 1121 OmniAction and extracted verb–noun pairs from the original instructions. This yields a vocabulary
 1122 of **112 unique skills** and **748 manipulable objects**, as summarized in Fig. 13.

C.2 DATA EXAMPLE

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Audio Type: Non-Verbal Cues**Original Instruction:**

Move the pan to the right of the bottle and banana.

Conversation (Transcripts):

Daughter: Dad, can you help me with this? I'm not sure where to put the pan.

Dad: Sure, where do you think it should go?

Daughter: I think it should be moved, but I'm not sure where.

Dad: If you hear the ceramic collision, move the pan to the right of the bottle and banana. If you hear the door knob noise, leave it where it is.

Daughter: Got it. Let's see what happens.

Robot: "Should I move the orange pan to the right of the bottle and banana on the countertop?"

Dad: Yes, that's exactly what I want you to do right now, thank you!

Robot: Alright, I'll move the orange pan to the right of the bottle and banana. [ACT]

Audio Type: Sentiment Cues**Original Instruction:**

put knife on cutting board

Conversation (Transcripts):

Mom: Hmm, there are a few interesting items here. We could pick up that green chip bag, the sponge, or even the Red Bull can. What do you think we should go for first?

Son: Hmm... I don't think the sponge is what we're looking for—it's more for cleaning, right?

Mom Ah, not quite sure about the Red Bull either... It's small and doesn't seem to fit with what we need now.

Son: Let me think... The chip bag looks like the most likely option here.

Mom: Hmm, I see what you mean. Alright, let's go with that one.

Robot: Should I pick up the green jalapeno chip bag for you?

Mom: Yes, please pick up the green jalapeno chip bag.

Robot: OK, I will do that. [ACT]

Audio Type: Identity Cues**Original Instruction:**

place the silver pot on the yellow napkin

Conversation (Transcripts):

Grandpa: Ah, it's good to see everything organized here. I know my little grandson loves fiddling with things, especially the top drawer. And your dad, well, he keeps saying he needs his tools from the bottom one.

Father: Haha, you know me too well, Dad. The bottom drawer has all my essentials, but I guess I could wait.

Grandpa: Well, patience runs in the family, doesn't it?

Son: Grandpa, can I check the top drawer first? Please? It's my favorite spot!

Robot: Do you need assistance to open the top drawer?

Father: Uh, yeah, sure, that'd be great!

Robot: Alright. I will open the top drawer for you. [ACT]

Audio Type: Overlapping Cues**Original Instruction:**

put lid on pot or pan

Conversation (Transcripts):

Mother: Hey, did you see the lid sitting over there?

Son: Yeah, should we use it for the pot?

Mother: I was thinking about covering the pan instead [Overlap] wait, the pot? [Overlap] Son: Yes, the pot! It's right there.

Mother: Oh, okay, you're right. Let's cover the pot then.

Son: Haha, I knew you'd agree!

Robot: Do you need me to put the lid on the pot?

Mother: Yes, please put the lid on the pot.

Robot: OK, I will do that. [ACT]

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

Audio Type: Dyadic Dialogue**Original Instruction:**
Move pot onto the towel**Conversation (Transcripts):**

Dad: Oh, look at that pot sitting there.
 Mom: Yeah, it's right next to the towel.
 Dad: Hmm, if we move it onto the towel, it'll be easier to clean later.
 Mom: Good idea, let me handle that.
 Robot: Do you need me to move the pot onto the towel?
 Mom: Uh, yeah, that'd be great. It's better to keep it there to avoid scratches.
 Robot: Alright, I will move the pot onto the towel now. [ACT]

Audio Type: Triadic Dialogue**Original Instruction:**
Place the brush on top of orange cloth**Conversation (Transcripts):**

Son: Hey, Lily, look at that steak meat over there!
 Daughter: Oh, yeah! It's just sitting there like it's waiting for a prince to rescue it.
 Grandpa: You two are hilarious. I guess the 'prince' could be me, huh?
 Son: Go for it, Grandpa. You've got that royal touch.
 Grandpa: Alright, kids, I'll pick it up and get it ready for dinner. Can't let a good steak go to waste!
 Robot: Hey, do you need me to pick up the red ball for you?
 Daughter: Uh, no, we don't need that right now!
 Robot: Alright, how about I pick up the steak meat instead?
 Daughter: Yeah, that's what we're looking for!
 Robot: OK. I will perform operation pick up the steak meat now. [ACT]

