
Under review as a conference paper at ICLR 2021

AWAC: ACCELERATING ONLINE REINFORCEMENT
LEARNING WITH OFFLINE DATASETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning provides an appealing formalism for learning control
policies from experience. However, the classic active formulation of reinforcement
learning necessitates a lengthy active exploration process for each behavior, making
it difficult to apply in real-world settings. If we can instead allow reinforcement
learning to effectively use previously collected data to aid the online learning
process, where the data could be expert demonstrations or more generally any
prior experience, we could make reinforcement learning a substantially more
practical tool. While a number of recent methods have sought to learn offline from
previously collected data, it remains exceptionally difficult to train a policy with
offline data and improve it further with online reinforcement learning. In this paper
we systematically analyze why this problem is so challenging, and propose an
algorithm that combines sample-efficient dynamic programming with maximum
likelihood policy updates, providing a simple and effective framework that is able to
leverage large amounts of offline data and then quickly perform online fine-tuning
of reinforcement learning policies. We show that our method enables rapid learning
of skills with a combination of prior demonstration data and online experience
across a suite of difficult dexterous manipulation and benchmark tasks.

1 INTRODUCTION

Learning models that generalize effectively to complex open-world settings, from image recogni-
tion (Krizhevsky et al., 2012) to natural language processing (Devlin et al., 2019), relies on large,
high-capacity models and large, diverse, and representative datasets. Leveraging this recipe for
reinforcement learning (RL) has the potential to yield real-world generalization for control appli-
cations such as robotics. However, while deep RL algorithms enable the use of large models, the
use of large datasets for real-world RL has proven challenging. Most RL algorithms collect new
data online every time a new policy is learned, which limits the size and diversity of the datasets
for RL. In the same way that powerful models in computer vision and NLP are often pre-trained on
large, general-purpose datasets and then fine-tuned on task-specific data, RL policies that generalize
effectively to open-world settings will need to be able to incorporate large amounts of prior data
effectively into the learning process, while still collecting additional data online for the task at hand.

For data-driven reinforcement learning, offline datasets consist of trajectories of states, actions and
associated rewards. This data can potentially come from demonstrations for the desired task (Schaal,
1997; Atkeson & Schaal, 1997), suboptimal policies (Gao et al., 2018), demonstrations for related
tasks (Zhou et al., 2019), or even just random exploration in the environment. Depending on the
quality of the data that is provided, useful knowledge can be extracted about the dynamics of the
world, about the task being solved, or both. Effective data-driven methods for deep reinforcement
learning should be able to use this data to pre-train offline while improving with online fine-tuning.

Since this prior data can come from a variety of sources, we would like to design an algorithm
that does not utilize different types of data in any privileged way. For example, prior methods that
incorporate demonstrations into RL directly aim to mimic these demonstrations (Nair et al., 2018),
which is desirable when the demonstrations are known to be optimal, but imposes strict requirements
on the type of offline data, and can cause undesirable bias when the prior data is not optimal. While
prior methods for fully offline RL provide a mechanism for utilizing offline data (Fujimoto et al.,
2019; Kumar et al., 2019), as we will show in our experiments, such methods generally are not
effective for fine-tuning with online data as they are often too conservative. In effect, prior methods

1

Under review as a conference paper at ICLR 2021

require us to choose: Do we assume prior data is optimal or not? Do we use only offline data, or only
online data? To make it feasible to learn policies for open-world settings, we need algorithms that
learn successfully in any of these cases.

In this work, we study how to build RL algorithms that are effective for pre-training from off-
policy datasets, but also well suited to continuous improvement with online data collection. We
systematically analyze the challenges with using standard off-policy RL algorithms (Haarnoja et al.,
2018; Kumar et al., 2019; Abdolmaleki et al., 2018) for this problem, and introduce a simple actor
critic algorithm that elegantly bridges data-driven pre-training from offline data and improvement
with online data collection. Our method, which uses dynamic programming to train a critic but
a supervised learning style update to train a constrained actor, combines the best of supervised
learning and actor-critic algorithms. Dynamic programming can leverage off-policy data and enable
sample-efficient learning. The simple supervised actor update implicitly enforces a constraint that
mitigates the effects of distribution shift when learning from offline data (Fujimoto et al., 2019;
Kumar et al., 2019), while avoiding overly conservative updates.

We evaluate our algorithm on a wide variety of robotic control and benchmark tasks across three
simulated domains: dexterous manipulation, tabletop manipulation, and MuJoCo control tasks. Our
algorithm, Advantage Weighted Actor Critic (AWAC), is able to quickly learn successful policies on
difficult tasks with high action dimension and binary sparse rewards, significantly better than prior
methods for off-policy and offline reinforcement learning. Moreover, AWAC can utilize different
types of prior data without any algorithmic changes: demonstrations, suboptimal data, or random
exploration data. The contribution of this work is not just another RL algorithm, but a systematic
study of what makes offline pre-training with online fine-tuning unique compared to the standard RL
paradigm, which then directly motivates a simple algorithm, AWAC, to address these challenges.

2 PRELIMINARIES

We consider the standard reinforcement learning notation, with states s, actions a, policy π(a|s),
rewards r(s,a), and dynamics p(s′|s,a). The discounted return is defined as Rt =

∑T
i=t γ

ir(si,ai),
for a discount factor γ and horizon T which may be infinite. The objective of an RL agent is to
maximize the expected discounted return J(π) = Epπ(τ)[R0] under the distribution induced by the
policy. The optimal policy can be learned directly by policy gradient, estimating ∇J(π) (Williams,
1992), but this is often ineffective due to high variance of the estimator. Many algorithms attempt
to reduce this variance by making use of the value function V π(s) = Epπ(τ)[Rt|s], action-value
function Qπ(s,a) = Epπ(τ)[Rt|s,a], or advantage Aπ(s,a) = Qπ(s,a)− V π(s). The action-value
function for a policy can be written recursively via the Bellman equation:

Qπ(s,a) = r(s,a) + γEp(s′|s,a)[V
π(s′)] = r(s,a) + γEp(s′|s,a)[Eπ(a′|s′)[Q

π(s′,a′)]]. (1)
Instead of estimating policy gradients directly, actor-critic algorithms maximize returns by alternating
between two phases (Konda & Tsitsiklis, 2000): policy evaluation and policy improvement. During
the policy evaluation phase, the critic Qπ(s,a) is estimated for the current policy π. This can be
accomplished by repeatedly applying the Bellman operator B, corresponding to the right-hand side
of Equation 1, as defined below:

BπQ(s,a) = r(s,a) + γEp(s′|s,a)[Eπ(a′|s′)[Q
π(s′,a′)]]. (2)

By iterating according to Qk+1 = BπQk, Qk converges to Qπ (Sutton & Barto, 1998). With function
approximation, we cannot apply the Bellman operator exactly, and instead minimize the Bellman
error with respect to Q-function parameters φk:

φk = argmin
φ

ED[(Qφ(s,a)− y)2], y = r(s,a) + γEs′,a′ [Qφk−1
(s′,a′)]. (3)

During policy improvement, the actor π is typically updated based on the current estimate of Qπ.
A commonly used technique (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018) is
to update the actor πθk(a|s) via likelihood ratio or pathwise derivatives to optimize the following
objective, such that the expected value of the Q-function Qπ is maximized:

θk = argmax
θ

Es∼D[Eπθ(a|s)[Qφk(s,a)]] (4)

Actor-critic algorithms are widely used in deep RL (Mnih et al., 2016; Lillicrap et al., 2016; Haarnoja
et al., 2018; Fujimoto et al., 2018). With a Q-function estimator, they can in principle utilize off-policy
data when used with a replay buffer for storing prior transition tuples, which we will denote β, to
sample previous transitions, although we show that this by itself is insufficient for our problem setting.

