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ABSTRACT

Out-of-Distribution (OOD) detection is crucial for ensuring the safety and re-
liability of neural networks in critical applications. Distance-based OOD de-
tection is based on the assumption that OOD samples are mapped far from In-
Distribution (ID) clusters in embedding space. A recent approach for obtaining
OOD-detection-friendly embedding space has been contrastive optimization of
pulling similar pairs and pushing apart dissimilar pairs. It assigns equal signif-
icance to all similarity instances with the implicit objective of maximizing the
mean proximity between samples with their corresponding hypothetical class cen-
troids. However, the emphasis should be directed towards reducing the Minimum
Enclosing Sphere (MES) for each class and achieving higher inter-class dispersion
to effectively mitigate the potential for ID-OOD overlap. Optimizing low-signal
dissimilar pairs might potentially act against achieving maximal inter-class dis-
persion while less-optimized similar pairs prevent achieving smaller MES. Based
on this, we propose a reweighting scheme ReweightOOD, that adopts the simi-
larity optimization which prioritizes the optimization of less-optimized contrast-
ing pairs while assigning lower importance to already well-optimized contrasting
pairs. Such a reweighting scheme serves to minimize the MES for each class while
achieving maximal inter-class dispersion. Experimental results on a challenging
CIFAR100 benchmark using ResNet-18 network demonstrate that the proposed
reweighting scheme improves the FPR metric by a whopping 38% in compar-
ison to the baseline. In various classification datasets, our method outperforms
existing methods, making it a promising solution for enhancing OOD detection
capabilities in neural networks.

1 INTRODUCTION

OOD detection refers to detecting the samples lying beyond the scope of training distribution. Dur-
ing the inference phase, it is indeed imperative to prevent the prediction of unknown samples, re-
ferred to as OOD samples, as the model lacks familiarity with such instances, and consequently, they
should be accurately flagged. This issue becomes even more critical in domains like autonomous
driving and medical imaging, where entrusting neural networks to handling unforeseen scenarios
is detrimental. In these contexts, either relinquishing appropriate control to human discretion or
flagging the instance becomes essential. The incorporation of OOD detection mechanisms holds
paramount importance in ensuring safety and reliability. Rather than solely excelling at the primary
task, models are now expected to possess the capability of identifying OOD samples effectively too.

OOD samples inherently possess distinct characteristics that set them apart from in-distribution (ID)
data. These differentiating characteristics can be observed in softmax probability (Hendrycks &
Gimpel, 2017), embedding space (Sun et al., 2022; Lee et al., 2018), or in some scoring functions
(Liu et al., 2020; Wang et al., 2022). Distance-based methods exploit the embedding space to quan-
tify the OOD-ness of the samples. Two popular postprocessing approaches in distance-based OOD
methods are Mahalanobis distance (Lee et al., 2018) and K-nearest neighbor (Sun et al., 2022). A
key assumption of these approaches is that OOD samples lie far away from ID clusters. Hence, the
focus should be on obtaining such desirable embedding space for superior OOD detection perfor-
mance.
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Training-time regularization techniques can be employed to regularize neural networks to enhance
OOD detection. Some approaches (Wei et al., 2022; Regmi et al., 2023) utilize the hyperspheri-
cal constraint during cross-entropy-based training to reduce overconfidence. Contrastive learning,
a recent alternative, which also deals with hyperspherical embeddings to promote class-separable
representations, as demonstrated by self-supervised contrastive learning (Sehwag et al., 2021), su-
pervised contrastive learning (SupCon) (Khosla et al., 2020), and CIDER (Ming et al., 2023). While
these contrastive-based methods, when coupled with distance-based postprocessing, show promise,
they lack consideration for the current proximity of the contrasting pairs during training. In essence,
they consistently optimize the cosine similarity without considering whether the pairs have been
adequately optimized. Our proposition suggests reweighting contrastive pairs based on cosine sim-
ilarity in the embedding space betters OOD performance. Specifically, we propose prioritizing pair
instances where their corresponding embeddings are not aligned, and deprioritizing pair instances
that are sufficiently aligned. By dynamically adjusting loss weights based on embedding space prox-
imity, contrastive learning can focus more on challenging or unoptimized pairs, thereby reducing the
Minimum Enclosing Sphere (MES) for each class and maximizing inter-class dispersion.

