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ABSTRACT

Source-Free Domain Adaptation (SFDA) seeks to adapt a pre-trained source model
to the target domain using only unlabeled target data, without access to the original
source data. While current state-of-the-art (SOTA) methods rely on leveraging
weak supervision from the source model to extract reliable information for self-
supervised adaptation, they often overlook the uncertainty that arises during the
transfer process. In this paper, we conduct a systematic and theoretical analysis
of the uncertainty inherent in existing SFDA methods and demonstrate its impact
on transfer performance through the lens of Distributionally Robust Optimiza-
tion (DRO). Building upon the theoretical results, we propose a novel instance-
dependent uncertainty control algorithm for SFDA. Our method is designed to
quantify and exploit the uncertainty during the adaptation process, significantly
improving the model performance. Extensive experiments on benchmark datasets
and empirical analyses confirm the validity of our theoretical findings and the effec-
tiveness of the proposed method. This work offers new insights into understanding
and advancing SFDA performance.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance across a wide range of tasks.
However, their performance can experience significant declines when there is a domain shift between
training (source) and test (target) data. Traditional solutions leverage transferable knowledge from
labeled source data to classify unlabeled target data. However, access to source data is often restricted
due to privacy concerns or proprietary constraints. To address these challenges, Source-Free Domain
Adaptation (SFDA) has emerged, aiming to adapt a pre-trained source model to an unlabeled target
domain without accessing the original source data (Liang et al., 2020; Yang et al., 2021b;a).

Recent work has explored the integration of self-supervised learning with transfer learning in SFDA,
where contrastive learning (CL)-based self-supervised methods have gained widespread use and
empirical support (Yang et al., 2022; Karim et al., 2023; Chen et al., 2022; Hwang et al., 2024;
Mitsuzumi et al., 2024a). A key challenge in applying CL methods to SFDA lies in selecting and
utilizing positive and negative samples of target data with a well-trained source model. Different from
conventional CL methods using data augmentations as positive samples, in SFDA, the neighbors
in the feature space can provide stronger supervision and usually be treated as positives, and the
negative samples are the remaining data in the training mini-batch. However, due to the domain shift,
these methods face severe uncertainty, as will be elaborated shortly.

In this paper, we systematically and theoretically examine the uncertainty present in SFDA through
the lens of Distributionally Robust Optimization (DRO). Unlike previous studies that primarily focus
on empirical strategies (Roy et al., 2022; Litrico et al., 2023; Pei et al., 2023; Lee et al., 2022), our
work offers a comprehensive analysis of two types of uncertainty arising from the use of negative
and positive samples in existing SFDA methods, aiming to enhance the SFDA performance through
uncertainty control. Specifically, on one hand, random sampling of negative samples in practice
often introduces outliers, or ‘false negative examples’ – samples that belong to the same class as the
considered target data point but are mistakenly selected as negatives (as shown in Figure 1a). This
leads to a deviation of the empirical negative distribution from the true distribution, thus introducing
uncertainty into the loss calculation. To address this sampling bias, we define a negative uncertainty
set, which consists of distributions obtained by slightly perturbing the training negative distribution,
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Figure 1: (a) Clear presence of false negative samples across different datasets. (b) Inconsistency
between the prediction results for the anchor image and its augmented view by the source model. (c)
Illustration of varying predictive accuracies between certain and uncertain target data during the
adaptation process on Office-Home (Ar → Cl).

and consider an outlier-robust worst-case risk within this set. We theoretically derive an upper bound
for this risk, which motivates incorporating a dispersion control term into the loss function. Moreover,
inspired by the prediction inconsistency phenomenon between a target image and its augmented
view (Figure 1b), we propose an augmentation-based dispersion control approach to mitigate the
uncertainty introduced by noisy negative samples. On the other hand, domain shift causes models
trained on source data to produce uncertain probabilities when applied to target data. In such cases,
the supervisory information from positive examples may not fully align with the ground truth, making
the use of neighboring predictions for supervision introduce additional uncertainty. Unlike existing
methods that focus on mitigating uncertainty (Roy et al., 2022; Litrico et al., 2023; Mitsuzumi et al.,
2024a), we aim to utilize this information more effectively. To better accommodate the uncertainty
in the predicted probabilities of positive samples, we consider a positive uncertainty set centered
around these probabilities and examine the worst-case risk within this set. We theoretically show
that the optimal solution for the target points consists of a partial label set. To make the most of this
uncertain information, we propose novel criteria to identify uncertain data and use partial labels to
relax supervision of these samples. As shown in Figure 1c, leveraging such uncertainty information
leads to greater performance gains compared to using only certain data.

Our contributions are as follows: (1) We theoretically analyze two sources of uncertainty in contrastive
learning-based SFDA methods, leading to the identification of two types of worst-case risks under a
unified DRO framework. Through this investigation, we explain why current contrastive learning
methods can significantly boost SFDA performance (Section 4.2) while revealing the overlooked
uncertain information in existing algorithms (Section 4.3). Our theoretical analysis also provides
a novel perspective in understanding the SFDA problem. (2) Based on our theoretical result, we
design a novel uncertainty control algorithm for SFDA (UCon-SFDA), which minimizes the negative
effect introduced by the uncertainty from negative sample distribution while leveraging the uncertain
information in positive example predictions to enhance the model’s discriminability (Section 4.4). (3)
We conduct extensive experiments to validate the effectiveness of the proposed method.

2 RELATED WORK

Source-Free Domain Adaptation (SFDA). SFDA focuses on adapting a well-trained source model
to a target domain where only unlabeled data are available. Since source data are not accessible during
adaptation, some methods rely on extracting source information through prototype generation (Qiu
et al., 2021), or minimizing dependence on the source through adversarial training (Li et al., 2020b).
Addressing the lack of target labels, several methods aim to obtain more accurate supervision for the
target data. For example, SHOT (Liang et al., 2020) employs deep clustering to create pseudo-labels,
while NRC (Yang et al., 2021a) and G-SFDA (Yang et al., 2021b) leverage neighboring predictions to
guide the adaptation process. Recently, self-supervised learning has been increasingly integrated with
transfer learning in SFDA, and contrastive learning-based self-supervised methods have been widely
utilized and empirically validated. For instance, AaD (Yang et al., 2022) introduces positive and
negative samples into SFDA and uses a simplified contrastive loss to enhance model discriminability
while maintaining diversity; C-SFDA (Karim et al., 2023) utilizes a teacher-student framework to
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enhance the self-training in SFDA; methods like DaC (Zhang et al., 2022), AdaContrast (Chen et al.,
2022), and SF(DA)2 (Hwang et al., 2024) explore explicit or implicit data augmentation to further
boost SFDA performance. I-SFDA (Mitsuzumi et al., 2024a) offers a new perspective by approaching
SFDA through self-training. Despite these advancements, a comprehensive theoretical framework
explaining their effectiveness is still missing. Moreover, most existing methods do not fully account
for the uncertainty inherent in the adaptation process.

Uncertainty in SFDA. Given the absence of both source data and target labels, handling uncertainty
is a key challenge in SFDA, especially when faced with domain shifts. Current research mostly
addresses prediction or representation uncertainty by reweighting loss functions or prioritizing more
confident samples during training (Roy et al., 2022; Litrico et al., 2023; Pei et al., 2023; Lee et al.,
2022). In contrast to these approaches, our approach provides a systematic and comprehensive
analysis of various sources of uncertainty in contrastive learning-based SFDA from the instance-
dependant perspective. Building on this analysis, we propose a novel algorithm that improves SFDA
performance by effectively controlling variance during adaptation.

3 PRELIMINARIES

Notations. We use [k] to denote the set {1, . . . , k} for any positive integer k. For a ∈ R, we define
a+ = max{a, 0}, and let ⌊a⌋ and ⌈a⌉ denote the floor and the ceiling of a, respectively. For a vector
v, the jth element is represented as vj , and v⊤ indicates its transpose. Given v = (v1, . . . , vp)

⊤

and q ∈ [1,+∞], the Lq norm is defined as ∥v∥q =
(∑p

j=1 |vj |q
)1/q

for 1 ≤ q < ∞, and ∥v∥∞ =

maxj |vj | when q = +∞. Let (Ω,G, µ) represent a measure space, where Ω is a set, G is the σ-
algebra of subsets of Ω, and µ is the associated measure. For q > 0, let Lq(Ω,G, µ), or simply Lq(µ),
denote the space of Borel-measurable functions f : Ω → R such that

∫
|f |qdµ < ∞. We denote the

expectation and variance of f(Z) with respect to Z ∼ µ as Eµ{f(Z)} and Vµ {f(Z)}, respectively;
and when the context is clear, we simplify the notations to Eµ(f) and Vµ(f), respectively. We use
P(Ω) to denote the set of Borel probability measures on Ω, and let Pq(Ω) represent the subset of
P(Ω) with finite qth moment for q > 0. That is, µ ∈ Pq(Ω) if and only if EZ∼µ(Z

q) < ∞.

Problem Setup. For a K-class classification problem, let X ⊂ Rd represent the input space, and
let Y = [K] denote the label space, with d denoting the input dimension. In Source-Free Domain
Adaptation (SFDA), we assume that the source domain distribution P S

xy and the target domain
distribution PT

xy are two distinct, unknown distributions over X × Y . We express these distributions
as P S

xy = P S
xP

T

y|x and PT
xy = PT

xP
T

y|x, where the subscripts indicate the involved variables. For the
source domain, we have a source model hS : X → Y , which is a neural network-based predictor
pre-trained with NS labeled examples DS ≜ {xS

i , y
S
i }

NS
i=1 drawn from P S

xy. In the target domain, let
DT ≜ {xT

i }
NT
i=1 denote the unlabeled target domain data of size NT, consisting of observations of

independent and identically distributed (i.i.d.) random variables drawn from PT
x . Given the source

model hS and unlabeled target data DT, our goal is to learn a target model hT : X → Y that predicts
the labels in the target domain by adapting hS on DT.

To facilitate our analysis in the context of deep learning, we define the target model hT as hT(x;θT) =
argmaxj∈[K] fT(x;θT)[j] for any x ∈ X . Here, θT ∈ Θ represents the vector of model parameters
in the parameter space Θ. The function fT : X → ∆K−1 denotes the network output, where ∆K−1

is the K-simplex, and fT(x;θT)[j] refers to the jth component of the vector-valued function fT. The
source model hS is defined similarly, with the corresponding network fS(·;θS).

4 THEORETICAL ANALYSIS AND ALGORITHM

4.1 MOTIVATION

Existing SFDA methods typically decompose their training loss into two components: discriminability,
which enhances the model’s ability to distinguish between unlabeled target samples, and diversity,
which promotes predictions across diverse classes (Yang et al., 2022; Mitsuzumi et al., 2024b; Cui
et al., 2020). Among these, contrastive learning methods are the most widely used, where the goal
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is to maximize the similarity between positive pairs to improve discriminability and minimize the
similarity between negative pairs to ensure diversity. This can be formulated as the following expected
risk with contrastive loss:

Rbasic(θ) = EPT
x

[
−EP +

{
Sθ(X

+;X)
}
+ EP -

{
Sθ(X

-;X)
}]

, (1)

where the outer expectation EPT
x

is taken over the input data distribution X, while the inner expec-
tations EP + and EP - are evaluated under the conditional distributions of positive example X+ and
negative example X -, respectively, given X. Here, function Sθ(·; ·), mapping from X × X to [0, 1],
represents the similarity measure between two instances, which, for instance, can be taken as the
cosine similarity computed as the dot product of their corresponding network outputs.

In contrastive learning-based SFDA, for each target input xT
i in a mini-batch B, the set of positive

examples of xT
i , denoted Ci, consists of the κ-nearest neighbours in the training set DT for some

positive integer κ typically chosen between 2 and 5; while the negative set is taken as B\{xT
i }.

However, this construction inevitably includes a fraction of false negatives, leading to sampling bias
and deviation from the true underlying distribution. While with the help of a well-trained source
model, neighboring positive samples in the feature space often provide effective supervision for most
unlabeled target domain data, some highly uncertain samples persist due to domain shift. To address
these issues, we propose a robust strategy for managing uncertainty in SFDA using distributionally
robust optimization (DRO).

4.2 NEGATIVE SAMPLING UNCERTAINTY AND DISPERSION CONTROL

To address the uncertainty from sampling bias and distribution shift in negative examples, we consider
an expected distributionally robust optimization (DRO) risk: for each given x ∈ X and δ > 0,

R -
x(θ;P

-, δ) = sup
Q -∈Γδ(P -)

[
EQ -

{
Sθ(X

-;x)
}]

, (2)

where the expectation EQ -
{
Sθ(X

-;x)
}

is evaluated under the conditional distribution Q - of X -,
given X = x. The set Γδ(P

-) represents an uncertainty set of probability measures centered around
the reference probability distribution P -, with a radius δ > 0 that controls the robustness (Gao,
2023; Gao et al., 2024; Duchi & Namkoong, 2021). A common way is to define Γδ(P

-) as the
distance-based uncertainty set:

Γδ(P
-) = {Q - ∈ Pp(X ) : 𝒹(Q -, P -) ≤ δ} , (3)

where Pp(X ) denotes the class of Borel probability measures on X with finite pth moment for
some p > 1, and 𝒹 is a discrepancy metric of probability measures. Popular choices of 𝒹 are
φ-divergences (including Kullback–Leibler (KL) divergence and χ2 divergence as special cases
(Duchi, 2016)) and Wasserstein distances (Gao, 2023; Gao et al., 2024; Blanchet & Murthy, 2019).

In practice, negative samples are often drawn uniformly from the training data, often leading to the
inclusion of false negatives. Let P -

train represent the observed distribution of these negative samples,
modeled using Huber’s ϵ-contamination framework: P -

train = (1− ϵ)P - + ϵP̃ -, where ϵ ∈ (0, 1) is
the contamination level, and P̃ - represents an arbitrary contamination distribution (Huber, 1992). For
instance, consider some x ∈ X . Suppose we collect n negative samples, where a fraction ⌊εn⌋ are
i.i.d. false negative examples drawn from P̃ -, and the rest are true negatives from P -. The resulting
empirical distribution of the observed negative samples follows this model with contamination level
⌊εn⌋/n. To mitigate overfitting to the worst-case instances that are likely to be outliers, we minimize
the refined outlier-robust expected risk (Nietert et al., 2024a;b; Zhai et al., 2021):

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
. (4)

By definition, the minimizer of (4) is designed to ignore ‘hard’ data points that contribute most to
worst-case risk, and instead focus on the (1 − ϵ)-fraction of ‘easy’ data points in the training set.
This helps prevent overfitting to outliers, thereby reducing the risk of pushing the target data point
away from others within the same class. For different choices of the discrepancy metric 𝒹 in the
uncertainty set (3), we establish a unified upper bound on the outlier-robust risk R -

x(θ;P
-

train, δ, ϵ).
The result is summarized in the following informal theorem, with the formal statement and its proof
provided in Appendix A.3.

4
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Figure 2: Visualization of the effect of dispersion control. (a) No dispersion control. (b) Direct
dispersion control between the anchor and false-negative pairs. (c) Dispersion control with pseudo-
false negatives.