2

Under review as a conference paper at ICLR 2021

D = {(s, a, s0, r)j}

⇡✓(a|s)

Update

⇡✓

p(s0|s, a)

(s, a, s0, r)

Q� Update

⇡✓ Q��

- off-policy data
- expert demos
- prior runs of RL

1. O✏ine Learning 2. Online Fine-tuning

�

Figure 1: We study learning policies by offline learning on a prior dataset D and then fine-tuning with online
interaction. The prior data could be obtained via prior runs of RL, expert demonstrations, or any other source of
transitions. Our method, advantage weighted actor critic (AWAC) is able to learn effectively from offline data
and fine-tune in order to reach expert-level performance after collecting a limited amount of interaction data.
Videos and data are available at sites.google.com/view/awac-anonymous

3 CHALLENGES IN OFFLINE RL WITH ONLINE FINE-TUNING

In this section, we study the unique challenges that exist when pre-training using offline data, followed
by fine-tuning with online data collection. We first describe the problem, and then analyze what
makes this problem difficult for prior methods.

Problem definition. A static dataset of transitions, D = {(s,a, s′, r)j}, is provided to the algorithm
at the beginning of training. This dataset can be sampled from an arbitrary policy or mixture of
policies, and may even be collected by a human expert. This definition is general and encompasses
many scenarios, such as learning from demonstrations, random data, prior RL experiments, or even
from multi-task data. Given the dataset D, our goal is to leverage D for pre-training and use some
online interaction to learn the optimal policy π∗(a|s), with as few interactions with the environment
as possible (depicted in Fig 1). This setting is representative of many real-world RL settings, where
prior data is available and the aim is to learn new skills efficiently. We first study existing algorithms
empirically in this setting on the HalfCheetah-v2 Gym environment1. The prior dataset consists of
15 demonstrations from an expert policy and 100 suboptimal trajectories sampled from a behavioral
clone of these demonstrations. All methods for the remainder of this paper incorporate the prior
dataset, unless explicitly labeled “scratch”.

3.1) Data Efficiency. One of the simplest ways to utilize prior data such as demonstrations for RL
is to pre-train a policy with imitation learning, and fine-tune with on-policy RL (Gupta et al., 2019;
Rajeswaran et al., 2018). This approach has two drawbacks: (1) prior data may not be optimal; (2)
on-policy fine-tuning is data inefficient as it does not reuse the prior data in the RL stage. In our
setting, data efficiency is vital. To this end, we require algorithms that are able to reuse arbitrary off-
policy data during online RL for data-efficient fine-tuning. We find that algorithms that use on-policy
fine-tuning (Rajeswaran et al., 2018; Gupta et al., 2019), or Monte-Carlo return estimation (Peters &
Schaal, 2007; Wang et al., 2018; Peng et al., 2019) are generally much less efficient than off-policy
actor-critic algorithms, which iterate between improving π and estimating Qπ via Bellman backups.
This can be seen from the results in Figure 2 plot 1, where on-policy methods like DAPG (Rajeswaran
et al., 2018) and Monte-Carlo return methods like AWR (Peng et al., 2019) and MARWIL (Wang
et al., 2018) are an order of magnitude slower than off-policy actor-critic methods. Actor-critic
methods, shown in Figure 2 plot 2, can in principle use off-policy data. However, as we will discuss
next, naïvely applying these algorithms to our problem suffers from a different set of challenges.

3.2) Bootstrap Error in Offline Learning with Actor-Critic Methods. When standard off-policy
actor-critic methods are applied to this problem setting, they perform poorly, as shown in the second
plot in Figure 2: despite having a prior dataset in the replay buffer, these algorithms do not benefit
significantly from offline training. We evaluate soft actor critic (Haarnoja et al., 2018), a state-of-the-
art actor-critic algorithm for continuous control. Note that “SAC-scratch,” which does not receive the
prior data, performs similarly to “SACfD-prior,” which does have access to the prior data, indicating
that the off-policy RL algorithm is not actually able to make use of the off-policy data for pre-training.
Moreover, even if the SAC is policy is pre-trained by behavior cloning, labeled “SACfD-pretrain”,
we still observe an initial decrease in performance, and performance similar to learning from scratch.

This challenge can be attributed to off-policy bootstrapping error accumulation, as observed in
several prior works (Sutton & Barto, 1998; Kumar et al., 2019; Wu et al., 2020; Levine et al., 2020;

1We use this environment for analysis because it helps understand and accentuate the differences between
different algorithms. More challenging environments like the ones shown in Fig 3 are too hard to solve to
analyze variants of different methods.

3

https://sites.google.com/view/awac-anonymous

Under review as a conference paper at ICLR 2021

A
ve

ra
ge

R
et

ur
ns

0K 50K 100K 150K 200K
Timesteps

0

2500

5000

7500

1. Data Efficiency from Prior Data

AWAC (Ours)
AWR

DAPG
MARWIL

0K 50K 100K 150K 200K
Timesteps

2. Actor-Critic Methods

AWAC (Ours)
SACfD-pretrain

SACfD-prior
SAC-scratch

0K 50K 100K 150K 200K
Timesteps

3. Policy Constraint Methods

BEAR
BEAR-loose

Offline Training

Offline data
Online data

Figure 2: Analysis of prior methods on HalfCheetah-v2 using offline RL with online fine-tuning. (1) On-policy
methods (DAPG, AWR, MARWIL) learn relatively slowly, even with access to prior data. We present our
method, AWAC, as an example of how off-policy RL methods can learn much faster. (2) Variants of soft actor-
critic (SAC) with offline training (performed before timestep 0) and fine-tuning. We see a “dip” in the initial
performance, even if the policy is pretrained with behavioral cloning. (3) Offline RL method BEAR (Kumar
et al., 2019) on offline training and fine-tuning, including a “loose” variant of BEAR with a weakened constraint.
Standard offline RL methods fine-tune slowly, while the “loose” BEAR variant experiences a similar dip as SAC.
(4) We show that the fit of the behavior models π̂β used by these offline methods degrades as new data is added
to the buffer during fine-tuning, potentially explaining their poor fine-tuning performance.

Fujimoto et al., 2019). In actor-critic algorithms, the target value Q(s′,a′), with a′ ∼ π, is used to
update Q(s,a). When a′ is outside of the data distribution, Q(s′,a′) will be inaccurate, leading to
accumulation of error on static datasets.

Offline RL algorithms (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2020) propose to address
this issue by explicitly adding constraints on the policy improvement update (Equation 4) to avoid
bootstrapping on out-of-distribution actions, leading to a policy update of this form:

argmax
θ

Es∼D[Eπθ(a|s)[Qφk(s,a)]] s.t. D(πθ, πβ) ≤ ε. (5)

Here, πθ is the actor being updated, and πβ(a|s) represents the (potentially unknown) distribution
from which all of the data seen so far (both offline data and online data) was generated. In the
case of a replay buffer, πβ corresponds to a mixture distribution over all past policies. Typically,
πβ is not known, especially for offline data, and must be estimated from the data itself. Many
offline RL algorithms (Kumar et al., 2019; Fujimoto et al., 2019; Siegel et al., 2020) explicitly fit
a parametric model to samples for the distribution πβ via maximum likelihood estimation, where
samples from πβ are obtained simply by sampling uniformly from the data seen thus far: π̂β =
maxπ̂β Es,a∼πβ [log π̂β(a|s)]. After estimating π̂β , prior methods implement the constraint given in
Equation 5 in various ways, including penalties on the policy update (Kumar et al., 2019; Wu et al.,
2020) or architecture choices for sampling actions for policy training (Fujimoto et al., 2019; Siegel
et al., 2020). As we will see next, the requirement for accurate estimation of π̂β makes these methods
difficult to use with online fine-tuning.

3.3) Excessively Conservative Online Learning. While offline RL algorithms with constraints (Ku-
mar et al., 2019; Fujimoto et al., 2019; Wu et al., 2020) perform well offline, they struggle to improve
with fine-tuning, as shown in the third plot in Figure 2. We see that the purely offline RL performance
(at “0K” in Fig. 2) is much better than the standard off-policy methods shown in Section 3.2. However,
with additional iterations of online fine-tuning, the performance increases very slowly (as seen from
the slope of the BEAR curve in Fig 2). What causes this phenomenon?