Hence, we present an effective OOD detection framework ReweightOOD based on loss reweight-
ing. Our reweighting mechanism consists of a linear transformation of the cosine similarity followed
by the application of the reweighting function. We employ scaling and shifting operations to achieve
the desired range, and we employ the sigmoid function as reweighting function. This approach im-
proves the OOD detection by a significant 38% improvement in FPR metric in a challenging CI-
FAR100 benchmark using ResNet-18 network. Our approach outperforms the current approaches
making it a promising approach for detecting OOD samples. We summarize our contributions in the
following points:

• We propose a similarity reweighting framework ReweightOOD in contrastive optimization
for superior distance-based OOD detection. We show a simple reweighting mechanism
can improve the performance by 38% in the FPR metric in challenging the CIFAR100
benchmark.

• We provide the design of the reweighting mechanism for the first time in OOD detection
by coupling linear transformation and sigmoid weighting function. We illustrate that our
domain for the reweighting mechanism can be flexibly adjusted by scaling and shifting
using hyperparameters.

• We reveal the implication of the reweighting in achieving an MES of a smaller radius
for all classes and higher class-centroid dispersion in the embedding space. Specifically,
in a challenging CIFAR100 benchmark, the reweighting mechanism reduces mean MES
radius by 14.28% and increases mean inter-class dispersion by a factor of ∼2.

2 PRELIMINARIES

2.1 OUT-OF-DISTRIBUTION DETECTION

We consider multi-class classification scenario, wherein Pin = (xi, yi)
N
i=1 represents the training

distribution, commonly referred to as the In-Distribution. In this context, the tuple (xi, yi) signi-
fies an image-label pair, where yi is an element of the set {1, 2, . . . , C}, with C representing total
number of classes. During the testing phase, samples from a distribution Pout, differing from the
training distribution Pin, are encountered. Out-of-distribution (OOD) detection is framed as a binary
classification task, where a scoring function SC(x) and a threshold λ guide the decision process
with those exceeding λ labeled as ID and the rest as OOD. The threshold λ is often set for a 95%
true positive rate on training data.

2.2 HYPERSPHERICAL EMBEDDINGS

The embeddings lying on the surface of the hypersphere of radius rh are known as hyperspherical
embeddings. An embedding can be transformed into a hyperspherical one by employing L2 normal-
ization. We employ our reweighting mechanism in contrastive training after transforming the raw
embedding into the hyperspherical one.
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Figure 1: The figure shows an overview of the optimization process in ReweightOOD.
ReweightOOD uses encoder (backbone) and the projection head to generate raw embeddings, which
are subsequently converted into hyperspherical embeddings. The thickness of the depicted lines in
the hypersphere visually represents the strength of the reweighting factor during pair optimization.

3 METHOD

3.1 OVERVIEW

An overview of the proposed OOD detection framework ReweightOOD is shown in Figure 1.
ReweightOOD consists of backbone (encoder) network fθ and projection head gθ. The hyperspher-
ical representation ĥi = gθ (fθ (xi)) is obtained from ReweightOOD framework for each image xi.
Hyperspherical representations {ĥi}Ni=1 form contrastive pairs that are weighted on the basis of their
respective cosine similarities prior to contrastive optimization.

3.2 CONTRASTIVE OPTIMIZATION

Contrastive learning aims to learn useful representations by maximizing within-class cosine similar-
ity sw and minimizing between-class cosine similarity sb. If

(
xj
anchor, x

j
pos

)
and

(
xi
anchor, x

i
neg

)
are pairs of images of the same class and different classes respectively, any given instance of
within-class cosine similarity sjw and between-class cosine similarity sib can be expressed as

sjw =
ˆ

hj
anchor ·

ˆ
hj
pos and sib = ˆhi

anchor · ˆhi
neg where h denotes latent representation of respective

inputs. Considering the availability of n between-class similarity sb and o within-class similarity sw,
loss formulation for a sample k in a batch of size (n+ o+ 1) with temperature τ can be expressed
as:

Lk = log

(
n∑

i=1

exp(sib/τ)

)
− log

 o∑
j=1

exp(sjw/τ)

 (1)

Assumption of 1 This (unweighted) optimization assumes an equal role of each between-class
similarity sb and within-class similarity sw in obtaining optimal embedding space for distance-based
OOD detection. In the subsequent section, we delve into the implication of this assumption.