Theorem 4.1 (informal). Suppose the similarity measure Sθ satisfies the smoothness conditions
in Lemma 5 for all θ ∈ Θ. For the contaminated training distribution P -

train, let p -
train denote the

associated density/mass function, and we defined the associated truncated distribution P ∗ with
density/mass function p∗: p∗(x -) ≜ 1

1−ϵp
-
train(x

-)1 {Sθ(x
-;x) ≤ s∗}, where s∗ is the 1− ϵ quantile

satisfying P -
train {Sθ(X

-;x) ≤ s∗} = 1− ϵ. Then, for a small enough δ > 0, we have

R -
x(θ;P

-
train, δ, ϵ) ≤ EP∗

{
Sθ(X

-;x)
}
+ V𝒹

{
Sθ(X

-;x);P ∗}+O(δ),

where V𝒹(·;P ∗) is a measure of statistical dispersion that depends on the choice of the discrepancy
metric 𝒹, and is evaluated under the truncated distribution P ∗.

Remark 4.1. In contrastive SFDA, for each anchor point x from the target set (i.e., the data point we
use as a reference to compare with positive and negative examples), the truncated version of P -

train,
denoted as P ∗ in Theorem 4.1, concentrates all its mass on regions where the similarity falls below
the (1− ϵ)-quantile. Consequently, the first expectation term in the upper bound controls the average
risk over potential true negative examples, akin to the behavior of traditional negative sample loss
(Yang et al., 2022; Mitsuzumi et al., 2024b). This is implemented as the negative sample loss L -

CL in
(7) presented in Section 4.4. Meanwhile, the second term of Theorem 4.1 manages the dispersion in
similarity between these true negative examples, helping to distinguish the anchor-true-negative pairs
from the anchor-false-negative ones. This term encourages greater separation between the prediction
similarities for anchor-true-negative pairs and anchor-false-negative pairs, as shown by the wider gray
area in Figure 2b than that in Figure 2a.

Remark 4.2. In practice, domain shift makes it challenging to distinguish between false negatives
and true negatives. To address this, we propose to achieve dispersion control by manually constructing
pseudo-false negative examples using techniques such as data augmentation. As shown in Figure
1b, for a given anchor point x, the source model’s prediction on its augmented version, denoted
as AUG(x), may not align with the prediction for x. When this happens, AUG(x) is automatically
treated as a false negative example for x. Motivated by the dispersion control term, we treat these
augmentations as pseudo-false negatives and minimize the negative similarity between the anchor
point and its augmented prediction. As illustrated in Figure 2c, this can effectively push the similarity
of anchor-false-negative pairs farther from that of anchor-true-negative pairs, increasing the width of
the gray region area to achieve the desired separation and dispersion control. This dispersion control
effect is captured through the loss term L -

DC in (7), as detailed in Section 4.4.

4.3 POSITIVE SUPERVISION UNCERTAINTY AND PARTIAL LABELING

For each anchor point x ∈ X in the target dataset, let p ≜ (p1, . . . , pK)⊤ ≜ fT(x;θ) ∈ ∆K−1

denote the target model’s predicted probabilities for x. For the positive example x+ associated
with x, let p+ ≜ (p+

1, . . . , p
+
K)⊤ represent the predicted probabilities for x+, which could come

5
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from a source model or previous training iterations. When using cosine similarity, the positive
supervision from x+ encourages the model training to minimize the negative similarity, defined as
−⟨p+, p⟩ = −

∑K
j=1 pjp

+
j .

In SFDA, leveraging a well-trained source model and the similarity between the source and target
domain distributions, the neighboring examples in the feature space are often treated as positive
samples. While many of these positive samples provide effective supervision for unlabeled target data,
there can still be highly uncertain examples due to domain shift. To better handle this uncertainty in
model predictions, we explore the optimal prediction for the anchor point x by solving the following
worst-case risk minimization problem based on DRO:

p⋆ ∈ inf
p∈∆K−1

R+
x(p;x

+, δ), with R+
x(p;x

+, δ) ≜ sup
q+∈Γδ(p+)

⟨q+,−p⟩, (5)

where Γδ(p
+) is the uncertainty set centered around the reference distribution p+, as defined in (3). If

we use the p-Wasserstein distance (Definition A.1), with the 0-1 cost function, as the discrepancy
metric in the uncertainty set, we can derive a closed-form expression for p⋆ as follows.
Theorem 4.2. Let {p+

1 , . . . , p
+
K} be arranged in decreasing order, denoted p+

(1) ≥ . . . p+
(K), with

the corresponding indexes denoted χ(1), . . . , χ(K). Let p(j) denote the χ(j)-th component of p,
corresponding to p+

(j) for j ∈ [K]. Then, the optimal solution p⋆ of (5) is given as follows:

• If 1
K ≥ 1

k∗

∑k∗

j=1 p
+
(j) −

1
k∗ δ

p for all k∗ ∈ [K − 1], then p⋆j = 1
K for all j ∈ [K].

• If there exists some k0 ∈ [K − 1] such that 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp > 1

K and 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp ≥ 1

k∗

∑k∗

j=1 p
+
(j)−

1
k∗ δ

p for all k∗ ∈ [K−1], then p⋆(j) =
1
k0

for j ∈ [k0] and p⋆(j) = 0

for j = k0 + 1, . . . ,K.

Remark 4.3. Theorem 4.2 suggests that the optimal prediction for an anchor point can be represented
by a set of (instance-dependent) partial labels. The advantage of using partial labels, rather than
the entire predicted probabilities, as the supervision signal is that it retains uncertain yet potentially
more accurate label information, while eliminating interference from labels that are more likely to be
incorrect. In the special case where p+

(1) ≥ max{ 1
K + δp, p+

(2) + δp}, the optimal solution simplifies
to p⋆(1) = 1 and p⋆(j) = 0 for j = 2, . . . ,K. That is, the optimal solution is to select the label with
the highest predicted probability for the anchor point, rather than a set of partial labels, when the
gap between the top two probabilities exceeds a given threshold. We term this scenario certain label
information; otherwise, we classify it as uncertain label information.

Remark 4.4. Motivated by Theorem 4.2 and Remark 4.3, we propose to leverage both certain and
uncertain label information in distinct ways to effectively capture and utilize prediction uncertainty.
Specifically, when an instance x receives certain label information, the optimal prediction for x
corresponds to the label with the highest predicted probability. This certain supervision signal is
incorporated through the positive supervision loss term L+

CL in (8). When uncertain label information
is provided, the optimal prediction for x is expressed as a set of partial labels. Instead of relying
solely on the estimated pseudo labels, we construct a partial label set for x. This approach offers a
more robust supervisory signal by accounting for multiple potential labels and reducing reliance on
noisy single-label predictions. This information is captured through the partial label loss term L+

PL in
(8). To distinguish between certain and uncertain label information in applications, we use the ratio
of the two highest predicted probabilities, as detailed in Section 4.4.

4.4 IMPLEMENTATION

In our algorithm, we build upon the conventional contrastive loss commonly adopted in previous
works (Yang et al., 2022; Mitsuzumi et al., 2024a):

LCL ≜ L+
CL + λ -

CLL -
CL ≜

1

NT

NT∑
i=1

{
−

∑
x+
i∈Ci

Sθ(x
+
i ;xi) + λ -

CL

∑
x -
i ∈B\{xi}

Sθ(x
-
i ;xi)

}
, (6)

6
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where similarity is computed as Sθ(x
+/ -
i ;xi) = ⟨fT(x

+/ -
i ;θ), fT(xi;θ)⟩. Positive samples are the

κ-nearest neighbours in the feature space from the training set DT, and negative samples are the
remaining data in the same mini-batch B. Building on this simple yet widely adopted implementation
in SFDA, our approach focuses on effectively controlling uncertainty during the adaptation process
by refining both the negative and positive sample components.

Dispersion Control via Data Augmentation Alignment. To minimize the effect of false negative
samples - points from the same class as the anchor point but misidentified as negative examples, we
introduce a dispersion control term L -

DC, which complements the conventional negative sample loss
L -

CL. This leads to the following negative uncertainty control loss:

L -
UCon ≜ λ -

CLL -
CL + λDCL -

DC ≜
1

NT

NT∑
i=1

{
λ -

CL

∑
x -
i ∈B\{xi}

Sθ(x
-
i ;xi)− λDCdθ (AUG (xi) ,xi)

}
,

(7)

where where dθ (AUG (xi) ,xi) = ⟨fT(xi;θ), log fT (AUG (xi) ;θ)⟩ is the cosine similarity between
network output of xi and the log probabilities of its augmented version. B denotes the mini-batch, and
NT represents the size of the target data set. For data augmentation, we use the general augmentation
pipeline proposed in self-supervised learning Chen et al. (2020). Similar to previous work (Yang
et al., 2022), the decay coefficient λ -

CL is defined as λ -
CL = (1 + 10 ∗ iter

max iter )
β , with β and λDC

being hyperparameters.

Different from previous works that exclude false negative samples (Chen et al., 2022; Litrico et al.,
2023) or adjust the coefficient λ -

CL (Mitsuzumi et al., 2024a), our proposed dispersion control term
intelligently utilizes data augmentation to mimic false negatives without introducing additional
uncertainty. This approach implicitly reduces the variance in prediction similarity between anchor
data and noisy negative samples while enhancing the model’s prediction consistency.

Supervision Relaxation by Partial Label Training. As highlighted in Theorem 4.2, partial labels can
help control uncertainty in positive sample predictions in SFDA. Our findings show that neighboring
samples in the feature space can sufficiently provide accurate label information for initially confident
target samples, but highly uncertain samples require additional processing. To handle these uncertain
samples, we propose an innovative approach to select uncertain samples during adaptation by tracking
the ratio between the largest and second-largest predicted probabilities. Specifically, we maintain an
uncertain data bank, defined as: 𝒰 = {x ∈ DT :

fT(x;θ)(1)
fT(x;θ)(2)

≤ τ}, where fT(x;θ)(i) is the i-largest
predicted probabilities for x. The threshold τ is typically set to a small value, usually between 1 and
1.5, to capture severely uncertain samples. Additionally, we store the historical TOP-KPL predicted
labels for each data xi to construct a partial label set, denoted as 𝒴PL,i, which is then used to further
supervise the training of uncertain data. Aftering incorporating the partial label loss L+

PL, the positive
uncertainty control loss term L+

UCon is defined as:

L+
UCon ≜ L+

CL + λPLL+
PL (8)

≜
1

NT

NT∑
i=1

{
−

∑
x+
i∈Ci

Sθ(x
+
i ;xi) + λPL

∑
yk,i∈𝒴PL,i

1{xi∈𝒰}ℓCE(yk,i, fT(xi;θ))
}
, (9)

where Ci is the neighbor set of xi, 1 is the indicator function, ℓCE is the smoothed cross-entropy loss,
and λPL is a hyperparameter.

Unlike most uncertainty-based approaches in SFDA, which focus on excluding or reducing the
negative impact of highly uncertain data during adaptation (Roy et al., 2022; Litrico et al., 2023), our
method leverages uncertainty to extract additional label information from these data, relaxing the
training process and boosting the performance.

Overall Uncertainty Control SFDA Loss. The final Uncertainty Control SFDA loss LUCon−SFDA is
defined as:

LUCon−SFDA = LCL + λPLL+
PL + λDCL -

DC. (10)

The pseudocode for the algorithm (Algorithm 1) and the complete training process can be found in
the Appendix B.
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Table 1: Classwise Accuracy (%) on the VisDA2017 Dataset (ResNet-101): Synthetic → Real

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

3C-GAN (Li et al., 2020b) 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT (Liang et al., 2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
A2Net (Xia et al., 2021) 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA (Yang et al., 2021b) 96.1 83.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC (Yang et al., 2021a) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
CPGA (Qiu et al., 2021) 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
AdaContrast (Chen et al., 2022) 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 47.9 86.8
CoWA-JMDS (Lee et al., 2022) 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
DaC (Zhang et al., 2022) 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
AaD (Yang et al., 2022) 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
C-SFDA (Karim et al., 2023) 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
SF(DA)2 (Hwang et al., 2024) 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1
I-SFDA (Mitsuzumi et al., 2024a) 97.5 91.4 87.9 79.4 97.2 97.2 92.2 83.0 96.4 94.2 91.1 53.0 88.4

UCon-SFDA (Ours) 98.4 90.7 88.6 80.7 97.9 96.9 93.1 83.8 97.6 95.9 92.6 59.1 89.6

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the proposed method, we conduct experiments on several SFDA benchmarks
under three different domain shift scenarios: general SFDA, SFDA with severe label shift, and
source-free partial set domain adaptation. For general SFDA, we test our method on the Office-
31 (Saenko et al., 2010), Office-Home (Venkateswara et al., 2017), VisDA2017 (Peng et al., 2017),
and DomainNet-126 (Litrico et al., 2023) datasets. VisDA2017 is a relatively large-scale classification
dataset with 12 classes, consisting of 152K synthetic images and 55K real-world object images. We
use the synthetic images as the source domain and the real images as the target domain. Office-31
contains 4,652 images from three domains (Amazon, DSLR, and Webcam) across 31 categories,
while Office-Home comprises 15,550 images from four domains (Real, Clipart, Art, and Product)
with 65 classes. DomainNet-126 is a subset of the larger DomainNet dataset that includes over 600K
images across 345 categories and six domains (Clipart, Infograph, Painting, Quickdraw, Real and
Sketch) (Peng et al., 2019). Following previous work (Litrico et al., 2023), we use 126 selected
classes from four of these sub-domains for our experiments.

We further test on more complex SFDA tasks. For source-free domain adaptation with label shift, we
employ the VisDA-RUST dataset, which presents a severe label imbalance in the target domain (Li
et al., 2021). For source-free partial set domain adaptation, we follow the setup in Liang et al. (2020)
for the Office-Home dataset, where only the first 24 classes are retained in the target domain.

Implementation Details. To ensure fair experimental comparisons, we use the same neural network
architectures and training schemes as in previous state-of-the-art approaches (Liang et al., 2020; Yang
et al., 2022; Karim et al., 2023; Hwang et al., 2024). Specifically, we adopt ResNet-50 as the backbone
model for the Office-31, Office-Home, and DomainNet-126 datasets, and ResNet-101 for VisDA.
We replace the original fully connected layer in ResNet with a bottleneck layer followed by batch
normalization, and then add a simple linear layer with weight normalization for the classification.
For adaptation training on the target domain, we use the SGD optimizer with the same learning rate
scheduler as in Liang et al. (2020). For evaluation, we report the average accuracy for Office-31,
Office-Home, and DomainNet-126. For VisDA2017 and VisDA-RUST, we report both per-class
top-1 accuracy and the overall average. All experiments are run with three random seeds, and the
average results are reported. Further implementation details, including the hyperparameter selection,
can be found in Appendix B.