C.3 AUDIO PERCEPTUAL INSTRUCTION GENERATION

To ensure reproducibility and clarity, we detail the full pipeline for audio perceptual instruction construction:

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

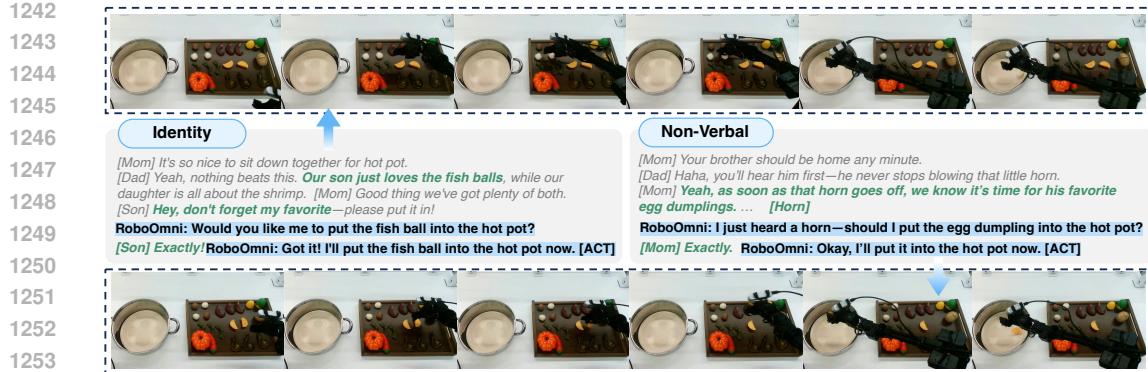
- Speech synthesis. We employ three complementary TTS engines—MOSS-TTSD (Open-MOSS, 2025), CosyVoice (Du et al., 2025), and Gemini-TTS². Short reference clips are used for speaker voice cloning, ensuring timbre consistency across turns within a dialogue while preserving diversity across samples.
- Multi-speaker simulation. Dialogues are synthesized by rendering each speaker’s utterances individually and concatenating them on a global timeline. Overlapping speech is introduced by inserting secondary utterances at controlled temporal offsets. Alignment is managed using CTC-based methods (Graves et al., 2006), enabling realistic crosstalk and interruption.
- Non-verbal events. A curated library of 2,482 non-verbal sounds (e.g., phone rings, utensil clatter, alarms, door knocks) is employed. Events are inserted at pre-defined anchors linked to dialogue semantics (e.g., placing a cup, answering a call).
- Environmental backgrounds. We sample 640 ambient textures covering diverse household conditions (e.g., running water, frying, fan hum). Each texture is mixed with the dialogue at a randomly chosen signal-to-noise ratio (SNR), spanning a wide range to simulate varying acoustic difficulty.

This augmentation pipeline provides both paralinguistic variation (speaker identity, overlap, vocal timbre) and environmental realism (non-verbal sounds, ambient noise), yielding training data that closely reflects natural household interactions.

C.4 DETAILS OF VERIFICATION

Annotation Guidelines For the human verification study, annotators were instructed to evaluate each dialogue–operation pair along two primary dimensions:

²<https://cloud.google.com/text-to-speech/docs/gemini-tts>

Figure 14: Demonstration of success cases of RoboOmni on the *Identity Cues* and *Non-verbal*.

1. **Intent recoverability:** Whether the latent task intent (i.e., the canonical atomic instruction) can be unambiguously inferred from the dialogue and multimodal context. Annotators were asked to answer *Yes/No*, with *Yes* requiring that the original intent could be reasonably reconstructed without external information.
2. **Phenomenon fidelity:** Whether the dialogue faithfully realizes the targeted phenomenon category. Examples include:
 - *Sentiment*: successful inference of intent requires recognizing sentiment-laden cues (e.g., dislike, refusal).
 - *Overlapping*: the audio contains genuine temporal overlaps such that ASR alone would be challenged.
 - *Non-Verbal*: correct inference depends on a salient non-verbal sound event (e.g., alarm, phone ring).
 - *Identity*: the requesting agent must be distinguishable via age/gender/role cues.
 - *Dyadic / Triadic*: the task intent is embedded within multi-turn, two- or three-party exchanges.

Annotators were provided with ten positive and ten negative examples per phenomenon before annotation began, serving as calibration.