This can be attributed to challenges in fitting an accurate behavior model as data is collected
online during fine-tuning. In the offline setting, behavior models must only be trained once via
maximum likelihood, but in the online setting, the behavior model must be updated online to track
incoming data. Training density models online (in the “streaming” setting) is a challenging research
problem (Ramapuram et al., 2017), made more difficult by a potentially complex multi-modal
behavior distribution induced by the mixture of online and offline data. To understand this, we
plot the log likelihood of learned behavior models on the dataset during online and offline training
for the HalfCheetah task. As we can see in the plot, the accuracy of the behavior models (log πβ
on the y-axis) reduces during online fine-tuning, indicating that it is not fitting the new data well
during online training. When the behavior models are inaccurate or unable to model new data well,
constrained optimization becomes too conservative, resulting in limited improvement with fine-tuning.
This analysis suggests that, in order to address our problem setting, we require an off-policy RL
algorithm that constrains the policy to prevent offline instability and error accumulation, but not so
conservatively that it prevents online fine-tuning due to imperfect behavior modeling. Our proposed

4

Under review as a conference paper at ICLR 2021

algorithm, which we discuss in the next section, accomplishes this by employing an implicit constraint,
which does not require any explicit modeling of the behavior policy.

4 ADVANTAGE WEIGHTED ACTOR CRITIC: A SIMPLE ALGORITHM FOR
FINE-TUNING FROM OFFLINE DATASETS

In this section, we will describe the advantage weighted actor-critic (AWAC) algorithm, which trains
an off-policy critic and an actor with an implicit policy constraint. We will show AWAC mitigates the
challenges outlined in Section 3. AWAC follows the design for actor-critic algorithms as described
in Section 2, with a policy evaluation step to learn Qπ and a policy improvement step to update π.
AWAC uses off-policy temporal-difference learning to estimate Qπ in the policy evaluation step, and
a policy improvement update that is able to obtain the benefits of offline RL algorithms at training
from prior datasets, while avoiding the overly conservative behavior described in Section 3.3. We
describe the policy improvement step in AWAC below, and then summarize the entire algorithm.

Policy improvement for AWAC proceeds by learning a policy that maximizes the value of the critic
learned in the policy evaluation step via TD bootstrapping. If done naively, this can lead to the
issues described in Section 3.3, but we can avoid the challenges of bootstrap error accumulation by
restricting the policy distribution to stay close to the data observed thus far during the actor update,
while maximizing the value of the critic. At iteration k, AWAC therefore optimizes the policy to
maximize the estimated Q-function Qπk(s,a) at every state, while constraining it to stay close to
the actions observed in the data, similar to prior offline RL methods, though this constraint will be
enforced differently. Note from the definition of the advantage in Section 2 that optimizing Qπk(s,a)
is equivalent to optimizing Aπk(s,a). We can therefore write this optimization as:

πk+1 = argmax
π∈Π

Ea∼π(·|s)[A
πk(s,a)] s.t. DKL(π(·|s)||πβ(·|s)) ≤ ε. (6)

As we saw in Section 3.2, enforcing the constraint by incorporating an explicit learned behavior
model (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2020; Siegel et al., 2020) leads to poor
fine-tuning performance. Instead, we enforce the constraint implicitly, without learning a behavior
model. We first derive the solution to the constrained optimization in Equation 6 to obtain a non-
parametric closed form for the actor. This solution is then projected onto the parametric policy class
without any explicit behavior model. The analytic solution to Equation 6 can be obtained by enforcing
the KKT conditions (Peters & Schaal, 2007; Peters et al., 2010; Peng et al., 2019). The Lagrangian is:

L(π, λ) = Ea∼π(·|s)[A
πk(s,a)] + λ(ε−DKL(π(·|s)||πβ(·|s))), (7)

and the closed form solution to this problem is π∗(a|s) ∝ πβ(a|s) exp
(

1
λA

πk(s,a)
)
. When using

function approximators, such as deep neural networks as we do, we need to project the non-parametric
solution into our policy space. For a policy πθ with parameters θ, this can be done by minimizing the
KL divergence of πθ from the optimal non-parametric solution π∗ under the data distribution ρπβ (s):

argmin
θ

E
ρπβ (s)

[DKL(π
∗(·|s)||πθ(·|s))] = argmin

θ
E

ρπβ (s)

[
E

π∗(·|s)
[− log πθ(·|s)]

]
(8)

Note that the parametric policy could be projected with either direction of KL divergence. Choosing
the reverse KL results in explicit penalty methods (Wu et al., 2020) that rely on evaluating the density
of a learned behavior model. Instead, by using forward KL, we can compute the policy update by
sampling directly from β:

θk+1 = argmax
θ

E
s,a∼β

[
log πθ(a|s) exp

(
1

λ
Aπk(s,a)

)]
. (9)

This actor update amounts to weighted maximum likelihood (i.e., supervised learning), where the
targets are obtained by re-weighting the state-action pairs observed in the current dataset by the
predicted advantages from the learned critic, without explicitly learning any parametric behavior
model, simply sampling (s, a) from the replay buffer β. See Appendix A.2 for a more detailed
derivation and Appendix A.3 for specific implementation details.

Avoiding explicit behavior modeling. Note that the update in Equation 9 completely avoids any
modeling of the previously observed data β with a parametric model. By avoiding any explicit

5

Under review as a conference paper at ICLR 2021

learning of the behavior model AWAC is far less conservative than methods which fit a model π̂β
explicitly, and better incorporates new data during online fine-tuning, as seen from our results in
Section 6. This derivation is related to AWR (Peng et al., 2019), with the main difference that AWAC
uses an off-policy Q-function Qπ to estimate the advantage, which greatly improves efficiency and
even final performance (see results in Section 6.1). The update also resembles ABM-MPO, but
ABM-MPO does require modeling the behavior policy which, as discussed in Section 3.3, can lead to
poor fine-tuning. In Section 6.1, AWAC outperforms ABM-MPO on a range of challenging tasks.

Policy evaluation. During policy evaluation, we estimate the action-value Qπ(s,a) for the current
policy π, as described in Section 2. We utilize a temporal difference learning scheme for policy
evaluation (Haarnoja et al., 2018; Fujimoto et al., 2018), minimizing the Bellman error as described
in Equation 2. This enables us to learn very efficiently from off-policy data. This is particularly
important in our problem setting to effectively use the offline dataset, and allows us to significantly
outperform alternatives using Monte-Carlo evaluation or TD(λ) to estimate returns (Peng et al., 2019).

Algorithm 1 Advantage Weighted AC

1: Dataset D = {(s,a, s′, r)j}
2: Initialize buffer β = D
3: Initialize πθ, Qφ
4: for iteration i = 1, 2, ... do
5: Sample batch (s,a, s′, r) ∼ β
6: Update φ according to Eqn. 3
7: Update θ according to Eqn. 9
8: if i > num_offline_steps then
9: τ1, . . . , τK ∼ pπθ (τ)

10: β ← β ∪ {τ1, . . . , τK}
11: end if
12: end for

Algorithm summary. The full AWAC algorithm for of-
fline RL with online fine-tuning is summarized in Algorithm
1. In a practical implementation, we can parameterize the
actor and the critic by neural networks and perform SGD
updates from Eqn. 9 and Eqn. 3. Specific details are pro-
vided in Appendix A.3. AWAC ensures data efficiency with
off-policy critic estimation via bootstrapping, and avoids
offline bootstrap error with a constrained actor update. By
avoiding explicit modeling of the behavior policy, AWAC
avoids overly conservative updates.