3.3 IMPLICATION OF UNWEIGHTED OPTIMIZATION

Contrastive learning attempts to map all the instances of a category to its ideal centroid. However,
as shown schematically in Figure 2 (a), the complexities inherent in real-world images make the ide-

3



Under review as a conference paper at ICLR 2024

Figure 2: Comparison of (a) Unweighted optimization and (b) Reweighted optimization leading to
different extents of overlapping with OOD samples in the embedding space.

alistic goal of mapping all instances of a class very close to its ideal centroid in contrastive learning
impractical. We define samples that are easy to pull near the centroid as easy positives and those
samples that are difficult to pull near the centroid as hard positives. The compact clustering of easy
positives around the centroid, as shown in Figure 2 (a), adds practically no value in OOD separation.
However, as shown in Figure 2 (b), trading off the easy compact clustering with more weightage
given on optimizing (pulling) hard positives around the centroid has a potentially beneficial effect
on obtaining the Minimum Enclosing Sphere of smaller radius for all classes. Obtaining a smaller
MES radius has a direct advantage linked with a smaller possibility of ID-OOD overlapping, as
shown in Figure 2 (b).

Furthermore, given an anchor sample, samples that are easily distinguishable from the anchor can
be referred to as easy-negatives. Conversely, samples that are similar and not easily distinguish-
able from the anchor sample can be referred to as hard negatives. In a multi-class setup, there is a
greater presence of easy-negatives that don’t provide useful learning signals. Optimizing these easy
negatives can rather be a noisy process that potentially hinders the maximal inter-class dispersion.
Furthermore, hard negatives are more informative for maximizing inter-class dispersion. From a
separate perspective, hard negatives have a greater likelihood of getting overlapped with OOD in-
stances. Hence, suppressing the effect of easy negatives and prioritizing hard negatives seem to be
of utmost importance for maximizing the inter-class dispersion.

3.4 REWEIGHTING MECHANISM FOR SIMILARITY SCORES

Hence, a requirement for the optimum embedding learning for OOD detection is: to give more
importance to samples that are difficult to align (hard negatives and hard positives). Since sim-
ilarity during optimization can convey the difficulty of the sample, the requirement for designing
the reweighting mechanism is to make it the function of the similarity score. We use the linear
transformation of the score and apply the sigmoid function to obtain the reweighting factor. Linear
transformation basically consists of two operations:

Scaling The original range of cosine similarity is [−1, 1]. The scaling operation is utilized to rescale
the similarity scores prior to the weighting function. Specifically, the scaling enables adjustment
of the slope of the weighting function, thereby controlling the rate of increase in the reweighting
factors based on the similarity scores. Scaling similarity scores s with scalar m resulting in the
domain [−m,m] from [−1, 1], the weighting factor can be given as: S → s ·m
Shifting Shifting allows shifting of the domain of rescaled similarity S by given scalar c to determine
the desirable part of the weighting function depending on the nature of similarity score s. T →
S + c, T → s ·m+ c

Final Linear Transformation Hence, the final linear transformation can be expressed as T =
s · m + c. As the two similarity scores might have different optimal hyperparameters, we allow
defining different sets of linear transformation. So, we denote two such linear transformations as
TB = sb ·mb + cb and TW = sw ·mw + cw for between-class and within-class similarities.
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Figure 3: Reweighting mechanism for sb
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Figure 4: Reweighting mechanism for sw