D DETAILS OF BASELINE

We compare against four representative VLA baselines: (1) **OpenVLA** (Kim et al., 2024), built on Llama-2 (Touvron et al., 2023b) with DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023) encoders, pretrained on $\sim 970k$ demonstrations from Open-X-Embodiment (Padalkar et al., 2023). (2) **OpenVLA-OFT** (Kim et al., 2025), a variant of OpenVLA augmented with action chunking and optimized with an L_1 loss on continuous action. (3) π_0 (Black et al., 2024), based on PaliGemma (Beyer et al., 2024) with diffusion action experts, trained on both large-scale internet multimodal data and robot datasets. (4) **NORA** (Hung et al., 2025), built on Qwen2.5-VL (Bai et al., 2025b) with FAST+ (Pertsch et al., 2025) discrete action decoding.

E REAL-WORLD EXPERIMENTS

E.1 SUCCESS CASES

In Fig. 14, we present the model’s real-world performance on *Identity Cues* and *non-verbal cues*, while Fig. 15 illustrates its performance on *Dyadic Dialogues* and *Triadic Dialogues*. The results demonstrate that the model not only accurately infers user intent from visual and audio cues, but also engages in natural interactive questioning and reliably executes the corresponding actions.

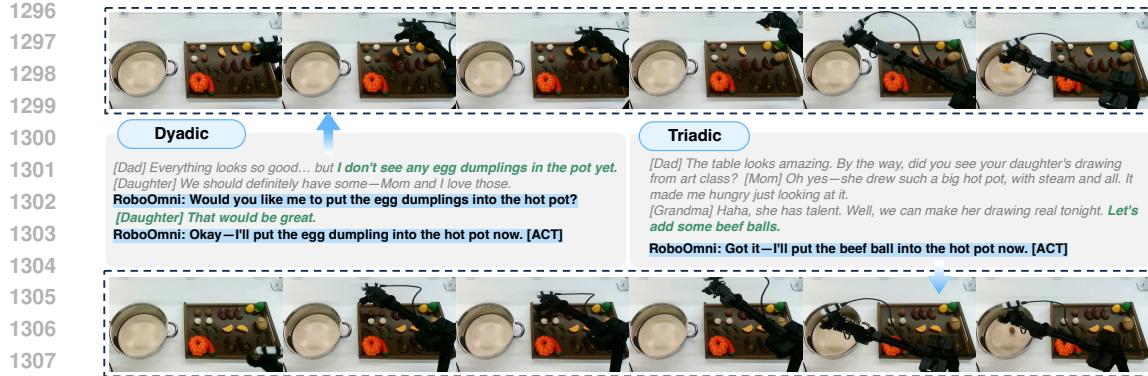


Figure 15: Demonstration of success cases of RoboOmni on the *Dyadic Dialogue* and *Triadic Dialogue*.

E.2 INTERACTION CAPABILITY

As shown in Figure 16, RoboOmni demonstrates superior interaction capabilities across three key aspects: (1) **Proactive clarification**: When encountering ambiguous instructions like “egg dumplings” without explicit commands, RoboOmni asks “Would you like me to put the egg dumpling into the hot pot?” rather than making assumptions and blind execution like baseline models. (2) **Multi-modal integration**: In the doorbell scenario, RoboOmni successfully combines speech context with environmental sounds, asking “I just heard the doorbell—should I put the fish ball into the hot pot?” while baselines ignore auditory cues or provide irrelevant responses. (3) **Natural dialogue flow**: RoboOmni maintains collaborative language patterns (“Would you like me to...?”) that respect human agency, contrasting with baseline models that often issue direct commands or statements.

F PROMPT TEMPLATE

F.1 PROMPTS FOR DATA GENERATION

Non-verbal Cues Dialogue Generation Prompt:

You are a family dialogue generator. Please generate a family dialogue that meets the requirements based on the following information.

Task Steps:

1. **Scene Description:** Describe the environment and items in detail (ignore robot arm)

2. **Character Selection:** Choose two members from dad, mom, son, daughter, grandpa and grandma and do not use any other family role names (e.g., NO granddaughter, grandson, uncle, aunt, etc.)

3. **Sound Selection:**

{sound_info}

Select sounds that:

- Select one sound from the numbered list
- Use the another sound type name (not the number)
- Copy the name exactly as shown

4. **Dialogue Requirements:**

Given instruction: {instruction}

- Create ambiguous dialogue with two distinct action options, drawing on the instruction, scene description, and previously selected sounds.