While AWAC is certainly quite related to several prior works,
we note that there are key differences that make it particu-
larly amenable to the problem setting we are considering
- offline RL with online fine-tuning, that none of the other
methods are really able to tackle. As we show in our experimental analysis with direct comparisons
to prior work, every one of the design decisions being made in this work are important for algo-
rithm performance. As compared to AWR (Peng et al., 2019), AWAC uses TD bootstrapping for
significantly more efficient and even asymptotically better performance. As compared to offline RL
techniques like ABM (Siegel et al., 2020), MPO (Abdolmaleki et al., 2018), BEAR (Kumar et al.,
2019) or BCQ (Fujimoto et al., 2019) this work is able to avoid the need for any behavior modeling,
thereby enabling the online fine-tuning part of the problem much better. As shown in Fig 3, when
these seemingly ablations are made to AWAC, the algorithm performs significantly worse.

5 RELATED WORK

Off-policy RL algorithms are designed to reuse off-policy data during training, and have been studied
extensively (Konda & Tsitsiklis, 2000; Degris et al., 2012; Mnih et al., 2016; Haarnoja et al., 2018;
Fujimoto et al., 2018; Bhatnagar et al., 2009; Peters & Schaal, 2008a; Zhang et al., 2019; Wawrzynski,
2009; Balduzzi & Ghifary, 2015). While standard off-policy methods are able to benefit from
including data seen during a training run, as we show in Section 3.2 they struggle when training
from previously collected offline data from other policies, due to error accumulation with distribution
shift (Fujimoto et al., 2019; Kumar et al., 2019). Offline RL methods aim to address this issue, often
by constraining the actor updates to avoid excessive deviation from the data distribution (Lange
et al., 2012; Thomas & Brunskill, 2016; Hallak et al., 2015; 2016; Hallak & Mannor, 2017; Agarwal
et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Fakoor et al., 2019; Nachum et al., 2019;
Siegel et al., 2020; Levine et al., 2020; Zhang et al., 2020). One class of these methods utilize
importance sampling (Thomas & Brunskill, 2016; Zhang et al., 2020; Nachum et al., 2019; Degris
et al., 2012; Jiang & Li, 2016; Hallak & Mannor, 2017). Another class of methods perform offline
reinforcement learning via dynamic programming, with an explicit constraint to prevent deviation
from the data distribution (Lange et al., 2012; Kumar et al., 2019; Fujimoto et al., 2019; Wu et al.,
2020; Jaques et al., 2019). While these algorithms perform well in the purely offline settings, we show
in Section 3.3 that such methods tend to be overly conservative, and therefore may not learn efficiently
when fine-tuning with online data collection. In contrast, our algorithm AWAC is comparable to these
algorithms for offline pre-training, but learns much more efficiently during subsequent fine-tuning.

6

Under review as a conference paper at ICLR 2021

Su
cc

es
s

R
at

e

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 pen-binary-v0

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 door-binary-v0

0M 1M 2M 3M 4M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 relocate-binary-v0

AWAC (Ours) ABM AWR MARWIL BEAR BRAC DAPG SAC SAC + BC

Figure 3: Comparative evaluation on the dexterous manipulation tasks. These tasks are difficult due to their high
action dimensionality and reward sparsity. We see that AWAC is able to learn these tasks with little online data
collection required (100K samples ≈ 16 minutes of equivalent real-world interaction time). Meanwhile, most
prior methods are not able to solve the harder two tasks: door opening and object relocation.

Prior work has also considered the special case of learning from demonstration data. One class of
algorithms initializes the policy via behavioral cloning from demonstrations, and then fine-tunes
with reinforcement learning (Peters & Schaal, 2008b; Ijspeert et al., 2002; Theodorou et al., 2010;
Kim et al., 2013; Rajeswaran et al., 2018; Gupta et al., 2019; Zhu et al., 2019). Most such methods
use on-policy fine-tuning, which is less sample-efficient than off-policy methods that perform value
function estimation. Other prior works have incorporated demonstration data into the replay buffer
using off-policy RL methods (Večerík et al., 2017; Nair et al., 2017). We show in Section 3.2 that
these strategies can result in a large dip in performance during online fine-tuning, due to the inability
to pre-train an effective value function from offline data. In contrast, our work shows that using
supervised learning style policy updates can allow for better bootstrapping from demonstrations as
compared to Večerík et al. (2017) and Nair et al. (2017).

Our method builds on algorithms that implement a maximum likelihood objective for the actor,
based on an expectation-maximization formulation of RL (Peters & Schaal, 2007; Neumann &
Peters, 2008; Theodorou et al., 2010; Peters et al., 2010; Peng et al., 2019; Abdolmaleki et al., 2018;
Wang et al., 2018). Most closely related to our method in this respect are the algorithms proposed
by Peng et al. (2019) (AWR) and Siegel et al. (2020) (ABM). Unlike AWR, which estimates the
value function of the behavior policy, V πβ via Monte-Carlo estimation or TD−λ, our algorithm
estimates the Q-function of the current policy Qπ via bootstrapping, enabling much more efficient
learning, as shown in our experiments. Unlike ABM, our method does not require learning a separate
function approximator to model the behavior policy πβ , and instead directly samples the dataset. As
we discussed in Section 3.3, modeling πβ can be a major challenge for online fine-tuning. While
these distinctions may seem somewhat subtle, they are important and we show in our experiments
that they result in a large difference in algorithm performance. Finally, our work goes beyond the
analysis in prior work, by studying the issues associated with pre-training and fine-tuning in Section 3.
Concurrently to our work, Wang et al. (2020) proposed critic regularized regression for offline RL,
which uses off-policy Q-learning and an equivalent policy update. In contrast to this concurrent work,
we specifically study the offline pretraining online fine-tuning problem, analyze why other methods
are ineffective in this setting, and show that our approach achieves substantially better results.

6 EXPERIMENTAL EVALUATION

In our experiments, we first compare our method against prior methods in the offline training and
fine-tuning setting. We show that we can learn difficult, high-dimensional, sparse reward dexterous
manipulation problems from human demonstrations and off-policy data. We then evaluate our method
with suboptimal prior data generated by a random controller. Finally, we study why prior methods
struggle in this setting by analyzing their performance on benchmark MuJoCo tasks, and conduct
further experiments to understand where the difficulty lies (also shown in Section 3).

6.1) Comparative Evaluation Learning From Prior Data. We aim to study tasks representative
of the difficulties of real-world robot learning, where offline learning and online fine-tuning are most

7

Under review as a conference paper at ICLR 2021

relevant. We begin our analysis with a set of challenging sparse reward dexterous manipulation
tasks proposed by Rajeswaran et al. (2018). These tasks involve complex manipulation skills using
a 28-DoF five-fingered hand in the MuJoCo simulator (Todorov et al., 2012) shown in Figure 3:
in-hand rotation of a pen, opening a door by unlatching the handle, and picking up a sphere and
relocating it to a target location. These environments exhibit many challenges: high dimensional
action spaces, complex manipulation physics with many intermittent contacts, and randomized hand
and object positions. The reward functions in these environments are binary 0-1 rewards for task
completion. 2 Rajeswaran et al. (2018) provide 25 human demonstrations for each task, which are not
fully optimal but do solve the task. Since this dataset is small, we generated another 500 trajectories
of interaction data by constructing a behavioral cloned policy, and then sampling from this policy.

First, we compare our method on these dexterous manipulation tasks against prior methods for
off-policy learning, offline learning, and bootstrapping from demonstrations. Specific implementation
details are discussed in Appendix A.5. The results are shown in Fig. 3. Our method is able to leverage
the prior data to quickly attain good performance, and the efficient off-policy actor-critic component of
our approach fine-tunes much more quickly than demonstration augmented policy gradient (DAPG),
the method proposed by Rajeswaran et al. (2018). For example, our method solves the pen task
in 120K timesteps, the equivalent of just 20 minutes of online interaction. While the baseline
comparisons and ablations are able to make some amount of progress on the pen task, alternative
off-policy RL and offline RL algorithms are largely unable to solve the door and relocate task in the
time-frame considered. We find that the design decisions to use off-policy critic estimation allow
AWAC to significantly outperform AWR (Peng et al., 2019) while the implicit behavior modeling
allows AWAC to significantly outperform ABM (Siegel et al., 2020), although ABM does make some
progress. Rajeswaran et al. (2018) show that DAPG can solve variants of these tasks with more
well-shaped rewards, but still requires considerably more samples.