Reweighting function The scaled similarity scores are then passed through the weighting function,
which maps them to values in a predefined range to obtain reweighting factors. Since we already
established in the previous section regarding the unequal role of various similarity scores in ob-
taining optimal embedding for OOD detection, we need to impose the increasing importance of
between-class similarity sb as it progresses towards positive value from negative value. Since the
range of similarity scores due to linear transformation can be both negative as well as non-negative,
we propose sigmoid function for obtaining its reweighting factor as shown in Figure 3. The sigmoid
function can be expressed as : σ(TB) = 1

1+e−TB = 1
1+e−sb·mb−cb

Similarly, we have already established the decreasing importance of within-class sw similarity scores
as it progress towards positive value from negative value, we need the reweighting function for sw
to possess such characteristics. Hence, we propose reverse-sigmoid function for sw reweighting
as shown in Figure 4. It is basically the modified version of the sigmoid function which can be
expressed as : σ′(TW) = 1

1+eTW = 1
1+esw·mw+cw

So, accommodating the reweighting mechanism in 1, the optimization then can be reformulated as:

L = log

(
n∑

i=1

exp(σ(T i
B) · sib/τ)

)
− log

 o∑
j=1

exp(σ′(T j
W) · sjw/τ)

 (2)

= log

(
n∑

i=1

exp(
1

1 + e−sib·mb−cb
· sib/τ)

)
− log

 o∑
j=1

exp(
1

1 + es
j
w·mw+cw

· sjw/τ)

 (3)

Reweighting flexibility and bounded range The transformation consisting of scaling and shift-
ing allows flexible control over reweighting specific to the nature of similarity (between-class and
within-class). This allows a better bet in obtaining optimal embedding for OOD detection. Further-
more, the sigmoid function exhibits a bounded range that lies within the interval [0, 1]. The bounded
range makes the weighting mechanism controlled and stable.

4 EXPERIMENTS

Datasets The ID datasets CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are used for the train-
ing models from scratch while ImageNet100 is used for fine-tuning pretrained models. The OOD
detection performance of CIFAR datasets is evaluated in the following datasets: MNIST (Deng,
2012), iSUN Xu et al. (2015), LSUN-r (Yu et al., 2015), LSUN-c (Yu et al., 2015), SVHN (Netzer
et al., 2011), Textures (Kylberg, 2011), and Places365 (Zhou et al., 2017). For ImageNet100, the
OOD datasets used are iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places365 (Zhou
et al., 2017), and Textures (Kylberg, 2011), NINCO (Bitterwolf et al., 2023), OpenImage-O (Wang
et al., 2022), and Semantic Shift Benchmark (SSB) (Vaze et al., 2021).

Metrics We mainly use two OOD metrics (AUROC and FPR@95) to quantify the OOD detection
performance. AUROC stands for the Area Under Receiver-Operator Characteristics, and FPR@95
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stands for False Positive Rate @ 95. A higher AUROC score quantifies a higher probability of
correct OOD/ID classification, and a lower FPR suggests a lower probability of ID samples getting
misclassified as OOD.

Training pipelines Similar to previous approaches KNN+ (Sun et al., 2022) and CIDER (Ming
et al., 2023), we perform experiments with non-contrastive approaches for 100 epochs and con-
trastive approaches for 500 epochs. For posthoc methods, we train a standard model using vanilla
cross-entropy loss. We train our model with a learning rate of 0.5 using a cosine annealing decay
schedule with a batch size of 512 and 0.0001 weight decay. The temperature parameter τ is set to
0.1. The hyperparameters are optimized with respect to the validation set (Gaussian noise). For a
fair comparison, we train all the methods in the same setting. We use ResNet-18 architecture for
CIFAR-10/100 experiments. The linear transformation hyperparameters (mb, cb,mw, cw) for CI-
FAR100 and CIFAR10 experiments using ResNet18 network are set to (5,−2, 2, 1) and (5,−4, 2, 1)
respectively. We also use WideResNet and DenseNet architecture to test architectural compatibility.
The ablation regarding the linear transformation of the reweighting mechanism is provided in the
appendix.

