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Abstract
In this manuscript, we study the learning of deep
attention neural networks, defined as the composi-
tion of multiple self-attention layers, with tied and
low-rank weights. We first establish a mapping of
such models to sequence multi-index models, a
generalization of the widely studied multi-index
model to sequential covariates, for which we es-
tablish a number of general results. In the context
of Bayes-optimal learning, in the limit of large
dimension D and proportionally large number of
samples N , we derive a sharp asymptotic charac-
terization of the optimal performance as well as
the performance of the best-known polynomial-
time algorithm for this setting –namely approx-
imate message-passing–, and characterize sharp
thresholds on the minimal sample complexity re-
quired for better-than-random prediction perfor-
mance. Our analysis uncovers, in particular, how
the different layers are learned sequentially. Fi-
nally, we discuss how this sequential learning can
also be observed in a realistic setup.

1. Introduction
Recent years have witnessed a shift in paradigm in the
automated learning from sequential data, such as language
(Brown et al., 2020; Kenton & Toutanova, 2019). The
backbone of many of these technological advances arguably
lies in the use of transformer architectures (Vaswani
et al., 2017) – a parametrization allowing the model to
dynamically focus on relevant portions of the input, and
extricate increasingly complex correlations between tokens
through the successive application of attention layers. They
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technique Fédérale de Lausanne (EPFL) 2Center of Mathemati-
cal Sciences and Applications, Harvard University 3Information
Learning and Physics Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL). Correspondence to: Emanuele Troiani
<emanuele.troiani@epfl.ch, lenka.zdeborova@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

thus constitute a function class able to represent intricate
dependencies between the tokens of sequential covariates.
In spite of their ubiquity, the study of such models from a
theoretical viewpoint is still in its infancy.

This situation stands in contrast with the wealth of results
on multi-index models, central to many theoretical works
e.g. (Arous et al., 2021; Abbe et al., 2022; Veiga et al., 2022;
Ba et al., 2022; Arnaboldi et al., 2023; Collins-Woodfin
et al., 2024; Damian et al., 2024a; Bietti et al., 2023; Moniri
et al., 2024; Berthier et al., 2024). Multi-index models
define functions based on low-dimensional subspaces of
covariates and are popular exemplars among theoreticians.
However, shallow architectures like multi-index models are
structurally simpler than attention models. Specifically, they
(a) lack the hierarchical structure from multiple attention
layers and (b) act on less structured, non-sequential covari-
ates. These distinctions make it unclear whether results
from multi-index models apply to multilayer attention archi-
tectures. Here, we show these models share a deep formal
connection, enabling a transfer of insights and analytical
approaches.

Namely, our first motivation is to extend the theoretical
framework of multi-index models to sequence models. We
consider the class of sequence multi-index (SMI) functions
introduced by (Cui et al., 2024a; Cui, 2025), and defined
over length M sequences of D-dimensional tokens x ∈
RD×M of the form

ySMI
W (x) = g

(
Wx√
D

)
. (1)

where W ∈ RP×D is a learnable projection matrix, and
g : RP×M → RK is a (possibly multi-dimensional) link
function. The K−dimensional output could represent
–to give an example– the predicted class probabilities in
a sentiment classification task. As we shall see, SMI
functions prove very versatile generalizations of multi-index
models (M = 1) to sequence data of length M > 1, that
can be studied using related ideas and theoretical tools.

Our second motivation is to deploy the formalism devel-
oped for SMI models to study complex neural architectures.
Remarkably, the SMI class encompasses a range of mod-
els – with a particularly noteworthy example being deep
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attention architectures. A deep attention model of depth L,
yDA : RD×M → RM×M , is defined recursively as

yDA(x) = σ

(
x⊤
L−1w

⊤
LwLxL−1

D

)
, (2)

where ∀l ∈ J1, L−1K,

xl = xl−1

[
c1M+σ

(
x⊤
l−1w

⊤
l wlxl−1

D

)]
, (3)

with x0 ≡ x ∈ RD×M and σ : RM×M → RM×M a
non-linear map, taken in this work to be the softmax
function. The deep attention function (2) corresponds to a
composition of L single-head self-attention layers (with tied
key and query), specified by the strength c ∈ R of its skip
connections, and tied key and query matrices wl ∈ RPl×D,
for l = 1, . . . , L. We set the value matrix to identity. We
show in Appendix A that the SMI class also describes even
more generic multi-layer attention networks.

Before stating our main contributions, we elucidate the con-
nection between the deep attention model (2) and the SMI
model (1). While we focus on the single-head tied-weights
architecture (2) for clarity, such a mapping can also be con-
structed for deep architectures with multiple heads, untied
weights, and sequence-to-sequence models with outputs in
RD×M , as detailed in Appendix A. The connection between
the SMIs and deep attention models constitutes a pathway
towards many exciting research avenues in the study of
neural architectures beyond the exemplar of multi-layer
perceptrons –such as classical multi-index models–, while
allowing the transfer of ideas from the study of the latter.

Mapping deep attention to the SMI model– Starting
from a deep attention model (2) with weights {w⋆

l }Ll=1, let
us introduce the projections (a.k.a the eponymous indices)
{Zl ∈ RPl×M}Ll=1 of the input data x ∈ RD×M on each
weight matrix w⋆

l ∈ RPl×D: Zl = w⋆
l x/

√
D. Layer by

layer, the post-activation sequences xl build on the initial
sequence x by adding increasingly sophisticated correla-
tions between tokens. A key observation, however, is that
successive post-activations xl retain a simple formal expres-
sion, and depend non-linearly on the input x only through
the indices Z1, ..., Zl. More precisely, at every layer l, the
post activation xl can be written as

xl = xBl
c(Z1, ..., Zl), (4)

where we introduced a function Bl
c : RP1×M × · · · ×

RPl×M → RM×M , subsuming the complex inter-token
interactions resulting from the propagation of the input
through previous layers. The sequence of mixing functions

{Bl
c}Ll=1 are defined recursively as:

Bl
c(Z1, ..., Zl) =

Bl−1
c (Z1, ..., Zl−1)

(1−δl,L)
[
(1− δl,L)c1M (5)

+ σ
(
Bl−1

c (Z1, ..., Zl−1)
⊤Z⊤

l ZlB
l−1
c (Z1, ..., Zl−1)

) ]
,

with B0
c = 1M , the identity matrix. The claim (4) then

follows from the definitions (5) and (2) by recursion, finally
yielding

yDA(x) = BL
c (Z1, ..., ZL). (6)

Eq. (6) can be written more compactly and evocatively as

yDA(x) = g

(
W ⋆x√

D

)
, (7)

introducing the total weights W ⋆ ∈ RP×D, defined as
the vertical concatenation of the weight matrices {w⋆

l }Ll=1

along their first dimension, and denoting P = P1+ ...+PL.
The link function g in (7) follows from a redefinition of
BL

c , as can be read from (6), and takes values in RM×M ≊
RK for K = M2. One then observes that the equivalent
model (7) is an SMI model (1), whose width P is related
to the depth of the original deep attention model (2). The
recursive structure of the deep network (2) is encoded in the
way the highly structured function g acts on the different
rows of its argument W ⋆x ∈ RP×M . Importantly, the P
rows generically do not play symmetric roles, reflecting the
structure of the original deep attention function.

Main contributions – Building on the above mapping, we
study the statistical and computational limits of learnability
from data generated by the models (1) and (2). Namely,
we consider training data composed of N samples of Gaus-
sian i.i.d. input sequences, and output labels generated by
the SMI model (1) with random i.i.d. Gaussian weights
(the same realization of weights for every sample). In the
limit of large dimension D and number of samples N with
N/D,P,M,K = Θ(1), we characterize the minimal pre-
diction error achievable information-theoretically and also
by a class of algorithms conjectured optimal among all
polynomial algorithms. This is achieved by the following
technical contributions:

• We show how to rigorously generalize results previously
established for multi-index models to the SMI models –
including the notions of phase transition for weak recovery,
and optimal message-passing algorithms (Damian et al.,
2024b; Troiani et al., 2025).
• We derive sharp asymptotic expressions for optimal esti-
mation errors achievable information theoretically and with
the Approximate Message-Passing (AMP) algorithm, in the
limit of large covariate dimension D, and proportionally
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large number of samples N , but finite sequence length M ,
weight rank P and depth L. This characterization builds on
the analyses of (Donoho et al., 2009; Javanmard & Monta-
nari, 2013; Gerbelot & Berthier, 2023) for AMP, which is
optimal among first-order methods (Celentano et al., 2020).
• We extend the numerical evaluation and analysis of the
resulting asymptotic equations from M = 1 in (Aubin
et al., 2018; Troiani et al., 2025), and P = 1 in (Cui et al.,
2024a; Cui, 2025) to SMI models with both sequence length
M > 1, and number of indices P > 1.

Equipped with the above theoretical results, we extract the
weak recovery thresholds, namely the sample complexity re-
quired for a better-than-random estimation, for the weights
of every layer in the case of a two-layer attention model. We
show that different layers are learnable at different sample
complexities, implying sequential learning of the different
weights. We then briefly discuss how such layer-wise learn-
ing also arises in more realistic settings.

Further related works

Analyses of single attention layers – Many theoretical
studies of attention-based models (Vaswani et al., 2017)
consider the case of a single attention layer, studying it in
isolation (Lopardo et al., 2024; Zhang et al., 2024; Li et al.,
2023b; Tian et al., 2023; Jelassi et al., 2022). This rich line
of works shed light on various aspects of these models, such
as their inductive bias (Sahiner et al., 2022; Ataee Tarzanagh
et al., 2023; Tarzanagh et al., 2023), training dynamics
(Li et al., 2023a), or expressivity (Fu et al., 2024). A
fraction of this body of works was devoted to characterizing
attention models in the limit of large dimensions. (Lu et al.,
2024) and (Rende et al., 2024) provide tight asymptotic
characterization of the error achieved by linear attention
layers, respectively for in-context learning and next-token
prediction. (Cui et al., 2024a) uncover a phase transition
between semantic and positional learning in a model of
attention mechanism with low-rank weights. For a related
model, (Marion et al., 2024) study its population gradient
dynamics, and prove its asymptotic Bayes-optimality for
a regression task. Because these works focus on single
attention layers however, they cannot capture the compound
effect of multiple successive attention layers in building
increasingly complex correlations between tokens present
in multilayer models such as (2).

Analyses of deep attention models – In an effort to super-
sede those limitations, a recent stream of works has striven
to tackle the problem of multiple attention layers, under
varying simplifications. (Geshkovski et al., 2024; 2023)
study the propagation of a signal through multiple attention
layers with frozen weights. (Ahn et al., 2023; Von Os-
wald et al., 2023) describe how the successive layers can

implement gradient descent steps, establishing how an opti-
mization algorithm can be encoded by such an architecture.
Deep attention models have also been studied through the
lens of their capacity (Edelman et al., 2022) and expressiv-
ity (Hahn, 2020), and scaling limits (Bordelon et al., 2024).
The training dynamics of deep attention models were as-
certained close to initialization by (Bietti et al., 2023), and
fully by (Abbe et al., 2024a), in exchange of the assumption
of diagonal weights. Closer to our setting, (Tiberi et al.,
2024) study the Bayesian learning of a multilayer attention,
assuming trainable value matrices but frozen key and query
matrices. In this respect, the model is complementary to the
one considered in the present work, where in contrast the
learning of key and query weights is addressed, while value
matrices are fixed to identity. Another key difference lies in
the fact that the attention matrix at every layer is computed
using the bare input x in (Tiberi et al., 2024), as opposed to
the output of the previous layer xl−1 as in (2).

Learning multi-index models – Multi-index models cor-
respond to target function of the form y(x) = g(Wx),
specified by a link function g and a finite rank matrix
W ∈ RP×D, with P = Θ(1), and can be viewed as
two-layer MLPs with weights W and activation g. They
provide a natural exemplar for functions that operate on
high-dimensional covariates, but only depend on a finite
number of directions. Several authors have used multi-index
models as testbeds to explore the ability of neural networks
to learn low-dimensional subspaces in high dimensions (Ba
et al., 2022; Moniri et al., 2024; Dandi et al., 2023; 2025;
Cui et al., 2024b). A substantial stream of works has further-
more been devoted to studying the behavior of (stochastic)
gradient descent on such non-convex objectives (Saad &
Solla, 1995; 1996; Arous et al., 2021; Bietti et al., 2023;
Simsek et al., 2025; Barak et al., 2022; Berthier et al., 2024;
Abbe et al., 2023; Damian et al., 2022; Glasgow, 2023; Arn-
aboldi et al., 2024b), with the work of (Oko et al., 2024)
providing insights for more generic scalings of the number
of hidden units P with the dimension D. In closer rela-
tion to the present work, (Troiani et al., 2025) ascertain the
fundamental computational limits of learning multi-index
functions, leveraging an analysis of AMP algorithms. In this
manuscript, we establish a deep connection between deep
attention models (2) and SMI models (1), a generalization
of multi-index models introduced by (Cui et al., 2024a; Cui,
2025), allowing to borrow from the aforementioned wealth
of insights and results. The connection to deep attention
models was not noticed in (Cui et al., 2024a; Cui, 2025),
and (Cui, 2025) studied the empirical risk minimization for
the SMI models using the replica method, and has not estab-
lished the fundamental statistical and computational limits
for the SMI function class.
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Statistical and computational limits of learning – The
optimal prediction errors associated with single-layer neural
network functions were first derived in a line of founda-
tional works (Gardner & Derrida, 1988; Sompolinsky et al.,
1990; Györgyi, 1990) for perceptrons, and rigorously in
(Barbier et al., 2019). The statistical limits of learning in
committee machines were explored in (Schwarze & Hertz,
1992; Schwarze, 1993; Monasson & Zecchina, 1995), and
its computational limits in (Aubin et al., 2018; Troiani et al.,
2025). The case of large-width networks was covered in
(Zavatone-Veth et al., 2022) for linear models, and (Cui
et al., 2023; Camilli et al., 2023; Maillard et al., 2024) for
non-linear models. Closer to our work, (Erba et al., 2024)
consider a related model of bilinear sequence regression,
characterizing its optimal errors, and proposing an associ-
ated AMP algorithm matching these performances. (Abbe
et al., 2024b) study the weak learnability of a variety of
tasks for transformers trained with descent algorithms.