Additionally, we evaluated all methods on the Gym MuJoCo locomotion benchmarks, similarly
providing demonstrations as offline data. Due to space constraints, the results plots for these
experiments are included in Appendix A.1. These tasks are substantially easier than the sparse reward
manipulation tasks described above, and a number of prior methods also perform well. However, our
method matches or exceeds the best prior method in all cases, whereas no other single prior method
attains good performance on all of the tasks.

0K 20K 40K 60K 80K 100K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Learning From Random Data

AWAC
BEAR

BRAC
ABM

SAC
SAC+BC

Figure 4: Comparison of
fine-tuning from an initial
dataset of suboptimal data on
a Sawyer robot pushing task.

6.2) Fine-Tuning from Random Policy Data. An advantage of using
off-policy RL for reinforcement learning is that we can also incorporate
suboptimal data, rather than demonstrations. In this experiment, we
evaluate on a simulated tabletop pushing environment with a Sawyer
robot pictured in Fig 3 and described further in Appendix A.4. To study
the potential to learn from suboptimal data, we use an off-policy dataset
of 500 trajectories generated by a random process. The task is to push
an object to a target location in a 40cm x 20cm goal space. The results
are shown in Figure 4. We see that while many methods begin at the
same initial performance, AWAC learns the fastest online and is actually
able to make use of the offline dataset effectively.

7 DISCUSSION AND FUTURE WORK

We have discussed in detail the challenges existing RL methods face when fine-tuning from prior
datasets, and proposed an algorithm, AWAC, that is effective in this setting. The key insight in
AWAC is that enforcing a policy update constraint implicitly on actor-critic methods results in a
stable learning algorithm amenable for off-policy learning. With an informative action-value estimate,
the policy is weighted towards high-advantage actions in the data, resulting in policy improvement
without conservative updates. A direction of future work we plan to pursue is applying AWAC to solve
difficult robotic tasks in the real world. More than just speeding up individual runs, incorporating
prior data into the learning process enables continuously accumulating data by saving environment
interactions of the robot - for instance, runs of RL with varying hyperparameters. We hope that this
enables a wider array of robotic applications than previously possible.

2Rajeswaran et al. (2018) use a combination of task completion factors as the sparse reward. For instance, in
the door task, the sparse reward as a function of the door position d was r = 101d>1.35 + 81d>1.0 + 21d>1.2−
0.1||d− 1.57||2. We only use the success measure r = 1d>1.4, which is substantially more difficult.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a Posteriori Policy Optimisation. In International Conference on Learning
Representations (ICLR), pp. 1–19, 2018.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on Offline
Reinforcement Learning. In International Conference on Machine Learning (ICML), 2019.

Christopher G Atkeson and Stefan Schaal. Robot Learning From Demonstration. In International
Conference on Machine Learning (ICML), 1997.

David Balduzzi and Muhammad Ghifary. Compatible value gradients for reinforcement learning of
continuous deep policies. CoRR, abs/1509.03005, 2015.

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-critic
algorithms. Autom., 45(11):2471–2482, 2009. doi: 10.1016/j.automatica.2009.07.008.

Thomas Degris, Martha White, and Richard S. Sutton. Off-Policy Actor-Critic. In International
Conference on Machine Learning (ICML), 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Association for Compuational
Linguistics (ACL), 2019.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3O: Policy-on Policy-off Policy Opti-
mization. In Conference on Uncertainty in Artificial Intelligence (UAI), 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. International Conference on Machine Learning (ICML), 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learning without
Exploration. In International Conference on Machine Learning (ICML), 2019.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. CoRR, abs/1802.05313, 2018.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay Policy
Learning: Solving Long-Horizon Tasks via Imitation and Reinforcement Learning. In Conference
on Robot Learning (CoRL), 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International
Conference on Machine Learning, 2018.

Assaf Hallak and Shie Mannor. Consistent On-Line Off-Policy Evaluation. In International Confer-
ence on Machine Learning (ICML), 2017.

Assaf Hallak, Francois Schnitzler, Timothy Mann, and Shie Mannor. Off-policy Model-based
Learning under Unknown Factored Dynamics. In International Conference on Machine Learning
(ICML), 2015.

Assaf Hallak, Aviv Tamar, Rémi Munos, and Shie Mannor. Generalized Emphatic Temporal Dif-
ference Learning: Bias-Variance Analysis. In Association for the Advancement of Artificial
Intelligence (AAAI), 2016.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning Attractor Landscapes for Learning
Motor Primitives. In Advances in Neural Information Processing Systems (NIPS), pp. 1547–1554,
2002. ISBN 1049-5258.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind W. Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. CoRR, abs/1907.00456, 2019.

9

Under review as a conference paper at ICLR 2021

Nan Jiang and Lihong Li. Doubly Robust Off-policy Value Evaluation for Reinforcement Learning.
In International Conference on Machine Learning (ICML), 2016.

Beomjoon Kim, Amir-Massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from Limited
Demonstrations. In Advances in Neural Information Processing Systems (NIPS), 2013.

Vijay R Konda and John N Tsitsiklis. Actor-Critic Algorithms. In Advances in Neural Information
Processing Systems (NeurIPS), 2000.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems (NIPS), pp.
1097–1105, 2012.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction. In Neural Information Processing Systems (NeurIPS), 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning for Offline
Reinforcement Learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Marco
Wiering and Martijn van Otterlo (eds.), Reinforcement Learning, volume 12 of Adaptation, Learn-
ing, and Optimization, pp. 45–73. Springer, 2012. doi: 10.1007/978-3-642-27645-3_2.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. Technical report, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR), 2016. ISBN 0-7803-3213-X. doi:
10.1613/jair.301.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P
Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In International Conference on Machine Learning (ICML), 2016.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. DualDICE: Behavior-Agnostic Estimation of
Discounted Stationary Distribution Corrections. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, Sergey Levine,
Dian Chen, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Combining Self-
Supervised Learning and Imitation for Vision-Based Rope Manipulation. In IEEE International
Conference on Robotics and Automation (ICRA), 2017. ISBN 9781509046331. doi: 10.1109/
ICRA.2017.7989247.

Ashvin Nair, Bob Mcgrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming Exploration in Reinforcement Learning with Demonstrations. In IEEE International
Conference on Robotics and Automation (ICRA), 2018.

Gerhard Neumann and Jan Peters. Fitted Q-iteration by Advantage Weighted Regression. In Advances
in Neural Information Processing Systems (NeurIPS), 2008.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-Weighted Regression:
Simple and Scalable Off-Policy Reinforcement Learning. 2019.

Jan Peters and Stefan Schaal. Reinforcement Learning by Reward-weighted Regression for Opera-
tional Space Control. In International Conference on Machine Learning, 2007.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008a. doi:
10.1016/j.neucom.2007.11.026.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, 2008b. ISSN 08936080. doi: 10.1016/j.neunet.2008.02.003.

Jan Peters, Katharina Mülling, and Yasemin Altün. Relative Entropy Policy Search. In AAAI
Conference on Artificial Intelligence, pp. 1607–1612, 2010.

10

Under review as a conference paper at ICLR 2021

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and
Demonstrations. In Robotics: Science and Systems, 2018.

Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong Generative Modeling.
Neurocomputing, 2017.

Stefan Schaal. Learning from demonstration. In Advances in Neural Information Processing Systems
(NeurIPS), number 9, pp. 1040–1046, 1997. ISBN 1558604863. doi: 10.1016/j.robot.2004.03.001.

Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. 1998.