OOD detection scores Since we focus on learning a suitable embedding for OOD detection, we
use two distance-based OOD scores in the embedding space: KNN and Mahalanobis distance. We
use the KNN postprocessor by default and also investigate the performance with Mahalanobis dis-
tance (MDS). Like the previous approach CIDER, we use K=100 for CIFAR-10 experiments and
K=300 for CIFAR-100 experiments for KNN postprocessor.

4.1 QUANTIFICATION OF EMBEDDING QUALITY FOR OOD DETECTION

Minimum Enclosing Sphere The concept of radius of the Minimum Enclosing Sphere (MES)
serves to characterize the overall radius of a class while downplaying the significance of achiev-
ing a compact representation for easily distinguishable positive instances. This emphasis on class
radius rcl is motivated by the observation that embeddings associated with samples far from its
ideal centroid tend to intersect with OOD samples, thereby compromising the performance of OOD
detection. In essence, from the lens of ideal perspective, the ID samples residing at the periphery
of a class should ideally be closer to the empirical centroid to avoid compromise in OOD detec-
tion performance. This notion can be effectively encapsulated through the concept of MES radius.
Thus, from the perspective of ID-OOD separability, the MES radius emerges as a suitable metric
for quantifying the effective compactness of class embeddings. It follows that the smaller the MES
radius, the greater the effective compactness of class cl for OOD detection purposes. The empirical
centroid, denoted as µcl, is a straightforward computation involving the summation of all embed-

dings corresponding to category cl over the entire set of samples, given by µcl =
∑

hi∈Hcl
hi

Ncl
where

Hcl denotes normalized embedding representation of all samples in category cl and Ncl is the total
number of samples in category cl.

rcl = max
hi∈Hcl

|hi − µcl|2 (↓) (4)

Table 1: MES radius for first 10 classes and mean over 100 classes of CIFAR100 datasets in un-
weighted and weighted optimization.

Method Apples Aquarium Fish Baby Bear Beaver Bed Bee Beetle Bicycle Bottles ... Mean

Baseline 1.09 1.11 1.07 0.93 0.97 1.07 1.03 1.07 1.10 1.07 ... 1.05
SupCon 0.97 1.01 0.97 1.00 1.00 0.98 0.99 0.97 1.04 1.03 ... 1.01

(ReweightOOD) Ours 0.95 0.90 0.90 0.89 0.84 0.90 0.89 0.91 0.99 0.96 ... 0.90

Centroid Dispersion To enhance OOD detection performance, it is essential to ensure that centroids
are distributed sufficiently far apart, allowing for the effective delineation of OOD samples within
the unoccupied space between these centroids. This notion of centroid dispersion can be precisely
quantified by measuring the angular distance between the empirical centroids of two distinct cate-
gories. Mathematically, we represent the centroid dispersion between two categories, denoted as cla
and clb, as follows:
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Figure 5: UMAP (McInnes et al., 2018) visualization of embedding space (CIFAR10) obtained
from (left) CE objective and (right) ReweightOOD objective. The ReweightOOD objective allows
the embeddings to be uniformly distributed and highly separable without class overlapping.

dab =
µa · µb

|µa|2 · |µb|2
, a ̸= b (↑) (5)

Overall embedding quality can be assessed by computing the mean dispersion value across all cate-
gory pairs and the mean MES radius across all categories.

Table 2: Average centroid dispersion over 100 classes in CIFAR100 datasets.
Method Mean dispersion (↑)
Baseline 0.29
SupCon 0.42

(ReweightOOD) Ours 0.63

Embedding observations: Table 1 and Table 2 present statistics on MES radius and centroid dis-
persion. ReweightOOD objective optimizes for a smaller overall radius across all CIFAR100 cate-
gories, as evidenced in Table 1 which reduces ID-OOD overlapping. Additionally, higher dispersion
due to ReweightOOD indicates that ID classes are sufficiently spread apart, facilitating meaning-
ful distance mapping for OOD samples. Consequently, reweighted optimization yields improved
embedding quality. Furthermore, the qualitative UMAP visualization comparing the embedding
space obtained with the CE objective and ReweightOOD objective is shown in Figure 5. It shows
uniformly dispersed and highly separable embeddings without class-overlapping.

