Optimizing Class-Level Code Generation: Enhancing In-Context Learning

in Large Language Models with Pruning Techniques

Anonymous ACL submission

Abstract

Recently, many large language models (LLMs)
have been proposed, showing advanced pro-
ficiency in code generation. Such generation
focuses on generating independent and often
method-level code, thus leaving it unclear how
LLMs perform in generating more complicated
tasks. To fill this research gap, researchers have
studied to construct prompt to achieve good
performance in complicated code generation,
i.e., class-level code generation, and they have
launched a corresponding benchmark, ClassE-
val, on generating and evaluating class-level
code. However, the obvious difficulty of class-
level code generation prompt construction lies
in that class-level prompt has longer texts than
those of method-level code generation, and at
the same time the input length of the released
models always has a limitation, such as: GPT-
3.5 and GPT-4 with 4096 tokens and 8192 to-
kens limitations respectively.

Therefore, it is important to research how to
construct the class-level prompt by pruning
some code tokens. Through the pruning strat-
egy, we add more code examples into prompt
to deliver as many semantic information as pos-
sible to LLMs. We introduce a new pruning
strategy, namely attention-guided strategy, to
this research point. By this pruning strategy,
we conduct experiments on code generation by
GPT-3.5, a kind of LLM proved to achieve ex-
cellent performance on generation tasks. In our
work, we adopt ClassEval benchmark dataset
specialized for class-level code generation to
conduct our experiments. Additionally, we
evaluate the strategy both in method-level and
class-level metrics, finding that this pruning
strategy is effective to prune appropriate tokens
for LLM to generate class-level code. Above
all, attention-guided strategy outperforms the
randomly pruning strategy with 4.2%, 10.2%
and 13% higher class-level code generation ac-
curacy by LLM. We also analyze the impact of
the quantity of code reduction on the quality of
code generation in LLM, concluding that prun-

ing under 40% of code snippets with extra 4
examples included can take great advantage of
the intelligence of LLM to contribute to perfect
class-level code generation.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), code generation from natural language
descriptions has seen significant progress in recent
studies(Kang et al., 2023a,b; Vikram et al., 2023).
Researchers have developed numerous LLMs, such
as SantaCoder(Allal et al., 2023), InCoder(Fried
et al., 2023), StarCoder(Li et al., 2023), GPT-
4(OpenAl, 2024), Instruct-CodeGen(Yuan et al.,
2023), Instruct-StarCoder(Du et al., 2024), and
CodeBERT(Feng et al., 2020a), all targeting code
generation by training on vast quantities of general
code corpus.These state-of-the-art models have im-
pressive capacities, capable of handling up to 2048
tokens with WizardCoder(Luo et al., 2023) and
8192 tokens with GPT-4(OpenAl, 2024). However,
the prevalent use of LLMs to generate short, inde-
pendent code snippets underutilizes their potential,
particularly in handling complex class-level code
generation tasks(Qin et al., 2024).

Current approaches often focus on generating short
code snippets with limited tokens, which fails to
leverage the full capacity of modern LLMs. De-
spite their advanced capabilities, these models are
often restricted by input length limitations, posing
a challenge for generating longer, more complex
code structures. The introduction of the ClassEval
benchmark(Du et al., 2023) aims to address this by
targeting class-level code generation with longer
and interdependent code snippets. However, man-
aging overlong inputs remains a critical concern,
as every LLM has inherent limitations on input
length.

Pruning strategies are essential for managing long
input code snippets(Lu and Debray, 2012), yet ex-
isting methods have limitations. Traditional code