- Construct a conditional relation in the dialogue: “If X sound, do A; if Y sound, do B”

- Insert the chosen sound after an appropriate speaker turn using the [Sound] tag

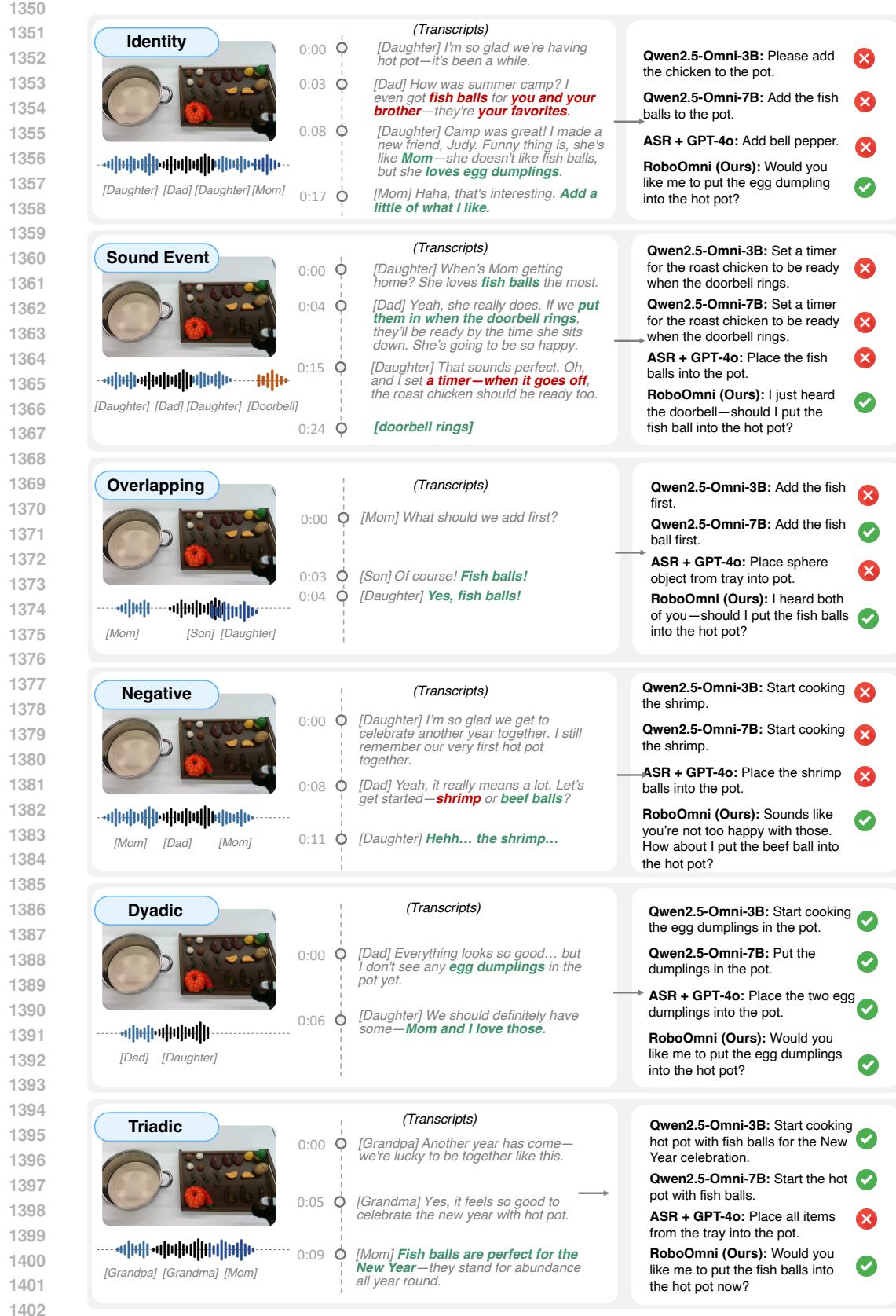


Figure 16: Comparison of interaction capabilities across four models and six instruction types.