2. Fundamentals limits of learning SMI models
The question of determining the statistical and computa-
tional limits of learning has traditionally been thoroughly
explored for multi-index models (Gardner & Derrida, 1988;
Schwarze & Hertz, 1992; Barbier et al., 2019; Aubin et al.,
2018; Troiani et al., 2025). In this first section, we show
how these ideas can be extended to SMI models (1).

2.1. Bayes-optimal learning of SMI models

We are interested in the statistical inference prob-
lem of estimating the weights W ⋆ of an SMI model
ySMI
W ⋆ = g (W

⋆x/
√
D) from N observations D ≡

{(xµ, ySMI
W ⋆ (xµ))}Nµ=1 of the function on identically and

idependently sampled (i.i.d) covariates xµ ∈ RD×M with
i.i.d standard Gaussian components. We further consider
a random instance of the SMI model, where the weights
W ⋆ have been randomly sampled from a prior distribution,
which we assume for definiteness to be i.i.d Gaussian over
all the components. For this problem, we ask the question
of the optimal statistical and computational prediction error
that can be deduced from the estimation of the weights
W ⋆ from the observations D: what is the information-
theoretically lowest reconstruction error? What is the
lowest error achievable by polynomial-time algorithms?

We answer these questions in the Bayes-optimal setting,
in which the statistician has full knowledge of the param-
eters of the model except the realization of its weights
W ∗. The estimator y(·) minimizing the prediction error
Ex∥y(x) − ySMI

W ⋆ (x)∥2 is then given by the mean y(x) =

EW [ySMI
W (x)|D] over the Bayesian posterior distribution

P(W |D)∝e−
1
2Tr[WW⊤]

N∏
µ=1

δ
(
ySMI
W ⋆ (xµ)−ySMI

W (xµ)
)
.

(8)

Asymptotic limit – In the limit of large covariate
dimension D and large number of samples N , sampling
the posterior distribution (8) is generically computationally
challenging. It is on the other hand possible, in this limit, to
access exact theoretical characterizations of key statistics of
the optimal estimators. We detail this analysis in the follow-
ing sections. More precisely, we consider the asymptotic
limit of D,N → ∞ while α ≡ N/D = Θ(1). We further
assume that the sequence length M , model width P and
output dimension K remain finite : M,P,K = Θ(1).

Methodology – The following technical results are
enabled by the key observation that the SMI model (1)
can further be viewed as an ordinary multi-index model,
provided the data and weights are properly reshaped.
More precisely, to go from an SMI model to an equivalent
multi-index model, one can flatten the input x ∈ RD×M ,
viewed as a length M sequence of D-dimensional tokens,
into a vector in RMD. In parallel, the matrix of weights
W ⋆ ∈ RP×D should be mapped into a block-diagonal
matrix of size PM ×DM with each of the M blocks on
the diagonal being equal to W ⋆, as detailed in Appendix
B. In words, an SMI model can be viewed as a multi-index
model acting on flattened sequences, with a non-separable
prior on the parameters.

This mapping allows us to borrow from previous results
on multi-index models. On the one hand, the computa-
tional limits can be determined along the lines of (Troiani
et al., 2025), leveraging an analysis of the generalized-AMP
(GAMP) algorithm, which is provably optimal within the
class of first-order methods (Celentano et al., 2020). This
analysis can be carried out using methods developed in (Ger-
belot & Berthier, 2023) on the state evolution of GAMP. The
statistical limits of learning may be, on the other hand, ob-
tained by leveraging the rigorous results on the free-energy
of the posterior measure (8) for multi-index models estab-
lished in (Aubin et al., 2018), as sketched in Appendix B.2,
or using the non-rigorous replica method from statistical
physics, as detailed in Appendix D.5.

2.2. Statistical limits: Bayes-optimal error

To state our main results, we start by defining a finite-
dimensional output channel induced by Eq. (1) that will
be referred to throughout the subsequent sections:

Y (ω, V ) = g
(
ω +

√
V Z
)
, (9)
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where Z ∈ RP×M and Zij
i.i.d.∼ N (0, 1). On an intuitive

level, ω ∈ RP×M and V ∈ S+
P (a positive semidefinite

matrix od size P ) correspond to estimates of the mean and
covariance of the inputs to the nonlinearity g(·) in Eq. (1).

With the above definition and assumptions on g specified
in Appendix B.2, we are in a position to state our first
result, characterizing the asymptotic Bayes-optimal error
for a general SMI model of the form (1):
Theorem 2.1. Consider the SMI model (1) with non-
linearity g. Let ξ ∈ RP×M denote a matrix with entries
ξij

i.i.d.∼ N (0, 1). Let HY (Q), denote the conditional en-
tropy of the associated output channel Y defined by Eq. (9)
with ω =

√
Qξ and V = 1P −Q for the so-called overlap

Q ∈ S+
P . Suppose that the following sup inf problem:

sup
Q̂∈S+

P

inf
Q∈S+

P

{
− 1

2Tr
(
QQ̂

)
− 1

2 log
(
1P + Q̂

)
+ 1

2 Q̂+ αHY (Q)

}
.

(10)

admits a unique global extremizer Q̂⋆, Q⋆. Then the asymp-
totic Bayes-optimal prediction error is given by:

Ex

∥∥ySMI
W ⋆ (x)− EW

[
ySMI
W (x)|D

]∥∥2 D→∞−−−−→ (11)

E
[
∥g(ξ)2∥2−

〈
g(ξ), g

(√
1P −Q⋆Z+

√
Q⋆ξ

)〉]
and the Bayes-optimal estimation error is ∥W ∗(W ∗)⊤ −
EW

[
WW⊤|D

]
∥2 → 1− ∥Q∗∥22 .

The proof of Theorem 2.1 is outlined in Appendix B. A
complementary non-rigorous derivation using the replica
method is provided in Appendix D.5.

2.3. Computational Limits: Weak-recovery thresholds

We next move to presenting a sharp asymptotic characteriza-
tion of the computational limits of the Bayesian estimation
problem (8). Our approach relies on the study of a GAMP
algorithm (Donoho et al., 2009), reported in Algorithm 1,
building on two of its remarkable properties. First, the
GAMP algorithm associated to a Bayes-optimal estima-
tion problem is provably optimal among first-order methods
(Celentano et al., 2020) and runs in polynomial time. Conse-
quently, the sample complexity required for the learnability
for GAMP implies a computational lower bound on the
class of all first-order algorithms, which includes in partic-
ular widely used gradient descent methods. Secondly, the
performance of GAMP algorithms admits a sharp asymp-
totic description in terms of finite-dimensional variables.
This description, known as the state evolution equations
(Bayati & Montanari, 2011; Javanmard & Montanari, 2013),
allow the analysis of GAMP in the high-dimensional limit
D → ∞. The state evolution description is formalized
through the following Lemma:

Algorithm 1 GAMP for SMI model
Inputs : D = {xµ, yµ}Nµ=1

Initialize Ŵ 0
i = N (0,1P ), Ĉ

0 = 1P , g
0
µ = 0P×M

for t ≤ tmax do
V t = Ĉt ∈ RP×P

ωt
m,µ = 1√

D

D∑
i=1

xµ
m,iŴ

t
i − V tgtmµ ∈ RP×M

gtm,µ =
[
gout(y

µ, ωt
µ, V

t)
]
m

∈ RP

At = − α
N

N,M∑
µ,m=1

[
∂ωgout(y

µ, ωt
µ, V

t)
]
mm

∈ RP×P

bti =
1√
D

N,M∑
µ,m=1

xµ
mig

t
m,µ +AtŴ t

i ∈ RP

Ŵ t+1
i = (1P +At)−1bti

Ĉt+1 = (1P +At)−1

end for

Lemma 2.2 (State evolution (Gerbelot & Berthier, 2023)).
Define gout : RM×M → RP×M to be the following “de-
noiser”:

gout(Y, ω, V ) := E [Z |Y ] , (12)

where the conditional expectation is w.r.t the output channel
in Eq. (9). Let Ŵ

t
denote the iterates of Algorithm 1 at time

t ∈ N. Assuming gout ∈ C2, under the high-dimensional
limit N,D → ∞ with fixed ratio α=N/D, constant M and
any finite time t, the limiting overlaps converge in probabil-
ity to the overlap Qt:

1/dŴ
t
Ŵ

t⊤ P−→ Qt, 1/dŴ
t
W ⋆⊤ P−→ Qt, (13)

with Qt satisfying the state evolution equations

Qt = F
(
αEY,ξ

[
gout(Y,

√
Qt−1ξ,1P −Qt−1)⊗2

])
,

(14)
from an initial condition Q0. In (14), we denoted
F (Q̂) = (1P + Q̂)−1Q̂, and employed the shorthand
Y = Y (

√
Qξ,

√
1P −Q), with ξ ∈ RP×M denoting a

matrix with entries ξij
i.i.d.∼ N (0, 1).

In Appendix D.2, we establish that the fixed points of the
state evolution equations (14) are in one-to-one correspon-
dence with the stationary points of the objective function
defined in Equation (10). Consequently, in cases where
Equation (10) admits a unique non-zero stationary point
Q⋆ ∈ S+

p corresponding to the global extremum, the GAMP
algorithm, provided it converges to a non-zero limit, neces-
sarily attains an overlap 1/dŴ

t
Ŵ

t⊤
converging to Q⋆. It

then follows from Equation 11 that GAMP asymptotically
achieves Bayes-optimal performance. The proof of Lemma
2.2, which builds upon (Berthier et al., 2020), is outlined in
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Figure 1. (Left) Diagonal elements of the overlap Q (13) (red and blue) and prediction error (black) achieved by GAMP, as a function of
the sample complexity α = N/D, for a two-layer attention model P1 = P2 = 1, c = 1,M = 2. Off-diagonal elements of Q are zero,
and thus not plotted. Crosses: numerical implementations of GAMP in dimension D = 1000, averaged over 16 runs. Convergence was
reached with at most 50 iterations. Continuous lines: theoretical prediction from Eqs. 14 and (11). Dashed line: prediction error of GAMP
when the first layer weights are fixed to zero. (Right) Weak recovery thresholds α1 (in red) and α2 (in blue), above which the second and
first layer weights are respectively retrieved, as a function of the skip connection strength c. The red (resp. blue) lines indicate the sample
complexities above which the second (resp. first) layers can be learned.

Appendix B. We also provide a complementary derivation of
this result from the Belief Propagation scheme (Pearl, 1988)
associated with the inference problem (8) in Appendix D.
Lemma 2.2 provides an asymptotic description of the perfor-
mance of GAMP (Algorithm 1), which can be leveraged to
ascertain when reconstruction is computationally achievable,
what sample complexity is required to do so, and whether
the algorithm achieves the Bayes-optimal performance.

Hereafter, let us consider more particularly the case of even
SMI models, namely those invariant under the reflection
W ↔ −W of their weights. This is the case, for instance,
of the tied deep attention model (2). As a consequence of
this symmetry, Q = 0 is a trivial fixed point of the state-
evolution of GAMP, and the latter fails to reconstruct any
part of the row-space of W ⋆. As is well known for sin-
gle and multi-index models (Mondelli & Montanari, 2018;
Troiani et al., 2025), the breaking of such a symmetry neces-
sitates the introduction of side-information, defined as an
additional observation λW ⋆ +

√
1− λξ, with ξ ∈ RP×D

a matrix with Gaussian i.i.d entries, and λ ∈ R. The GAMP
algorithm in the presence of side information differs from
Algorithm 1 only in the updates of Ŵ , Ĉ, as we discuss in
Appendix D. The introduction of side-information allows
us to define a number of weak-recovery thresholds. Given
a subspace U ⊆ Rp the weak recovery threshold for U is
defined as the smallest α such that the iterates Ŵ of the
GAMP algorithm when projected along the rows of W ⋆

achieve non-vanishing components along all directions of
U , with arbitrarily small side-information coefficient λ. We
discuss the formal definitions and existence of such thresh-
olds in Appendix C, based on the analysis in (Troiani et al.,
2025). A special threshold we can characterize in closed
form is the weak-recovery threshold for initial recovery, that
is the smallest sample complexity α1 such that GAMP can

achieve non vanishing overlap in any subspace U without
having any significant overlap at all. This thresholds can
be characterized in closed-form in terms of the stability of
the fixed-points of the state-evolution (14) of Lemma 2.2.
Indeed, the iterates Ŵ t can escape the neighborhood of
the fixed point Q = 0 in the presence of vanishing side-
information λ if and only if the fixed-point Q = 0 becomes
unstable. The weak-recovery threshold for initial recovery
can thus be determined by performing a linear stability anal-
ysis. Notice that once this first subspace U1 is recovered,
then a new threshold α2 emerges: α2 describes the minimal
sample complexity such that the fixed point becomes unsta-
ble to perturbations orthogonal to U1. This procedure can
be then repeated, creating a natural ordering in the learning
of row span(W ⋆) as a function of the sample complexity,
which we call grand-staircase mechanism in analogy with
Definition 6 in (Troiani et al., 2025) . This discussion, which
we prolong in Appendix C, is formalized in the following
theorem.
Theorem 2.3. Suppose that gout ∈ C2 with G :=
∂ωgout(Y, 0,1P ) ∈ RP×P×M×M denoting the tensor-
Jacobian of gout with respect to ω. Define F(X ) to be
the following linear operator on RP×P

F(X )ij =

M∑
a,b=1

P∑
kl=1

EY [GikabXklGljab] , (15)

where Y is distributed as in (9). Then the weak recovery
threshold for initial recovery – namely for reconstructing
any subspace – is

1

α1
= sup

X∈S
Pl
+ , ∥X∥F=1

∥F(X )∥ (16)

where ∥X∥F is the Frobenius norm and SP
+ is the set of

positive semi-definite matrices of size P×P . More generally,
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Figure 2. (Top) Evolution of the performance of GAMP with the
number of iteration, as measured by the cosine similarity Cl =
|(w⋆

l )ŵ
⊤
l |/∥ŵl∥ between the GAMP estimate ŵl of the l−th

layer weights and the target weights w⋆, for L = 2, P1 = P2 =
1, c = 1,M = 2. We display a single run of the algorithm in
dimension D = 1000 and sample complexity α = N/D = 1.2
starting from the first iteration. (Bottom) Evolution of the cosine
similarity, for the same target function, when training the same
model using SGD. We display 8 runs of the algorithm in dimension
D = 500 and sample complexity α = 15, with the average
indicated in bold. The numerical experiments were performed at
λ = 1.4 × 10−4, η = 15, and batch size 200, with each batch
used for 3 consecutive iterations.

for a subspace U ⊆ Rp, we denote by αU , the threshold for
weak-recovery of all directions in U , defined as:

αU = inf{α : lim
λ→0+

lim
t→∞

PUQ
t
λ(PU )

⊤ ≻ 0}, (17)

where PU denotes the projection onto U and Qt
λ ∈ RP×P

are recursively defined by:

Qt+1
λ = Fλ

(
αEY,ξ

[
gout(Y,

√
Qt

λξ,1P −Qt
λ)

⊗2

])
,

(18)
with Fλ(Q̂) = (Q̂(1− λ) + λ1P )(1P + Q̂(1− λ))−1.