pruning methods, often based on delta debugging
prototypes(Zeller and Hildebrandt, 2002), require
auxiliary deep models(Rabin et al., 2021; Suneja
et al., 2021), making them complex and resource-
intensive. Effective pruning must balance trimming
excessive tokens while preserving essential seman-
tic and structural information. This is particularly
challenging in class-level code generation, where
dependency and contextual information are crucial.
This paper introduces an attention-guided prun-
ing strategy, leveraging the attention mecha-
nism(Bahdanau et al., 2016) from CodeBERT to
selectively prune tokens from input prompts. By
trimming 10%, 20%, 30%, and 40% of input to-
kens, the strategy allows for the inclusion of more
ground-truth code generation examples, thereby en-
riching the prompt. Experiments conducted with
GPT-3.5 on the ClassEval benchmark demonstrate
the strategy’s effectiveness, showing improved per-
formance in class-level code generation tasks. The
attention-guided pruning method consistently out-
performs random pruning, maintaining stable per-
formance with minimal information loss when
pruning up to 40% of tokens. Our results indi-
cate advancements ranging from 4.2% to 13% in
PassQF evaluations, highlighting the strategy’s
potential in enhancing LL.M’s code generation ca-
pabilities. However, it also underscores the greater
complexity of class-level code generation com-
pared to method-level tasks due to higher depen-
dency and contextual requirements.

The key contributions of this paper are as follows.

* Pruning Strategy. We propose the simpli-
fication strategy of LLM’s prompt, named
attention-guided strategy.

* Efficacy on LLM’s code generation. This
simplification method optimizes the length of
prompts for contextual learning in large lan-
guage models, allowing them to encounter
richer contextual scenarios. Consequently,
this enhancement improves the effectiveness
of class-level code generation.

* Open Source. We have open-sourced all the
code on https://zenodo.org/records/11640097,
making it available for subsequent research to
facilitate deeper replication and further explo-
ration.

2 Background

In this section, we introduce the recent state-of-
the-art LLMs for code generation. We introduce

the benchmarks for code generation and focus on
class-level benchmark ClassEval in Appendix A.

2.1 Large Language Models for Code
Generation

Code generation is a classical task in computer
science which is to construct code snippets with
description in the human beings natural languages
and is nowadays been widely studied(Kang et al.,
2023a,c; Vikram et al., 2023). The recent LLMs,
pre-trained by large quantities of text corpora with
enormous number of parameters, achieve fantastic
performances in various NLP tasks (Chang et al.,
2024; Clark et al., 2020; Lample and Conneau,
2019) including code generation, such as: Chat-
GLM(Du et al., 2021) and the well-known GPT-
4(OpenAl, 2024). The prevalent LLM, GPT-4,
outperforms other models on HumanEval bench-
mark(Luo et al., 2023), and it achieves the highest
correctness score among other ten models on Clas-
sEval benchmark(Du et al., 2023). Hence, more
and more researchers tend to exploit the LLMs
to accomplish code generation tasks(Chen et al.,
2021; Shen et al., 2023). The code LLMs, which
are pre-trained by plenty of code snippets on pur-
pose, have stronger capacity than general LLM in
code generation tasks(Luo et al., 2023; Zan et al.,
2023; Christopoulou et al., 2022). From now on, a
large number of code LL.Ms have been proposed
including CodeBERT(Feng et al., 2020b), Wiz-
ardCoder(Luo et al., 2023), Instruct-StarCoder(Du
et al., 2024), Instruct-CodeGen(Yuan et al., 2023),
etc. Specifically, we take CodeBERT into detailed
introduction. CodeBERT is a bimodal pre-trained
language model by semantic representation from
several programming languages(Feng et al., 2020b).
The trained capacity of CodeBERT can be utilized
to solve kinds of downstream tasks including code
search and code summarization accomplished in
(Feng et al., 2020b). It has been demonstrated that
CodeBERT has a great advantage on understanding
semantics of code snippets than other deep learn-
ing models such as code2vec(Alon et al., 2019) and
ASTNN(Zhang et al., 2019). It is an encoder on
Transformer(Vaswani et al., 2017) structure. With
pre-trained CodeBERT, we can adopt it to down-
stream tasks by fine-tuning.

Additionally, prompt(Liu et al., 2023b) is widely-
used to inspire LLM’s creativity and intelligence so
prompt engineering arouses researchers’ attention
recently aiming to craft a well-structured prompt
tailored to a LLM and execute predictions with

anticipated high performance. Prompt is poten-
tial to be well self-adapted, proposing alternative
prompts to elicit further information or generate as-
sociated artifacts(White et al., 2023). There are two
main prompt engineering tasks which are prompt
template engineering and prompt answer engineer-
ing(Liu et al., 2023a).