1404
 1405 - The sound you select must be the same one you specify in "selected_sound_type"
 1406 - Only sound determines the final action
 1407 - Sound-triggered action must match the instruction exactly
 1408 - 4-5 rounds (2-3 per speaker), use [S1] and [S2]
 1409 - Natural family conversation without sound descriptions
 1410 - No content in the dialogue should indicate that members have heard a certain sound

1411 CRITICAL: Match instruction precisely - don't add extra actions!

1412 Examples:

1413 - If instruction: "pick apple" - -> "Only mention picking apple"
 1414 - If instruction: "pick X and place on Y" - -> "Include BOTH actions"

1415 Example dialogue:

1416 Instruction: Open the microwave door

1417 Conversation: "[S1] Mom, I'm back! I'm so tired today. [S2] Oh, you must be exhausted. I'm
 1418 cooking; can you give me a hand? [S1] Sure, what do you need me to do? [S2] If you hear the beeping
 1419 sound of the microwave, help me open the microwave door. If you hear the sound of the cabinet door
 1420 closing, close the oven door for me. [Sound]"

1421 5. **Output Format:**

1422 {
 1423 "scene_description": "detailed scene description",
 1424 "conversation": "complete dialogue using [S1] and [S2]",
 1425 "speaker1_info": "role and name of S1"(example:"role: son, name: Alex"),
 1426 "speaker2_info": "role and name of S2"(example:"role: dad, name: John"),
 1427 "selected_sound_type": "sound type in English",
 1428 }

1429 Note: Do not include "selected_filename" or "caption_en" in your response.
 1430 Only provide the sound type category.

Sentiment Cues Dialogue Generation Prompt:

1432 I will provide an image (the first frame of a video) and a robot instruction.
 1433 Please complete the following tasks:

1434 **### Task 1: Scene Description**

1435 Observe the image and provide a detailed description:

1436 - ****Environment**:** What type of location is this? (e.g., kitchen/living room/office - daily environments, not a lab)
 1437 - ****Objects**:** What are the key objects in the scene? (ignore the robotic arm)
 1438 - Please annotate each object with its category in parentheses (e.g., bowl (container), sponge (cleaning item), RxBar (food), etc.) to support dialogue understanding later.

1439 **### Task 2: Dialogue Design**

1440 Based on the scene and instruction, design a natural family dialogue using ****onomatopoeic expressions or emotional tones**** (referred to as "sentiment cues") to help the robot infer the execution target. The robot can only deduce the action or item corresponding to the correct instruction by ****interpreting sentiment cues to exclude non-target items**** in the dialogue.

1441 **### Key Rules**

1. Do not directly mention the target action or item, the dialogue must never contain explicit instruction content or hints.
2. The target of the instruction must be uniquely inferred ****only through sentiment cues**** (do not expose the instruction intent in advance).
3. Sentiment cues are used to ****exclude incorrect options**** and must not be used to negate the target item/action.
4. The dialogue must not contain imperative refusal words such as "don't", "stop", or "can't".
5. The dialogue must have 4-6 rounds, with one question and one answer per round, and the content must be natural and close to daily life.
6. The final action executed by the robot must be completely consistent with the input instruction, and

1458
 1459 the action logic must be natural and acceptable.
 1460 7. Note that the protagonists of the dialogue can only be humans (between people), not humans and
 1461 robots!

1462 ### Recommended Dialogue Structure Template
 1463 - S1 acts as the **proposer**, putting forward multiple options. (Must clearly provide S2 with options
 1464 of “what can be done”! These can be generated based on the scene description.)
 1465 - S2 acts as the **denier**, using sentiment cues to exclude all non-target items from S1’s proposals
 1466 (note: must exclude all of them completely!).
 1467 - The last round is where S1 **vaguely points to the remaining option** without explicitly mentioning
 1468 the target item.

1469 ### Example
 1470 {
 1471 “scene_description”: “The scene appears to be a kitchen environment with a countertop and
 1472 drawers. Key objects present include a bowl (container) on the counter, a cardboard box (container)
 1473 next to the drawer, and a package of RxBar (food) in the drawer.”,
 1474 “conversation”: “[S1] Looks like we need to clear some space. There’s a bowl on the counter,
 1475 a cardboard box near the drawer, and something in the drawer. Should we move the bowl first?
 1476 [S2] [SentimentCue] Hmm... doesn’t feel quite right... [S1] Okay, maybe the box then? [S2]
 1477 [SentimentCue] Uh, let me see... [S1] Seems like you’re suggesting something else entirely,
 1478 something more hidden perhaps.”,
 1479 “speaker1_info”: “Dad”,
 1480 “speaker2_info”: “Teenager ”,
 1481 “instruction”: “pick rxbar chocolate from top drawer and place on counter”,
 1482 }
 1483 The instruction could be “move the rxbar chocolate”, “pick the rxbar chocolate”, “take out the rxbar
 1484 chocolate”, or “pick the rxbar chocolate and place it in the first drawer”. It does not uniquely point to
 1485 the original instruction “pick rxbar chocolate from top drawer and place on counter”. The constructed
 1486 dialogue must uniquely correspond to the original instruction!