Evangelos A Theodorou, Jonas Buchli, and Stefan Schaal. A Generalized Path Integral Control
Approach to Reinforcement Learning. Journal of Machine Learning Research (JMLR), 11:3137–
3181, 2010.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 2139–2148. JMLR.org,
2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033,
2012. ISBN 9781467317375. doi: 10.1109/IROS.2012.6386109.

Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging Demonstrations for
Deep Reinforcement Learning on Robotics Problems with Sparse Rewards. CoRR, abs/1707.0,
2017.

Qing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang. Exponentially Weighted
Imitation Learning for Batched Historical Data. In Neural Information Processing Systems
(NeurIPS), 2018.

Ziyu Wang, Alexander Novikov, Konrad Zołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando De Freitas. Critic
Regularized Regression. 2020.

Pawel Wawrzynski. Real-time reinforcement learning by sequential actor-critics and experience
replay. Neural Networks, 22(10):1484–1497, 2009. doi: 10.1016/j.neunet.2009.05.011.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, pp. 229–256, 1992.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement Learning.
2020.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. GenDICE: Generalized Offline Estimation
of Stationary Values. In International Conference on Learning Representations (ICLR), 2020.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Generalized off-policy actor-critic. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 32, pp. 2001–2011. Curran Associates, Inc., 2019.

Allan Zhou, Eric Jang, Daniel Kappler, Alexander Herzog, Mohi Khansari, Paul Wohlhart, Yunfei
Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn: Meta-learning from
demonstrations and reward. CoRR, abs/1906.03352, 2019.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous Ma-
nipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost. In Proceedings -
IEEE International Conference on Robotics and Automation, volume 2019-May, pp. 3651–3657.
Institute of Electrical and Electronics Engineers Inc., 2019.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 GYM BENCHMARK RESULTS FROM PRIOR DATA

In this section, we provide a comparative evaluation on MuJoCo benchmark tasks for analysis. These
tasks are simpler, with dense rewards and relatively lower action and observation dimensionality.
Thus, many prior methods can make good progress on these tasks. These experiments allow us
to understand more precisely which design decisions are crucial. For each task, we collect 15
demonstration trajectories using a pre-trained expert on each task, and 100 trajectories of off-policy
data by rolling out a behavioral cloned policy trained on the demonstrations. The same data is made
available to all methods. The results are presented in Figure 5. AWAC is consistently the best or on
par with the best-performing method. No other single method consistently attains the best results –
on HalfCheetah, SAC + BC and BRAC are competitive, while on Ant-v2 ABM is competitive with
AWAC. We summarize the results according to the challenges in Section 3.

Data efficiency. The three methods that do not estimate Qπ are DAPG (Abdolmaleki et al., 2018),
AWR (Peng et al., 2019), and MARWIL (Wang et al., 2018). Across all three tasks, we see that these
methods are somewhat worse offline than the best performing offline methods, and exhibit steady but
very slow improvement during fine-tuning. In robotics, data efficiency is vital, so these algorithms
are not good candidates for practical real-world applications.

Bootstrap error in offline learning. For SAC (Haarnoja et al., 2018), across all three tasks, we see
that the offline performance at epoch 0 is generally poor. Due to the data in the replay buffer, SAC
with prior data does learn faster than from scratch, but AWAC is faster to solve the tasks in general.
SAC with additional data in the replay buffer is similar to the approach proposed by Večerík et al.
(2017). SAC+BC reproduces Nair et al. (2018) but uses SAC instead of DDPG (Lillicrap et al., 2016)
as the underlying RL algorithm. We find that these algorithms exhibit a characteristic dip at the start
of learning. Although this dip is only present in the early part of the learning curve, a poor initial
policy and lack of steady policy improvement can be a safety concern and a significant hindrance in
real-world applications. Moreover, recall that in the more difficult dextrous manipulation tasks, these
algorithms do not show any significant learning.

Conservative online learning. Finally, we consider conservative offline algorithms: ABM (Siegel
et al., 2020), BEAR (Kumar et al., 2019), and BRAC (Wu et al., 2020). We found that BRAC
performs similarly to SAC for working hyperparameters. BEAR trains well offline – on Ant and
Walker2d, BEAR significantly outperforms prior methods before online experience. However, online
improvement is slow for BEAR and the final performance across all three tasks is much lower than
AWAC. The closest in performance to our method is ABM, which is comparable on Ant-v2, but much
slower on other domains.

A
ve

ra
ge

R
et

ur
n

0K 100K 200K 300K 400K 500K
Timesteps

0

2000

4000

6000

8000

10000 HalfCheetah-v2

0K 100K 200K 300K 400K 500K
Timesteps

2000

0

2000

4000

6000 Ant-v2

0K 100K 200K 300K 400K 500K
Timesteps

1000

0

1000

2000

3000

4000

5000 Walker2d-v2

AWAC (Ours) ABM AWR MARWIL BEAR BRAC DAPG SAC SAC + BC

Figure 5: Comparison of our method and prior methods on standard MuJoCo benchmark tasks. These tasks are
much easier than the dexterous manipulation tasks, and allow us to better inspect the performance of methods in
the setting of offline pretraining followed by online fine-tuning. SAC+BC and BRAC perform on par with our
method on the HalfCheetah task, and ABM performs on par with our method on the Ant task, while our method
outperforms all others on the Walker2D task. Our method matches or exceeds the best prior method in all cases,
whereas no other single prior method attains good performance on all of the tasks.

12

Under review as a conference paper at ICLR 2021

A.2 ALGORITHM DERIVATION DETAILS

The full optimization problem we solve, given the previous off-policy advantage estimate Aπk and
buffer distribution πβ , is given below:

πk+1 = argmax
π∈Π

Ea∼π(·|s)[A
πk(s,a)] (10)

s.t. DKL(π(·|s)||πβ(·|s)) ≤ ε (11)∫
a

π(a|s)da = 1. (12)

Our derivation follows Peters et al. (2010) and Peng et al. (2019). The analytic solution for the
constrained optimization problem above can be obtained by enforcing the KKT conditions. The
Lagrangian is:

L(π, λ, α) = Ea∼π(·|s)[A
πk(s,a)] + λ(ε−DKL(π(·|s)||πβ(·|s))) + α(1−

∫
a

π(a|s)da). (13)

Differentiating with respect to π gives:

∂L
∂π

= Aπk(s,a)− λ log πβ(a|s) + λ log π(a|s) + λ− α. (14)

Setting ∂L
∂π to zero and solving for π gives the closed form solution to this problem:

π∗(a|s) = 1

Z(s)
πβ(a|s) exp

(
1

λ
Aπk(s,a)

)
, (15)

Next, we project the solution into the space of parametric policies. For a policy πθ with parameters θ,
this can be done by minimizing the KL divergence of πθ from the optimal non-parametric solution
π∗ under the data distribution ρπβ (s):

argmin
θ

E
ρπβ (s)

[DKL(π
∗(·|s)||πθ(·|s))] = argmin

θ
E

ρπβ (s)

[
E

π∗(·|s)
[− log πθ(·|s)]

]
(16)

Note that in the projection step, the parametric policy could be projected with either direction of KL
divergence. However, choosing the reverse KL direction has a key advantage: it allows us to optimize
θ as a maximum likelihood problem with an expectation over data s, a ∼ β, rather than sampling
actions from the policy that may be out of distribution for the Q function. In our experiments we
show that this decision is vital for stable off-policy learning.

Furthermore, assume discrete policies with a minimum probably density of πθ ≥ αθ. Then the upper
bound:

DKL(π
∗||πθ) ≤

2

αθ
DTV(π

∗, πθ)
2 (17)

≤ 1

αθ
DKL(πθ||π∗) (18)

holds by the Pinsker’s inequality, whereDTV denotes the total variation distance between distributions.
Thus minimizing the reverse KL also bounds the forward KL. Note that we can control the minimum
α if desired by applying Laplace smoothing to the policy.