3 Method

As mentioned before, the more tokens we feed
into input, the much more capability of understand-
ing requirements the LLM will achieve and the
more exactly the LLM will respond to your re-
quests(Minaee et al., 2024). Every large-scale lan-
guage model is subject to input token length restric-
tions, such as GPT-4 with a limit of 8192 tokens
and GPT-3.5 with a limit of 4096 tokens. There-
fore, we wonder how to deliver input prompt into
LLMs as many as possible meanwhile the LLM
won’t return an exceeded maximum length error
back.

In this section, we introduce the pruning method
to prune input tokens delivered into LLMs. Our
principle is to remove some unimportant tokens
and statements from the input of LLM, however,
retain essential information of input. Meanwhile,
we can add more practical code examples into the
pruned short prompt leading LLM to produce a
exact code answer.

To be more specific, we define a code snippet
C = {t1;... : t|¢|} , consisting of |C| tokens. Our
goal is to produce a pruned code snippet C;, which
retains only the max limitation length of L LLM
input tokens.

3.1 Implementation Process

The work of this paper contributes to prompt prun-
ing in order to convey more code generation exam-
ples into LLM. And the prompt inspires the model
to produce more specific code snippet to pass the
more test cases. There are two main processes
in the entire implementation including the prompt
pruning and evaluate output code snippet produced
by LLM as depicted in Figure 1.

At the beginning of the implementation, we con-
struct the prompt as mentioned in Appendix B and
add as many code generation examples as possible
from ClassEval dataset into the prompt. These ex-
amples are composed in the form of input-output
pairs which are the instruction of code generation
as input and the ground truth code snippet as output.

Certainly, these examples do not contain desired
code snippet and are chosen randomly. Then, we
conduct the emphasis of the work to prune the
prompt to restrict the length under the limitations
of token numbers of certain LLM, specifically the
"GPT-3.5-turbo" model!, with the methods intro-
duced in Section 3. The maximum input token
numbers of "GPT-3.5-turbo" model is set to 4096,
in other words we have to prune the instruction part
and examples part of the prompt other than testing
part in Appendix B due to the consistency of the
LLM input.

The second process is to request LLM with temper-
ature of O for the stability of LLM’s output, namely
GPT-3.5-turbo, to generate the code solution snip-
pet for each input processed prompt. Finally, we
evaluate the fresh produced code snippet by calcu-
lating the metrics PassQ1,Pass@3 and PassQ5
as illustrated in Section 4.2.

Prompt
Construction Pruning
Class-level Dataset Prompt Pruned Prompt
mmm
- @
(/)

Output Code Snippet GPT

Figure 1: Implementation Process On Prompt Pruning
and Evaluation

3.2 Attention-guided Pruning

The frequency-based selection strategy actually dif-
ferentiates the common used tokens and uncom-
mon used ones with great effectiveness in pruning
input code tokens, while it doesn’t perform well in
choosing the input code tokens of great significance
and semantic meaningfulness. In order to prune
tokens with regard for the semantic importance of
each token, we introduce an attention-guided prun-
ing strategy that chooses input tokens from code
snippet based on the attention weights produced by
BERT model, such as: CodeBERT and etc. The
tokens with high attention are not exactly matching
the tokens which occur frequently, especially some

'GPT-3.5-turbo is an advanced large language model de-
veloped by OpenAl, which serves as an enhanced version of
the GPT-3 series. And it is suitable for a variety of natural
language processing tasks.

method or class names obtain high attention when
feed into BERT model while these tokens just ap-
pear several times in the code snippet.

Algorithm 1 displays the simplified code program-
ming process. Firstly, we generate the attention of
each input code token through the BERT model
according to the empirical studying. Then, we se-
lect tokens separated from input code prompt with
higher attention after acquiring the tokens and its
corresponding attention. The algorithm is divided
into two phases: generating tokens’ attentions and
selecting tokens. In the first phase of the above al-

Algorithm 1: Attention-guided Pruning
Notation:
e (= t1,ta, ..