4.2 EMPIRICAL ANALYSIS

Quantitative results Quantitative results including the extensive comparisons of current ap-
proaches along with our approach are presented in Table 3. For all experiments in Table 3, ResNet-
18 is trained with CIFAR-100 as the ID dataset. The OOD performance is shown in two metrics
(FPR and AUROC) only. We compare our results with current contrastive approaches as well as
non-contrastive approaches. Posthoc methods are applied to the classification model trained with
vanilla cross-entropy. All the experiments assume the unavailability of OOD / outliers during the
training time. Posthoc methods include MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al.,
2017), Mahalanobis (Lee et al., 2017), DICE (Sun & Li, 2022), Activation Shaping (ASH) (Djurisic
et al., 2023), React (Sun et al., 2021), GradNorm (Huang et al., 2021), RankFeat (Song et al.,
2022) and Energy (Liu et al., 2020). Two non-contrastive training-time regularization approaches
are GODIN (Hsu et al., 2020) and LogitNorm (Wei et al., 2022). We use default hyperparame-
ters provided in the original work whenever required. In contrastive approaches, we compare our
method with ProxyAnchor (Kim et al., 2020), CSI (Tack et al., 2020), SSD+ (Sehwag et al., 2021),
KNN+ (Sun et al., 2022), and CIDER (Ming et al., 2023). Our approach leads to the best per-
formance in both metrics. Furthermore, we present the OOD detection performance in CIFAR-10
experiments in the appendix which also shows our approach being highly performant in comparison
to both contrastive as well as non-contrastive approaches.
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Table 3: Mean OOD detection performance for CIFAR-100 (ID) with ResNet-18.
Method

OOD Dataset Average
MNIST iSUN LSUN LSUN-r SVHN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

Without Contrastive Learning
MSP 86.05 78.75 66.97 84.91 78.21 80.84 68.19 84.36 63.87 86.42 79.88 79.12 80.98 78.92 74.88 81.92
ODIN 73.64 84.61 40.07 92.54 72.70 85.75 42.38 92.23 74.80 84.45 72.22 81.63 81.05 79.06 65.27 85.75
Mahalanobis 81.91 77.22 95.23 59.99 95.45 56.16 95.14 61.16 92.47 64.96 75.55 73.95 92.84 62.89 89.90 65.19
Energy 88.57 79.05 63.27 88.05 78.04 84.63 63.95 87.56 59.09 89.84 78.94 80.68 83.58 79.02 73.63 84.12
DICE 81.96 79.46 67.60 87.04 67.11 86.97 70.25 86.00 60.45 89.78 76.01 80.17 83.76 78.76 72.45 84.03
React 88.29 78.55 63.22 87.85 77.73 84.89 63.89 87.23 58.06 90.16 78.35 81.75 83.47 79.17 73.29 84.23
ASH 78.75 81.14 70.04 81.92 77.26 83.31 70.72 80.54 57.94 88.22 76.10 81.14 82.55 77.53 73.34 81.97
GradNorm 86.54 63.98 68.82 78.28 71.14 84.48 70.75 75.27 60.92 83.80 77.96 69.68 84.79 69.29 74.42 74.97
RankFeat 95.62 61.39 87.99 74.29 95.73 67.85 88.66 73.81 79.82 80.68 91.63 66.11 91.17 66.41 90.09 70.08
GODIN 48.88 92.09 22.14 96.00 63.91 85.55 19.05 96.72 70.66 86.74 56.49 89.37 78.95 78.12 51.44 89.23
LogitNorm 51.65 90.28 92.84 69.00 15.52 97.23 92.68 70.77 73.71 84.15 86.85 71.27 77.98 80.77 70.18 80.50