A.3 IMPLEMENTATION DETAILS

We implement the algorithm building on top of twin soft actor-critic (Haarnoja et al., 2018), which
incorporates the twin Q-function architecture from twin delayed deep deterministic policy gradient
(TD3) from Fujimoto et al. (2018). All off-policy algorithm comparisons (SAC, BRAC, MPO, ABM,
BEAR) are implemented from the same skeleton. The base hyperparameters are given in Table 2.
The policy update is replaced with:

θk+1 = argmax
θ

E
s,a∼β

[
log πθ(a|s)

1

Z(s)
exp

(
1

λ
Aπk(s,a)

)]
. (19)

13

Under review as a conference paper at ICLR 2021

Env
Use
Z(s)

Omit
Z(s)

pen 84% 98%

door 0% 95%

relocate 0% 54%

Table 1: Success rates after on-
line fine-tuning (after 800K steps
for pen, door and 4M steps for
relocate) using AWAC with and
without Z(s) weight. These re-
sults show that although we can
estimate Z(s), weighting by Z(s)
actually results in worse perfor-
mance.

Similar to advantage weight regression (Peng et al., 2019) and
other prior work (Neumann & Peters, 2008; Wang et al., 2018;
Siegel et al., 2020), we disregard the per-state normalizing constant
Z(s) =

∫
a
πθ(a|s) exp

(
1
λA

πk(s,a)
)
da = Ea∼πθ(·|s)[A

πk(s,a)].
We did experiment with estimating this expectation per batch el-
ement with K = 10 samples, but found that this generally made
performance worse, perhaps because errors in the estimation of
Z(s) caused more harm than the benefit the method derived from
estimating this value. We report success rate results for variants of
our method with and without Z(s) estimation in Table 1.

While prior work (Neumann & Peters, 2008; Wang et al., 2018;
Peng et al., 2019) has generally ignored the omission of Z(s) with-
out any specific justification, it is possible to bound this value both
above and below using the Cauchy-Schwarz and reverse Cauchy-
Schwarz (Polya-Szego) inequalities, as follows. Let f(a) = π(a|s)
and g(a) = exp(A(s,a)/λ). Note f(a) > 0 for stochastic policies

and g(a) > 0. By Cauchy-Schwarz, Z(s) =
∫
a
f(a)g(a)da ≤

√∫
a
f(a)2da

∫
a
g(a)2da = C1. To

apply Polya-Szego, let mf and mg be the minimum of f and g respectively and Mf ,Mg be the

maximum. Then Z(s) ≥ 2(
√

MfMg

mfmg
+

mfmg
MfMg

)−1C1 = C2. We therefore have C1 ≤ Z(s) ≤ C2,
though the bounds are generally not tight.

A further, more intuitive argument for why omitting Z(s) may be harmless in practice comes from
observing that this normalizing factor only affects the relative weight of different states in the training
objective, not different actions. The state distribution in β already differs from the distribution
over states that will be visited by πθ, and therefore preserving this state distribution is likely to
be of limited utility to downstream policy performance. Indeed, we would expect that sufficiently
expressive policies would be less affected by small to moderate variability in the state weights. On the
other hand, inaccurate estimates of Z(s) may throw off the training objective by increasing variance,
similar to the effect of degenerate importance weights.

The Lagrange multiplier λ is treated as a hyperparameter in our method. In this work we use λ = 0.3
for the manipulation environments and λ = 1.0 for the MuJoCo benchmark environments. One could
adaptively learn λ with a dual gradient descent procedure, but this would require access to πβ .

As rewards for the dextrous manipulation environments are non-positive, we clamp the Q value for
these experiments to be at most zero. We find this stabilizes training slightly.

A.4 ENVIRONMENT-SPECIFIC DETAILS

We evaluate our method on three domains: dexterous manipulation environments, Sawyer manipu-
lation environments, and MuJoCo benchmark environments. In the following sections we describe
specific details.

A.4.1 DEXTEROUS MANIPULATION ENVIRONMENTS

These environments are modified from those proposed by Rajeswaran et al. (2018).

pen-binary-v0. The task is to spin a pen into a given orientation. The action dimension is 24 and
the observation dimension is 45. Let the position and orientation of the pen be denoted by xp and
xo respectively, and the desired position and orientation be denoted by dp and do respectively. The
reward function is r = 1|xp−dp|≤0.0751|xo·do|≤0.95 - 1. In Rajeswaran et al. (2018), the episode was
terminated when the pen fell out of the hand; we did not include this early termination condition.

door-binary-v0. The task is to open a door, which requires first twisting a latch. The action
dimension is 28 and the observation dimension is 39. Let d denote the angle of the door. The reward
function is r = 1d>1.4 - 1.

14

Under review as a conference paper at ICLR 2021

Hyper-parameter Value

Training Batches Per Timestep 1

Exploration Noise None (stochastic policy)

RL Batch Size 1024

Discount Factor 0.99

Reward Scaling 1

Replay Buffer Size 1000000

Number of pretraining steps 25000

Policy Hidden Sizes [256, 256, 256, 256]

Policy Hidden Activation ReLU

Policy Weight Decay 10−4

Policy Learning Rate 3× 10−4

Q Hidden Sizes [256, 256, 256, 256]

Q Hidden Activation ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Table 2: Hyper-parameters used for RL experiments.

relocate-binary-v0. The task is to relocate an object to a goal location. The action dimension is
30 and the observation dimension is 39. Let xp denote the object position and dp denote the desired
position. The reward is r = 1|xp−dp|≤0.1 - 1.

A.4.2 SAWYER MANIPULATION ENVIRONMENT

SawyerPush-v0. This environment is included in the Multiworld library. The task is to push a
puck to a goal position in a 40cm x 20cm, and the reward function is the negative distance between
the puck and goal position. When using this environment, we use hindsight experience replay for
goal-conditioned reinforcement learning. The random dataset for prior data was collected by rolling
out an Ornstein-Uhlenbeck process with θ = 0.15 and σ = 0.3.

A.4.3 OFF-POLICY DATA PERFORMANCE
Env Expert BC (1) BC (2)

cheetah 9962 2507 4524

walker 5062 2040 1701

ant 5207 687 1704

pen 1 0.73 0.76

door 1 0.10 0.00

relocate 1 0.02 0.01

Table 3: Performance of the off-policy data
for each environment. BC (1) indicates BC
on the expert data, while BC (2) indicates
BC on the combined expert+BC data used
as off-policy data for pretraining.

The performances of the expert data, behavior cloning (BC)
on the expert data (1), and BC on the combined expert+BC
data (2) are included in Table 3. For Gym benchmarks
we report average return, and expert data is collected by
a trained SAC policy. For dextrous manipulation tasks we
report the success rate, and the expert data consists of human
demonstrations provided by Rajeswaran et al. (2018).

A.5 BASELINE IMPLEMENTATION DETAILS

We used public implementations of prior methods (DAPG,
AWR) when available. We implemented the remaining algo-
rithms in our framework, which also allows us to understand
the effects of changing individual components of the method.
In the section, we describe the implementation details. The full overview of algorithms is given in
Figure 6.

15

https://github.com/vitchyr/multiworld

Under review as a conference paper at ICLR 2021

Name Q̂ Policy Objective π̂β? Constraint

SAC Qπ DKL(πθ||Q̄) No None

SAC + BC Qπ Mixed No None

BCQ Qπ DKL(πθ||Q̄) Yes Support (`∞)

BEAR Qπ DKL(πθ||Q̄) Yes Support (MMD)

AWR Qβ DKL(Q̄||πθ) No Implicit

MPO Qπ DKL(Q̄||πθ) Yes∗ Prior

ABM-MPO Qπ DKL(Q̄||πθ) Yes Learned Prior

DAPG - J(πθ) No None

BRAC Qπ DKL(πθ||Q̄) Yes Explicit KL penalty

AWAC (Ours) Qπ DKL(Q̄||πθ) No Implicit

Figure 6: Comparison of prior algorithms that can incorporate prior datasets. See section A.5 for specific
implementation details. We argue that avoiding estimating π̂β (i.e., π̂β is “No”) is important when learning
with complex datasets that include experience from multiple policies, as in the case of online fine-tuning, and
maintaining a constraint of some sort is essential for offline training. At the same time, sample-efficient learning
requires using Qπ for the critic. Our algorithm is the only one that fulfills all of these requirements.