-+ t)c) Input code snippet
e A;: Attention scores from the BERT model
o« Cp =11, ... ,t" ¢ Pruned code snippet
Procedure:

1. Generate attention scores
for each ti,ts, ...ty € C do
L output <— BERT(t1,to, ..., tm);

Aty it output.attentions;

2. Conduct 0-1 knapsack optimization
{t}iec, < 0-1 knapsack(values =
{A(t)iec},items = {t},cc, weights =
{[#[}sec capacity =
Model Input Length Limit);

3. Generate the final code snippet
Cp 1,15, ... ,t"co‘, where Cy € C;

gorithm, generating attention phase, first we divide
the input code snippet into input tokens which the
BERT model requires with the certain tokenizer.
Then we send several batches of input tokens into
BERT model and receive the output of the model,
and the each batch size m depends on the limita-
tion of the BERT model input length. Last, we
can extract the attention of each input token corre-
spondingly.

Second phase will contribute to the well-pruned
code snippet based on the attentions produced dur-
ing the first phase. We adapt a 0-1 backpack strat-
egy(Martello and Toth, 1987) to choose input to-
kens, where the separated input tokens can be con-
sidered as the items to be collected into the back-
pack, with the attention of each token being the

values, and the token numbers being the weights
because it is the number of tokens that really acts
when LLM preforms. Then chosen input code to-
kens will be detokenized into original input code
and concatenated into the pruned input code snip-
pet and finally the pruned input code snippet will
be sent into LLM which generates code we wanted
without exceeded input limitation error.

The time complexity of attention-guided pruning
algorithm is O(N * Lp), where Ly denotes the
target numbers of tokens. The cost of time mainly
owes to the 0-1 backpack algorithm. Additionally,
the 0-1 backpack algorithm demands to handle two-
dimensional array when programming dynamically,
costing space in memory.

4 EMPIRICAL STUDY

As mentioned before, we utilize the state-of-the-art
ClassEval benchmark to evaluate our methods of
class-level prompt engineering.

4.1 Models

In this work, our goal is to generate code in the
accordance with the processed prompt by means
of the method in Section 3, therefore we adopt the
prevalent GPT series models.

The core of GPT series models lies in the Trans-
former architecture(Ghojogh and Ghodsi, 2020),
a deep neural network framework renowned for
its proficiency in handling sequential data, particu-
larly in capturing long-range dependencies. Typi-
cally, GPT models consist of multiple Transformer
blocks, each comprising self-attention mechanisms
and feed-forward neural networks, stacked together
to form the entire model(OpenAl, 2024). The
uniqueness of GPT models lies in their pre-training
process. During pre-training, GPT models employ
unlabeled, large-scale text data for self-supervised
learning. By predicting the next token in a se-
quence task, GPT models learn semantic and syn-
tactic information from the text data, enabling
them to exhibit strong generalization capabilities
in downstream tasks. Masked language model-
ing is commonly employed as a pre-training task
for GPT models, which requires the model to pre-
dict masked tokens based on context. The two
most commonly used models are GPT-3.5 and
GPT-4 which just differ slightly in performance,
so we choose GPT-3.5 to generate the final output
code demanded by ClassEval benchmark. Table
1 presents the model we chose with their specific

Table 1: Expeimental Settings

Item Value
Model Name GPT-3.5-turbo-0613
Context Window 4096 Tokens
Temperature 0
parametres.

4.2 Metrics

To evaluate the output of LLMs, we adopt the
commonly-used Pass@k(Chen et al., 2021) metric
to measure the performance of LLMs, which calcu-
late the pass percentage of k£ generated code snippet
samples for each task. The calculation formula is:

il [~ (V)] 0

In Eq. 1, n stands for the total number of code
samples, c denotes the number of passed code sam-
ples, and k represents the number of samples cho-
sen from n code samples which is k£ in passQk.
In our work, although we pay more attention on
class-level code generation performance by LLMs,
we also take both the class-level Pass@Qk and
the method-level Pass@Fk into consideration with
class granularity and method granularity respec-
tively. The generated class-level code sample is
determined to be correct only if it has passed all
the method-level and class-level test cases.

For each method we test, we conducted sampling
to generate code samples and evaluate the per-
formance of each method by Pass@Qk with k =
{1,3,5}. We calculate the success rate of code
generation based on two kinds of Pass@k. The
first one, all success, indicates that the code snip-
pets generated in both attempts passed all test cases.
The second one, partial success, indicates that the
code snippets generated in one of the two attempts
passed all test cases without any exceptions or er-
rors. More details of implementation process are
displayed in Section 3.1.