With Contrastive Learning
ProxyAnchor 65.96 78.93 88.90 77.71 57.29 88.28 86.30 77.60 31.16 93.47 57.54 88.30 77.25 79.69 66.34 83.43
CSI 75.27 82.20 68.37 81.91 49.43 89.11 66.19 83.17 65.83 81.21 77.53 75.13 79.11 79.80 67.74 81.22
SSD+ 82.52 76.80 79.71 83.85 49.86 89.91 78.00 85.19 23.03 95.70 59.72 88.22 77.80 80.86 64.38 85.79
KNN+ 76.21 83.06 67.44 85.12 55.09 86.30 67.59 85.59 44.03 91.85 47.91 90.08 78.63 78.19 62.42 85.74
CIDER 63.24 85.64 73.78 77.96 26.51 93.37 75.98 78.03 17.58 96.33 34.15 92.34 78.56 73.04 52.83 85.24

Baseline 78.91 69.01 85.09 84.28 41.09 91.93 79.90 85.07 25.25 94.63 46.38 90.33 74.44 80.50 61.58 85.11
(ReweightOOD) Ours 19.24 96.86 57.56 87.54 19.59 96.86 56.31 88.23 8.39 98.31 28.72 94.11 78.70 76.01 38.36 90.91

Compatibility with Mahalanobis distance (MDS) In addition to the non-parametric method
KNN, we also analyze the empirical quality of the embedding produced by various contrastive ap-
proaches by the use of Mahalanobis distance. As can be observed from 4, the superiority of the
embedding quality produced by our method is evident from FPR/AUROC scores.

Table 4: Compatibility with MDS using CIFAR-100 (ID) dataset in terms of FPR using ResNet18.
Method MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average FPR ↓

ProxyAnchor 75.48 88.94 52.78 87.62 7.69 58.21 74.85 63.65
SSD+ 82.52 79.71 49.86 78.00 23.03 59.72 77.80 64.38

CIDER 76.82 74.10 21.40 75.40 9.78 45.27 74.37 53.88

Baseline 80.68 88.95 21.31 85.63 5.83 40.51 66.83 55.68
(ReweightOOD) Ours 51.58 62.91 17.00 62.00 5.89 44.29 74.83 45.50

Accuracy While improving OOD detection performance, neural network-based OOD detectors
ideally should not compromise in accuracy. Training linear classifier on frozen features obtained
with WRN-40-2 pretrained with ReweightOOD objective, we obtained a 75.54% accuracy on CI-
FAR100, similar to the 74.96% accuracy from the cross-entropy objective, demonstrating the effec-
tiveness of ReweightOOD in both OOD detection and category classification.

Table 5: OOD detection performance in large-scale experiments (ImageNet-100) in terms of FPR
by fine-tuning pretrained ResNet50.

Method iNaturalist SUN Textures Places SSB Hard Ninco Openimage Average FPR ↓
Baseline 3.07 2.39 4.57 5.47 35.39 29.15 7.05 12.44
SupCon 2.43 1.98 2.59 5.43 34.25 25.58 5.28 11.08

(ReweightOOD) Ours 2.18 1.97 2.73 5.29 32.00 24.63 5.06 10.55

Compatibility with various backbones In addition to ResNet-18, we experiment with diverse
backbones, including WideResNet (WRN-40-2) and DenseNet architectures, to assess the adaptabil-
ity of our method. As depicted in Table 6, in comparison to the baseline (unweighted formulation)
and SupCon, our approach consistently leads to superior performance across various architectures
in terms of all OOD metrics. Specifically, compared to the baseline, our approach leads to 10% and
20% performance improvement in WRN-40-2 and DenseNet architectures.

Evaluation on large-scale ImageNet-100 dataset In addition to conducting experiments on the
CIFAR datasets, we assess the efficacy of our approach on the large-scale ImageNet-100 dataset
within the context of fine-tuning pretrained models. We use the ImageNet-100 dataset, a subset of
ImageNet, as the ID dataset for finetuning the pretrained ResNet-50 model. ImageNet-100 con-
sists of images from 100 randomly sampled categories from the ImageNet dataset. The projection
head is a non-linear MLP with a projection dimension of 128. The first three layers of ResNet50
are frozen and only the last layer along with the projection head is fine-tuned for 10 epochs with a
learning rate of 0.01 and weight decay of 0.0001 using cosine annealing. The linear transformation
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Table 6: Architecture compatibility of various methods with CIFAR100 (ID) datasets.