Definition 17 then specifies an ordering of subspaces U1 ⊂
U2 ⊂ ...Uk ⊆ Rk such that αU1

< αU2
< ...αUk

. We
denote αUj for j = 1, 2, 3... in the above ordering as αj ,
with α1 matching the description in Equation 9, and in
general use the shorthand αk = αUk

.

The existence of the limit defined by Eq. (17) is a conse-
quence of the monotonicity of the asymptotic dynamics of
GAMP described by Eq. (18), see Appendix B.

3. Results for deep attention models
The previous section delineates the fundamental limits of
learning in the class of SMI models (1). We now show how

these results seamlessly transfer to deep attention models
(2), and discuss in particular the consequences of Theorem
2.3 for these architectures.

3.1. Layer-wise learning in depth L = 2 attention

We examine for definiteness the case of a two-layer atten-
tion model (2) (L = 2,M = 2, P1 = P2 = 1, c = 1).
Fig. 1 (left) illustrates the theoretical predictions of Lemma
2.2 for the prediction error (11) and overlap Q (13) (right)
achieved by GAMP, as a function of the sample complexity
α. Before discussing the curves, let us highlight two remark-
able features of the behavior of GAMP in this model. First,
we observe that the values of these metrics at convergence
remain unchanged if GAMP is initialized with strong side
information. This finding is a telltale sign of the absence of
computational-to-statistical gaps for this particular problem,
and strongly suggests that GAMP is in this case Bayes-
optimal. Secondly, we notice that the off-diagonal elements
Q12, Q21 of the overlap Q (13) vanish at convergence.

A striking observation from Fig. 1 is that the learning pro-
ceeds in sequential steps, as the sample complexity α is in-
creased. For α < α1 ≈ 0.14 (grey regime in Fig. 1), there is
insufficient data to learn either set of weights –as signaled by
vanishing overlaps Q11 = Q22 = 0–. As a consequence, the
prediction error (black) stays sensibly constant, and does not
decrease. In the regime α1 < α < α2 ≈ 0.79 (red regime
in Fig. 1), the sample complexity is greater than the sharp
threshold for the learnability of the second layer (l = 2),
and the corresponding overlap becomes non-zero Q22 ̸= 0,
reflecting a partial reconstruction of w2. This translates
into a sizable decrease in the prediction error throughout
this phase. Finally, for sample complexities α > α2 (blue
regime in Fig. 1), the first layer weights are also learned
(Q11 ̸= 0), resulting in yet another decrease in prediction
error. The different layers are thus learned sequentially,
with a clear separation in sample complexity between the
consecutive stages. The weak recovery thresholds α1, α2

delineating the different regimes can be computed using the
results described in Section 2. Specifically, the initial re-
covery threshold α1 is the critical sample complexity above
which a first subspace –in this case the span of the second
layer weights– is recovered, as characterized in Theorem 2.3.
α2 is the critical sample complexity required to recover the
subspace spanned by the first layer weights, conditioned
on having acquired a non-zero overlap Q22 > 0 with the
second layer weights. We describe how to compute α2 in
Appendix E.2. Finally, we chart the boundaries of the three
regimes observed in Fig. 1 (left) in a phase diagram (Fig. 1
(right)), as a function of the skip connection c and the sam-
ple complexity, evidencing how the phases subsist across a
wide range of skip connection strengths c.
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Figure 3. (Left) Diagonal elements of the overlap Q (13) (red, blue and green) and prediction error (black) achieved by GAMP, as a
function of the sample complexity α = N/D, for a three-layer attention model P1 = P2 = P3 = 1, c = 1,M = 2. Off-diagonal
elements of Q are zero, and thus not plotted. Dashed line: prediction error when the first and second layer weights are fixed to zero.
(Right) Similarity Sl = tr

(
(wt⊤

l wt
l )(w

∗⊤
l wl∗)

)
/∥wt

l∥
2∥w∗

l ∥
2 between the weights wt

l at training step t and the last-iterate weights w∗
l

as a function of the training time. A transformer with L = 2 attention layers and a fully connected readout is trained on the TREC
classification task (Hovy et al., 2001; Li & Roth, 2002). Different colors indicate different attention layers, with the multiple curves
representing distinct runs.

3.2. The role of depth

It is natural to wonder whether such layer-wise learning
is a generic feature of deep attention networks or simply
a phenomenon proper to the two-layer case. Fig. 3 (left)
shows the diagonal elements of the overlap Q for a depth
L = 3 attention model with P1 = P2 = P3 = 1,M =
2, c = 1. As in the L = 2 case (see Fig. 1), the last layer
is learned first as the number of samples increases. On the
other hand, the shallower layers l = 1, 2 seem to share the
same weak recovery threshold, and are learned sensibly at
the same rate. We conjecture this to be a general feature of
deeper attention models.

Let us make an interesting observation in this direction,
which we leave as inspiration for future work. The deep
attention model (2) admits an elegant limiting form in the
joint limit of large depth L → ∞ and large skip connection
c = βL, with β finite, provided the activation function is
simultaneously rescaled as σ(z) = σ̌(z/c):

yDA(x)= σ̌

((
1+ 1

βL

L−1∑
l=1

σ(Z⊤
l Zl)

)⊤

Z⊤
L ZL

(
1+ 1

βL

L−1∑
l=1

σ(Z⊤
l Zl)

))
,

where we remind that Zl = wlx/
√
D denotes the projection

of the input x on the l−th layer weights wl. A detailed
derivation of this limiting form is provided in Appendix A.4.
This simple expansion shows that, in the large depth limit,
the deep attention model can be viewed as a combination
of a linear attention module Z⊤

LZL parametrized by the last
layer weights, and a ”committee” of attention modules cor-
responding to the first L− 1 layers. Since these first layers
are interchangeable we expect that also the overlaps should
share the same invariance, making it possible to simplify
the state evolution equations in this limit by assuming that
also the overlaps need to have an interchangeable structure,
in a similar spirit to (Aubin et al., 2018).

3.3. Dynamics of learning

The precedent subsection evidenced how the different layers
warrant different sample complexities to be reconstructed
and are learned sequentially by GAMP as more samples be-
come available. A similar sequential learning phenomenon
can in fact also be observed at a fixed sample complexity, as
a function of the number of iterations. Fig. 2 (top) represents
the evolution of the cosine similarity Cl = w⋆

l ŵ
⊤
l /∥ŵl∥ be-

tween the GAMP estimate ŵl of the layer l weights and the
corresponding target weights w⋆

l , over the GAMP iterations.
The second layer is learned within the first few iterations.
In contrast, the first layer is at first not learned, and its re-
construction only commences after approximately 10 steps,
when the second layer is almost perfectly reconstructed.

This layer-wise learning phenomenon over training time is
not restricted to the GAMP algorithm. In Fig. 2 (bottom), we
plot the performance of Stochastic Gradient Descent (SGD)
in reconstructing the weights of the same two-layer archi-
tecture, from the same dataset D = {xµ, y

w⋆
1 ,w

⋆
2

DA (xµ)}Nµ=1,
by implementing the descent steps

ŵt+1
l =− η

∑
x∈Bt

∇ŵl
∥yw

⋆
1 ,w

⋆
2

DA (x)− y
ŵt

1,ŵ
t
2

DA (x)∥2−λŵt
l ,

with learning rate η and weight decay λ. Bt ⊂ D denotes
the batch used for the t−th step. Notice how we reuse
the same batch for multiple gradient updates (Arnaboldi
et al., 2024a). The simulations reveal that, similarly to
GAMP, the learning of SGD proceeds in two sequential
steps. While SGD starts learning the second layer weights
after one epoch, the first layer is only reconstructed later,
when the second layer is almost perfectly learned, with a
clear separation in training time between the two stages.
We believe that describing analytically the gradient descent
dynamics of SMI models, and in particular of deep atten-
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tions, can be an interesting research direction, which can be
pursued leveraging the existing literature on the dynamics of
multi-index models (Gerbelot et al., 2024; Celentano et al.,
2021; Dandi et al., 2024; Mignacco et al., 2020). Similarly,
a systematic study of layer-wise learning in more realistic
transformers could offer valuable insights, especially though
the lenses of mechanistic interpretability.

4. Discussion and conclusions
We have so far focused our investigations on the case of
target functions of the form (2), evidencing how the weights
of different layers of a two-layer attention architecture are
learned sequentially over training time. In this last section,
we briefly illustrate how similar layer-wise learning phe-
nomena can also be observed for more practical transformer
architectures, with real datasets.

We consider a classification problem on the Text REtrieval
Conference (TREC) dataset (Hovy et al., 2001; Li & Roth,
2002), in which the network is tasked with labeling the
object of a question. The data is pre-processed using the
uncased base BERT model (Kenton & Toutanova, 2019)
to obtain token embeddings that are subsequently fed into
a simple transformer architecture with two consecutive at-
tention layers, and a fully-connected readout layer. The
network is trained on the cross-entropy loss using the
Pytorch (Paszke et al., 2017) implementation of the
AdamW (Loshchilov & Hutter, 2019) optimizer, over 40
epochs. Further details can be found in Appendix F. Fig. 3
shows the evolution of the similarity metric

Sl =
tr
(
(wt⊤

l wt
l )(w

∗⊤
l wl∗)

)
∥wt

l∥2∥w∗
l ∥2

(19)

between the weights wt
l at training time t and the last-iterate

weights w∗
l , for a given layer l ∈ {1, 2}, as a function of

t. The curves reveal a marked sequential learning process.
They are furthermore quite reminiscent of our findings
for two-layer attention target functions, gathered in Fig. 2,
which we discussed above. Remarkably, however, compared
to Fig. 2, the order in which the layers are learned in the
TREC task is reversed, echoing the findings of (Chen et al.,
2023) that shallower layers tend to converge faster over
training. We expect the order in which layers are learned to
generically depend on the intricate interactions between the
architecture, task and algorithm. Ascertaining precisely the
factors determining the order in a given setting is a challeng-
ing task, which warrants careful mechanistic studies. We
leave this question as an exciting future research direction.

To conclude, in the present manuscript, we consider the
problem of learning a deep attention network, defined as
the composition of multiple self-attention layers. We first
establish that such architectures pertain to the class of
sequence multi-index models, which generalize multi-index

models to sequential covariates. For this larger class
of models, in the Bayes-optimal setting, we derive the
statistically and computationally optimal estimation errors,
and extract from those the weak recovery thresholds. In
the case of a depth 2 attention model, our findings uncover
how distinct layers are learned sequentially, with increasing
number of samples, or over training time. We briefly
discuss how a related layer-wise learning phenomenon can
also be observed in practical settings.

Among the limitations of our work, the SMI functions do
not naturally account for fully connected layers usually
interlaid with attention layers. Another limitation is that we
consider only learning from Gaussian i.i.d. inputs; adding
input correlation is possible but left for future work.
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A. Generalization to untied and multi-head attention
The backbone of the analysis of deep attention models (2) reported in Section 3.1 of the main text is the mapping (7) to a
SMI model (1). As we extensively discuss in the main text, this formal connection permits the transfer of analytical ideas
from the study of multi-index models to that of deep attention architectures. Although we considered in the main text
attention architectures with tied query and key weights for clarity and ease of exposition, the class of SMI functions (1) in
fact encompasses a much broader array of deep attention architectures, with untied weights, and generic number of heads.
In this Appendix, we detail the mapping of these more complex architectures to SMI functions. A direct consequence of this
mapping is that the general results on the statistical (Theorem 2.1) and computational (Lemma 2.2 and Theorem 2.3) limits
of learning in SMI models directly apply to such architectures. We discuss sequentially the case of deep attention functions
with untied weights, before extending the mapping to multiple heads. Finally, we derive the infinite depth limit L → ∞
discussed in the main text. In the following we will use bold characters for all the quantities that with O(D) elements, as we
did in the main text.

A.1. Untied weights

As such, our main theoretical results consequently hold for untied architectures as well. In this paragraph, we detail the
mapping of a deep attention network with generically untied weights to a SMI. Consider the model

yUDA(x) = σ

(
x⊤
L−1w

Q⊤
L wK

L xL−1

D

)
, ∀l ∈ J1, L−1K, xl = xl−1

[
c1M+σ

(
x⊤
l−1w

Q⊤
l wK

l xl−1

D

)]
, (20)

where wQ
l , wK

l ∈ RPl×D are two sets of independently sampled standard Gaussian weights. As we did in the main text, we
can write the untied deep attention model yUDA(x) as an SMI model by introducing two families of indices Kl, Ql for the
keys and the queries respectively

Kl =
wK

l x√
D

, Ql =
wQ

l x√
D

, (21)

with which we can define a new mixing functions {Bl
c(K1, ...,Kl,Q1, ...,Ql)}Ll=1, defined recursively as

Bl
c = (Bl−1

c )(1−δl,L)
[
(1− δl,L)c1M + σ

(
Bl−1⊤

c Q⊤
l KlB

l−1
c

) ]
, (22)

with B0
c = 1M , giving us

yUDA(x) = BL
c (K1, ...,KL,Q1, ...,QL) (23)

This corresponds to an SMI model (1). To see this, denote P = P1 + ... + PL and introduce the concatenated weights
WUDA ∈ R2P×D, defined as the matrix obtained by vertically stacking wK

1 , ...,wK
L ,wQ

1 , ...,w
Q
L , in this order. Then define

the link function gUDA : R2P×M → RM×M as

gUDA(X) = BL
c (X[1:P1], X[P1+1:P1+P2], ..., X[P+1:P+P1], ...), (24)

where X[i:j] denotes the (j − 1 + 1)×D submatrix of X comprising the rows indexed between i and j. Then, the deep
attention architecture yUDA can be rewritten compactly as

yUDA(x) = gUDA(WUDAx). (25)

In other words, the untied deep attention is also a SMI. Consequently, all the technical results reported in the main text
directly apply to this architecture.