Pass@k =

4.3 Baselines

In this section, we introduce the baseline experi-
ments. To perform a strong and effective validation,
the baselines are conducted under the same imple-
mentation pipeline as depicted in Section 3.1.

The first experiment we conduct, compared with
the pruning strategy we propose, is few-shot learn-
ing of LLM without pruning. Compared with the

experiments we test out pruning strategy, this base-
line is conducted under the process depicted in Fig-
ure 1 without the pruning process. In other words,
the prompt constructed from the ClassEval dataset
is directly fed into GPT. Furthermore, the prompt
includes only a single code generation example in
its examples part as described in Appendix B.

The second baseline experiment is conducted for
ablation study, named random pruning. This base-
line experiments are completely conducted under
the implementation same as the process depicted
in Figure 1. The core of this experiments to be
conducted is to prune stochastically the generated
prompt from ClassEval dataset with certain stochas-
tical distribution. This experiment is designed to
demonstrate whether our proposed strategy is effec-
tual when pruning for this experiment also conduct
prompt pruning but with random.

4.4 Experiment Settings

To validate the effectiveness of our method,
we tested the effects of the strategy under the
same baseline while ensuring consistent external
conditions for each strategy, including LLM
hyperparameters, the number of experiments,
and other factors. To simplify the complexity
of our experiments, we utilized the ClassEval
benchmark, as it is the most comprehensive for
class-level code generation, featuring a class-level
dataset, pipeline, and evaluation framework. In our
work, we take all 100 class -level code generation
tasks in ClassEval into experiments. The prompt
consists of examples in the form of input-output
pairs which are the instruction as input and the
ground truth code snippet as output. In addition,
the desired code snippet does not emerge in
those examples, chosen stochastically, in the
prompt. With several tries of pruning tokens from
prompt, we find that pruning over 40% tokens can
destroy both semantics and structure of prompt
and the prompt just contains some meaningless
and unrelated tokens. Therefore the the pruning
strategy is tested with the set of prune percentages:
10%, 20%, 30%, and 40% which averagely supply
4 code generation examples to the prompt. For
the attention-based pruning strategy, we used
the CodeBERT model with default parameters
to generate specific attention values and set the
window length to 500 tokens.

During the code generation phase, we employed the
GPT-3.5 model from the GPT series, specifically
using the official model name GPT-3.5-turbo-0613,

with a temperature setting of 0.

5 Results

5.1 Opverall Evaluation Accuracy

Through the above experiments, the attention-
guided strategy performs really well on class-level
code generation especially when the pruning pro-
portion is 10% to 30%. Figure 2 shows the class-
level and method-level Pass@1 of LLM, GPT-
3.5-turbo, on ClassEval benchmark by pruning
prompt. Considering space limits, we just present
the class-level Pass@1 and, certainly, method-
level Pass@1 with attention-guided pruning strat-
egy. Table 2, 3, 4, 5 present the evaluation results,
PassQk, of both the class-level generation and the
method-level generation with nucleus sampling®
on ClassEval benchmark by means of the pruning
algorithm. Those tables present the strategy we
propose, the ablation study and few-shot experi-
ments without pruning which generates code snip-
pets with one example fed into the LLM without
any pruning. As indicated in tables, the achieved
results are presented in the form of "A/B", where A
represents the Pass@Fk when each generated exam-
ple passes through all test cases, while B represents
the Pass@Qk when the generated examples only
satisfy a subset of the test cases in the ClassEval
benchmark. In accordance with Figure 2 and Table
2,3,4,5, we have the following observations.

Comparison among pruning quantities. As
shown in Figure 2, it is obvious to conclude that
LLM performs similarly when we prune a little
fraction of input prompt at the range of percent-
age from 10% to 30%. The Class-level PassQk
is around 8.7% and the method-level PassQF sta-
bilises at around 20.1% with the max difference
of 0.5% and 1.3% respectively. This is mainly be-
cause we feed as many examples as possible into
the input prompt when cutting some tokens out.
Therefore, the LLM reserves the enough under-
standing of the input prompt and obtains abundant
code generation information from the input prompt
even pruned. However, the LLM performs inferior
when the pruning percentage of input prompt aug-
ments to 40% with the only Pass@F of Class-level
and Method-level, 3.4% and 10.4% respectively.