5.2 OVERALL EXPERIMENTAL RESULTS

The experimental results are summarized in Tables 1- 4 and Table 7 in Appendix C.1, with the best
result highlighted in bold. Our proposed method consistently outperforms all baseline methods,
especially on the large-scale datasets VisDA2017 (+1.2%) and DomainNet-126 (+1.9%). For
VisDA2017, a dataset with only 12 classes, conventional negative sample selection methods that
treat the entire batch as negative samples often introduce significant noise and uncertainty. By
incorporating the negative sample uncertainty loss, we investigate this issue and see a notable
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Table 2: Classwise Accuracy (%) on the VisDA-RSUT Dataset (ResNet-101): Synthetic → Real

Method plane bcycle bus car horse knife mcycl person plant sktbrd train truck Per-class

Source only (He et al., 2016) 79.9 15.7 40.6 77.2 66.8 11.1 85.1 12.9 48.3 14.3 64.6 3.3 43.3
SHOT (Liang et al., 2020) 86.2 48.1 77.0 62.8 92.0 66.2 90.7 61.3 76.9 73.5 67.2 9.1 67.6
CoWA-JMDS (Lee et al., 2022) 63.8 32.9 69.5 59.9 93.2 95.4 92.3 69.4 85.1 68.4 64.9 32.3 68.9
NRC (Yang et al., 2021a) 86.2 47.6 66.7 68.1 94.7 76.6 93.7 63.6 87.3 89.0 83.6 20.0 73.1
AaD (Yang et al., 2022) 73.9 33.3 56.6 71.4 90.1 97.0 91.9 70.8 88.1 87.2 81.2 39.4 73.4
SF(DA)2 (Hwang et al., 2024) 79.0 43.3 73.6 74.7 92.8 98.3 93.4 79.1 90.1 87.5 81.1 34.2 77.3

UCon-SFDA (Ours) 84.1 37.1 87.4 70.6 95.4 92.9 94.4 83.0 93.7 92.0 86.7 35.3 79.4

Table 3: Classification Accuracy (%) on the Office-Home Dataset (ResNet-50) Under Source-Free
Partial-Set Domain Adaptation

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

SHOT (Liang et al., 2020) 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
AaD (Yang et al., 2022) 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7

UCon-SFDA (Ours) 65.6 87.8 91.0 78.6 79.3 87.6 80.2 65.9 87.3 83.2 69.1 88.7 80.3

performance boost. Similarly, our method excels in more challenging tasks, such as Ar → Cl and Pr
→ Cl on Office-Home, and it consistently performs well across nearly all tasks on DomainNet-126.
Additional experimental results and analyses, including self-prediction accuracy, data augmentation
consistency, variance control effect, hyperparameter sensitivity, performance under various similarity
measures utilized in dispersion control term and complexity analyses, are provided in Appendix C.

In more complex scenarios like VisDA-RUST (with severe label imbalance), we observe a per-
formance gain of +2.1%, while for the partial set Office-Home setup, our method shows a +0.6%
improvement. These results further confirm the robustness and generality of our proposed method,
particularly in handling highly imbalanced target domain data and challenging source-free domain
adaptation tasks.

5.3 ANALYSIS

Ablation Study. To evaluate the effectiveness and necessity of each component proposed in our algo-
rithm, we conduct an ablation study across four datasets. The results, shown in Table 5, demonstrates
that both partial label supervision training and dispersion control can boost the performance of the
baseline approach (LCL). While L+

PL can better handle severe label shift scenarios, as seen in the
VisDA-RUST dataset, L -

DC performs better on more difficult tasks. Notably, adding the dispersion
control term alone improves or matches the performance of most negative sample denoising and
uncertainty-based methods, such as those from Roy et al. (2022); Litrico et al. (2023); Chen et al.
(2022); Mitsuzumi et al. (2024a), without requiring any additional networks. Combining both positive
and negative uncertainty control can boost each other and enhance the performance.

Negative Sampling Dispersion Control. To further evaluate the effect of the dispersion control by
L -

DC, we calculate the variance in prediction similarity between anchor-true-negative pairs during
adaptation. Figure 3c illustrates that introducing L -

DC succesfully reduces this variance. Further more,
the SF(DA)2 method (Hwang et al., 2024) approaches the problem from a graph-based perspective

Table 4: Classification Accuracy (%) on Office-31 (left) and DomainNet-126 (right) using ResNet-50

Method A → D A → W D → W W → D D → A W → A Avg.

SHOT (Liang et al., 2020) 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN (Li et al., 2020b) 92.7 93.7 98.5 99.8 75.3 77.8 89.6
A2Net (Xia et al., 2021) 94.5 94.0 99.2 100.0 76.7 76.1 90.1
NRC (Yang et al., 2021a) 96.0 90.8 99.0 100.0 75.3 75.0 89.4
CPGA (Qiu et al., 2021) 94.4 94.1 98.4 99.8 76.0 76.6 89.9
CoWA-JMDS (Lee et al., 2022) 94.4 95.2 98.5 99.8 76.2 77.6 90.3
AaD (Yang et al., 2022) 96.4 92.1 99.1 100.0 75.0 76.5 89.9
C-SFDA (Karim et al., 2023) 96.2 93.9 98.8 99.7 77.3 77.9 90.5
I-SFDA (Mitsuzumi et al., 2024a) 95.3 94.2 98.3 99.9 76.4 77.5 90.3

UCon-SFDA (Ours) 94.8 95.4 98.9 100.0 77.1 77.1 90.6

Method S→P C→S P→C P→R R→S R→C R→P Avg.

Source only (He et al., 2016) 50.1 46.9 53.0 75.0 46.3 55.5 62.7 55.6
TENT (Wang et al., 2020) 52.4 48.5 57.9 67.0 54.0 58.5 65.7 57.7
DivideMix (Li et al., 2020a) 64.3 61.3 67.7 77.3 62.4 68.1 69.5 67.2
SHOT (Liang et al., 2020) 66.1 60.1 66.9 80.8 59.9 67.7 68.4 67.1
NRC (Yang et al., 2021a) 65.7 58.6 64.5 82.3 58.4 65.2 68.2 66.1
AaD (Yang et al., 2022) 65.4 54.2 59.8 81.8 54.6 60.3 68.5 63.5
AdaContrast (Chen et al., 2022) 65.9 58.0 68.6 80.5 61.5 70.2 69.8 67.8
GPUE (Litrico et al., 2023) 67.5 64.0 68.8 76.5 65.7 74.2 70.4 69.6
SF(DA)2 (Hwang et al., 2024) 67.7 59.6 67.8 83.5 60.2 68.8 70.5 68.3

UCon-SFDA (Ours) 68.1 66.5 69.3 81.0 64.3 75.2 71.1 71.5
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Table 5: Ablation Study Results across Different Datasets and Tasks

Method
VisDA2017 VisDA-RUST DomainNet-126 OfficeHome

Sync → Real Sync → Real P → R R → P Avg. Ar → Cl Pr → Cl Avg.

LCL 87.6 75.5 78.9 67.8 66.9 58.6 57.9 72.6
LCL + L -

DC 89.0 78.9 80.2 70.3 69.8 61.2 59.7 73.3
LCL + L+

PL 88.1 79.1 80.8 69.5 68.8 60.2 59.3 73.1
LUCon−SFDA 89.6 79.4 81.0 71.1 71.5 61.5 62.2 73.6
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Figure 3: (a) Self-Prediction Accuracies across data with varying levels of predictive uncertainty
on Office-Home (Ar → Pr). (b) Comparison of the quality of partial label set and neighbor label
set across different uncertainty levels. (c) Comparison of prediction similarity variances between
anchor-true negative sample pairs with and without the dispersion control term L -

DC on Office-Home
(Ar → Cl).

and introduces a quadratic regularized term on the predicted probability similarity of anchor-negative
pairs. It is equivalent to directly minimizing the variance. Our experimental results also demonstrates
the effectiveness of our data augmentation-based dispersion control.

Positive Supervision Uncertainty Relaxation. As shown in Figure 3a, the top-1 self-predicted label
is more accurate for certain data points (blue dot line in Figure 3a) than uncertain ones (yellow dot
line), which indicates that uncertain data require additional supervision during adaptation. To further
validate the proposed partial label supervision on these uncertain target data, we define a neighbor
label set that contains the neighbors’ self-predicted top-1 label. We compare the label information
provided by this neighbor label set against our proposed partial label set. By comparing the two
lines representing the accuracy of the neighbor label sets marked with ‘x’ in Figure 3b, we can
easily observe that for uncertain data, neighbor label set becomes increasingly unstable as training
progresses, with accuracy sometimes even decreasing. This highlights why we choose not to rely on
neighbor labels in our algorithm design. Instead, we use the sample’s own TOP-KPL predictions to
form a partial label set. A closer look at the difference between the two blue lines and the two yellow
lines in Figure 3b reveals that the label gain from the partial label set is much greater for uncertain
data than for certain data. Interestingly, the accuracy of the neighbor’s labels is consistently higher
than the overall accuracy of the model’s self-prediction, which explains why we only apply relaxed
supervision through partial label loss for uncertain data.

6 CONCLUSION

In this paper, we thoroughly analyze two types of uncertainty in SFDA arising from the use of
positive and negative samples. By examining the uncertainty in the negative sample distribution
during training, we construct an outlier-robust worst-case risk and derive an informative upper bound
for it. This analysis not only explains why current contrastive learning methods significantly enhance
SFDA performance but also leads to the design of an augmentation-based dispersion control approach
to mitigate the uncertainty introduced by noisy negative samples. Furthermore, by investigating the
prediction uncertainty of positive examples, we identify a partial label set as the optimal solution
for the target data. This revelation uncovers previously overlooked uncertain information in existing
algorithms and motivates us to propose novel criteria for distinguishing uncertain data, thereby using
partial labels to relax the supervision from positive examples.
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A TECHNICAL DETAILS

A.1 NOTATION TABLE

The notation table provides a summary for the key notations used throughout the paper, with the
symbols, descriptions, and the first appearance place included in the first, second, an the third columns,
respectively.

Notations Descriptions First appearance

X ⊂ Rd d-dimensional input space Section 3

Y = [K] label space for K-classification Section 3

P S
xy; DS

underlying distribution over X × Y related to source domain
unavailable source domain data DS ≜ {xS

i , y
S
i }

NS
i=1

Section 3

PT
xy; DT

underlying distribution over X × Y related to target domain
unlabeled target domain data DT ≜ {xT

i }
NT
i=1

Section 3

fS(x;θ)/fT(x;θ)/f(x;θ) :
X 7→ ∆K−1 predicted probabilities of source/target/general model Section 3

hS(x;θ)/hT(x;θ)/h(x;θ) :
X 7→ Y

source/target/general classifier:
= argmaxj∈[K] fS(x;θ)[j]/fT(x;θ)[j]/f(x;θ)[j]

Section 3

Sθ(x
′;x)

similarity between x′ and x
e.g., Sθ(x

′;x) =< f(x′;θ), f(x;θ) >
Section 4.1, Eq. (1)

PT
x (empirical: P̂x) distribution of input X (target) Section 3

P +(·;x), or simply P +

(empirical: P̂ +)
conditional distribution for positive sample over X , given x Section 4.1, Eq. (1)

P -(·;x), or simply P -

(empirical: P̂ -)
conditional distribution for negative sample over X , given x Section 4.1, Eq. (1)

L+
CL / L -

CL positive/negative contrastive loss Section 4.3, Remark 4.4

L+
PL / L -

DC partial label/dispersion control loss Section 4.3, Remark 4.4

L+
UCon / L -

UCon overall positive/negative uncertainty control loss Section 4.4, Eq. (8)

LUCon−SFDA uncertainty control source-free domain adaptation loss Section 4.4, Eq. (10)

λPL / λDC / λ -
CL

partial label/dispersion control/negative contrastive
loss coefficient Section 4.4, Eq. (8) / (7) / (6)

κ number of neighbors for each anchor point Section 4.1

KPL update number for partial label set Section 4.4 (Page 7)

τ uncertain sample selection ratio Section 4.4 (Page 7)

β decay exponent of negative contrastive loss Section 4.4 (Page 7)

𝒵 / ℱ / 𝒴PL / 𝒰 feature/predicted probabilities/
partial label set/uncertainty sample bank Appendix B, Algorithm 1

AUG(x) data augmentation of input sample x Section 4.2, Remark 4.2

A.2 PRELIMINARIES ON DISCREPANCY METRICS AND LINEAR PROGRAMMING

We begin by presenting the definitions and some optimization results of the p-Wasserstein distance
and φ-divergence, which are potential choices for the discrepancy metric 𝒹 in (3), and will be used
in the proof of Theorem 4.1.

Definition A.1 (p-Wasserstein distance (Blanchet & Murthy, 2019)). For a Polish space Ω (i.e., a
complete separable metric space) endowed with a metric c : Ω × Ω → R≥0, let P(Ω) represent
the set of all Borel probability measures on Ω, where R≥0 represents the set of all nonnegative
real values. For p ≥ 1, let Pp(Ω) stand for the subset of P(Ω) with finite pth moments. Then, for
P1, P2 ∈ Pp(Ω), the Wasserstein distance of order p is defined as

Wp(P1, P2) ≜ inf
Π∈Cpl(P1,P2)

[
E(S1,S2)∼Π {cp(S1, S2)}

]1/p
,

where Cpl(P1, P2), sometimes called the coupling set of P1 and P2, comprises all probability
measures on the product space Ω× Ω such that their marginal measures are P1(·) and P2(·). Here,
cp(·, ·) represents {c(·, ·)}p.

Definition A.2 (φ-divergence (Ali & Silvey, 1966; Duchi, 2019)). Let P and Q be probability
distributions on a measure space (Ω,G), and let φ : R+ −→ R be a convex function satisfying
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φ(1) = 0 and φ(t) = +∞ for t < 0. Without loss of generality, assume that P and Q are absolutely
continuous with respect to the base measure µ. The φ-divergence between P and Q is then defined as

Dφ(P∥Q) :=

∫
Ω

q(x)φ

(
p(x)

q(x)

)
dµ(x) + f ′(∞)P{q = 0},

where p and q are the densities of P and Q with respect to the measure µ, respectively, and φ′(∞)
represents limx→∞ φ(t)/t.

Example A.1 (Duchi, 2019, Chapter 2.2). By taking different φ functions, we provide some popular
examples of φ-divergences.

• Kullback-Leibler (KL) divergence: taking φ(t) = t log t gives Dφ(P∥Q) ≜ DKL(P∥Q) =∫
p log(p/q)dµ.

• The total variation distance: taking φ(t) = 1
2 |t − 1| yields Dφ(P∥Q) ≜ ∥P − Q∥TV =

1
2

∫ ∣∣p
q − 1

∣∣qdµ = supA⊂Ω |P (A)−Q(A)|.

• The Hellinger distance: taking φ(t) = (
√
t − 1)2 = t − 2

√
t + 1 leads to the squared

Hellinger distance Dφ(P∥Q) ≜ H2(P∥Q) =
∫
(
√
p−√

q)2dµ.

• The χ2-divergence: taking φ(t) = (t − 1)2 produces the χ2-divergence Dφ(P∥Q) ≜
χ2(P∥Q) =

∫
(pq − 1)2dµ.