A.2. Sequence to Sequence multi-layer attention models

The SMI class of models defined by Eq. (1) further subsume sequence-to-sequence models with output in RD×M given by:

y = xl−1

[
c1M+σ

(
x⊤
l−1w

⊤
l wlxl−1

D

)]
,

instead of the RM×M output in Eq. (2). Above, xl are defined recursively as in Eq. (3) for l ∈ [L].

14



Fundamental limits of learning in sequence multi-index models and deep attention networks

The mapping of the above model to SMI follows by writing

y = xB̄L
c (Z1, ..., Zl) , (26)

where the functions B̄l
c are the equivalent for sequence to sequence models of Bl

c in (5)

B̄l
c(Z1, ..., Zl) = B̄l−1

c (Z1, ..., Zl−1)
[
(1− δl,L)c1M + σ

(
B̄l−1

c (Z1, ..., Zl−1)
⊤Z⊤

l ZlB̄
l−1
c (Z1, ..., Zl−1)

) ]
, (27)

and B̄1
c = 1M . Intuitively B̄L

c (Z1, ..., Zl) ∈ RM×M denotes the components of the tokens (columns) in y along the basis
of the input tokens in x. Since we assume D ≫ P , while y itself is high-dimensional, it can be constructed from x by
specifying the M ×M scalar entries of B̄L

c (Z1, ..., Zl). Hence, the estimation of y given x is equivalent to the estimation
of B̄L

c (Z1, ..., Zl) given x, which reduces to a sequence multi-index (SMI) model with outputs in RM×M .

Note that for a single layer L = 1 this sequence-to-sequence variant of the model was analyzed in (Cui et al., 2024a).

A.3. Multi-head attention

By the same token, multi-head architectures can also be mapped to a SMI, and thus fall within the scope of our theoretical
results. Let us take the input data x ∈ RDH×M sequence of length M embedded in dimension DH . At each layer l, the
embeddings are split into H vectors of dimension D, which are then projected to dimension Pl. We can model this by first
splitting x into a list of H elements {xh ∈ RD×M}Hh=1 and then defining H ×H sequence indices for each layer both for
the keys and the queries

Kh1h2

l =
Kwh1h2

l xh2

√
D

, Qh1h2

l =
Qwh1h2

l xh2

√
D

(28)

Each attention head is defined as

σ

 H∑
h1,h2

xh1⊤
l−1

Qwhh1⊤
l

Kwhh2

l xh2

l−1

HD

 = σ

 1

H

H∑
h1,h2

(Qhh1

l )⊤Khh2

l

 . (29)

The deep multi-head architecture is then defined as

∀l ∈ J1, LK, xh
l = xh

l−1

(1− δl,L)c1M + σ

 1

H

H∑
h1,h2

(Qhh1

l )⊤Khh2

l

 (30)

with

yMHA(x) =
∑
h

v⊤
h x

h
L, (31)

where vh ∈ RPr×D are trainable readout weights. As before, we introduce a set of functions Bl
c : (RH×H×P1×M )⊗2 ×

...× (RH×H×Pl×M )⊗2 → RH×M×M

[Bl
c]h =[Bl−1

c ]
(1−δl,L)
h

(1− δl,L)c1M + σ

 H∑
h1,h2

[Bl−1
c ]⊤h1

(Qhh1

l )⊤Khh2

l [Bl−1
c ]h2

 , (32)

with [B0
c ]h = 1M . Then

yMHA(x) =
∑
h

Vh[B
L
c ({{Kh1

l , ...,KhH
l }Hh=1}Ll=1, {{Qh1

l , ...,QhH
l }Hh=1}Ll=1)]h, (33)

defining Vh ≡ v⊤
h xh.

To expound the connection of this deep, multi-head model to SMI models, first denote P = (P1 + ...+ PL)H + Pr, and
define the total weights WMHA ∈ RP×DH , defined as

W⊤
MHA =

(
KW 1

1 . . .KWH
1 . . .KW 1

L . . .KWH
L

QW 1
1 . . .QWH

1 . . .QW 1
L . . .QWH

L V
)
. (34)
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with

KW h
l =


Kwh1

1 0
. . .

0 KwhH
1


⊤

QW h
l =


Qwh1

1 0
. . .

0 QwhH
1


⊤

V =

 v1 0
. . .

0 vH


⊤

(35)

Finally, we construct the link function gMHA : RP×M → RPr×M . For any argument X ∈ RP×M , we view X as a vertical
block vector with 2HL +H blocks {{KXh

l ∈ RHPl×M}Hh=1}Ll=1, {{QXh
l ∈ RHPl×M}Hh=1}Ll=1, {V X ∈ RHPr×M}, in

this order. Each of these blocks is further viewed as a block matrix of H vertically stacked blocks, which we index with the
subscript h′. Then we define

gMHA(X) =
∑
h

V Xh[B
L
c ({{(KXh

l )1, ..., (
KXh

l )H}Hh=1}Ll=1, {{(QXh
l )1, ..., (

QXh
l )H}Hh=1}Ll=1)]h. (36)

With those definitions, it follows that the multi-head deep attention model can be rewritten as

yMHA(x) = gMHA(WMHAx), (37)

i.e. this model too pertains to the class of SMI models. All the technical results established for SMI models in the main text
thus directly transfer to multi-head architectures.

This Appendix showcases how fairly intricate deep attention architectures, with generically untied weights and multiple
heads, fall into the class of SMI models – which thus proves a truly rich class of models. The study of the phenomenology
of these more complex models and the implication of our theoretical characterization, therefore, are left for future works.

A.4. Large depth limit of tied, single-head attention

In this subsection we study the limit of strong skip connection in the model we are considering, showing how the formalism
simplifies in this limit. We start by redefining the multi-layer attention by rescaling each layer

∀l ∈ J1, L− 1K, xl = xl−1

[
1M +

1

c
σ

(
x⊤
l−1wlw

⊤
l xl−1

D

)]
. (38)

With these new definitions, we are interested in the large depth and skip connection limit c, L → ∞, while keeping the two
terms proportional by imposing c = βL. We start by writing the functions Bl

c in this new definition

Bl
c(Z1, ..., Zl) = Bl−1

c (Z1, ..., Zl−1)
[
1M +

1

c
σ
(
Bl−1

c (Z1, ..., Zl−1)
⊤Z⊤

l ZlB
l−1
c (Z1, ..., Zl−1)

) ]
, (39)

with B0
c = 1M . We would like to expand the functions above for large c, so we define the functions Al

c such that

Bl
c = 1M +

Al
c

c
+O

(
1

c

)
. (40)

For l = 0 we have A0
c = 0. It is possible to determine the other values of Al

c by expanding (39)

Bl
c = Bl−1

c

[
1M +

1

c
σ
(
(Bl−1

c )⊤Z⊤
l ZlB

l−1
c

)]
=

(
1M +

1

c
Al−1

c

)[
1M +

1

c
σ

((
1M +

1

c
Al−1

c

)⊤
Z⊤
l Zl

(
1M +

1

c
Al−1

c

))]
+O

(
1

c

)

= 1M +
1

c
Al−1

c +
1

c
σ

((
1M +

1

c
Al−1

c

)⊤
Z⊤
l Zl

(
1M +

1

c
Al−1

c

))
+O

(
1

c

)
= 1M +

1

c
Al−1

c +
1

c
σ
(
Z⊤
l Zl

)
+O

(
1

c

)
,

(41)
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from which we can extract
Al

c = Al−1
c + σ

(
Z⊤
l Zl

)
. (42)

We can thus provide a closed form expression for Al
c

∀l ∈ J1, L− 1K, Al
c =

l∑
l′=1

σ
(
Z⊤
l′ Zl′

)
. (43)

Finally, we have the result

BL
c (Z1, ..., ZL) = σ

(1 + 1

βL

L−1∑
l=1

σ
(
Z⊤
l Zl

))⊤

Z⊤
LZL

(
1 +

1

βL

L−1∑
l=1

σ
(
Z⊤
l Zl

)) (44)

This is a very special function. In order to highlight its properties, we will study a generic functions g : RM×M ×RM×M →
RM×M

g(J,H) = σ

((
1 +

H

β

)⊤
J

(
1 +

H

β

))
, (45)

with the identification

BL
c (Z1, ..., ZL) = g

(
Z⊤
LZL,

1

L

L−1∑
l=1

σ
(
Z⊤
l Zl

))
(46)

B. Proof of Theorem 2.1
In this Appendix, we detail the equivalence, discussed in subsection 2.1 of the main text, between a SMI function (1) and
a classical multi-index model acting on flattened input and with shared weights. This connection is instrumental in the
application of the results of (Gerbelot & Berthier, 2023; Aubin et al., 2018; Troiani et al., 2025) for multi-index models to
SMI models. Leveraging this equivalence, we then provide a proof of Theorem 2.1.

B.1. Mapping SMI models to block-structured multi-index models

Consider the setup of sequence multi-index models defined by Eq. (1) and suppose that the link function g : RP×M → RK

outputs K-dimensional vectors ySMI
W ⋆ (x).

Given a sequence x ∈ RD×M , we denote by xe ∈ RDM the corresponding “flattened” vector defined by:

x⊤
e := [x⊤

1 , · · · ,x⊤
M ], (47)

where x1, · · · ,xM denote the columns of x

Under the above flattening, the pre-activations Wx ∈ RP can be re-expressed through projections of the flattened inputs xe

onto a block-structured weight matrix given by:

W ⋆
e :=

W
⋆, 0, · · · , 0

0, W ⋆, · · · , 0
...

...
...

...

 ∈ RPM×DM . (48)

Equivalently, W ⋆
e can be represented as the Kronecker product W ⋆ ⊗ IM

The above representation leads to the following correspondence:

(W ⋆
e xe) =

 (W ⋆x1)
· · ·

(W ⋆xM )

 , (49)

Therefore, the PM -dimensional vector (W ⋆
e xe) is obtained by stacking the projections of different columns of x onto W ⋆.
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With the above definition, ySMI
W ⋆ can be equivalently expressed as:

ySMI
W ⋆ = g

(
W ⋆x√

D

)
= ge

(
W ⋆

e xe√
D

)
, (50)

where ge : RPM → RK is obtained by lifting g through the mapping defined by Eq. (49) to act on inputs in RPM .

B.2. Proof of Theorem 2.1

We make the following assumption on g derived from (Aubin et al., 2020; Barbier et al., 2019):

Assumption B.1. The non-linearity g in SMI (model 1) lies in C2 and is entry-wise bounded.

For technical reasons, we further assume that a Gaussian noise matrix with i.i.d N (0,∆) entries with arbitrarily small
variance ∆ is added to the SMI output (1) and the corresponding channel (9):

Assumption B.2. We consider the limit ∆ → 0 under the modified activation g̃(·) = g(·) +
√
∆ξ,

where ξ ∼ N (0, IK) denote noise independent across samples.

The above assumptions are required due to the limitations of the adaptive interpolation framework in (Aubin et al., 2020;
Barbier et al., 2019) and we believe they can be relaxed through a more careful control of the error terms.

We establish Theorem 2.1 by combining the above mapping defined by Eq. (50) with the adaptive interpolation scheme in
(Aubin et al., 2020; Barbier et al., 2019). The central idea behind the adaptive interpolation scheme is to interpolate between
the high-dimensional Hamiltonian corresponding to the posterior measure (Eq. 8) and an effective “factorized” Hamiltonian
constructed through the low-dimensional output channel defined by Eq. (9) and an effective input channel on RP . Analogous
to Gaussian-comparison inequalities, one then utilizes Stein’s Lemma to relate the time-derivative of the free-energy over the
interpolation path to the overlaps corresponding to the Hamiltonian at time t. Using the concentration of overlaps (justified
through the Nishimori identity and the inclusion of vanishing side-information), one then obtains a family of interpolation
paths satisfying systems of ODEs such that the high-dimensional remainder terms during the interpolation vanish. Selecting
particular choices for such interpolation paths then yields matching lower and upper bounds for the free-energy.

The mapping of SMI models to block-structured multi-index models on flattened inputs given in Section B allows us to
prove the asymptotic expression for the free-energy through a reduction to the steps utilized in the proof of Theorem 3.1
in (Aubin et al., 2020) and Theorems 1,2 in (Barbier et al., 2019). For brevity, we only describe the central differing step,
related to the derivation of the time-derivative of the free-entropy described above.

Following (Aubin et al., 2020), we parameterize the interpolation paths through two functions r(t) : [0, 1] → S+
P and

q(t) : [0, 1] → S+
P and scalar parameters ϵ1, ϵ2 ∈ R+. Let R1(t), R2(t) denote the solutions to the following ODEs:

R1(t) := ϵ1 +

∫ t

0

r(t) ds, R2(t) := ϵ1 +

∫ t

0

q(t) ds (51)

Define St,µ ∈ RP×M for µ ∈ [N ] as the following “interpolating” inputs to the effective output channel (Eq. (9)):

St,µ :=
√
1− t

Wx√
D

+
√
R2(t)ωµ +

√
t1 −R2(t)U

⋆
µ, (52)

where ωµ, U
⋆
µ ∈ RP×M have entries i.i.d.∼ N (0, 1), with ωµ playing the role of observed side-information while W , U⋆

µ

denote unkown parameters.

We further define the corresponding interpolating variables at the input channel for i ∈ [D]:

Y ′
t,i =

√
R1(t)Wi + Z ′

i, (53)

where Y ′
t,i, X

⋆
i ∈ RP . We thus obtain two sets of “interpolating” parameters, observations:

Yt,µ = g(St,µ), (54)
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for µ ∈ [N ] and Y ′
t,i for i ∈ [D]. These define an “interpolating posterior”:

P (W , U⋆|{Y ′
t,i}i∈[D], {Yt,µ,xµ, ωµ}µ∈[N ]) =

1

Zn,ϵ(t)
e−

1
2Tr[WW⊤]

D∏
d=1

e−
1
2∥Y ′

t,i−
√

R1(t)Wi∥2
N∏

µ=1

PY (Yt,µ|St,µ). (55)

, (Eq. 17 in (Aubin et al., 2018)) and the associated free-entropy:

fn,ϵ(t) =
1

n
E[logZn,ϵ(t)], (56)

which reduces to the original model (Equation 8) at t, ϵ = 0.