1487 Output Format:
 1488 {
 1489 “scene_description”: “Scene description”,
 1490 “conversation”: “Complete dialogue text with sentiment cues”,
 1491 “speaker1_info”: “Speaker 1’s identity (e.g., son)”,
 1492 “speaker2_info”: “Speaker 2’s identity (e.g., dad)”,
 1493 “instruction”: “original robot instruction”
 1494 }

Overlapping Cues Dialogue Generation Prompt:

1495 I will provide you with an image (the first frame of a video) and a robot execution instruction. Please
 1496 complete the following tasks:

1497 ## Dialogue Design Requirements
 1498 1. Use **overlapping speech** as the emotional expression:
 1499 - A choice/preference question is asked
 1500 - The other party interrupts with [Overlap_Sx] to show strong preference

1501 2. **Ambiguity Rule:**
 1502 - The text alone must remain ambiguous
 1503 - Only the overlap and visual observation resolves the ambiguity
 1504 - The resolved action must match the given instruction

1505 3. **Annotation Standards:**
 1506 - Speakers: [S1], [S2], [S3], etc.
 1507 - Overlap marker: [Overlap] inside the interrupted utterance
 1508 - Overlap content: [Overlap_Sx] for the interrupting speech

```

1512
1513    **Example:**  

1514    {  

1515        "conversation": "[S2] So hungry am I. [S1] Apple or [Overlap]banana? [Overlap_S2] Banana!  

1516        [S1] Great! I also like it",  

1517        "speaker1_info": "father",  

1518        "speaker2_info": "mother",  

1519        "instruction": "pick up banana"  

1520    }  

1521  

1522    **Input Information:**  

1523    - Image: [Provided]  

1524    - Instruction: {instruction}  

1525  

1526    **Output Format:**  

1527    {  

1528        "scene_description": "Scene description",  

1529        "conversation": "Dialogue Content with Emotional Markers",  

1530        "speaker1_info": "Speaker 1's identity",  

1531        "speaker2_info": "Speaker 2's identity",  

1532        "sound": "Vocal/Emotional Manifestations"  

1533    }

```

Identity Cues Dialogue Generation Prompt:

1533 You are about to be given a picture describing family everyday life. You should construct a dialogue
1534 data based on the following requirements.

1535 ## Overall data format requirements:
1536 You need to provide a JSON object that follows the structure below.
1537 {
1538 "conversation": "..."
1539 }
1540
1541 ## Conversation requirements:
1542
1543 **Format:**
1544
1545 1. The conversation happens between three speakers:
1546 speaker 1: "{identity_1}", speaker 2: "{identity_2}" and speaker 3: "{identity_3}".
1547 2. The dialogue format should be like:
1548 "[S1]Speaker 1 dialogue content [S2]Speaker 2 dialogue content [S3]Speaker 3 dialogue content...".
1549 [S1], [S2] and [S3] should be followed directly by the dialogue content without any labels.
1550
1551 **Content:**
1552 1. Their conversation should not explicitly instruct the agent to do anything. The speakers should not
1553 mention anything about the agent.
1554 2. Start the conversation by user utterance directly, without greeting.
1555 3. The dialogue should happens in everyday life. The family atmosphere should be warm.
1556 4. The order in which the three people speak can be reversed.
1557 5. Make sure your conversation is logical and reasonable. Avoid sounding like two adults having a
1558 serious discussion about very simple things.
1559 6. Your dialogue should be no more than 8 sentences. Each sentence should be as short as possible
1560 and easy to understand.
1561
1562 **Ambiguity:**
1563 1. The agent should be able to infer from their dialogue(text and speaker identity) that it should
1564 execute the following actions: "{instruction}". But you need to ensure that the text of the conversation
1565 alone cannot determine what action to take. The identity of the speaker(age and gender) must be taken
1566 into account to determine the specific instruction.
1567 2. Multiple possible intentions must appear in the conversation. Finally, a speaker should specify the
1568 instructions to be performed by expressing agreement with another speaker instead of directly stating
1569 the instructions themselves.