Lemma 1 (Strong duality for robust risk based on p-Wasserstein distance (Gao et al., 2024, Lemma
EC.1)). Consider the p-Wasserstein distance Wp(·, ·) with p ∈ [1,∞) defined in Definition A.1.
Given a upper semi-continuous loss function h : Ω → R, a nominal distribution P ∈ Pp(Ω), and a
radius δ > 0, the corresponding robust risk based on the p-Wasserstein distance Wp(·, ·) is

𝓋P ≜ sup
Q∈P(Ω)

[
EZ∼Q

{
h(Z)

}
: Wp(P,Q) ≤ δ

]
.

The dual problem is defined as

𝓋D ≜ min
γ≥0

{
γδp + EZ∼P

[
sup
z′∈Ω

{
h(z′)− γcp(z′, Z)

}]}
.

Then, 𝓋P = 𝓋D.

Lemma 2 (Strong duality for robust risk based on φ-divergence (Duchi & Namkoong, 2021, Proposi-
tion 1; Shapiro, 2017, Section 3.2)). Consider the φ-divergence Dφ(·∥·) defined in Definition A.2.
Given a loss function h : Ω → R, a nominal distribution P on the measure space (Ω,G), and a
radius δ > 0, the corresponding robust risk based on the φ-divergence Dφ(·∥·) is

𝓋P ≜ sup
Q≪P

[
EZ∼Q

{
h(Z)

}
: Dφ(Q||P ) ≤ δ

]
.

The dual problem is defined as

𝓋D ≜ inf
γ≥0,η∈R

{
EP

[
γφ∗

{
h(Z)− η

γ

}]
+ γδ + η

}
,

where φ∗(t) = sups{ts− φ(s)} for any t ∈ R is the Fenchel conjugate. Then, 𝓋P = 𝓋D. Moreover,
if the supremum in 𝓋P is finite, then there are finite γ ≥ 0 and η ∈ R attaining the infimum in 𝓋D.

Lemma 3 (Hansen & Sargent, 2008, Proposition 1.4.2). Let (Ω,G, µ) represent a σ-finite measure
space, where Ω is a set, G is the σ-algebra of subsets of Ω, and µ is the associated measure.
h : Ω → R is a bounded measurable function. The following conclusions hold.

(i) We have the variational formula

− log

∫
Ω

exp{−h(ω)}dµ(ω) = inf
ν∈P(Ω)

{
DKL(ν∥µ) +

∫
Ω

h(ω)dν(ω)

}
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(ii) Let ν∗ denote the probability measure on Ω which is absolutely continuous with respect to µ
and satisfies

dν∗

dµ
(ω) ≜

exp{−h(ω)}∫
Ω
exp{−h(ω)}dµ(ω)

for ω ∈ Ω.

Then the infimum in the variational formula above is attained uniquely at ν∗.

We next introduce the concept of linear programming and some result on extreme points, which will
be used in the proof of Theorem 4.2.

A linear program (LP) is an optimization problem of the form

max
x∈Rn

c⊤x

s.t. Ax ≤ b

x ≥ 0,

(11)

where c ∈ Rn and b ∈ Rm are given, and A is a specified m × n matrix. Here, “≤” represents
elementwise inequality for vectors. The expression c⊤x is called the objective function, and the set
{x ∈ Rn : Ax ≤ b,x ≥ 0} defines the feasible region of the linear program. By introducing slack
variables, any linear program can be converted to the following standard form:

max
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0.

(12)

Definition A.3 (Luenberger & Ye, 1984, Chapter 2). A point z in a convex set Θ is called an extreme
point of Θ if there do not exist two distinct points z′, z′′ ∈ Θ and a scalar ν with 0 < ν < 1 such that
z = νz′ + (1− ν)z′′.
Lemma 4 (Luenberger & Ye, 1984, Chapter 2). If a linear programming problem has a finite optimal
solution (i.e., a feasible solution that optimizes the objective function), then there is a finite optimal
solution that is an extreme point of the constraint set.

A.3 PROOF OF THEOREM 4.1

Before presenting and proving the formal version of Theorem 4.1, we first examine form of the robust
risk given in (2) when different choices of the discrepancy metric 𝒹 in (3). Proof techniques in Duchi
& Namkoong (2021); Zhai et al. (2021); Gao (2023); Gao et al. (2024); Lam (2016) are used.
Lemma 5. Suppose that Sθ(X

-;x -). For different choices of the discrepancy metric 𝒹 in (3), we
have the following results on the robust risk R -

x(θ;P
-, δ) given in (2).

(i) If 𝒹 is the χ2-divergence and δ ≤ VP -
{
Sθ(X

-;x)
}
/
[
EP -

{
Sθ(X

-;x)
}]2

, then

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-;x)
}
+
√
δVP -

{
Sθ(X -;x)

}
.

(ii) If 𝒹 is the KL-divergence, then for a small enough δ,

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-;x)
}
+

√
2δVP -

{
Sθ(X -;x)

}
+O(δ).

(iii) Suppose 𝒹 is the p-Wasserstein distance with p ∈ [1,+∞) and the cost function c(·, ·)
in Definition A.1 is chosen as a norm ∥ · ∥ with dual norm ∥ · ∥∗. Assume the following
smoothness condition are true.

a. For any x̃ -,x -,x ∈ X , ∃ℳ1,ℳ2 > 0 and ζ ∈ [1, p], such that ∥∇Sθ(x̃
-;x) −

∇Sθ(x
-;x)∥∗ ≤ ℳ1 +ℳ2∥x̃ - − x -∥ζ−1.

b. There exists η0 > 0 and ℳ3 > 0, such that for any x̃ -,x -,x ∈ X , if ∥x̃ - − x -∥ ≤ η0,
then ∥∇Sθ(x̃

-;x)−∇Sθ(x
-;x)∥∗ ≤ ℳ3∥x̃ - − x -∥.
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Let q denote the Hölder number of p, that is 1
p + 1

q = 1. Then

R -
x(θ;P

-, δ) ≤ EP -
{
Sθ(X

-;x)
}
+ δ {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

+O(δ2∧p).

Proof. We explore the upper bound form of R -
x(θ;P

-, δ) under various choices of the discrepancy
metric 𝒹 in (3).

Case 1: χ2-divergence. For χ2-divergence, we have φ(t) = (t− 1)2 for t ≥ 0 and φ(t) = +∞
for t < 0 by Example A.1. The Fenchel conjugate of φ is given as:

φ∗(t) = sup
s∈R

{ts− φ(s)} = sup
s≥0

{
ts− (s− 1)2

}
= sup

s≥0

{
−
(
s− t+ 2

2

)2

+
t2

4
+ t

}

=


t2

4
+ t, for t ≥ −2

− 1, for t < −2

=
1

4
{(t+ 2)+}2 − 1. (13)

Step (i): Upper bound on the primal problem.

If the discrepancy metric 𝒹 in (3) is chosen as the χ2-divergence, then the robust risk R -
x(θ;P

-, δ)
is expressed as

R -
x(θ;P

-, δ) = sup
Q -≪P -

[
EQ -

{
Sθ(X

-;x)
}
: χ2(Q -∥P -) ≤ δ

]
. (14)

The expectation EQ -
{
Sθ(X

-;x)
}

in R -
x(θ;P

-, δ) can be expressed as:

EQ -
{
Sθ(X

-;x)
}
= EP -

{
Sθ(X

-;x)
dQ -
dP -

}
= EP -

{
Sθ(X

-;x)
}
+ EP -

{
Sθ(X

-;x)

(
dQ -
dP -

− 1

)}
= EP -

{
Sθ(X

-;x)
}
+ EP -

{[
Sθ(X

-;x)− EP -
{
Sθ(X

-;x)
}](dQ -

dP -
− 1

)}
,

where the first inequality holds via a change of measure and the fact that Q - ≪ P -, dQ -
dP - denotes

the Radon–Nikodym derivative, and the last equality is true since EP -
(

dQ -
dP - − 1

)
= 0. By Cauchy-

Schwarz inequality, we further obtain that

R -
x(θ;P

-, δ)− EP -
{
Sθ(X

-;x)
}

=

√√√√{
EP -

[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2} ·

{
EP -

(
dQ-
dP -

− 1

)2
}

=

√{
EP -

[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2} · χ2(Q -∥P -)

≤
√{

EP -
[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2} · δ,

where the second equality holds by the definition of χ2-divergence given in Example A.1, and the
inequality in the last step is due to the constraint in (14). Therefore, by (14), we obtain that

R -
x(θ;P

-, δ) ≤ EP -
{
Sθ(X

-;x)
}
+

√{
EP -

[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2} · δ

≜µ+
√
δV , (15)

where µ ≜ EP -
{
Sθ(X

-;x)
}

and V ≜ EP -
[
Sθ(X

-;x)− EP -
{
Sθ(X

-;x)
}]2

.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Step (ii): Attaining the equality in the upper bound using duality.

Next, we prove the equality in the upper bound in (15) can be achieved by leveraging the strong
duality result of the φ-divergence based robust risk. Specifically, according to Lemma 2 and (13),

R -
x(θ;P

-, δ) = inf
γ≥0,η∈R

{
EP

[
γφ∗

{
Sθ(X

-;x)− η

γ

}]
+ γδ + η

}
= inf

γ≥0,η∈R

{
EP

[
γ · 1

4

{
Sθ(X

-;x)− η

γ
+ 2

}2

+

− γ

]
+ γδ + η

}

= inf
γ≥0,η∈R

[
1

4γ
EP

{
Sθ(X

-;x)− η + 2γ
}2

+
− γ + γδ + η

]
= inf

γ≥0,η̃∈R

[
1

4γ
EP

{
Sθ(X

-;x)− η̃
}2

+
+ (1 + δ)γ + η̃

]
,

where the last euality holds by taking η̃ ≜ η − 2γ. By taking derivatives with respect to γ, we obtain
that the optimal γ to infimize the preceding expression is given as below:

γ∗ =

√√√√√EP

{
Sθ(X -;x)− η̃

}2

+

4(1 + δ)
.

By substituting into the preceding expression, we further obtain that

R -
x(θ;P

-, δ) = inf
η̃∈R

[√
(1 + δ)EP

{
Sθ(X -;x)− η̃

}2

+
+ η̃

]
. (16)

Let g(η̃) ≜
√
(1 + δ)EP

{
Sθ(X -;x)− η̃

}2

+
+ η̃. By taking η̃∗ = µ −

√
V
δ , where µ and V are

defined after (15), we obtain that

g(η̃∗) =

√
(1 + δ)EP

{
Sθ(X -;x)− η̃∗

}2

+
+ η̃∗

=

√
(1 + δ)EP

{
Sθ(X -;x)− η̃∗

}2

+ η̃∗

=

√
(1 + δ)EP

{
Sθ(X -;x)− µ+

√
V

δ

}2

+ µ−
√

V

δ

=

√√√√(1 + δ)

[
EP

{
Sθ(X -;x)− µ

}2

+
V

δ
+ 2

√
V

δ
EP

{
Sθ(X -;x)− µ

}]
+ µ−

√
V

δ

=

√
(1 + δ)

(
V +

V

δ

)
+ µ−

√
V

δ

= µ+
√
δV ,

where the first step holds since η̃∗ = µ−
√

V
δ < 0 , and the fifth step is due to the definitions of µ

and V .

Step (iii): Mean-dispersion form of the robust risk.

Therefore, by setting η̃∗ = µ−
√

V
δ , the dual objective (16) in its infimum form achieves the equality

in (15), which is the upper bound of the primal problem (14) in its supremum form. Consequently,
we obtain that

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-;x)
}
+

√{
EP -

[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2} · δ.

The proof is completed.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Case 2: KL-divergence. If the discrepancy metric 𝒹 in (3) is chosen as the KL-divergence, then
the robust risk R -

x(θ;P
-, δ) is expressed as

R -
x(θ;P

-, δ) = sup
Q -≪P -

[
EQ -

{
Sθ(X

-;x)
}
: DKL(Q

-∥P -) ≤ δ
]

= sup
Q -≪P -

[
EQ -

{
Sθ(X

-;x)
}
: EQ -

{
log

(
dQ-

dP -

)}
≤ δ

]
. (17)

By a change of measure and denoting the likelihood ratio L(ω) ≜ dQ -(ω)
dP -(ω) for ω ∈ X , the objective

and the constraint in (17) can be expressed as

EQ -
{
Sθ(X

-;x)
}
= EP -

{
Sθ(X

-;x)
dQ -

dP -

}
= EP -

{
Sθ(X

-;x)L(X -)
}
;

EQ -

{
log

(
dQ -

dP -

)}
= EP -

[{
log

(
dQ -

dP -

)}
dQ -

dP -

]
= EP -

[
L(X -) log {L(X -)}

]
.

Therefore, the expression of the robust risk R -
x(θ;P

-, δ) can be rewritten as:

R -
x(θ;P

-, δ) =


max
L∈L

EP -
{
Sθ(X

-;x)L(X -)
}

s.t. EP -
[
L(X -) log {L(X -)}

]
≤ δ,

(18)

where L = {L ∈ L1(P -) : EP -{L(X -)} = 1, L ≥ 0 a.s.}. Since (18) is a convex optimization
problem with respect to L, by introducing the Lagrange multiplier γ > 0, it can be further expressed
as:

R -
x(θ;P

-, δ) = max
L∈L,γ≥0

EP -
{
Sθ(X

-;x)L(X -)
}
− γ

{
EP -

[
L(X -) log {L(X -)}

]
− δ

}
. (19)

Step (i): Optimal form of the likelihood ratio L∗.

Suppose we can find γ∗ ≥ 0 and L∗ ∈ L such that L∗ maximizes (19) for a fixed γ = γ∗ and
EP -

[
L(X -) log {L(X -)}

]
= δ. Then, for any L satisfying the constraint in (18), we have that

EP -
{
Sθ(X

-;x)L∗(X -)
}

=EP -
{
Sθ(X

-;x)L∗(X -)
}
− γ∗

{
EP -

[
L∗(X -) log {L∗(X -)}

]
− δ

}
≥EP -

{
Sθ(X

-;x)L(X -)
}
− γ∗

{
EP -

[
L(X -) log {L(X -)}

]
− δ

}
≥EP -

{
Sθ(X

-;x)L(X -)
}
,

and hence, L∗ is the optimal solution of (18).

We first assume the existence of such γ∗ ≥ 0 and consider the form of the corresponding L∗.
Let g(L; γ) ≜ EP -

{
Sθ(X

-;x)L(X -)
}
− γ

{
EP -

[
L(X -) log {L(X -)}

]
− δ

}
denote the objective

function in (19). For a fixed γ∗ ∈ R, we consider the form of L∗ ∈ argmaxL∈L g(L; γ∗), which can
be expressed as

L∗ ∈ argmax
L∈L

EP -
{
Sθ(X

-;x)L(X -)
}
− γ∗

{
EP -

[
L(X -) log {L(X -)}

]
− δ

}
⇔ L∗ ∈ argmax

L∈L
−γ∗

(
EP -

{
− Sθ(X

-;x)L(X -)/γ∗
}
+ EP -

[
L(X -) log {L(X -)}

])
⇔ L∗dP - ∈ argmin

Q -∈Pp(X )

EQ -
{
− Sθ(X

-;x)/γ∗
}
+DKL(Q

-∥P -)
]
.