The only difference from the setup in (Aubin et al., 2020) lies in that St,µ are matrices, instead of P -dimensional vectors.
However, leveraging the flattening defined by Eq. (49), we may express St,µ as:

St,µ,e :=
√
1− t

W ⋆
e xe√
D

+
√
R2(t)eωµ,e +

√
t1 −R2(t)eU

⋆
µ,e, (57)

Under the above flattening, equation 44 in (Aubin et al., 2018) (arising from applying Gaussian integration by parts to the
interpolating Hamiltonian w.r.t variables xe and U⋆

µ,e) are modified with the replacement:

W ⋆W⊤ → W ⋆
e W

⊤
e . (58)

The mapping is then completed by noting that the flattening operator commutes under multiplication (as one expects from
the properties of Kronecker/tensor products). Therefore:

W ⋆
e W

⊤
e = (W ⋆W⊤)e. (59)

Under the above substitution, the limiting free-entropy is obtaining by following the remainder of the proof of Theorem 3.1
in (Aubin et al., 2018), resulting in the variational problem given by Eq. (10). Subsequently, the resulting prediction error is
obtained through steps identical to the proof of Theorem 2 in (Barbier et al., 2019).

C. Proofs of Lemma 2.2 and Theorem 2.3
In this section, we prove the results presented in Section 2.3, namely the tight asymptotic characterization of AMP (Algorithm
1) in terms of its finite-dimensional state evolution equations (Lemma 2.2), and the characterization of weak recovery
thresholds (Theorem 2.3). We start by establishing Lemma 2.2 through a mapping to general results for GAMP algorithms
with non-separable non-linearities. We remark that Lemma 2.2 and Theorem 2.3 themselves do not establish the optimality
of Algorithm 1 or even prescribe its particular form – the latter will be derived in Appendix D. However, by comparing
the resulting expressions for state-evolution (14) to the extremization criteria in Theorem 2.1, we observe that GAMP
asymptotically achieves the optimal error.

Throughout, we make the following assumptions on the non-linearity g:

Assumption C.1. The denoiser gout defined by 12 lies in C2.

It is easy to check that the above assumptions holds for any g ∈ C2 in the presence of vanishing noise.

C.1. Proof of Lemma 2.2

Analogous to the proof of Theorem 2.1, the proof of Lemma 2.2 relies on the mapping of the sequence models to multi-index
models on flattened inputs, as described in Appendix B. Under this mapping, Algorithm 1 can be expressed in the following
form:

Ωt = xeft(B
t)− gt−1(Ω

t−1,y)Vt (60)

Bt+1 = xT
e gt(Ω

t,y) + ft(B
t)At, (61)
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where Ωt ∈ RN×PM contains rows corresponding to the flattened version of ωt
e in Algorithm 1 as per Eq. 49 and

Bt ∈ RDM×PM contains columns given by the columns of Ŵ t
e in Algorithm 1, flattened as per Eq. 48. Vt,At then denote

the corresponding “flattened” Onsager terms. Finally, the non-linearities gt and ft denote the flattened versions of ∂ωgout
and (1P +At)−1 respectively:

gt(Ω
t,y)µ = ∂ωgout(ω

t
µ, yµ)e ∈ PM, (62)

applied row-wise and:
ft(B

t) = (1P +At)−1
e Bt, (63)

where the notation e represents the flattening and tensorization defined in Equations 47, 48. We note that the block-structured
multiplication in ft, which maintains the same estimate Ŵ t for different rows of Ŵ t

e is non-separable across the DM rows
of Bt. Such non-seperable non-linearities are however, permitted within the existing analysis in (Gerbelot & Berthier, 2023;
Berthier et al., 2020) since it leads to well-defined convergence of empirical averages (Assumptions A5-A7 in Theorem 1 of
(Gerbelot & Berthier, 2023)). Furthermore, using the commutativity of the tensorization and matrix-multiplication in (59),
the resulting state-evolution equation (Eq. (14)) admits the same form as for the regular multi-index models in (Troiani et al.,
2025).

Therefore, applying Theorem 1 in (Gerbelot & Berthier, 2023), we obtain that for any number of finite time step t ∈ N:

Ŵ t(W ∗)⊤
D

d→∞−−−→
P

Qt, (64)

where Qt satisfies Eq. 14.

C.2. Definition of the Weak-Recovery Thresholds and the Proof of Theorem 2.3

As explained in the discussion preceding Theorem 2.3, Lemma 2.2 allows us to characterize weak-recovery under vanishing
side-information through a stability analysis of the state-evolution. We begin by providing the precise definitions for
weak-recovery thresholds based on (Troiani et al., 2025):

Definition C.2. Consider Algorithm 1 in the presence of side information of the form λW ⋆ +
√
1− λξ, where ξ contains

independent entries ξij ∼ N (0, 1). We say that αc > 0 is a weak-recovery threshold for Algorithm 1 if the following hold
with high probability as D → ∞:

1. For any α > αc, there exists δ > 0 such that for any (arbitrarily small) λ > 0, ∃t = O(log 1
λ ) such that

∥∥∥Ŵ t(W ⋆)⊤

D

∥∥∥ ≥
δ.

2. For α < αc,
∥∥∥Ŵ t(W ⋆)⊤

D

∥∥∥ ≤ c
√
λ for some constant c > 0 and any t ∈ N.

Analogously, we define thresholds characterizing the weak-recovery of given a subpsace U ⊆ Rp:

Definition C.3. For a subspace U ⊆ Rp, we say that αU > 0 is the subspace weak-recovery threshold for U if:

1. For any α > αU , there exists δ > 0 such that for any (arbitrarily small) λ > 0, ∃t = O(log 1
λ ) such that Ŵ tW ⋆

D ≻ δPU .

2. For α < αU , ∃v ∈ U with ∥v∥ = 1 such that
∥∥∥Ŵ tvv⊤(W ⋆)⊤

D

∥∥∥ ≤ c
√
λ for some constant c > 0 for any t ∈ N.

Under the above definitions and Lemma 2.2, the proof of Theorem 2.3 follows (Troiani et al., 2025). Since the form of
state-evolution in Equation 18 exactly matches the form in (Troiani et al., 2025), we only outline the main steps.

The inclusion of side-information λW ⋆ +
√
1− λξ, which amounts to a modification of the prior over W , changes the

state evolution dynamics in Lemma 2.2 to Equation 18. Under the assumption gout ∈ C2 the following linearization holds
for the state-evolution dynamics defined by Equation 18:

Qt+1 ≈ αF(δQt) +
√
λId +O(α

∥∥δQt
∥∥2
F
) +O(λ), (65)
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The term
√
λId arising from side-information implies that at t = 1, the overlaps satisfy for small enough λ:

tr(Q1, Q⋆) > λ > 0, (66)

with Q1 ∈ S+
P . The generalized-Perron Frobenius theorem then implies that F admits a leading eigenvector in S+

P .
Therefore, whenever α > αc, we obtain a recursion of the form:

tr(Qt+1, Q⋆) ≥ (1 + κ) tr(Qt, Q⋆), (67)

for some κ > 0, leading to the positive part of Theorem 2.3 for α > αc through Theorem 4.2 in (Troiani et al., 2025). The
negative part follows from an analogous reverse inequality as detailed in the proof of Theorem 4.2 in (Troiani et al., 2025).
Similarly, the proof of Proposition 5.1 in (Troiani et al., 2025) based on the monotonocity of the GAMP dynamics, implies
the existence and consistency with Definition C.3 of the subspace weak-recovery threshold defined by Equation 17.

D. Derivation of GAMP from Belief Propagation
This Appendix details the derivation of the precise form of the GAMP algorithm (Algorithm 1) associated with the Bayesian
inference problem (8), alongside the expressions of the state-evolution equations (14) that asymptotically describe its
dynamics. A rigorous proof of the state evolution is presented in Appendix C.

The departure point of this derivation are the Belief Propagation iterations (Pearl, 1988) associated with (8), then simplifying
them to offer a linear time algorithm that can be practically implemented with ease (Mezard & Montanari, 2009; Wainwright
& Jordan, 2008; Lauditi et al., 2024). Contextually, we will derive the State Evolution iteration (14) and show that it
describes the performance of GAMP at each iteration. Note that the derivation of GAMP and its state evolution for SMI
models was previously reported in (Cui, 2025) for empirical risk minimization problems. We complement this analysis
with the case of Bayesian inference considered in the present work. While this derivation is heuristic in nature, we feel it
provides an insightful view of how to propose algorithms for Bayesian estimation.

We start by defining a factor graph, which is a bipartite graph with two families of nodes: D variable notes, each encoding a
weight vector Wi ∈ RP and D +N factor nodes that connect them. D of the factor nodes are each linked to one variable
node and encode the Gaussian prior, the remaining N are each connected to all the weights and represent the constraint
that properly tuned weights should map the input data xµ ∈ RD×M to the labels yµ ∈ RM ′

based on the examples in the
dataset through a sequence multi-index model linked by g : RP×M → RM ′

. We give a pictorial representation in Fig. 4. We
then introduce two families of messages m̂µ→i, mi→µ, which are the marginal probabilities of Wi if we remove the edges
i → µ or µ → i. In the following it will be convenient to call W ∈ RP×D the stack of vectors Wi

m̂µ→i

mi→µ

δ
(
yµ − g

(
Wxµ
√
D

))
µ = 1, ... , N

Wi ∈ RP

i = 1, ... , D

e−
∥Wi∥

2

2

(2π)P/2

i = 1, ... , D

Figure 4. Factor graph representation of a sequence multi-index model with 4 variable nodes (circles) and 3 + 4 factor nodes (squares).
Picture inspired by (Aubin et al., 2018)
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It is possible to define an iterative algorithm on the messages, commonly called the Belief Propagation (BP) equations.

mt+1
i→µ(Wi) =

1

Zi→µ

e−
∥Wi∥

2

2

(2π)P/2

N∏
ν ̸=µ

m̂t
ν→i(Wi) ,

m̂t
µ→i(Wi) =

1

Zµ→i

∫ D∏
j ̸=i

dWjδ

yµ − g

 D∑
j=1

Wjx
µ
j√

D

mt
j→µ(Wj) .

(68)

It is impossible to iterate the BP equations for this problem in practice, but that’s not an issue: to estimate the weights w
we only need the first few moments of the messages. This observation will allow us to obtain an efficient algorithm called
Relaxed BP. It is convenient to introduce the sequence indices Zµ ∈ RP×M using a Fourier transform.

δ

yµ − g

 D∑
j=1

Wjx
µ
j√

D

 =

1

(2π)PM

∫
RP×M

dZµdẐµ exp

−i

M∑
m=1

(Ẑµ
m)

⊤
 D∑

j=1

Wjx
µ
jm√

D

+ i

M∑
m=1

Zµ
m

⊤Ẑµ
m

 δ (yµ − g(Zµ)) .

(69)

This representation can be put in the equation (68) for m̂t
µ→i(Wi) , taking care of separating the contribution of Wi

m̂t
µ→i(Wi) =

1

(2π)PLZµ→i

∫
RP×M

dZµdẐµδ (yµ − g(Zµ)) exp

{
−i

M∑
m=1

(Ẑµ
m)

⊤
(
Wix

µ
im√

D

)
+ i

M∑
m=1

Zµ
m

⊤Ẑµ
m

}

×
D∏
j ̸=i

∫
RP

dWjm
t
j→µ(Wj) exp

{
−i

M∑
m=1

(Ẑµ
m)

⊤
(
Wjx

µ
jm√

D

)}
︸ ︷︷ ︸

≡Ij

,

(70)

It is time to define the mean and variance of the messages mt
j→µ

Ŵ t
j→µ ≡

∫
RP

dWjm
t
j→µ(Wj)Wj , Ĉt

j→µ ≡
∫

RP

dWjm
t
j→µ(Wj)WjW

⊤
j − Ŵ t

j→µ(Ŵ
t
j→µ)

⊤ . (71)

In the limit D → ∞ the term Ij can be easily expanded. Then, we can recognize that the lowest terms in the expansion are
nothing but simple functions of the messages (71), and obtain a resummed expression at leading order in D.

Ij =

∫
RP

dWjm
t
j→µ(Wj)e

−i
∑M

m=1 (Ẑµ
m)

⊤

Wjx
µ
jm√

D


≈ exp

−i

M∑
m=1

xµ
jm√
D

(Ẑµ
m)

⊤
Ŵ t

j→µ +

M∑
m,m′=1

1

2

xµ
jmxµ

jm′

D
(Ẑµ

m)
⊤
Ĉt

j→µ Ẑµ
m′

 ,

≈ exp

{
−i

M∑
m=1

xµ
jm√
D

(Ẑµ
m)

⊤
Ŵ t

j→µ +

M∑
m

1

2

(xµ
jm)2

D
(Ẑµ

m)
⊤
Ĉt

j→µ Ẑµ
m

}
and finally using the inverse Fourier transform, we obtain

m̂t
µ→i(Wi) ≃

1

Zµ→i

1

(2π)PM

∫
RP×M

dZ δ(yµ − g(Zµ))

∫
RP×M

dẐ exp

{
−i

M∑
m=1

(Ẑµ
m)

⊤
(
Wix

µ
im√

D

)
+ i

M∑
m=1

(Zµ
m)⊤Ẑµ

m

}

×
D∏
j ̸=i

exp

{
−i

M∑
m=1

xµ
jm√
D

(Ẑµ
m)

⊤
Ŵ t

j→µ +

M∑
m

1

2

(xµ
jm)2

D
(Ẑµ

m)
⊤
Ĉt

j→µ Ẑ
µ
m

}

=
1

Zµ→i

1

(2π)PM

∫
RP×M

dZ δ(yµ − g(Zµ))

∫
RP×M

dẐ

M∏
m=1

[
e
i(Ẑµ

m)
⊤
(
Zµ

m−x
µ
im√
D

Wi−
∑D

j ̸=i

x
µ
jm√
D

Ŵ t
j→µ

)
+

(x
µ
jm

)2

2D (Ẑµ
m)

⊤
Ĉt

j→µ Ẑµ
m

]

=
1

Zµ→i

1√
(2π)PM

∏M
m=1 det(V

µ,t
im )

∫
RP×M

dZ δ(yµ − g(Zµ))

M∏
m=1

e− 1
2

(
Zm−x

µ
im√
D

Wi−ωµ,t
im

)⊤
(V µ,t

im )−1

(
Zm−x

µ
im√
D

Wi−ωµ,t
im

)
︸ ︷︷ ︸

≡Hµ
im

 ,
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where we introduced the mean and variance of Hµ
im

ωµ,t
im ≡ 1√

D

D∑
j ̸=i

xµ
jmŴ t

j→µ , V µ,t
im ≡ 1

D

D∑
j ̸=i

(xµ
jm)2Ĉt

j→µ . (72)

As we did, before we will expand the term Hµ
im in the D → ∞ limit keeping the leading order terms

Hµ
im ≃ e−

1
2 (Zm−ωµ,t

im )
⊤
(V µ,t

im )−1(Zm−ωµ,t
im )

(
1 +

xµ
im√
D
W⊤

i (V µ,t
im )−1(Zm − ωµ,t

im )− 1

2

(xµ
im)2

D
W⊤

i (V µ,t
im )−1Wi

+
1

2

(xµ
im)2

D
W⊤

i (V µ,t
im )−1(Zm − ωµ,t

im )(Zm − ωµ,t
im )⊤(V µ,t

im )−1Wi

)
.