1566
 1567 3. The end of the dialogue must not contain any direct description of the instruction to be performed,
 1568 including restating the object to be operated and the method of operation
 1569
 1570 ****Tone styles:****
 1571 1. Your dialogue should be as conversational as possible. You should add some filler words like "uh"
 1572 or "um."
 1573 2. Your dialogue should reflect the speaker's identity. For example, the children are more energetic,
 1574 the elderly are more mature and steady. If the speakers include children, the conversation will be full
 1575 of jokes. If the speakers are all adults, it will be relatively pragmatic.
 1576 3. More common in your conversations should be lighthearted jokes, teasing, and gags.
 1577 4. Your conversation should be part of everyday small talk. For those simple tasks, avoid making it
 seem like the speakers are planning a mission.
 1578
 1579 **## Construction guidelines:**
 1580
 1581 You should construct the dialogue based on the following steps:
 1582
 1583 ****1. Understanding the environment:****
 1584 You should find objects in the image that can be picked up, pushed, or interacted with.
 1585
 1586 ****2. Create characters:****
 1587 You should set a name for each speaker.
 1588 You should use names or names among family members more often in the conversation.
 1589
 1590 ****3. Set goals:****
 1591 Based on the manipulable objects in the picture and the roles given, come up with a plausible purpose
 1592 for why the speaker would want to perform the given instruction.
 1593 Some instructions are pretty simple, so you should set a deeper goal for the speaker to execute this
 1594 simple instruction, such as turning on the faucet to make it easier to wash vegetables later.
 1595 You can set different goals for two speakers based on the environment. Finally, the third person
 1596 specifies the action to be performed by agreeing with one of them.
 1597
 1598 ****4. Construct dialogue:****
 1599 Construct the dialogue based on the identities of the speakers and the goals you have set.
 1600 You need to make sure that the speaker's tone and words fits the character's identity.
 1601 Once it is done, continue polishing your dialogue to make it more lifelike.
 1602
 1603 **## Examples:**
 1604
 1605 ****Example 1:****
 1606 Input:
 1607 image description: "In the kitchen, key items include a white bowl, a green cup, a sponge and a
 1608 dishcloth."
 1609 speaker 1: female_adult
 1610 speaker 2: male_adult
 1611 speaker 3: male_child
 1612 instruction: "Place the sponge in the white bowl."
 1613 Output:
 1614 {
 1615 "conversation": "[S1]Honey, can you grab me the sponge? I need it for the cleaning. [S3]Oh,
 1616 dad! Have you seen my green cup? [S2]Of course, John. I'll get it to you right away, but first let me
 1617 help your mother with this."
 1618 }
 1619
 1620 ****Example 2:****
 1621 Input:
 1622 image description: "There is a table. On the table are a apple, a banana and a orange"
 1623 speaker 1: male_child
 1624 speaker 2: female_senior
 1625 speaker 3: female_child
 1626 instruction: "Pick up the apple"
 1627 Output:
 1628

```

1620
1621
1622 { "conversation": "[S2]Mike, Lily, come here! [S1]What's wrong, grandma? [S2]You should
1623 have more fruit. Which do you prefer? [S3]I love oranges! [S1]Apples are always my favourite!
1624 [S2]Alright! Let me give my precious grandson his favorite fruit first!" }
1625
1626
1627
1628
1629
1630

```

Dyadic Dialogue Generation Prompt:

You will be given a picture of family life. Construct a dialogue data based on the following.

Overall format:

Output a JSON object: { "conversation": "..." }

Conversation requirements:

Format: - Two speakers: {identity_1}, {identity_2}. - Dialogue format: “[S1]... [S2]...” (no labels, just text).

Content: - Dialogue must imply the action: “[instruction]” without directly instructing the agent.

- Start with user utterance, no greeting. - Everyday warm family talk, ≤ 5 short sentences. - End with one speaker clearly stating what they want.

Tone: - Conversational, with fillers (“uh”, “um”). - Identities matter: children energetic/joking, adults pragmatic, elderly steady. - Small talk, light teasing, natural flow.

Guidelines:

1. Identify manipulable objects in the image. 2. Create two named characters. 3. Set a plausible goal behind the instruction. 4. Write natural, lifelike dialogue matching identities.