By Lemma 3, we obtain that

L∗(X -) = exp

{
Sθ(X

-;x)

γ∗

}
/EP -

[
exp

{
Sθ(X

-;x)

γ∗

}]
. (20)
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is the unique optimal solution of L∗ ∈ argmaxL∈L g(L; γ∗) for a fixed γ∗ since the similarity measure
Sθ is a bounded function.

Step (ii): Existence of γ∗.

If the γ∗ in Step (i) exists, then the optimal L∗ is given in (20), and the constraint and objective in
(18) can be expressed as below:

δ = EP -
[
L∗(X -) log {L∗(X -)}

]
= EP -

(
exp {Sθ(X

-;x)/γ∗}
EP - [exp {Sθ(X -;x)/γ∗}]

·
{
Sθ(X

-;x)

γ∗ − logEP -

[
exp

{
Sθ(X

-;x)

γ∗

}]})
=

1

γ∗ · EP - [Sθ(X
-;x) · exp {Sθ(X

-;x)/γ∗}]
EP - [exp {Sθ(X -;x)/γ∗}]

− logEP -

[
exp

{
Sθ(X

-;x)

γ∗

}]
= ϱ̄ · EP - [Sθ(X

-;x) · exp {ϱ̄ · Sθ(X
-;x)}]

EP - [exp {ϱ̄ · Sθ(X -;x)}]
− logEP -

[
exp {ϱ̄ · Sθ(X

-;x)}
]

≜ ϱ̄h′(ϱ̄)− h(ϱ̄); (21)

EP -
{
Sθ(X

-;x)L∗(X -)
}
=

EP - [Sθ(X
-;x) · exp {Sθ(X

-;x)/γ∗}]
EP - [exp {Sθ(X -;x)/γ∗}]

= h′(ϱ̄), (22)

where we let ϱ ≜ 1/γ, ϱ̄ ≜ 1/γ∗, and h(ϱ) = logEP - [exp {ϱ · Sθ(X
-;x)}]. Here h is the

cumulant generating function of Sθ(X
-;x), which is infinitely differentiable and strictly con-

vex for non-constant Sθ(X
-;x), and passes through the origin (Shalizi, 2006). Moreover, us-

ing a power series expansion, it can be expressed as: h(ϱ) =
∑∞

j=1 h
(j)(0) ϱj , where h(j) de-

notes the jth derivative of h, and h(j)(0) is referred to as the jth cumulant. It can be verified
that h(1)(0) = EP -

{
Sθ(X

-;x)
}

, h(2)(0) = EP -
{[

Sθ(X
-;x)− EP -

{
Sθ(X

-;x)
}]2}

> 0, and

h(3)(0) = EP -
{[

Sθ(X
-;x)− EP -

{
Sθ(X

-;x)
}]3}

.

By the strict convexity of h, we have that d {ϱh′(ϱ)− h(ϱ)} /dϱ = h′′(ϱ) > 0, and hence ϱh′(ϱ)−
h(ϱ) is strictly increasing in ϱ. Moreover, by (21), using Taylor’s expansion, we obtain that

δ = ϱ̄ h′(ϱ̄)− h(ϱ̄)

= ϱ̄

+∞∑
j=0

1

j!
h(j+1)(0) ϱ̄j −

+∞∑
j=0

1

j!
h(j)(0) ϱ̄j

=

+∞∑
j=1

1

(j − 1)!
h(j)(0) ϱ̄j −

+∞∑
j=1

1

j!
h(j)(0) ϱ̄j

=

+∞∑
j=1

{
1

(j − 1)!
− 1

j!

}
h(j)(0) ϱ̄j

=
1

2
h(2)(0) ϱ̄2 +

1

3
h(3)(0) ϱ̄3 +O(ϱ̄4). (23)

Since h(2)(0) > 0 and the remainder is continuous in ϱ, we have that there exists a small ϱ̄ satisfying
the equation (23) for a small enough δ, and that ϱ̄ is the unique solution of (21). Correspondingly,
for γ∗ = 1/ϱ̄, the associated L∗ satisfies the constraint EP -

[
L∗(X -) log {L∗(X -)}

]
= δ. Hence,

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-;x)L∗(X -)
}

.

Step (iii): Mean-dispersion form of the robust risk.

Now, we examine the form of the robust risk. By (23), we have

2δ

h(2)(0)
= ϱ̄2 +

2h(3)(0)

3h(2)(0)
ϱ̄3 +O(ϱ̄4) = ϱ̄2

{
1 +

2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}
,
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and further obtain that

ϱ̄ =

√
2δ

h(2)(0)
·

√
1
/{

1 +
2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}

=

√
2δ

h(2)(0)
·

√
1− 2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

=

√
2δ

h(2)(0)
·
{
1− h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}

=

√
2δ

h(2)(0)
− 2h(3)(0)

3{h(2)(0)}2
δ +O(δ).

Hence, by (22), we have that

R -
x(θ;P

-, δ) =EP -
{
Sθ(X

-;x)L∗(X -)
}

=h′(ϱ̄) = h(1)(0) + h(2)(0)ϱ̄+
h(3)(0)

2
ϱ̄2 +O(ϱ̄2)

=h(1)(0) +
√
2h(2)(0)δ +O(δ)

=EP -
{
Sθ(X

-;x)
}
+

√
2EP -

{[
Sθ(X -;x)− EP -

{
Sθ(X -;x)

}]2}
δ +O(δ).

Therefore, the proof is established.

Case 3: p-Wasserstein distance. If the discrepancy metric 𝒹 in (3) is chosen as the p-Wasserstein
distance, then the robust risk R -

x(θ;P
-, δ) is expressed as

R -
x(θ;P

-, δ) = sup
Q -∈P(Ω)

[
EQ -

{
Sθ(X

-;x)
}
: Wp(Q

-, P -) ≤ δ
]
. (24)

Let ∆R -
x ≜ R -

x(θ;P
-, δ) − EP -

{
Sθ(X

-;x)
}

denote the difference of the robust risk and the
nominal risk. By Lemma 1, we have that

∆R -
x =min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
Sθ(x̃

-;x)− γ∥x̃ - −X -∥p
}]}

− EP -
{
Sθ(X

-;x)
}

=min
γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
Sθ(x̃

-;x)− Sθ(X
-;x)

}
− γ∥x̃ - −X -∥p

]})
. (25)

Step (i): Upper bound on Sθ(x̃
-;x)− Sθ(x

-;x).

For any x̃ -,x - ∈ X , by the mean value theorem, there exists x̌ - ∈ X between x̃ - and x - such that

Sθ(x̃
-;x)− Sθ(x

-;x) = ⟨∇Sθ(x̌
-;x), x̃ - − x -⟩,

which implies that

|Sθ(x̃
-;x)− Sθ(x

-;x)− ⟨∇Sθ(x
-;x), x̃ - − x -⟩|

=|⟨∇Sθ(x̌
-;x)−∇Sθ(x

-;x), x̃ - − x -⟩|
≤∥∇Sθ(x̃

-;x)−∇Sθ(x
-;x)∥∗∥x̃ - − x -∥

≤∥∇Sθ(x̃
-;x)−∇Sθ(x

-;x)∥∗∥x̃ - − x -∥, (26)

where the inequality in the penultimate step is due to the Cauchy–Schwarz inequality.

If ∥x̃ - − x -∥ ≤ η0, by the smoothness condition (b), we have that

∥∇Sθ(x̃
-;x)−∇Sθ(x

-;x)∥∗ ≤ ℳ3∥x̃ - − x -∥. (27)
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If ∥x̃ - − x -∥ ≥ η0, by the smoothness condition (a), we have that

∥∇Sθ(x̃
-;x)−∇Sθ(x

-;x)∥∗ ≤ ℳ1 +ℳ2∥x̃ - − x -∥ζ−1. (28)

Combining (26), (27) and (28), we further obtain that

|Sθ(x̃
-;x)− Sθ(x

-;x)− < ∇Sθ(x
-;x), x̃ - − x - > |

= 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3∥x̃ - − x -∥2 + 1(∥x̃ - − x -∥ ≥ η0) ·
(
ℳ1∥x̃ - − x -∥+ℳ2∥x̃ - − x -∥ζ

)
≜ I1 + I2,

where 1(·) denotes the indicator function, I1 ≜ 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3∥x̃ - − x -∥2 and I2 ≜
1(∥x̃ - − x -∥ ≥ η0) ·

(
ℳ1∥x̃ - − x -∥+ℳ2∥x̃ - − x -∥ζ

)
.

For I1, if 1 ≤ p ≤ 2, we have

I1 ≤ 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3

(
η0

∥x̃ - − x -∥

)2−p

∥x̃ - − x -∥2

≤ℳ3η
2−p
0 ∥x̃ - − x -∥p.

If p > 2, we have I1 ≤ ℳ3∥x̃ - − x -∥2. For I2, we have the following upper bound:

I2 ≤1(∥x̃ - − x -∥ ≥ η0) ·

{
ℳ1

(
∥x̃ - − x -∥

η0

)p−1

∥x̃ - − x -∥+ℳ2

(
∥x̃ - − x -∥

η0

)p−ζ

∥x̃ - − x -∥ζ
}

≤
(
ℳ1η

−(p−1)
0 +ℳ2η

−(p−ζ)
0

)
∥x̃ - − x -∥p.

Combining the discussion above, we have that

|Sθ(x̃
-;x)− Sθ(x

-;x)− < ∇Sθ(x
-;x), x̃ - − x - > |

≤

{
ℳ̄ ∥x̃ - − x -∥p, if 1 ≤ p ≤ 2;

ℳ̄
(
∥x̃ - − x -∥p + ∥x̃ - − x -∥2

)
, if p > 2,

(29)

where ℳ̄ ≜ max{ℳ3η
2−p
0 ,ℳ3,

(
ℳ1η

−(p−1)
0 +ℳ2η

−(p−ζ)
0

)
}.

Step (ii): Mean-dispersion form of the robust risk when p ∈ [1, 2].

When p ∈ [1, 2], by (25) and (29), we have that

∆R -
x ≤ min

γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
⟨∇Sθ(X

-;x), x̃ - −X -⟩+ ℳ̄ ∥x̃ - −X -∥p
}
− γ∥x̃ - −X -∥p

]})
= min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
⟨∇Sθ(X

-;x), x̃ - −X -⟩ − (γ − ℳ̄)∥x̃ - −X -∥p
}]}

≤ min
γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
∥∇Sθ(X

-;x)∥∗∥x̃ - −X -∥ − (γ − ℳ̄)∥x̃ - −X -∥p
}]}

= min
γ≥−ℳ̄

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t− γtp
}]}

+ ℳ̄δp

≤ min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t− γtp
}]}

+ ℳ̄δp

≜ I4 + ℳ̄δp, (30)

where I4 ≜ minγ≥0

{
γδp + EP -

[
supt≥0

{
∥∇Sθ(X

-;x)∥∗t− γtp
}]}

in (30) and (??), and the
third step is due to the Cauchy–Schwarz inequality.

By taking the derivative with respect to t in the supremum in I4 and setting it to zero, we obtain that
the optimal value of t is t∗ = {∥∇Sθ(X

-;x)∥∗/(γp)}1/(p−1). Let q denote the Hölder number of p,
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that is 1
p + 1

q = 1. Then, q = p
p−1 and q

p = 1
p−1 . We have that

sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t− γtp
}

=∥∇Sθ(X
-;x)∥∗t∗ − γ(t∗)p

=∥∇Sθ(X
-;x)∥∗ ·

{
∥∇Sθ(X

-;x)∥∗
γp

} 1
p−1

− γ ·
{
∥∇Sθ(X

-;x)∥∗
γp

} p
p−1

=∥∇Sθ(X
-;x)∥

p
p−1
∗ (γp)−

1
p−1 − ∥∇Sθ(X

-;x)∥
p

p−1
∗ γ− 1

p−1 p−
p

p−1

=∥∇Sθ(X
-;x)∥q∗(γp)

− 1
p−1

(
1− 1

p

)
.

Thus, we further obtain that

I4 = min
γ≥0

[
γδp +

(
1− 1

p

)
(γp)−

1
p−1EP -

{
∥∇Sθ(X

-;x)∥q∗
}]

.

Similarly, by taking the derivative with respect to γ in the infimum and set it to zero, we obtain that
the optimal value of γ is γ∗ = 1

pδ
−(p−1) {EP -∥∇Sθ(X

-;x)∥q∗}1/q. Hence, by substituting γ∗ into
the previous expression and simplifying the formula, we further obtain that

I4 =
1

p
δ−(p−1) {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

δp

+

{
1

p
δ−(p−1) {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

}− 1
p−1

(
p− 1

p

)
p−

1
p−1

=
1

p
δ {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

+

(
p− 1

p

)
δ {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

=δ {EP -∥∇Sθ(X
-;x)∥q∗}

1/q
. (31)

Combining (30) and (31), we obtain that

∆R -
x ≤ δ {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

+ ℳ̄δp.

Step (iii): Mean-dispersion form of the robust risk when p ∈ (2,∞).

When p ∈ (2,∞), by (25) and (29), similar to (30) in Step (ii), we have that

∆R -
x ≤min

γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
⟨∇Sθ(X

-;x), x̃ - −X -⟩

+ ℳ̄( ∥x̃ - −X -∥p + ∥x̃ - −X -∥2)
}
− γ∥x̃ - −X -∥p

]})
≤min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
∥∇Sθ(X

-;x)∥∗∥x̃ - −X -∥

+ ℳ̄∥x̃ - −X -∥p + ℳ̄∥x̃ - −X -∥2 − γ∥x̃ - −X -∥p
}]}

=min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t+ ℳ̄tp + ℳ̄t2 − γtp
}]}

≤min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t+ ℳ̄t2 − γtp
}]}

+ ℳ̄δp

= min
γ1,γ2≥0

{
(γ1 + γ2)δ

p + EP -
[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t+ ℳ̄t2 − (γ1 + γ2)t
p
}]}

+ ℳ̄δp

≤ min
γ1≥0

{
γ1δ

p + EP -
[
sup
t≥0

{
∥∇Sθ(X

-;x)∥∗t− γ1t
p
}]}

+ min
γ2≥0

{
γ2δ

p + sup
t≥0

(
ℳ̄t2 − γ2t

p
)}

+ ℳ̄δp

≜I5 + I6 + ℳ̄δp (32)
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where I5 ≜ minγ1≥0

{
γ1δ

p + EP -
[
supt≥0

{
∥∇Sθ(X

-;x)∥∗t − γ1t
p
}]}

, and I6 ≜

minγ2≥0

{
γ2δ

p + supt≥0

(
ℳ̄t2 − γ2t

p
)}

.