As we resum the expression above, we can express it using gout and ∂ωgout, as defined in (156). For convenience, we can
define gµ,t ∈ RP , Gµ,t

m ∈ RP×P

gµ,tm ≡
[
gout(y

µ, ωµ,t
i , V µ,t

i )
]
m

, Gµ,t
m ≡

[
∂ωgout(y

µ, ωµ,t
i , V µ,t

i )
]
mm

. (73)

We arrive to the expression

m̂t
µ→i(Wi) ≈

1

Zµ→i

{
1 +

M∑
m=1

xµ
im√
D
W⊤

i gµ,tm +

M∑
m=1

(xµ
im)2

2D
W⊤

i gµ,tm (gµ,tm )
⊤
Wi +

M∑
m=1

(xµ
im)2

2D
W⊤

i Gµ,t
i Wi

}

=
1

Zµ→i

{
1 +W⊤

i Bt
µ→i +

1

2
W⊤

i Bt
µ→i(B

t
µ→i)

⊤Wi −
1

2
W⊤

i At
µ→iWi

}

≈
√

det
(
At

µ→i

)
(2π)P

exp

{
−1

2

(
W⊤

i − (At
µ→i)

−1Bt
µ→i

)⊤
At

µ→i

(
W⊤

i − (At
µ→i)

−1Bt
µ→i

)}
,

(74)

where we implicitly defined Aµ→i and Bµ→i:

Bt
µ→i ≡

M∑
m=1

xµ
im√
D
gµ,tm , At

µ→i ≡ −
M∑

m=1

(xµ
im)2

D
Gµ,t

m . (75)

The approximation in equation (74) can be plugged in the first equation of (68)

mt+1
i→µ(Wi) =

1

Zi→µ

e−
∥Wi∥

2

2

(2π)P/2

N∏
ν ̸=µ

√
det(At

ν→i)

(2π)P
exp

{
−1

2

(
W⊤

i − (At
ν→i)

−1Bt
ν→i

)⊤
At

ν→i

(
W⊤

i − (At
ν→i)

−1Bt
ν→i

)}

=
1

Zi→µ

√√√√√ N∏
ν ̸=µ

det(At
ν→i)

(2π)P
e
− 1

2Wi

(
1P+

N∑
ν ̸=µ

At
ν→i

)
W⊤

i +Wi

N∑
ν ̸=µ

Bt
ν→i− 1

2

N∑
ν ̸=µ

(Bt
ν→i)

⊤(At
ν→i)

−1Bt
ν→i

.

(76)

We have come full circle, as we can now explicitly write the moments of mt
i→µ we first introduced in (71).

Ŵ t+1
i→µ =

1P +

N∑
ν ̸=µ

At
ν→i

−1 N∑
ν ̸=µ

Bt
ν→i

 , Ĉt+1
i→µ =

1P +

N∑
ν ̸=µ

At
ν→i

−1

. (77)

What we have obtained is thus a consistent set of equations that iterates on the moments of the BP messages. We give a
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compact description of this algorithm here

ωµ,t
im =

1√
D

D∑
j ̸=i

xµ
jmŴ t

j→µ

V µ,t
im =

1

D

D∑
j ̸=i

(xµ
jm)2Ĉt

j→µ

gµ,tm =
[
gout(y

µ, ωµ,t
i , V µ,t

i )
]
m

Gµ,t
m =

[
∂ωgout(y

µ, ωµ,t
i , V µ,t

i )
]
mm

Bt
µ→i =

M∑
m=1

xµ
im√
D
gµ,tm

At
µ→i = −

M∑
m=1

(xµ
im)2

D
Gµ,t

m

Ŵ t+1
i→µ =

1P +

N∑
ν ̸=µ

At
ν→i

−1 N∑
ν ̸=µ

Bt
ν→i

 ,

Ĉt+1
i→µ =

1P +

N∑
ν ̸=µ

At
ν→i

−1

(78)

D.1. Relaxed BP implies the State Equation

A first result we can get from Relaxed BP is the state equation (14). The key ingredient to obtain that is noticing how at each
step the quantities in (78) either concentrate or converge in distribution to Gaussian variables in the limit of large D.

The first step is to specify how yµ is generated. We can do so by defining the index of the generative model Zµ ∈ RP×M

and it is equivalent Zµ
i with the weight Wj removed

Zµ
m =

1√
D

D∑
j=1

xµ
jmW ∗

j , Zµ
im =

1√
D

D∑
j ̸=i

xµ
jmW ∗

j . (79)

With this definition the labels are yµ = g(Zµ). Now, in the limit of large D, Zµ and ωµ are going to be jointly Gaussian at
each step with the following covariance structure[

Zµ
m

ωµ,t
im

]
∼ N

([
0
0

]
,

[
1P Qt

Qt Qt

])
, (80)

where Qt is the same overlap of the weights estimated at time t and the target

Qt ≡ E

[
lim

D→∞
Ŵ t

i (W
∗
i )

⊤

D

]
= E

[
lim

D→∞
Ŵ t

i (Ŵ
t
i )

⊤

D

]
, (81)

where the second equality is because of the Nishimori identity. The expectation is taken over the target weights W ∗ and the
input data x. We can show this by looking at the first few moments of Zµ

m and ωµ,t
im

E [Zµ
im] = 0 , E

[
Zµ
im(Zµ

im)⊤
]
= 1P ,

E
[
ωµ,t
im

]
= 0 , E

[
ωµ,t
im (ωµ,t

im )⊤
]
= E

 1

D

D∑
j ̸=i

Ŵ t
j→µ(Ŵ

t
j→µ)

⊤

 ≈ E

 1

D

D∑
j

Ŵ t
j (Ŵ

t
j )

⊤

 = Qt ,

E
[
zµim(ωµ,t

im )⊤
]
= E

 1

D

D∑
j ̸=i

W ∗
j (Ŵ

t
j→µ)

⊤

 ≈ E

 1

D

D∑
j

W ∗
j (Ŵ

t
j )

⊤

 = Qt .

(82)
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Next, we derive the leading order behavior of gout and ∂ωgout.

gout(y
µ, ωµ,t

i , , V µ,t
i ) = gout(g(Z

µ,t), ωµ,t
i , , V µ,t

i )

≈ gout(g(Z
µ,t
i ), ωµ,t

i , V µ,t
i ) +

1√
D

M∑
m=1

xµ
im∂z

[
gout(g(Z

µ,t
i ), ωµ,t

i , V µ,t
i )

]
m
W ∗

i

,

∂ωgout(y
µ, ωµ,t

i , V µ,t
i ) ≈ ∂ωgout(g(Z

µ,t
i ), ωµ,t

i , V µ,t
i ) .

(83)

The covariances V µ,t
im will concentrate

E
[
V µ,t
im

]
≈ 1

D

D∑
j=1

E
[
Ĉt

j→µ

]

=
1

D

D∑
j=1

E

[∫
RP

dWjm
t−1
j→µ(Wj)WjW

⊤
j

]
− 1

D

D∑
j=1

E
[
Ŵ t−1

j→µ(Ŵ
t−1
j→µ)

⊤
]

= 1P −Qt−1 ,

(84)

where in the first expectation on the second line we used Nishimori. We can then decompose the sum of the Bt
ν→i as follows

N∑
ν ̸=µ

Bt
ν→i ≈

N,M∑
µ,m

xµ
im√
D
gout

[
g(Zµ,t

i ), ωµ,t
i , V µ,t

i

]
m︸ ︷︷ ︸

ξti

+
1

D

N,M∑
µ,m

(xµ
im)2

[
∂zgout(g(Z

µ,t
i ), ωµ,t

i , V µ,t
i

]
m
W ∗

i︸ ︷︷ ︸
StW ∗

i

. (85)

Here, ξti ∈ RP is at each step a Gaussian variable with covariance Q̂t

E[ξti ] = 0 , E[ξti(ξ
t
i)

⊤] = Q̂t , (86)

where
Q̂t ≡ αEZ,ω

[
gout(g(Z), ωt,1P −Qt) gout(g(Z), ωt,1P −Qt)⊤

]
, (87)

and the expectation is taken over Z, ω distributed as in (80). It is possible to show with an extremely tedious computation
that St(St)⊤ = Q̂t. Finally, we have the State Equation

Qt+1 = E

[
1

D

D∑
i=1

Ŵ t+1
i→µ(Ŵ

t+1
i→µ)

⊤
]
= (1 + Q̂t)−1Q̂t , (88)

which is exactly the same expression as (14).

D.2. The fixed points of the State Equation are extremisers of the the variational problem (10)

It is not immediate by just looking at it, but the State Evolution (14) at its fixed point describes the extremisers of the
functional (10). To show this we first rewrite (10) as

sup
Q̂∈S+

P

inf
Q∈S+

P

S(Q, Q̂) , (89)

where

S(Q, Q̂) = −1

2
Tr(QQ̂)−1

2
log

(
1P + Q̂

)
+
1

2
Q̂+αEξ∼N (0,1P )Ez0∼N (0,1P ) logZout

(
g(
√

1P −QZ0 +
√

Qξ),
√

Qξ, 1P −Q
)
.

(90)
where we already introduced for convenience Zout and gout, defined as

Zout(y, ω, V ) = E{z∼N (ω,V )} [δ(y − g(Z))] , gout(y, ω, V ) =
E{z∼N (ω,V )}

[
(Z − ω)V −1δ(y − g(Z))

]
E{z∼N (ω,V )} [δ(y − g(Z))]

. (91)
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In the following we will use the identities

∂ωZout = Zoutgout , ∂V Zout =
1

2
Zout(∂ωgout + gout ⊗ gout) . (92)

The extremisers are going to satisfy the following system.

{
∂QS(Q, Q̂) = 0

∂Q̂S(Q, Q̂) = 0
(93)

or equivalently

{
Q̂ = 2α∂QEξ∼N (0,1P )Ez0∼N (0,1P ) logZout

(
g(
√

1P −QZ0 +
√
Qξ),

√
Qξ,1P −Q

)
Q = (1P − Q̂)−1 − 1P = (1P − Q̂)−1Q̂

(94)

The hard part is computing the derivative with respect to Q of the first equation above. We start by adding a dummy variable
y, which allows us to have the identity

∂QEξEz0 logZout

(
g(
√

1P −QZ0 +
√
Qξ),

√
Qξ,1P −Q

)
=

∂Q

∫
dy EξZout

(
y,
√
Qξ,1P −Q

)
logZout

(
y,
√
Qξ,1P −Q

)
.

(95)

We can now compute the derivative

∂Q

∫
dy EξZout logZout

=

∫
dy Eξ [∂QZout logZout + ∂QZout]

=

∫
dy Eξ

[(
1

2
Q−1/2ξ∂ωZout − ∂V Zout

)
logZout +

1

2
Q−1/2ξ∂ωZout − ∂V Zout

]
=

∫
dy Eξ

[(
1

2
Q−1/2ξZoutgout −

1

2
Zout(∂ωgout + gout ⊗ gout)

)
logZout

+
1

2
Q−1/2ξZoutgout −

1

2
Zout(∂ωgout + gout ⊗ gout)

]
=

1

2

∫
dy Eξ [∂ω(Zoutgout logZout)−Zout(∂ωgout + gout ⊗ gout) logZout + ∂ω(Zoutgout)−Zout(∂ωgout + gout ⊗ gout)]

=
1

2

∫
dy Eξ [∂ω(Zoutgout logZout)−Zout(∂ωgout + gout ⊗ gout) logZout]

=
1

2

∫
dy Eξ

[
Zoutg

⊗2
out

]
,

(96)

where in the 5-th line we used Stein’s lemma. Removing the dummy variable we get

{
Q̂ = αEξ∼N (0,1P )Ez0∼N (0,1P )gout

(
g(
√

1P −QZ0 +
√
Qξ),

√
Qξ,1P −Q

)⊗2

Q = (1P − Q̂)−1Q̂
(97)

which is equivalent to the state equation without time indices.
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D.3. From relaxed BP to GAMP

The relaxed BP equations (78) describe a perfectly usable algorithm with O(D2) time complexity. We can do better and
obtain a linear time iterative scheme. Let us define the following quantities

ωµ,t
m =

1√
D

D∑
j=1

xµ
jmŴ t

j→µ ,

V µ,t
m =

1

D

D∑
j=1

(xµ
jm)2Ĉt

j→µ ,

Ŵ t+1
i =

(
1P +

N∑
ν=1

At
ν→i

)−1( N∑
ν=1

Bt
ν→i

)
,

Ĉt+1
i =

(
1P +

N∑
ν=1

At
ν→i

)−1

,

(98)

which are very similar to their equivalent in relaxed BP. The idea is to have a set of consistent equations on these new
quantities. Since here the moments ω, V , Ŵ , Ĉ have one less index that in relaxed BP, the algorithm will be O(D) instead
of O(D2).

For large D we have that at leading order Ĉt+1
i→µ ≈ Ĉt+1

i . Similarly, V µ
m is changed minimally.