Behavior Cloning (BC). This method learns a policy with supervised learning on demonstration
data.

Soft Actor Critic (SAC). Using the soft actor critic algorithm from (Haarnoja et al., 2018), we follow
the exact same procedure as our method in order to incorporate prior data, initializing the policy with
behavior cloning on demonstrations and adding all prior data to the replay buffer.

Behavior Regularized Actor Critic (BRAC). We implement BRAC as described in (Wu et al., 2020)
by adding policy regularization log(πβ(a|s)) where πβ is a behavior policy trained with supervised
learning on the replay buffer. We add all prior data to the replay buffer before online training.

Advantage Weighted Regression (AWR). Using the advantage weighted regression algorithm from
(Peng et al., 2019), we add all prior data to the replay buffer before online training. We use the
implementation provided by Peng et al. (2019), with the key difference from our method being that
AWR uses TD(λ) on the replay buffer for policy evaluation.

Monotonic Advantage Re-Weighted Imitation Learning (MARWIL). Monotonic advantage re-
weighted imitation learning was proposed by Wang et al. (2018) for offline imitation learning.
MARWIL was not demonstrated in online RL settings, but we evaluate it for offline pretraining
followed by online fine-tuning as we do other offline algorithms. Although derived differently,
MARWIL and AWR are similar algorithms and only differ in value estimation: MARWIL uses the
on-policy single-path advantage estimate A(s, a) = Qπβ (s, a) − V πβ (s) instead of TD(λ) as in
AWR. Thus, we implement MARWIL by modifying the implementation of AWR.

Maximum a Posteriori Policy Optimization (MPO). We evaluate the MPO algorithm presented
by Abdolmaleki et al. (2018). Due to a public implementation being unavailable, we modify our
algorithm to be as close to MPO as possible. In particular, we change the policy update in Advantage
Weighted Actor Critic to be:

θi ←− argmax
θi

Es∼D,a∼π(a|s)

[
log πθi(a|s) exp(

1

β
Qπβ (s, a))

]
. (20)

Note that in MPO, actions for the update are sampled from the policy and the Q-function is used
instead of advantage for weights. We failed to see offline or online improvement with this implemen-
tation in most environments, so we omit this comparison in favor of ABM.

Advantage-Weighted Behavior Model (ABM). We evaluate ABM, the method developed in Siegel
et al. (2020). As with MPO, we modify our method to implement ABM, as there is no public

16

Under review as a conference paper at ICLR 2021

implementation of the method. ABM first trains an advantage model πθabm(a|s):

θabm = argmax
θi

Eτ∼D

 |τ |∑
t=1

log πθabm(at|st)f(R(τt:N)− V̂ (s))

 . (21)

where f is an increasing non-negative function, chosen to be f = 1+. In place of an advantage
computed by empirical returnsR(τt:N)−V̂ (s) we use the advantage estimate computed per transition
by the Q value Q(s, a)− V (s). This is favorable for running ABM online, as computing R(τt:N)−
V̂ (s) is similar to AWR, which shows slow online improvement. We then use the policy update:

θi ←− argmax
θi

Es∼D,a∼πabm(a|s)

[
log πθi(a|s) exp

(
1

λ
(Qπi(s, a)− V πi(s))

)]
. (22)

Additionally, for this method, actions for the update are sampled from a behavior policy trained to
match the replay buffer and the value function is computed as V π(s) = Qπ(s, a) s.t. a ∼ π.

Demonstration Augmented Policy Gradient (DAPG). We directly utilize the code provided in
(Rajeswaran et al., 2018) to compare against our method. Since DAPG is an on-policy method, we
only provide the demonstration data to the DAPG code to bootstrap the initial policy from.

Bootstrapping Error Accumulation Reduction (BEAR). We utilize the implementation of BEAR
provided in rlkit. We provide the demonstration and off-policy data to the method together. Since the
original method only involved training offline, we modify the algorithm to include an online training
phase. In general we found that the MMD constraint in the method was too conservative. As a result,
in order to obtain the results displayed in our paper, we swept the MMD threshold value and chose
the one with the best final performance after offline training with offline fine-tuning.

17

https://github.com/vitchyr/rlkit

Under review as a conference paper at ICLR 2021

A.6 EXTRA BASELINE COMPARISONS (CQL, ALGAEDICE)

In this section, we add comparisons to constrained Q-learning (CQL) (Kumar et al., 2020) and
AlgaeDICE (Nachum et al., 2019). For CQL, we use the authors’ implementation, modified for
additionally online-finetuning instead of only offline training. For AlgaeDICE, we use the publicly
available implementation, modified to load prior data and perform 25K pretraining steps before online
RL. The results are presented in Figure 7.

Figure 7: Comparison of our method (AWAC) with CQL and AlgaeDICE. CQL and AWAC perform similarly
offline, but CQL does not improve when fine-tuning online. AlgaeDICE does not perform well for offline
pretraining.

18

Under review as a conference paper at ICLR 2021

A.7 ONLINE FINE-TUNING FROM D4RL

In this experiment, we evaluate the performance of varied data quality (random, medium, medium-
expert, and expert) datasets included in D4RL (Fu et al., 2020), a dataset intended for offline RL.
The results are obtained by first by training offline and then fine-tuning online on each setting for
500,000 additional steps. The performance of BEAR (Kumar et al., 2019) is attached as reference.
We attempted to fine-tune BEAR online using the same protocol as AWAC but the performance did
not improve and often decreased; thus we report the offline performance. All performances are scaled
to 0 to 100, where 0 is the average returns of a random policy and 100 is the average returns of an
expert policy (obtained by training online with SAC), as is standard for D4RL.

The results are presented in Figure 8. First, we observe that AWAC (offline) is competitive with
BEAR, a commonly used offline RL algorithm. Then, AWAC is able to make progress in solving
the tasks with online fine-tuning, even when initialized from random data or “medium” quality
data, as shown by the performance of AWAC (online). In almost all settings, AWAC (online) is
the best performing or tied with BEAR. In four of the six lower quality (random or medium) data
settings, AWAC (online) is significantly better than BEAR; it is reasonable that AWAC excels in the
lower-quality data regime because there is more room for online improvement, while both offline RL
methods often start at high performance when initialized from higher-quality data.

AWAC

(offline)

AWAC

(online)
BEAR

HalfCheetah random 2.2 52.9 25.5

medium 37.4 41.1 38.6

medium-expert 36.8 41.0 51.7
expert 78.5 105.6 108.2

Hopper random 9.6 62.8 9.5

medium 72.0 91.0 47.6

medium-expert 80.9 111.9 4.0

expert 85.2 111.8 110.3

Walker2D random 5.1 11.7 6.7

medium 30.1 79.1 33.2

medium-expert 42.7 78.3 10.8

expert 57.0 103.0 106.1

Figure 8: Comparison of our method (AWAC) fine-tuning on varying data quality datasets in D4RL (Fu et al.,
2020). AWAC is able to improve its offline performance by further fine-tuning online.

19

	Introduction
	Preliminaries
	Challenges in Offline RL with Online Fine-tuning
	Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning from Offline Datasets
	Related Work
	Experimental Evaluation
	Discussion and Future Work
	Appendix
	Gym Benchmark Results From Prior Data
	Algorithm Derivation Details
	Implementation Details
	Environment-Specific Details
	Dexterous Manipulation Environments
	Sawyer Manipulation Environment
	Off-Policy Data Performance

	Baseline Implementation Details
	Extra Baseline Comparisons (CQL, AlgaeDICE)
	Online Fine-Tuning From D4RL