For I5, similar to the discussion on I4 with p ∈ [1, 2] as in (31), we obtain that, for p ∈ (2,∞),

I5 = δ {EP -∥∇Sθ(X
-;x)∥q∗}

1/q
. (33)

For I6, by taking the derivative with respect to t in the supremum and setting it to zero, we obtain
that the optimal value of t is given by t∗ =

{
2ℳ̄/(γ2p)

}1/(p−2)
. Then,

I6 = min
γ2≥0

{
γ2δ

p + ℳ̄(t∗)2 − γ2(t
∗)p

}
= min

γ2≥0

{
γ2δ

p + ℳ̄ ·
(
2ℳ̄
γ2p

) 2
p−2

− γ2

(
2ℳ̄
γ2p

) p
p−2 }

= min
γ2≥0

{
γ2δ

p +
(γ2p

2

)− 2
p−2 ℳ̄

p
p−2 − γ

− 2
p−2

2 ·
(p
2

)− 2
p−2 ·

(p
2

)−1

· ℳ̄
p

p−2

}
= min

γ2≥0

{
γ2δ

p +
p− 2

p

(γ2p
2

)− 2
p−2 ℳ̄

p
p−2

}
.

By taking the derivative with respect to γ2, we further obtain that the optimal value of γ2 is γ∗
2 =

ℳ̄δ−(p−2)
(
p
2

)−1
, and that

I6 = γ∗
2δ

p +
p− 2

p

(
γ∗
2p

2

)− 2
p−2

ℳ̄
p

p−2 = ℳ̄δ2. (34)

Combining (33), (34), and (34), we obtain

∆R -
x ≤ δ {EP -∥∇Sθ(X

-;x)∥q∗}
1/q

+ ℳ̄δ2 + ℳ̄δp. (35)

Hence, the proof is completed.

Theorem A.1. For the contaminated training distribution P -
train, suppose that the induced distribution

of Sθ(X
-;x -) is non-degenerate. Let s∗ represent the 1− ϵ quantile of this distribution, such that

P -
train {Sθ(X

-;x) ≤ s∗} = 1− ϵ. Let p -
train denote the density / mass function of P -

train. We define the
following truncated distribution:

p∗(x -) ≜


1

1− ϵ
p -

train(x
-), Sθ(x

-;x) ≤ s∗;

0, Sθ(x
-;x) > s∗.

Let P ∗ denote the associated probability measure of p∗. Let ℜ1 ≜ 1
1−ϵ

∫ s∗

0
s dP -

train {Sθ(X
-;x) ≤ s}

and ℜ1 ≜ 1
1−ϵ

∫ s∗

0
s2 dP -

train {Sθ(X
-;x) ≤ s}. For different choices of the discrepancy metric 𝒹 in

(3), we have the following upper bounds on the outlier robust risk R -
x(θ;P

-
train, δ, ϵ) given in (4).

(i) If 𝒹 is the χ2-divergence, then for a small enough δ,

R -
x(θ;P

-, δ) ≤ EP∗
{
Sθ(X

-;x)
}
+
√
δVP∗

{
Sθ(X -;x)

}
,

where EP∗
{
Sθ(X

-;x)
}
= ℜ1, and VP∗

{
Sθ(X

-;x)
}
= ℜ2 −ℜ2

1.

(ii) If 𝒹 is the KL-divergence, then for a small enough δ,

R -
x(θ;P

-, δ) ≤ EP∗
{
Sθ(X

-;x)
}
+

√
2δVP∗

{
Sθ(X -;x)

}
+O(δ),

where EP∗
{
Sθ(X

-;x)
}
= ℜ1, and VP∗

{
Sθ(X

-;x)
}
= ℜ2 −ℜ2

1.
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(iii) Suppose 𝒹 is the p-Wasserstein distance with p ∈ [1,+∞) and the cost function c(·, ·)
in Definition A.1 is chosen as a norm ∥ · ∥ with dual norm ∥ · ∥∗. Assume the following
smoothness condition are true.

a. For any x̃ -,x -,x ∈ X , ∃ℳ1,ℳ2 > 0 and ζ ∈ [1, p], such that ∥∇Sθ(x̃
-;x) −

∇Sθ(x
-;x)∥∗ ≤ ℳ1 +ℳ2∥x̃ - − x -∥ζ−1.

b. There exists η0 > 0 and ℳ3 > 0, such that for any x̃ -,x -,x ∈ X , if ∥x̃ - − x -∥ ≤ η0,
then ∥∇Sθ(x̃

-;x)−∇Sθ(x
-;x)∥∗ ≤ ℳ3∥x̃ - − x -∥.

Let q denote the Hölder number of p, that is 1
p + 1

q = 1. Then

R -
x(θ;P

-, δ) ≤ EP∗
{
Sθ(X

-;x)
}
+ δ {EP∗∥∇Sθ(X

-;x)∥q∗}
1/q

+O(δ2∧p),

where EP∗
{
Sθ(X

-;x)
}
= ℜ1.

Proof. We first examine form of the outlier robust risk given in (4) when different choices of the
discrepancy metric 𝒹 in (3). Proof techniques in Zhai et al. (2021) are used.

Case 1: χ2-divergence. If the discrepancy metric 𝒹 in (3) is chosen as the χ2-divergence, by (4)
and Lemma 5, we have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-;x)
}
+

√
δVP ′

{
Sθ(X -;x)

}
:

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
(36)

We consider the following quantity:

ℜ1 ≜ inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-;x)
}
: ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{∫ +∞

0

[1− P ′ {Sθ(X
-;x) ≤ s}] ds : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
,

(37)

where the second equality holds since for a nonnegative random variable Z with cumulative dis-
tribution function F , if its kth moment EF (Z

k) exists, then, it can be expressed as EF (Z
k) =

k
∫ +∞
0

uk−1{1− F (u)}du.

Since P -
train = (1− ϵ)P ′ + ϵP̃ ′, we have that for any s ≥ 0,

P ′ {Sθ(X
-;x) ≤ s} ≤ min

{
1

1− ϵ
P -

train {Sθ(X
-;x) ≤ s} , 1

}
. (38)

As in Zhai et al. (2021), we show the equality in (38) can be achieved by some P ∗ ∈ Pp(X ).
Specifically, since P -

train and Sθ are continuous, there exists an s∗ such that P -
train {Sθ(X

-;x) > s∗} =
ϵ. Define

p∗(x -) ≜


1

1− ϵ
p -

train(x
-), Sθ(x

-;x) ≤ s∗;

0, Sθ(x
-;x) > s∗,

(39)

where p -
train represents the density / mass function of P -

train. Let P ∗ denote the associated mea-
sure of p∗. For the P ∗ defined above, we have

∫
X dP ∗(x -) = 1

1−ϵ

∫
Sθ(x -;x)≤s∗

dP -
train(x

-) =
1

1−ϵP
-

train {Sθ(X
-;x) ≤ s∗} = 1. Therefore, P ∗ defined in (39) is probability distribution achieving

the equality in (38).
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Thus, by substituting P ∗ into (37) and utilizing (38), ℜ1 can be written as below:

ℜ1 =EP∗
{
Sθ(X

-;x)
}

=

∫ +∞

0

[1− P ∗ {Sθ(X
-;x) ≤ s}] ds

=

∫ +∞

0

[
1− 1

1− ϵ
P -

train {Sθ(X
-;x) ≤ s}

]
1
[
P -

train

{
Sθ(X

-;x) ≤ s
}
≤ 1− ϵ

]
ds

=

∫ +∞

0

[
1− 1

1− ϵ
P -

train {Sθ(X
-;x) ≤ s}

]
1(s ≤ s∗)ds

=
1

1− ϵ

[
(1− ϵ)s∗ −

∫ s∗

0

P -
train {Sθ(X

-;x) ≤ s} ds

]

=
1

1− ϵ

{[
s P -

train {Sθ(X
-;x) ≤ s}

]∣∣∣s∗
0

−
∫ s∗

0

P -
train {Sθ(X

-;x) ≤ s} ds

}

=
1

1− ϵ

∫ s∗

0

s dP -
train {Sθ(X

-;x) ≤ s} (40)

For the variance term in (36), we consider the following 2nd order moment:

ℜ2 ≜ EP∗

[{
Sθ(X

-;x)
}2

]
=2

∫ +∞

0

s [1− P ∗ {Sθ(X
-;x) ≤ s}] ds

=

∫ +∞

0

2s ·
[
1− 1

1− ϵ
P -

train {Sθ(X
-;x) ≤ s}

]
1(s ≤ s∗)ds

=
1

1− ϵ

[
(1− ϵ)(s∗)2 −

∫ s∗

0

2sP -
train {Sθ(X

-;x) ≤ s} ds

]

=
1

1− ϵ

{[
s2 P -

train {Sθ(X
-;x) ≤ s}

]∣∣∣s∗
0

−
∫ s∗

0

2sP -
train {Sθ(X

-;x) ≤ s} ds

}

=
1

1− ϵ

∫ s∗

0

s2 dP -
train {Sθ(X

-;x) ≤ s} (41)

Thus, we obtain the following upper bound on the outlier robust risk R -
x(θ;P

-
train, δ, ϵ) given in (36)

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-;x)
}
+

√
δVP∗

{
Sθ(X -;x)

}
=ℜ1 +

√
δ(ℜ2 −ℜ2

1),

where ℜ1 and ℜ2 are given in (40) and (41), respectively.

Case 2: KL-divergence. If the discrepancy metric 𝒹 in (3) is chosen as the KL-divergence, by (4)
and Lemma 5, we have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-;x)
}
+

√
2δVP ′

{
Sθ(X -;x)

}
:

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
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Similar to the proof in Case 1 with χ2-divergence, we construct the distribution P ∗ in (39) and obtain
the following upper bound on the outlier robust risk R -

x(θ;P
-

train, δ, ϵ):

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-;x)
}
+
√
2δVP∗

{
Sθ(X -;x)

}
=ℜ1 +

√
2δ(ℜ2 −ℜ2

1),

where ℜ1 and ℜ2 are given in (40) and (41), respectively.

Case 3:p-Wasserstein distance. If the discrepancy metric 𝒹 in (3) is chosen as the p-Wasserstein
distance, by (4) and Lemma 5, we have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
.

≤ inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-;x)
}
+ δ {EP ′∥∇Sθ(X

-;x)∥q∗}
1/q

+O(δ2∧p) :

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
Similar to the proof in Case 1 with χ2-divergence, we construct the distribution P ∗ in (39) and obtain
the following upper bound on the outlier robust risk R -

x(θ;P
-

train, δ, ϵ):

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-;x)
}
+ δ {EP∗∥∇Sθ(X

-;x)∥q∗}
1/q

=ℜ1 + δ {EP∗∥∇Sθ(X
-;x)∥q∗}

1/q
,

where ℜ1 is given in (40).

A.4 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. By Lemma 1, when the p-Wasserstein distance with 0 − 1 cost is used to
construct the uncertainty set, the minimax problem (5) can be equivalently expressed as:

inf
p∈∆K−1

inf
γ≥0

[
γδp +

K∑
j=1

p+
j max{−p1 − γ, . . . ,−pj , . . . , 1− pK − γ}

]
. (42)

Additionally, we denote

g(γ; p) ≜ γδp +

K∑
j=1

p+
j max{−p1 − γ, . . . ,−pj , . . . ,−pK − γ}. (43)

Step 1: Optimal Lagrange multiplier. We first consider the optimal Lagrange multiplier, denoted
γ⋆, for each fixed p. For a fixed p, we sort {p1, . . . , pK} in an decreasing order, denoted p(1) ≥
. . . ≥ p(K), and hence, 1 − p(1) ≤ . . . ≤ 1 − p(K). Assume that {p(1), . . . , p(K)} corresponds to
{p1, . . . , pK} via a permutation χ, that is, p(j) = pχ(j). And correspondingly, the p+

j ’s with the
associated indexes are denoted p+

(j) ≜ p+
χ(j) for j ∈ [K].

If 1− p(1) ≥ 1− p(K) − γκp, i.e., γ ≥ p(1) − p(K), by (43), we then obtain that

g(γ; p) = γδp +

K∑
j=1

p+
j(1− pj) (44)

is increasing in γ. Hence, it suffices to consider the case 0 ≤ γ ≤ p(1) − p(K).
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For s = 1, 2, . . . ,K − 1, if 1 − p(s) < 1 − p(K) − γκp ≤ 1 − p(s+1), i.e., p(s+1) − p(K) ≤ γ <
p(s) − p(K), we have that

g(γ; p) = γδp +

s∑
j=1

p+
(j)(1− p(K) − γκp) +

K∑
j=s+1

p+
(j)(1− p(j))

=

s∑
j=1

p+
(j)(1− p(K)) +

K∑
j=s+1

p+
(j)(1− p(j)) + γκp

{
δp −

s∑
j=1

p+
(j)

}
. (45)

As

lim
γ→((p(s)−p(K))/κp)−

g(γ; p)

=

s∑
j=1

p+
(j)(1− p(K)) +

K∑
j=s+1

p+
(j)(1− p(j)) +

(
p(s) − p(K)

){
δp −

s∑
j=1

p+
(j)

}

=

s∑
j=1

p+
(j)(1− p(K)) +

K∑
j=s+1

p+
(j)(1− p(j)) +

(
p(s) − p(K)

){
δp −

s−1∑
j=1

p+
(j)

}
− p+

(s)

{
(1− p(K))− (1− p(s))

}
=

s−1∑
j=1

p+
(j)(1− p(K)) +

K∑
j=s

p+
(j)(1− p(j)) +

(
p(s) − p(K)

){
δp −

s−1∑
j=1

p+
(j)

}
=g((p(s) − p(K))/κ

p; p),

we have that g(γ; p) is continuous in γ for 0 ≤ γ ≤ pK − p1.

If p+
(1) < δp <

∑K
j=1 p

+
(j), then there exists an s∗ ∈ {2, . . . ,K} such that

∑s∗−1
j=1 p+

(j) ≤ δp ≤∑s∗

j=1 p
+
(j). Then, by (45), we obtain that g(γ; p) is decreasing in γ for γ ∈ [0, p(s∗) − p(K)] and

increasing for γ ∈ [p(s∗) − p(K), p(1) − p(K)]. If δp ≤ p+
(1), let s∗ = 1, and g(γ; p) is decreasing

in γ for γ ∈ [0, p(s∗) − p(K)]; if δp ≥
∑K

j=1 p
+
(j), let s∗ = K, and g(γ; p) is increasing in γ for

γ ∈ [p(s∗)−p(K), p(1)−p(K)]. Hence, the optimal Lagrange multiplier is given as γ⋆ ≜ p(s∗)−p(K).

Step 2: Linear programming format. For each fixed permutation χ, we next show the format of
the optimal p that minimizes g(γ⋆; p).

If s∗ = K, then g(γ⋆; p) = g(0; p) = 1− p(K) ≥ 1− 1/K, and the corresponding optimal action is
p(1) = . . . = p(K) = 1/K.

If s∗ ∈ [K − 1], by (45), and the robust risk for a single data point (x, ỹ) is computed as

g(γ⋆; p) =

s∗−1∑
j=1

p+
(j)(1− p(K))1(s

∗ > 1) +

K∑
j=s∗

p+
(j)(1− p(j))

+ (p(s∗) − p(K))
{
δp −

s∗−1∑
j=1

p+
(j)1(s

∗ > 1)
}

=
{ s∗∑

j=1

p+
(j) − δp

}
(1− p(s∗)) +

K−1∑
j=s∗+1

p+
(j)(1− p(j))1(s

∗ < K − 1)

+
{
p+
(K) + δp

}
(1− p(K)).
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Let zj ≜ 1− p(j). Then, the optimal p can be derived by solving the following linear programming
problem: 

min
z1,...,zK

V(z) =
K∑

j=s∗

ajzj

s.t.