V µ,t
m ≈ 1

D

D∑
j=1

(xµ
jm)2Ĉt

j . (99)

The other quantities are a bit more delicate. First, notice how ŵi has a non-negligible correction of order O(1/
√
D)

Ŵ t+1
i→µ ≈

(
1P +

N∑
ν=1

At
ν→i

)−1( N∑
ν=1

Bt
ν→i −

M∑
m=1

xµ
im√
D

[
gout(y

µ, ωµ,t
i , V µ,t

i )
]
m

)

≈ Ŵ t+1
i − Ĉt+1

i

M∑
m=1

xµ
im√
D

[
gout(y

µ, ωµ,t
i , V µ,t

i )
]
m

.

(100)

Similarly, removing one index to ω and V inside gout produces an extra correction in O(1/
√
D)

gout(y
µ, ωµ,t

i , V µ,t
i ) ≈ gout(y

µ, ωµ,t, V µ,t)−
M∑

m=1

xµ
im√
D

[
∂ωgout(y

µ, ωµ,t, V µ,t)
]
m
Ŵ t

i . (101)

All this results in a correction in the equation for ω, typically called Onsager reaction term

ωµ,t
m ≈ 1√

D

D∑
j=1

xµ
jmŴ t

j − 1

D

D∑
j=1

(xµ
jm)2Ĉt−1

i

[
gout(y

µ, ωµ,t−1, V µ,t−1)
]
m

. (102)

The moment Bµ→i similarly receives a correction

Bt
µ→i ≈

M∑
m=1

xµ
im√
D

[
gout(y

µ, ωµ,t, V µ,t)
]
m
− 1

D

M∑
m=1

(xµ
im)2

[
∂ωgout(y

µ, ωµ,t, V µ,t)
]
mm

Ŵ t
i . (103)

It is convenient to define two new quantities At and bti

At
i ≡

N∑
ν=1

At
µ→i ≈ − 1

D

N,M∑
µ,m

(xµ
im)2

[
∂ωgout(y

µ, ωµ,t, V µ,t)
]
mm

,

bti ≡
N∑

ν=1

Bt
µ→i ≈

N,M∑
µ,m

xµ
im√
D

[
gout(y

µ, ωµ,t, V µ,t)
]
m
+At

iŴ
t
i ,

(104)
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from which we finally obtain

Ŵ t+1
i =

(
1P +At

i

)−1
bti ,

Ĉt+1
i =

(
1P +At

i

)−1
,

(105)

This concludes the derivation. At very large D, it is possible to introduce Ĉt, V t, At as the version without indices of Ĉt
i ,

V µ,t
m , At

i

Ĉt =
(
1P +At

)−1

At = − α

N

N,M∑
µ,m

[
∂ωgout(y

µ, ωµ,t, V µ,t)
]
mm

V t = Ĉt .

(106)

This simplified algorithm is described in pseudo-code in Algorithm 1 in the main text.

D.4. AMP with side information on the target

In this section we generalize GAMP to include some side information on the weights W ∗ used to generate the data. Suppose
we are provided not only with the dataset D = {xµ, yµ}Nµ=1, but also with a side information matrix S ∈ RP×D

S =
√
λW ∗ +

√
1− λζ , (107)

where ζ ∼ N (0,1) is distributed as a standard Gaussian variable and λ > 0 is a small constant. This additional information
can be encoded in the prior on the weights w

Wi ∼
1

(2π(1− λ))P/2
exp

{
−∥Wi −

√
λSi∥2

2(1− λ)

}
. (108)

We can now go back and go through the derivation again with this new prior. Eq. (76) becomes

mt+1
i→µ(Wi) =

1

Zi→µ

√√√√√ N∏
ν ̸=µ

det(At
ν→i)

(2π(1− λ))P
e
− 1

2Wi

(
1

1−λ 1P+
N∑

ν ̸=µ

At
ν→i

)
W⊤

i +Wi

(
√

λ
1−λSi+

N∑
ν ̸=µ

Bt
ν→i

)
− 1

2

N∑
ν ̸=µ

(Bt
ν→i)

⊤(At
ν→i)

−1Bt
ν→i

,

(109)

which gives us the new relaxed BP equations at leading order in small λ

Ŵ t+1
i→µ =

(1− λ)1P +

N∑
ν ̸=µ

At
ν→i

−1(1− λ)

N∑
ν ̸=µ

Bt
ν→i +

√
λSi

N∑
ν ̸=µ

At
ν→i

 , Ĉt+1
i→µ =

(1− λ)1P +

N∑
ν ̸=µ

At
ν→i

−1

,

(110)
and their equivalent in GAMP

Ŵ t+1
i =

(
(1− λ)1P +At

i

)−1
(
(1− λ)bti +

√
λSiA

t
i

)
, Ĉt+1

i =
(
(1− λ)1P +At

i

)−1
. (111)

The state equation (88) is then slightly modified

Qt+1 = (1 + (1− λ)Q̂t)−1((1− λ)Q̂t + λ) . (112)

D.5. Sketch of the derivation of the State Evolution using the replica method

In this section, we provide a sketch of how to characterize the performance of a Bayes Optimal estimation using the replica
method, a heuristic procedure inspired by the Statistical Physics of Disordered Systems (Gardner & Derrida, 1988; Mézard
et al., 1987; Mezard & Montanari, 2009). Despite being non-rigorous, the method is very flexible and often provides a result
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that can be later proven rigorously (Barbier et al., 2019; Aubin et al., 2018). We invite the interested reader to consult the
many reviews available for a more detailed explanation (Zdeborová & Krzakala, 2016; Lauditi et al., 2024). A closely related
characterization of the learning of SMI models using the replica method was first presented in (Cui, 2025) for empirical risk
minimization problems.

Let us consider a generic sequence multi-index model. We are interested in studying a model with P indices Zp, each
describing sequences of length M . By this we mean that we have a dataset D = {xµ, yµ}Nµ=1 of N labeled samples. Each
sample xµ is a sequence of M tokens of dimension D taken from a standard Gaussian distribution:

xµ ∈ RD×M , xµ
i,m ∼ N (0, 1) . (113)

The indices are obtained by projecting the input data onto a set of P weight vectors wp with standard Gaussian entries

wp ∈ RD , w∗
p,i ∼ N (0, 1) , Zµ

p =
w∗

px
µ

√
D

. (114)

In the following, we will call W ∈ RP×D the weight matrix obtained by stacking the vectors wp. The labels are generated
by linking together the indices with thorough a function g such that

g : RP×M → RM ′
, yµ = g(Zµ

1 , ..., Z
µ
P ) . (115)

Our results will hold in the high dimensional, proportional limit, that is when N,D → ∞ with a finite ratio α = N/D.
All the other quantities M , M ′, and P are assumed to be much smaller than D. We are interested in characterizing the
performance of a Bayes Optimal (BO) estimator on average over the dataset. The derivation starts with Bayes theorem:

P(W |D) =
P(W )

∏N
µ=1 P(yµ|W ,xµ)

P(D)
=

P(W )

Z
N∏

µ=1

δ

(
yµ − g

(
w1x

µ

√
D

, ...,
wPx

µ

√
D

))
. (116)

where Z is a normalization constant

Z = EW

[
N∏

µ=1

δ

(
yµ − g

(
w1x

µ

√
D

, ...,
wPx

µ

√
D

))]
. (117)

On the other hand, what we are interested in is the BO estimator on average over the randomness of the dataset, To this
purpose,e we are resolved to compute the averaged cumulant generating function (or free entropy):

ϕ = lim
D→∞

1

D
ED [logZ] = lim

n→0

∂

∂n
lim

D→∞
1

D
logED [Zn] , (118)

where the last equality is called the replica trick: we consider a system with n ∈ N+ copies (or replicas) of the original
model, extract the leading behaviour at large D, then analytically prolong the result to real valued n and take the limit
n → 0. We are thus allowed to simply compute the moments of Z

ED [Zn] =ED,W a

[
N,n∏

µ,a=1

δ

(
yµ − g

(
wa

1x
µ

√
D

, ...,
wa

Px
µ

√
D

))]
. (119)

To make the expression more symmetric we think of the labels yµ as generated by a zeroth replica

yµ = g

(
w0

1x
µ

√
D

, ...,
w0

Px
µ

√
D

)
, (120)

giving us

EDZn =Exµ,W a

[
N,n∏

µ,a=1

δ

(
g

(
w0

1x
µ

√
D

, ...,
w0

Px
µ

√
D

)
− g

(
wa

1x
µ

√
D

, ...,
wa

Px
µ

√
D

))]
. (121)
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Now notice that all the indices are jointly correlated Gaussian variables:

Za,µ
p =

wa
px

µ

√
D

∈ RM , EZa,µ
p = 0 , EZa,µ

p,mZb,ν
q,l = Qab

pqδµνδml , (122)

where we introduced the overlaps Qab
pq:

Qab
pq =

1

D

D∑
i=1

wa
i,pw

b
i,q . (123)

Since Qab
pq contains also the covariance of the target weights W ∗ we have Q00

pq = δpq. Our goal will be to show that the
overlaps Qab

pq are the only quantity that characterizes the model, and that the partition function can be written a supremum
over them. With these new definitions, we can rewrite the partition function as

EDZn =

∫
dQab

pq Iprior({Qab
pq})Ichannel({Qab

pq})N , (124)

where the quantities Iprior and Ichannel are pieces that depend only on the prior or the channel respectively:

Iprior = EW a

 P,n∏
p,q=1,a,b=0

δ
(
DQab

pq −wa
pw

b
q

) , (125)

Ichannel = Eza
p∼N (0,Q)

[
n∏

a=1

δ
(
g
(
Z0
1 , ..., Z

0
P

)
− g

(
Za
1 , ..., Z

a
p

))]
. (126)

In the second expression we introduced a new variable zap ∼ N (0, Q) as the distribution of each of the tokens of Za
p , that is

zap ∼ Za
pm. We can massage these two quantities into compact expressions. We start with Iprior:

Iprior =EW a

 P,n∏
p,q=1,a,b=0

δ
(
DQab

pq −wa
p(w

b
q)

⊤) (127)

=EW a

exp


P,n∑
p,q=1,a,b=0

DQ̂ab
pqQ

ab
pq −

P,n∑
p,q=1,a,b=0

Q̂ab
pqw

a
p(w

b
q)

⊤


 (128)

=EW a

exp


P,n∑
p,q=1,a,b=0

DQ̂ab
pqQ

ab
pq −

P,n∑
p,q=1,a,b=0

Q̂ab
pq

D∑
i=1

wa
i,pw

b
i,q


 (129)

=exp


P,n∑

p,q=1,a,b=0

DQ̂ab
pqQ

ab
pq

EW a

exp
−

P,n∑
p,q=1,a,b=0

Q̂ab
pqw

a
pw

b
q


D

(130)

=exp


P,n∑

p,q=1,a,b=0

DQ̂ab
pqQ

ab
pq −

D

2
log det

(
2Q̂ab

pq

) . (131)

Since we are only interested in the large D behaviour, we can use the saddle point approximation(
Qab

pq

)−1
= 2Q̂ab

pq , (132)

which gives us the simple expression

Iprior = exp

{
D

2
log det

(
Qab

pq

)}
. (133)

This is a good moment to state some properties of the overlap Q. First, as we consider n+ 1 identical replicas in the model,
Qab

pq needs to be symmetric under exchange of replicas a ↔ b, commonly called the Nishimori condition (Nishimori, 1980).
We then make a ”replica symmetric” ansatz for the overlap

Qab
pq = δabδpq + (1− δab)Qpq . (134)
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which simplifies the equations and allows us to analytically continue the theory. It is similarly reasonable to assume that
Qpq are symmetric, positive definite matrices: Qpq ∈ S+

P . After a tedious computation, it is possible to show the following
identities

det(Qab
pq) = det(1P −Q)

n
det(1P + nQ) , (135)

(Q−1)aa = (1P −Q)−1(1P + (n− 1)Q)(1P + nQ)−1 , (136)

(Q−1)ab = −(1P −Q)−1Q(1P + nQ)−1 . (137)

The quantity Iprior can now be simplified even further

Iprior =exp

{
D

2
[n log det(1P −Q) + log det(1P + nQ)]

}
≈ exp

{
nD

2
[log det(1P −Q) + TrQ]

}
, (138)

where the approximation is valid for small enough n.

We can now focus on the channel part Ichannel of the partition function. We will show how the distribution over the variables
zap assumes a nice expression in the n → 0 limit:

dz

detQ
exp

−1

2

P,n∑
p,q=1,a,b=0

zap(Q
−1)abpqz

b
q

 (139)

=
dz

detQ
exp

−1

2

P,n∑
p,q=1,a=0

zap(Q
−1)00pqz

a
q − 1

2

P,n∑
p,q=1,a ̸=b

zap(Q
−1)01pqz

b
q

 (140)

=
dz

detQ
exp

−1

2

P,n∑
p,q=1,a=0

zap [(Q
−1)00pq − (Q−1)01pq]z

a
q − 1

2

P,n∑
p,q=1,a,b=0

zap(Q
−1)01pqz

b
q

 (141)

=
dzdξ

detQ
exp

{
−1

2

P,n∑
p,q=1,a=0

zap [(Q
−1)00pq − (Q−1)01pq]z

a
q − i

P,n∑
p,q=1,a=0

ξp

√
(Q−1)01pqz

a
q − 1

2

P∑
p=1

ξ2p

}
(142)

In the limit n → 0 the identities (135) become

det(Qab
pq) → 1 , (143)

(Q−1)aa → 1P , (144)

(Q−1)ab = −(1P −Q)−1Q . (145)

As we can see in (142), it is possible to write a factorized distribution on each replica of zp, while all of them are coupled
with an external random variable ξ. We will drop the replica index a to have:

dzdξ

detQ
exp

−1

2

P,n∑
p,q=1,a,b=0

zap(Q
−1)abpqz

b
q

 = dξe−
1
2∥ξ∥2

[
dz exp

{
−1

2
z⊤(1P −Q)−1z + ξ⊤

√
(1P −Q)−1Qz

}]n+1

.

(146)

We can now do a change of variable ζ → √
1P −Qζ and massage the result to obtain

dzdξ

detQ
exp

−1

2

P,n∑
p,q=1,a,b=0

zap (Q
−1)abpqz

b
q

 = dξe−
1
2
∥ξ∥2

[
dz√

det(1P −Q)
exp

{
− (z −

√
Qξ)⊤(1P −Q)−1(z −

√
Qξ)

2

}]n+1

.