Example:

{example}

1648

1649

1650

1651

Triadic Dialogue Generation Prompt:

You will be given a picture of family life. Construct a dialogue data based on the following.

Overall format:

Output a JSON object: { "conversation": "..." }

Conversation requirements:

Format:

- Three speakers: {identity_1}, {identity_2}, {identity_3}. - Dialogue format: “[S1]... [S2]... [S3]...” (no labels, just text).

Content:

- Dialogue must imply the action: “[instruction]” without directly instructing the agent.

- Start with user utterance, no greeting.

- End with one speaker clearly stating what they want.

Tone:

- Conversational, with fillers (“uh”, “um”).

- Identities matter: children energetic/joking, adults pragmatic, elderly steady.

- Small talk, light teasing, natural flow.

1666

Guidelines:

1. Identify manipulable objects in the image.

2. Create three named characters.

3. Set a plausible goal behind the instruction.

4. Write natural, lifelike dialogue matching identities.

Example:

{example}

1674
1675

F.2 PROMPTS FOR INTERACTION EXTENSION

1676
1677

Interaction Extension Generation Prompt:

1678
1679

You will be given a scene description, an original two-person dialogue, and a robot execution instruction.

1680

Please generate a multi-turn human–robot dialogue in JSON format that follows these rules:

1681

1. The output must be a JSON object with the field “conversation”, which is a list.

1682

2. Each element in the list is a dictionary with two fields:

1683

- “user”: the natural utterance(s) from the user(s).

1684

- 3. The first element in the list must be a placeholder: {“user”: “<conv>”, “robot”: “...”} where “conv” represents the input original dialogue.

1685

4. For all following turns:

1686

- “user” must contain only one speaker’s utterance (but still include the speaker label [S1] or [S2]).

1687

- It must respond naturally to the robot’s previous “robot” message.

1688

- The speaker should be the one who gave the instruction in the original dialogue.

1689

- 5. The robot’s responses must be short, service-oriented, such as: “Do you need me to xxx?”, “So what about xxx?”, “Should I xxx?”

1690

- 6. The robot’s final response must explicitly confirm the action and include the [ACT] tag, e.g.: “OK, I will do that. [ACT]”

1691

- 7. The total number of turns should be between 2 and 4.

1692

- 8. The language must be natural and may include brief small talk.

1693

- 9. Do not include any extra explanations or notes—only output the JSON object in the specified format.

1694

Input format:

1695

Scene description: {scene_description}

1696

Original dialogue: {conversation}

1697

Robot execution instruction: {instruction}

1698

1699

1700

1701

G OMNIACTION-LIBERO

1702

1703

G.1 DATA EXAMPLE

1704

1705

Audio Type: Sentiment Cues

Task Suite:

Libero 10

Original Instruction:

turn on the stove and put the moka pot on it

Conversation (Transcripts):

Dad: Alright, we need to get things ready for coffee. Should we place the frying pan on the stove, or maybe the moka pot?

Daughter: Hmm... Doesn't seem quite right...

Dad: Okay, how about turning on the burner first and preparing the stovetop?

Daughter: Hmm... let's think...

Dad: Hmm... I see now which one we need to turn on.

Audio Type: Overlapping Voices

Task Suite:

Libero Object

Original Instruction:

pick up the cream cheese and place it in the basket

Conversation (Transcripts):

Mother: Hey, can you help me sort these things out?

Daughter: Sure, what do you want to start with?

Mother: Let's put something creamy in the basket. Maybe the cream cheese?

Daughter: Oh, you mean the small rectangular one?

Mother: No, the taller one, next to the [Overlap]orange box.

Daughter:[Overlap_S2] Oh, got it, the cream cheese!

Mother: Exactly! Let's put that in the basket.

1728

Audio Type: Non-Verbal Cues

1729

Task Suite:

Libero Object

Original Instruction:

pick up the alphabet soup and place it in the basket

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Audio Type:

Identity Cues

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

Audio Type:

Dyadic Dialogue

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

Audio Type:

Triadic Dialogue

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Conversation (Transcripts):

Daughter: Grandpa, do you think I could juggle these two cans?

Grandpa: Haha, Lucy, I wouldn't try that. You might end up with soup all over the floor.

Daughter: Aw, you're no fun! What about this cream cheese box then?

Mother: Lucy, stop teasing your grandpa. Just help me put the soup and the cream cheese in the basket, please.

Daughter: Fine, fine, but only because I'm such a helpful superstar!