K∑
j=1

(1− zj) = 1,

0 ≤ z1 ≤ . . . ≤ zK ≤ 1,

(46)

where V(z) is called the value function at z, and aj’s are the corresponding nonnegative coefficients.
For each z = (z1, . . . , zs∗ , zs∗+1, . . . , zK)⊤ in the feasible region of (46), denoted Ξ, let z̃ =

(zs∗ , . . . , zs∗ , z̃s∗+1, . . . , z̃K)⊤, where z̃j = zj − 𝒸 for j = s∗ + 1, . . . ,K, with 𝒸 ≜ (s∗ · zs∗ −∑s∗

j=1 zj)/(K − s∗) ≥ 0. Then, z̃ ∈ Ξ and V(z̃) ≤ V(z) by the nonnegativity of aj’s. Therefore,
we can only consider the optimal values of {zs∗ , . . . , zK}, and the linear programming problem (46)
can be equivalently written as below:

min
zs∗ ,...,zK

V(z) =
K∑

j=s∗

ajzj

s.t. s∗ · (1− zs∗) +

K∑
j=s∗+1

(1− zj) = 1,

0 ≤ zs∗ ≤ . . . ≤ zK ≤ 1.

(47)

Moreover, the feasible region of (47), denoted Ξ, can also be expressed as follows:

Ξ ≜
{
zs∗ , . . . , zK : s∗ · (1− zs∗) +

K∑
j=s∗+1

(1− zj) = 1, 0 ≤ zs∗ ≤ . . . ≤ zK ≤ 1,

1− zK ≤ 1

K
, 1− zK−1 ≤ 1

K − 1
, . . . , 1− zs∗ ≤ 1

s∗

}
=
{
zs∗ , . . . , zK : s∗ · zs∗ +

K∑
j=s∗+1

zj = K − 1, 0 ≤ zs∗ ≤ . . . ≤ zK ≤ 1,

zK ≥ 1− 1

K
, zK−1 ≥ 1− 1

K − 1
, . . . , zs∗ ≥ 1− 1

s∗

}
.

Step 3: Extreme points. We next prove that the following K − s∗ + 1 feasible solutions are the
only extreme points of (47):

z1 ≜ (1− 1

s∗
, 1, 1, . . . , 1, 1)⊤,

z2 ≜ (1− 1

s∗ + 1
, 1− 1

s∗ + 1
, 1, . . . , 1, 1)⊤,

. . . ,

zj = (1− 1

s∗ + j − 1
, . . . , 1− 1

s∗ + j − 1
, 1, . . . , 1)⊤

. . . ,

zK−s∗ ≜ (1− 1

K − 1
, 1− 1

K − 1
, 1− 1

K − 1
, . . . , 1− 1

K − 1
, 1)⊤,

zK−s∗+1 ≜ (1− 1

K
, 1− 1

K
, 1− 1

K
, . . . , 1− 1

K
, 1− 1

K
)⊤.

We denote Θ0 ≜ {z1, . . . , zK−s∗+1}.

Firstly, we prove that each data point in Θ0 is an extreme point of (47). In particular, for j ∈ [K −
s∗ + 1], suppose that zj = νz′ + (1− ν)z′′ for some ν ∈ (0, 1), with z′ = (z′s∗ , . . . , z

′
K)⊤ ∈ Ξ and
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z′′ = (z′′s∗ , . . . , z
′′
K)⊤ ∈ Ξ. For t = s∗ + j, . . . ,K, since νz′t +(1− ν)z′′t = zj,t = 1 and z′t, z

′′
t ≤ 1,

we have that z′t = z′′t = zj,t with zj,t denoting the tth element of zj . Additionally, we obtain that
z′s∗+j−1 = z′′s∗+j−1 = zj,s∗+j−1 as νz′s∗+j−1 + (1 − ν)z′′s∗+j−1 = zj,s∗+j−1 = 1 − 1

s∗+j−1 and
z′s∗+j−1, z

′′
s∗+j−1 ≥ 1− 1

s∗+j−1 . Moreover, for t < s∗ + j − 1, since z′t ≤ z′s∗+j−1 = 1− 1
s∗+j−1 ,

z′′t ≤ z′′s∗+j−1 = 1 − 1
s∗+j−1 , and νz′t + (1 − ν)z′′t = zj,t = 1− 1

s∗+j−1 , we can also obtain that
z′t = z′′t = zj,t. Therefore, z′ = z′′ = zj , and hence, zj is an extreme point of (47) by Definition
A.3.

We next consider a point z̃ ≜ (z̃s∗ , . . . , z̃K)⊤ ∈ Θ\Θ0 and prove it is not an extreme point of (47)
by construction. Specifically, we have the following claims for z̃.

• z̃t > 1− 1
t for t = s∗, . . . ,K.

– This claim can be proved by contradiction. If there exists t0 ∈ {s∗, . . . ,K} such that
z̃t0 = 1− 1

t0
, we have that s∗ · z̃s∗ +

∑K
j=s∗+1 zj ≤ t0 · z̃t0 + (K − t0) · 1 = K − 1.

Here the inequality holds if and only if z̃t = z̃t0 = 1 − 1
t0

for t < t0 and z̃t = 1 for
t > t0; that is, in this case, z̃ falls in the feasible region Ξ if and only if z̃ is one of the
aforementioned K − s∗ + 1 extreme points.

• There exists t1 ∈ {s∗ + 1, . . . ,K} such that z̃t1−1 < z̃t1 < 1. Let t2 ≜
maxt∈{s∗+1,...,K}{z̃t < 1}. Then, t2 ≥ t1.

– This claim can be proved by contradiction. In particular, we assume the claim is
not true. If there exists t1 ∈ {s∗ + 1, . . . ,K} such that z̃t1−1 < z̃t1 , then we have
z̃t = z̃t1−1 for t ≤ t1 − 1 and z̃t = 1 for t ≥ t1 by assumption, and hence, z̃ ∈ Θ0. If
z̃t−1 = z̃t for all t ∈ {s∗ + 1, . . . ,K}, then z̃ = zK−s∗+1 ∈ Θ0.

Let 𝒸1 ≜ min{ z̃t1−z̃t1−1

2 , z̃t − (1 − 1
t ) for s∗ ≤ t ≤ t1 − 1}, 𝒸2 ≜ min{ z̃t1−z̃t1−1

2 , z̃t1 − (1 −
1
t1
), 1 − z̃t for t1 ≤ t ≤ t2}, 𝒸 ≜ min{(t1 − 1)𝒸1, (t2 − t1 + 1)𝒸2}, 𝒸1 ≜ 𝒸/(t1 − 1), and

𝒸2 ≜ 𝒸/(t2 − t1 + 1). Then we construct two points in Θ: z′ ≜ (z̃s∗ + 𝒸1, . . . , z̃t1−1 + 𝒸1, z̃t1 −
𝒸2, . . . , z̃t2−𝒸2, . . . , z̃K)⊤, and z′′ ≜ (z̃s∗−𝒸1, . . . , z̃t1−1−𝒸1, z̃t1+𝒸2, . . . , z̃t2+𝒸2, . . . , z̃K)⊤.
Therefore, z̃ = 1

2z
′ + 1

2z
′′, and hence, z̃ is not an extreme point of (47).

Step 4: Solution format and optimal action. By Step 2 and Step 3, we obtain that for each fixed χ
and s∗, the extreme points of the linear programming problem are given in Θ0. By Lemma 4, every
linear program has an extreme point that is an optimal solution. Hence, we obtain that at least one
optimal action of p can be found in the format:

p(j) =
1

k∗
for j ≤ k∗ and p(j) = 0 for j ≥ k∗ (48)

for some k∗ ∈ [K].

If k∗ = K, by (43), we have that g(γ; p) = γδp +
∑K

j=1 p
+
j · (1− 1

K ), and hence, the robust risk is
g(γ⋆; p) = 1− 1

K by taking γ⋆ = 0. If k∗ < K, we obtain that

g(γ; p) =γδp +

k∗∑
j=1

p+
(j) max{1− γκp, 1− 1

k∗
}+

K∑
j=k∗+1

p+
(j) · 1

=


1 + γκp

{
δp −

k∗∑
j=1

p+
(j)

}
, if 0 ≤ γ ≤ 1

k∗κp
;

γδp + 1− 1

k∗

k∗∑
j=1

p+
(j), if γ ≥ 1

k∗κp
.

Hence, for k∗ < K, the robust risk is the minimum of g(γ⋆; p) = 1 by taking γ⋆ = 0 and
g(γ⋆; p) = 1+ 1

k∗

{
δp −

∑k∗

j=1 p
+
(j)

}
by taking γ⋆ = 1

k∗κp . Additionally, we observe that we should
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take the highest k∗ values of {p+
1, . . . , p

+
K} as p+

(1), . . . , p
+
(k∗) to minimize the robust risk. Hence, we

take the permutation χ such that p+
(1) ≥ . . . ≥ p+

(K).

In summary, the optimal action p⋆ is given as below.

• If 1
K ≥ 1

k∗

∑k∗

j=1 p
+
(j) −

1
k∗ δ

p for all k∗ ∈ [K − 1], then p⋆j = 1
K for j ∈ [K].

• If there exists some k0 ∈ [K − 1], 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp > 1

K , and 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp ≥

1
k∗

∑k∗

j=1 p
+
(j) −

1
k∗ δ

p for all k∗ ∈ [K − 1], then p⋆(j) = 1
k0

for j ∈ [k0] and p⋆(j) = 0 for
j = k0 + 1, . . . ,K.

In particular, if p+
(1) ≥ max{ 1

K + δp, p+
(2) + δp}, then the optimal action is given as: p⋆(1) = 1 and

p⋆(j) = 0 for j = 2, . . . ,K. Thus, the proof is complete.
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B EXPERIMENTAL DETAILS

Source Models. For the source models, we use those provided by Liang et al. (2020) and Yang
et al. (2021a) for the Office-Home and VisDA2017 datasets. Since no open-source models were
available for Office-31 and DomainNet-126, we trained the source models ourselves using the training
methodologies from SHOT (Liang et al., 2020) and C-SFDA (Karim et al., 2023), respectively.

Target Adaptation Training. We train both the model backbone and classifier during the adaptation
process, primarily following the SHOT (Liang et al., 2020) and AaD (Yang et al., 2022) setup. For the
optimizer, we use SGD with momentum of 0.9 and weight decay of 1e−3. We also use the Nesterov
update method. The initial learning rate for the bottleneck and classification layers is set to 0.001
across all datasets. For the backbone models, the initial learning rates are set as follows: 5e−4 for
Office-Home, 1e−4 for DomainNet-126 and Office-31, and 5e−5 for VisDA2017. We use the same
learning rate scheduler as Liang et al. (2020) for the Office-Home and DomainNet-126 datasets. The
batch size is 64 for all datasets. We train for 30 epochs on VisDA2017 and 45 epochs on Office-Home,
Office-31, and DomainNet-126. All experiments are run on a single 32GB V100 or 40GB A100
GPU.

Hyperparameters Selection. In SFDA, hyperparameter selection presents a significant challenge
due to the lack of labeled target data and the distribution shift between domains. In our experiments,
we followed the common pipeline for hyperparameter tuning in the literature (e.g., Yang et al. (2022);
Hwang et al. (2024)), and employed the SND (Soft Neighborhood Density) score (Saito et al., 2021)
and sensitivity analysis to guide the hyperparameter selection.

In fact, most hyperparameters in our method do not require intensive tuning, and their selection can
be guided by our theoretical analysis outlined below.

Our UCon-SFDA method consists of three main components: the basic contrastive loss LCL, the
dispersion control term L -

DC, and the partial label term L+
PL. Given the complexity of the parameter

space, we simplified the hyperparameter selection process by avoiding exhaustive consideration of
all parameter combinations. Instead, we adopted a sequential, incremental approach to tune the
parameters for the three loss terms, one at a time.

First, for the hyperparameters in the LCL terms (first three columns in Table 6), including the number
of positive samples κ, the decay exponent β for the negative term, and the negative sample loss
coefficient λ -

CL, we largely follow the configurations used in Yang et al. (2022) and Hwang et al.
(2024). As in previous works, we directly set λ -

CL to 1. For datasets with more classification
categories, such as Office-Home, Office, and DomainNet-126, where noise in negative samples is
less pronounced, we use a smaller decay exponent to enhance the impact of true-negative samples
during adaptation. In contrast, for VisDA, which contains only 12 classes with a batch size of 64, we
apply a faster decay rate to mitigate the influence of false-negative samples.

Next, we consider the hyperparameter associated with the dispersion term, λDC. In our initial
experimental trials, we set this value to either 0.5 or 1, based on a balance between the loss terms,
L+

CL and L -
DC, and the sensitivity analysis of hyperparameters.

Finally, for the hyperparameters λPL, KPL, and τ in the partial label loss, we also performed the basic
sequential tuning under the guidance of theoretical insights. According to the proposed algorithm, we
use τ to select the uncertain data points and merge the top-KPL predicted classes into the partial label
set for each selected data point. Theoretically, a smaller τ (yet naturally larger than 1) represents a
more uncertain set. As we want to apply the partial label loss only on the uncertain data points and
avoid the introduction of additional label uncertainty for more confident data points, we considered a
value in {1.1, 1.3, 1.5} for τ . We found that τ = 1.1 is sufficient for achieving promising performance,
except for simpler tasks with high initial prediction accuracy, such as Office-31. Next, the value
of the partial label number KPL should be determined based on the algorithm and the number of
categories in the dataset. Generally, a small KPL is preferred, as the partial label set is gradually
enlarged with each epoch. A large KPL could result in an overly large partial label set, potentially
introducing more uncertainty. Empirically, we evaluated KPL ∈ {1, 2, 3}, and found that KPL = 2
performs well for most datasets, except for VisDA2017, whose total number of classes is only 12
and KPL = 1 is sufficient. Finally, we tuned λPL by considering λPL ∈ {0.001, 0.01, 0.05, 0.1} and
selected the best-performing value based on the guidance of the hyperparameter sensitivity analyses.
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The final selected parameter values used in our experiments are summarized in Table 6, which are
obtained by a relatively straightforward tuning process conducted on a subspace of hyperparameters.
We note that more refined tuning over the full combinatorial hyperparameter space can further enhance
the performance of our algorithm; additional analysis on the sensitivity of these hyperparameters is
provided in Appendix C.5.

Table 6: Hypermaraters on Different Datasets.