Method
Architectures

WRN-40-2 DenseNet

FPR↓ AUROC↑ FPR↓ AUROC↑
Baseline 53.55 87.07 39.03 91.11
SupCon 49.95 87.75 44.28 90.10

(ReweightOOD) Ours 47.94 88.45 31.36 92.21

hyperparameters (mb, cb,mw, cw) are set to (5,−4, 2, 1). The performance is evaluated with KNN
postprocessing (K=300). We compare the OOD detection performance of our method with baseline
and SupCon loss in terms of FPR and AUROC metrics as shown in Table 5. It depicts the supe-
rior performance of our approach in comparison to compared losses. It provides further empirical
justification for producing superior embeddings for OOD detection.

5 RELATED WORKS

OOD detection Posthoc approaches of OOD detection derive scores from pretrained models with-
out any retraining. Some of these approaches deal directly with output space (Hendrycks & Gimpel,
2017; Liu et al., 2020; Ming et al., 2022b; Sun & Li, 2022; Djurisic et al., 2023) while recently more
approaches have attempted to exploit the information from embedding space (Lee et al., 2018; Sas-
try & Oore, 2020; Tack et al., 2020; Zhou et al., 2021; Sehwag et al., 2021; Sun et al., 2022; Ming
et al., 2022a; Du et al., 2022; Ming et al., 2023) for OOD detection. Wang et al. (2022) proposes
dealing with both spaces. Furthermore, some works (Song et al., 2022; Sun et al., 2021; Zhu et al.,
2022) also deal with feature activations. (Huang et al., 2021) showed the usefulness of gradient
information in OOD detection. Guo et al. (2017) proposed temperature scaling to improve neural
network calibration. Some works Wei et al. (2022); Regmi et al. (2023) also make use of normal-
ization in logit/feature space to mitigate the overconfidence issue in neural networks. (DeVries &
Taylor, 2018; Hendrycks et al., 2019; Hsu et al., 2020) propose various ways of regularizing neural
networks during training to enhance the OOD detection performance.

Deep Metric Learning A fundamental focus of deep metric learning is to learn highly discrimina-
tive features. Research areas such as face recognition and face verification have seen the introduction
of many useful loss functions on hyperspherical embeddings (Wang et al., 2018; Deng et al., 2019;
Liu et al., 2017; Wang et al., 2017) to satiate this objective. (Techapanurak et al., 2020) deals with
cosine loss to achieve hyperparameter-free OOD detection.

Contrastive Learning (Chopra et al., 2005; Schroff et al., 2015; Sohn, 2016) were the earliest
works that explored the concept of contrastive loss. In recent years, contrastive learning has gar-
nered significant attention in the domain of vision representational learning, encompassing both un-
supervised and supervised paradigms (Chen et al., 2020a;b; He et al., 2020; Robinson et al., 2021;
Khosla et al., 2020). While the majority of these approaches explicitly formulate positive and nega-
tive pairs, some recent works (Bardes et al., 2022; Chen & He, 2021; Grill et al., 2020). exclusively
concentrate on positive pairs only. Few works (Khosla et al., 2020; Sehwag et al., 2021; Tack et al.,
2020; Ming et al., 2023) have explored the use of off-the-shelf contrastive learning in the context of
OOD detection. However, it is noteworthy that contrastive learning in OOD detection has remained
relatively understudied. Our work deals with a similar line of harnessing contrastive approach in
OOD detection.

6 CONCLUSIONS

In summary, this study introduces the ReweightOOD reweighting scheme, aimed at enhancing
embedding quality to improve OOD detection performance. Our approach focuses on optimizing
the cosine similarity of contrasting pairs by considering their current proximity, assigning higher
priority to less-optimized pairs and lower priority to well-optimized ones. Experimental results
across various classification datasets demonstrate non-trivial performance enhancements resulting
from our approach. Furthermore, we reveal that our reweighting method reduces the Minimum
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Enclosing Sphere radius for each class and increases inter-class dispersion, thereby enhancing the
separation between ID and OOD samples in the embedding space.
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