(147)

The computation is almost done: define Zout(y, ω, V ) as

Zout(y, ω, V ) = E{z∼N (ω,V )} [δ(y − g(Z))] (148)
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from which we get for small n

Ichannel = Eξ∼N (0,1P )Ez0∼N (
√
Qξ,1P−Q)

[
Ez∼N (

√
Qξ,1P−Q)[δ

(
g(Z0)− g(Z)

)
]
]n

(149)

= Eξ∼N (0,1P )Ez0∼N (
√
Qξ,1P−Q)Zout

(
g(Z0),

√
Qξ,1P −Q

)n
(150)

≈ 1 + nEξ∼N (0,1P )EZ0∼N (
√
Qξ,1P−Q) logZout

(
g(Z0),

√
Qξ,1P −Q

)
(151)

≈ exp
{{

nEξ∼N (0,1P )Ez0∼N (
√
Qξ,1P−Q) logZout

(
g(Z0),

√
Qξ,1P −Q

)}}
. (152)

Bringing everything together we have

1

nD
logEDZn = S(Q) =

1

2
[log det(1P −Q) + TrQ]+αEξ∼N (0,1P )Ez0∼N (

√
Qξ,1P−Q) logZout

(
g(Z0),

√
Qξ,1P −Q

)
(153)

Since we are interested in the large D limit, we can use the saddle point approximation to obtain the free entropy:

ϕ = sup
Q∈S+

P

S(Q) . (154)

The supremum Q̃ is achieved for ∂QS(Q̃) = 0. After a tedious computation it is possible to show that the supremum is
achieved at the solution of the following fixed point equation, typically called the state equation:

Q̃ = F

[
αEZ0,ξ

[
gout

(
g(Z0),

√
Q̃ξ,1P −Q

)
gout

(
g(Z0),

√
Q̃ξ,1P − Q̃

)⊤]]
(155)

with F [X] = (1P −X)−1X , Z0 ∼
√

1P − Q̃Z +

√
Q̃ξ, Z ∼ N (0,1P ). Lastly, gout is:

gout(y, ω, V ) =
E{z∼N (ω,V )}

[
(Z − ω)V −1δ(y − g(Z))

]
E{z∼N (ω,V )} [δ(y − g(Z))]

(156)

E. Specialization to deep attention models
The main theoretical results of subsection 2.1 are stated for the broad class of SMI functions (1). These results are formulated,
in particular, in terms of the denoiser function gout (12), whose form is tributary to the specific architecture considered. In
this Appendix, we derive the expression of gout for the special case of rank Pl = 1 deep attention functions and length
M = 2 data – thereby specializing the characterizations of Theorem 2.3 and Lemma 2.2 to this specific architecture. This
specialization allows on the one hand to plug the specialized gout in Algorithm 1 and thus implement AMP for deep attention
networks, and on the other and to reach the tight theoretical predictions for its performance plotted in Fig. 1.

E.1. Specializing gout to specific activations for multi-layer attention in the M = 2, Pl = 1 case

We start by rewriting gout as an integral

[gout(y, ω, V )]lm =

∫
dZ e

−
L,2∑

l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′ ∑L

l′=1(Zl′m − ωl′m)V −1
l′l δ

(
y −BL

c (Z)
)

∫
dZ e

−
L,2∑

l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′

δ (y −BL
c (Z))

(157)

We can now massage the integrals in the numerator and denominator. Let us take the denominator as an example. We can
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isolate the integral over Zm,L∫
dZ e

−
L,2∑

l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′

δ
(
y −BL

c (Z)
)

(158)

=

∫ [L−1∏
l=1

dZl

]
e
−

L−1,2∑
l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′

∫
dZLe

−
L,2∑

l,m=1

(Zlm−ωlm)(ZLm−ωLm)

2VlL (159)

× δ
(
y − σ

(
Z⊤
L (BL−1

c (Z1, ..., ZL−1)
⊤BL−1

c (Z1, ..., ZL−1)ZL

))
(160)

=

∫ [L−1∏
l=1

dZl

]
e
−

L−1,2∑
l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′∣∣detBL−1

c (Z1, ..., ZL−1)
∣∣
∫

dZLe
−

L,2∑
l,m=1

((BL−1
c )−1Zlm−ωlm)((BL−1

c )−1ZLm−ωLm)

2VlL
δ
(
y − σ

(
Z⊤
LZL

))
(161)

=

∫ [L−1∏
l=1

dZl

]
e
−

L−1,2∑
l,l′,m=1

(Zlm−ωlm)(Z
l′m−ω

l′m)

2V
ll′∣∣detBL−1

c (Z1, ..., ZL−1)
∣∣ Iσ (162)

Intuitively, we mapped an L×M dimensional integral with a Dirac delta as an argument into a (L− 1)×M dimensional
one, which is much more easily integrated numerically. Iσ has to be computed analytically. We give two examples with
linear and softmax activation in the following two subsections. A similar manipulation can be realized for the numerator.
Putting the two procedures together yields, for the case L = 2 discussed in the main text:

Corollary E.1. In the case M = 2, P1 = P2 = 1 and softmax activation, the output filter (12) becomes

[gout(Y, ω, V )]lm =

∑
Z2

∫
dZ1

e

−
2∑

l,l′,m=1

((BL−1
c )−1Zlm−ωlm)((BL−1

c )−1Z
l′m−ω

l′m)

2V
ll′ 2∑

l′=1

((BL−1
c )−1Zl′m−ωl′m)V −1

l′l

|detB1
c (Z1)|

∑
Z2

∫
dZ1

e

−
2∑

l,l′,m=1

((B
L−1
c )−1Zlm−ωlm)((B

L−1
c )−1Z

l′m−ω
l′m)

2V
ll′

|detB1
c (Z1)|

(163)

where the sum over Z2 is intended over the solutions of the two equations B1
c (Z1)Z2 = ±γ(Y1,2, Y2,1), with γ(x, y) defined

as

γ(x, y) =
1√

log ((x−1 − 1) (y−1 − 1))

[
− log

(
x−1 − 1

)
log
(
y−1 − 1

) ] (164)

E.1.1. COMPUTING Iσ FOR LINEAR ACTIVATION AND M = 2

We state again Iσ in a compact form

Iσ =

∫
dz δ(y − σ(zz⊤))F [z] (165)

where F is a generic function of z. It is convenient to write all the matrices explicitly

Ilinear =

∫
dz1 dz2 δ

([
y11 y12
y21 y22

]
−
[
z21 z1z2
z1z2 z22

])
F [z1, z2] (166)

We can see that y12 = y12, and also that y11, y22 > 0. On the other hand, the information on {y11, y12, y22} is redundant, as
one can use either just {y11, y12} or {y22, y12}. We will choose the former, and write the integral as

Ilinear =

∫
dz1 dz2 δ(y11 − z21)δ(y12 − z1z2)F [z1, z2] (167)

which we can easily solve obtaining

Ilinear =
F
[
−√

y11,− y12√
y11

]
+ F

[√
y11,

y12√
y11

]
2|y11|

(168)
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E.1.2. COMPUTING Iσ FOR SOFTMAX ACTIVATION AND M = 2

Let us state again the problem

Isoftmax =

∫
dz1 dz2 δ

([
y11 y12
y21 y22

]
− softmax

[
z21 z1z2
z1z2 z22

])
F [z1, z2] (169)

This case is more involved. Let us write out explicitly the softmax

softmax

[
z21 z1z2
z1z2 z22

]
=

 ez
2
1

ez
2
1+ez1z2

ez1z2

ez
2
1+ez1z2

ez1z2

ez
2
2+ez1z2

ez
2
2

ez
2
2+ez1z2

 (170)

This tell us that y11 + y12 = y22 + y21 = 1. A less immediate identity is that y12 + y21 ≤ 1, as we can see from these
simple manipulations

y12 + y21 ≤ 1

ez1z2

ez
2
1 + ez1z2

+
ez1z2

ez
2
2 + ez1z2

≤ 1

e2z1z2 ≤ ez
2
1+z2

2

2z1z2 ≤ z21 + z22

(171)

The last inequality is always true because of the arithmetic and geometric mean inequality. We choose to keep only the
information in {y12, y21}. We will thus get

Isoftmax =

∫
dz1 dz2 δ

(
y12 −

ez1z2

ez
2
1 + ez1z2

)
δ

(
y21 −

ez2z2

ez
2
1 + ez1z2

)
F [z1, z2] (172)

Let us try to solve the following system of equations:y12 = ez1z2

ez
2
1+ez1z2

y21 = ez1z2

ez
2
2+ez1z2

(173)

which can be rewritten as log
(

1
y12

− 1
)

= z21 − z1z2

log
(

1
y21

− 1
)

= z22 − z1z2
(174)

This is a simple system of two second-degree equations in z1, z2. The solutions are
z1 = ± log

(
1

y12
−1
)

√
log
(

1
y12

−1
)
log
(

1
y21

−1
)

z2 = ∓ log
(

1
y21

−1
)

√
log
(

1
y12

−1
)
log
(

1
y21

−1
)

(175)

This defines a mapping (y12, y21) 7→ (z1, z2) = ±γ(y12, y21). The Jacobian of the transformation is

|det Jγ | =
1

2
∣∣∣2y12y21(y12 − 1)(y21 − 1) log

(
y12y21

(y12−1)(y21−1)

)∣∣∣ (176)

Notice that all the quantities above are real-valued because y12 + y21 ≤ 1.

Finally, we obtain

Isoftmax =
F [−γ(y12, y21)] + F [γ(y12, y21)]

2
∣∣∣y12y21(y12 − 1)(y21 − 1) log

(
y12y21

(y12−1)(y21−1)

)∣∣∣ (177)
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Figure 5. Left: Overlap of the first layer Q11 in two layers of rank one attention with skip connection c = 1 and sample complexity
α = 1 as a function of the overlap of the second layer Q22, kept fixed during the iteration. We can see that unless Q22 is almost one, Q11

is not learned.

E.2. Weak recovery thresholds for two layers of rank one attention

In this section we describe in detail how to obtain the weak recovery thresholds for the model in Section 3.1. We start by
computing G := ∂ωgout(Y, 0,1P ). We can write it compactly as

Gll′mm′ =

∫
dZ e

− 1
2

2,2∑
l,l′,m=1

ZlmZl′m
(ZlmZl′m′ − δll′)δ(y − g(Z))

∫
dZ e

− 1
2

2,2∑
l,l′,m=1

ZlmZl′m
δ(y − g(Z))

(178)

Since g is an even function, Gll′mm′ is zero if l ̸= l′. This implies that the operator F in (15) is diagonal, hence α1 is simply

1

α1
= sup

X∈S
Pl
+ , ∥X∥=1

∥F(X )∥ = max
l

2∑
m,m′=1

EY [(Gllmm′)2] (179)

Implementing the formula above reveals that for these models the maximum is achieved for l = 2. Computing α2 is harder,
but we can make the simplifying assumption that for α > α2 the second layer is perfectly recovered, so

Q =

(
0 0
0 1

)
(180)

On the other hand, if the second layer is perfectly recovered, one has to simply compute a linear perturbation on Q along
Q11, giving us

1

α2
=

2∑
m,m′=1

EY [(G11mm′)2] (181)

We would like to stress that having learned the second layer is crucial for the learning of the first, and it’s central to the
grand staircase phenomenon. We can see this also in the model of attention. Suppose we run AMP and choose not to keep
the weights in the second layer at a fixed overlap Q22

∗ with the target: with all other parameters fixed, the value of the
overlap of the second layer at convergence depends strongly on Q22

∗, as shown in Figure 5 for α = 1. In this particular
case AMP would learn the second layer almost perfectly and achieve a good overlap in the first one, as we can see in Figure
1 in the main. On the other hand, if we prevent the algorithm to learn the second layer, then also the first one is not learned.

E.3. Language and hardware specific details

Here we discuss the coding details of the implementation of GAMP and the state evolution that we use for the figures. The
interested reader can look at the code repository at https://github.com/SPOC-group/SequenceIndexModels.
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A common ingredient is the denoising function gout(Y, ω, V ) in (163), which is just a two-dimensional integral over a
smooth function. We perform the integral by quadrature using the function dblquad in Scipy on the set [−3, 3]× [−3, 3].
Additionally, we regularize the integrand by adding 10−3 to the diagonal of V and 10−6 to the square root argument in
(163). For GAMP we need also to compute ∂ωgout, which we do by centered finite differences computed on two points at
distance 10−5. For state evolution we have to perform and expectation over Y , ξ as in (14). We choose to do so using a
Monte Carlo method, that is by taking 1440 samples of Y and ξ and computing gout for each of them. At each iteration we
symmetrise the overlap Q.

For each run of GAMP or the state evolution we use 2 Intel Xeon Platinum 8360Y processors and approximately 290 GB of
RAM. In Fig. 1 (left) we smoothen the prediction error and the overlap theory curves by interpolating with splines above the
critical threshold.

F. Details on the experiments on real datasets
In this Appendix, we provide further details on the numerical experiment presented in Fig. 3, namely the training of a simple
transformer model on the TREC (Hovy et al., 2001; Li & Roth, 2002) classification task.

Data – The TREC dataset (Hovy et al., 2001; Li & Roth, 2002) contains 5500 labeled questions of average length ≈ 10,
divided in 6 classes, classifying the type of the question, e.g. whether it bears on a concept, human, or numerical value. The
vocabulary size is 8700. The data is pre-processed using the uncased base BERT model (Kenton & Toutanova, 2019) and
padded into sequences of length M = 32.

Architecture – We consider a small transformer model with two consecutive self-attention layers, with tied key and query
matrices, and a fully-connected readout layer. More precisely, the architecture comprises

• Embedding layer: embeds the input sequence in dimension D = 128

• Attention layers: two consecutive self-attention layers

xl = xl−1 softmax

[
x⊤
l−1wlw

⊤
l xl−1

D

]

with tied weights wl ∈ RD×Pl , and hidden dimension P1 = P2 = 64.

• Pooling: the sequence after the attention layers x2 ∈ RD×M is averaged over its second dimension.

• Fully-connected readout: linear projection from dimension D to 6 (number of classes).

The architecture is then trained over the cross-entropy loss, using the Pytorch (Paszke et al., 2017) implementation of the
AdamW (Loshchilov & Hutter, 2019) optimizer, using learning rate η = 5 × 10−5 and batch size 16. The weights wl at
initialization are sampled from a Gaussian distribution with zero mean and standard deviation 10−4.

36