Dataset κ λ -
CL β λDC λPL KPL τ

Office-31 3 1 1 1 0.05 2 1.3
Office-Home 3 1 0 0.5 0.001 2 1.1

Office-Home (partial set) 5 1 0.75 1 0.1 2 1.1
VisDA2017 5 1 5 1 0.01 1 1.1

VisDA-RUST 3 1 5 0.5 0.1 2 1.1
DomainNet-126 2 1 0.75 0.5 0.1 2 1.1

Algorithm. The overall description of adaptation process with our UCon-SFDA method is shown in
Algorithm 1

Algorithm 1: UCon-SFDA - Uncertainty-Controlled Source-Free Domain Adaptation

Input: Pre-Trained Source Model: fS(x;θ), Target Data: DT ≜ {xT
i }

NT
i=1, Training Epochs: T,

1 // Initialization Process
2 Initialize a target model fT(x;θ0) = fS(x;θ)
3 Construct feature bank 𝒵 and predicted score bank ℱ as described in Yang et al. (2022).
4 Initialize partial label bank 𝒴PL and uncertainty sample bank 𝒰 as proposed in Section 4.4.
5 // Training/Adaptation Process
6 for epoch=1 to T do
7 for iterations t = 1,2,3,... do
8 Forward Propagation: obtain feature zi, predicted probabilities fT(xi;θt) and

fT(AUG(xi);θt) for each sample xi in mini-batch B.
9 Bank Refresh: update 𝒵 and ℱ using zB and fT(xB;θt) as described in Yang et al.

(2022); update 𝒴PL and 𝒰 as proposed in Section 4.4.
10 Compute Negative Uncertainty Control Loss L -

UCon in Equation (7) using fT(xB;θt) and
fT(AUG(xB);θt)

11 Compute Positive Uncertainty Control Loss L+
UCon in Equation (8) using 𝒵, ℱ, 𝒴PL and

𝒰.
12 Compute the total Uncertainty Control Source-Free Domain Adaptation Loss

LUCon−SFDA = L+
UCon + L -

UCon

13 Update the parameters of fT(θt) via LUCon−SFDA

14 end for
15 end for

Output: Target Adapted Model fT(xi;θt)
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULT ON OFFICE-HOME

Due to the main text page limitation, we have displayed the experimental result on the Office-Home
dataset in the appendix, as shown in Table 7

Table 7: Classification Accuracy (%) on the Office-Home Dataset (ResNet-50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

SHOT (Liang et al., 2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net (Xia et al., 2021) 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
G-SFDA (Yang et al., 2021b) 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC (Yang et al., 2021a) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
CPGA (Qiu et al., 2021) 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
CoWA-JMDS (Lee et al., 2022) 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
DaC (Zhang et al., 2022) 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
C-SFDA (Karim et al., 2023) 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
AaD (Yang et al., 2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
I-SFDA (Mitsuzumi et al., 2024a) 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4

UCon-SFDA (Ours) 61.5 80.5 82.1 69.3 80.8 78.7 67.0 62.2 82.0 72.2 61.9 85.5 73.6

C.2 PARTIAL LABEL SET EVALUATION

We conduct the self-prediction, partial label set, and neighbor label set evaluations across all 12 tasks
on the office-home dataset. The results of self-prediction are shown in Figure 4 to Figure 7, and the
results of partial label set and neighbor set comparison are shown in Figure 8 to Figure 11
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(c) Ar → Rw

Figure 4: Self-prediction accuracy among different data certainty levels on Office-Home Dataset
with Source Domain Ar
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(c) Cl → Rw

Figure 5: Self-prediction accuracy among different data certainty levels on Office-Home Dataset
with Source Domain Cl

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Training Process

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Overall Self-Prediction Accuracy
Uncertain Data Self-Prediction Accuracy
Certain Data Self-Prediction Accuracy

(a) Pr → Ar

0 10 20 30 40
Training Process

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Overall Self-Prediction Accuracy
Uncertain Data Self-Prediction Accuracy
Certain Data Self-Prediction Accuracy

(b) Pr → Cl

0 10 20 30 40
Training Process

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Overall Self-Prediction Accuracy
Uncertain Data Self-Prediction Accuracy
Certain Data Self-Prediction Accuracy

(c) Pr → Rw

Figure 6: Self-prediction accuracy among different data certainty levels on Office-Home Dataset
with Source Domain Pr
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Figure 7: Self-prediction accuracy among different data certainty levels on Office-Home Dataset
with Source Domain Rw
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(c) Ar → Rw

Figure 8: Label set Correctness among different data certainty levels on Office-Home Dataset with
Source Domain Ar
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(c) Cl → Rw

Figure 9: Label set Correctness among different data certainty levels on Office-Home Dataset with
Source Domain Cl
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(a) Pr → Ar
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(c) Pr → Rw

Figure 10: Label set Correctness among different data certainty levels on Office-Home Dataset with
Source Domain Pr
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(a) Rw → Ar
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(b) Rw → Cl
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(c) Rw → Pr

Figure 11: Label set Correctness among different data certainty levels on Office-Home Dataset with
Source Domain Rw

C.3 DATA AUGMENTATION IN SFDA

We evaluate the prediction accuracies and consistency of original target data and their augmented
version by source model on Office-Home and VisDA-2017. The consistency is defined as:

CONSISTENCY ≜
NT∑
i=1

1{fS(xi;θ)=fS(AUG(xi);θ)}.

As shown in Figure 12, we can notice that the source model exhibits lower accuracy in predicting
the augmented data and demonstrates a high inconsistency between the predictions for the anchor
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Figure 12: Inconsistency between the prediction results between the anchor image and its augmented
view by source model.

data and its augmented versions. This experimental result quite contradicts intuitive expectations.
It empirically explains why some methods, directly using the augmented predictions as additional
labels or supervisory signals, fail to improve SFDA performance effectively, and may even have a
negative impact.

C.4 VARIANCE CONTROL EFFECT

We evaluate the dispersion control effect achieved by our augmentation-based L -
DC across all 12

tasks on the office-home dataset. The results are shown in Figure 13 to Figure 16. The consistent
dispersion reduction achieved validates the effectiveness of our proposed method.
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(c) Ar → Rw

Figure 13: Dispersion Control Loss Effect on Office-Home Dataset with Source Domain Ar
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(c) Cl → Rw

Figure 14: Dispersion Control Loss Effect on Office-Home Dataset with Source Domain Cl
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(c) Pr → Rw

Figure 15: Dispersion Control Loss Effect on Office-Home Dataset with Source Domain Pr
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Figure 16: Dispersion Control Loss Effect on Office-Home Dataset with Source Domain Rw

C.5 SENSITIVITY ANALYSES OF HYPERPARAMETERS

To further understand the performance of the proposed method, we conducted comprehensive
experiments to study the sensitivity of our method to different choices of hyperparameters involved in
our algorithm. While we primarily used the hyperparameter configurations from previous works (Yang
et al., 2022; Hwang et al., 2024) for λ -

CL, κ and β, we also investigated the sensitivity of our method
relative to different choices of β, KPL, τ , λPL and λDC. The experimental results are summarized in
Figure 17(a), (b), (c), Figure 18 and Figure 19, respectively.

Specifically, in Figure 17(a)-(c), the solid lines represent the accuracy of different methods with
respect to the different parameter values of β, KPL, and τ . In Figure 17(b)-(c), we added the dashed
horizontal lines to indicate the performance on different datasets without the partial label loss for a
clear comparison. In Figures 18- 19, the blue, red, and yellow lines represent the accuracy on the
target dataset, the accuracy on the small evaluation set, and the SND score, respectively. The shaded
regions correspond to the results reported in the main text and the associated parameter values. For
Figures 17- 19, except for the parameter values that vary along the x-axis, all other parameters are set
according to Table 6.

Decay Exponent β. Figure 17(a) reveals that the dispersion control term can help mitigate the
sensitivity of β in contrastive learning based SFDA algorithms. Specifically, we compare the
performance of an SFDA task (R to P on DomainNet-126 dataset) using our proposed method (UCon-
SFDA) against the basic contrastive learning approach introduced in Yang et al. (2022). Beyond
providing stable performance improvements, our method demonstrates reduced sensitivity to the
hyperparameter β, benefiting from the uncertainty-controlling regularizations.

Partial Label Number KPL and Uncertainty Threshold τ . Figure 17(b) and (c) illustrate the
sensitivity of our method to partial label number KPL and uncertainty threshold τ , respectively. By
comparing the performance variations on VisDA-RUST, Office-31, and Office-Home (Pr to Cl task)
under different KPL and τ , we observe that the accuracy of our method is not significantly affected
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Figure 17: Sensitivity analysis of the proposed method relative to different values of hyperparameters
β, KPL, and τ . In the legend, “wo” is the abbreviation for “without”.
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Figure 18: Sensitivity analysis of dispersion control loss coefficient λPL. Different colors represent
various criteria for hyperparameter selection, while the shaded area indicates the parameter values
chosen corresponding to the results reported in the main paper.

by varying values of KPL and τ . Moreover, the performance improvements by the partial label loss
are both evident and stable (as shown by the comparison between the solid and dashed lines).

Partial Labeling term coefficient λCL and Dispersion Control term coefficient λDC. As shown in
Figures 18- 19, we conducted an ablation study with finer-grained variations of λCL and λDC on three
datasets to access sensitivity of the experimental results. Relative to the blue lines, the adaptation
performance remains stable and robust across different values of these two hyperparameters, with the
regions of optimal performance being well-concentrated.

Additional Insights for Advanced and Practical Hyperparameter Selection Strategies. Hyper-
parameter tuning in SFDA poses significant challenges due to the lack of target labels and substantial
distribution shifts across domains. In our experiments, we found that SND scores often fail to corre-
late consistently with performance on the full target dataset. Moreover, sensitivity analysis based on

0.05 0.1 0.5 1 1.5 2
DC

55

60

65

70

75

80

Ac
cu

ra
cy

Full Target Data
Small Eval Set 1

2

3

4

5

6

SN
D

SND on Full Target Data

(a) VisDA-RUST

0.05 0.1 0.5 1 1.5 2
DC

65

66

67

68

69

70

71

72

Ac
cu

ra
cy

Full Target Data
Small Eval Set

1.4

1.6

1.8

2.0

2.2

2.4

2.6

SN
D

SND on Full Target Data

(b) DomainNet-126 (R → P)

0.05 0.1 0.5 1 1.5 2
DC

55

56

57

58

59

60

61

62

63

Ac
cu

ra
cy

Full Target Data
Small Eval Set

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

SN
D

SND on Full Target Data

(c) Office-Home (Pr → Cl)

Figure 19: Sensitivity analysis of dispersion control loss coefficient λDC. Different colors represent
various criteria for hyperparameter selection, while the shaded area indicates the parameter values
chosen corresponding to the results reported in the main paper.
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the full target data incurs high computational costs, making it less feasible for real-world applications.
To overcome these limitations, we explore a novel small evaluation set-based method. Specifically,
we randomly select a subset (300 data points) from the full unlabeled target data (typically containing
5k-50k data points), manually label it, and create a pseudo-validation set. Hyperparameters are
subsequently selected based on their performance on this small evaluation set. While this approach
requires some manual annotation, the amount of labeled data needed is minimal, making it both
practical and effective for real-world scenarios, while improving the accuracy of hyperparameter
selection.

Figure 18 and Figure 19 demonstrate that the performance on the small human-labeled evaluation
set (red lines) aligns more closely with the desired model performance (blue lines). In contrast, the
SND score (yellow lines), which is based on feature space similarity and self-prediction entropy,
sometimes fails to identify the optimal hyperparameters.

Better Performance with Finer-Grained Hyperparameter Ranges. Refining the parameter
selection range (as shown Figure 18(a)-(b)) or adopting a different tuning order (e.g., tuning the
partial label term first, followed by the dispersion control term, as shown in Figure 19(a)-(b)) can
achieve even better results, as indicated by the highest points on the blue lines. For instance, while
we initially reported the UCon-SFDA performance of 79.4 on VisDA-RUST (with LPL = 0.1
and LDC = 0.5), we found that using a slightly smaller LDC = 0.1 improved its performance to
79.82. These findings demonstrate that satisfactory performance of our approach does not depend
on excessive hyperparameter tuning, and further highlights the robustness and effectiveness of our
algorithm.

C.6 DIFFERENT LOSSES FOR DISPERSION CONTROL TERM

We evaluate the performance of the dispersion control term under different similarity metrics between
the anchor data point and its augmented version, dθ (AUG (xi) ,xi), in Equation (7).

Specifically, for the Equation (7) in the main text, we define:

dθ (AUG (xi) ,xi) ≜ ⟨fT(xi;θ), log fT (AUG (xi) ;θ)⟩.

To further validate the role of data augmentation from the perspective of negative sampling uncertainty,
we experimented with different similarity metrics, including the direct dot product and the L2 norm,
given by

dθ,dot (AUG (xi) ,xi) ≜ ⟨fT(xi;θ), fT (AUG (xi) ;θ)⟩,
and

dθ,L2 (AUG (xi) ,xi) ≜ ∥fT(xi;θ)− fT (AUG (xi) ;θ) ∥2.
Additional experimental results, reported in Table 8, demonstrate the importance of treating data
augmentations as negative samples as well as the effectiveness of the proposed dispersion control
term. Furthermore, while the proposed dθ achieves the best performance across most datasets, other
loss formulations also present comparable results. These experimental observations provide guidance
on effectively leveraging data augmentations in SFDA and verify the generalizability of our algorithm.

Table 8: Classification Accuracy (%) Under different Distance Measurements in Dispersion Control
term. Bold text indicates the best results, and underlined text represents results that outperform the
baseline.

Methods Office-Home (Pr → Cl) VisDA-RUST DomainNet126 (R → P)

LCL 57.90 75.50 67.80
LCL + L -

DC with dθ 59.70 78.90 70.30
LCL + L -

DC with dθ,dot 60.21 78.02 70.08
LCL + L -

DC with dθ,L2 59.14 77.77 69.34
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Table 9: Comparison of Training Time, Memory Usage, and Accuracy on VisDA2017.

Method Training Time (Normalized w.r.t. AaD) Memory Usage (Normalized w.r.t. AaD) Accuracy (%)
AaD 1.000 1.000 87.3
SF(DA)2 1.036 1.052 88.1
UCon-SFDA (Ours) 1.058 1.112 89.6

C.7 TRAINING TIME AND RESOURCE USAGE ANALYSIS

To further validate the practical value of our proposed methodology, we conduct the training time and
resource usage analysis in this subsection.

Compared to the baseline model, AaD (Yang et al., 2022), a widely utilized contrastive learning
and memory bank-based SFDA method, our UCon-SFDA introduces explicit data augmentation
and an additional partial label bank component. These additions increase both resource usage
and computational complexity. However, such trade-offs are consistent with recent trends in the
field (Hwang et al., 2024; Karim et al., 2023; Mitsuzumi et al., 2024a), where enhanced resource
utilization is commonly accepted to achieve significant performance improvements.

The computational complexity of our approach remains comparable to other modern techniques
that leverage data augmentation or consistency regularization. For instance, compared to Karim
et al. (2023) and Mitsuzumi et al. (2024a), which also incorporate explicit data augmentation during
training, our UCon-SFDA avoids relying on additional network structures. Moreover, the partial label
bank only incurs a small additional memory overhead that scales linearly with the size of the target
domain data, making it practical for real-world SFDA applications.

Importantly, our method demonstrates superior performance, as evidenced by the experimental results
presented in the main paper. For a detailed comparison, we analyzed the training time and GPU
memory usage of UCon-SFDA against AaD and SF(DA)2 Yang et al. (2022); Hwang et al. (2024).
As shown in Table 9, the evaluation results on VisDA2017 further validate that, with tolerable
computational and storage overhead, our method achieves superior performance.
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