*Nucleus sampling is also known as top-p sampling. By
selecting the next token from a subset of top-probability to-
kens, it ensures the generated content is both coherent and
contextually rich.

The sharp declination of the LLM performance
is on account of the excessive pruning of the in-
put prompt which contributes to the destruction of
prompt semantics, misunderstanding the LLM to
generate code snippets casually.

Finding 1: The performance of both method-
level and class-level code generation stabilizes
when pruning the input prompt of LLM in a
small portion mainly because of its structural
integrity and appended extra examples. In ad-
dition, pruning really works in code generation
tasks compared to the few-shot learning with-
out pruning. Whereas huge amount of prompt
pruning destroys the basic structure of input
prompt and limits the intelligence of LLM to
generate code as wanted which causes the lower
Pass@Fk. These findings indicate that it is un-
necessary to pay more attention on pruning
quantities of input prompt tokens.

206 s = class-level
20% method-level
18.5

8.6 i 8.4

0% 10% 20% 30% 40%
(Zero-shot Baseline)
Pruning Percentage

Figure 2: Pass@ I on ClassEval with Attention-guided
Pruning

5.2 Ablation Study and Analysis

We conduct ablation study with the simplest and
most straightforward strategy, the lexical exclu-
sion, which randomly selects some tokens from
initial code snippet C), and drop them out to meet
the input length limitation of LLM. For every to-
ken t € T, we define the variable p,, to imply
whether the token chosen will be kept(r,, = 1)
or dropped(r,, = 0) which follows the Bernoulli
distribution:

rw ~ Bernoulli(p)

2

Cp = {w|w € Candr,, > 0} @

where p = L/|Clis the probability of choosing a
token from the code snippet. From the above equa-
tion, lexical exclusion has been proved to be robust

Table 2: Pass@k of Code Generation by Pruning Strategy with 20% Reduction

Class-level Method-level
Experiments All Success/Partial Success All Success/Partial Success
P Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Few-shot Without Pruning 4%17.0% 9%/16.5% 10%/20% | 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 6%/10.8% 153%/27.0% 21%/36% | 15.0%/19.7% 36.6%/47.9% 47.4%/61.2%
Attention-guided Pruning | 9.2%/17.0% 22.2%/40.8% 28%/51% | 21.4%/26.9% 50.2%/63.1% 60.2%/75.7%
Class-level Pass@1 for Three Strategies Class-level Pass@3 for Three Strategies Class-level Pass@5 for Three Strategies
e =N gof | 25 I =S
% 6 e \\\\ f(é’ 15 - \\\ % 20 e \\\\
8, — N g . &5 T AN AN
I Fe e I by - B u i § N (B
82 Frequency-based Selection =y 85 Frequency-based Selection T - Frequency-based Selection
© ol Attention-guided Pruning © —— Attention-guided Pruning © . —— Attention-guided Pruning
Qo\o Qu\e Qn\e Qu\e Qe\e Qu\e Qu\e Qu\e oa\c Qu\e Qu\e Qu\e
> v » ™ -~ v) » ~ v) o
Pruning Percentage Pruning Percentage Pruning Percentage
(a) Pass@1 (b) Pass@3 (c) Pass@5

Figure 3: Class-level Results of Three Strategies

to diverse networks and models, meanwhile it could
prune input tokens exceeding max length limitation
effectively. With the same implementation process
described in Section 3.1, lexical exclusion is con-
ducted as the ablation study for its random choices
of tokens from input prompt. Through compari-
son between their results, it is clear whether the
attention-guided strategy is actually effective.
After conducting the above ablation study, we take
this study and the attention-guided strategy into
comparison. Table 2, 3, 4 present the performance
of the prompt pruning strategy introduced in Sec-
tion 3 with the proportion of pruning from 10% to
40% under two generation strategies, class-level
and method-level, on ClassEval benchmark. Based
on results presented in these tables, the pruning
strategy deliver quite great performances on LLM
code generation.

Ablation study results show that attention-
guided pruning strategy works well. On the one
hand, the attention-guided pruning strategy achieve
the better performance of both the class-level and
method-level generation, when the pruning percent-
age is lower than 40% leading to the effective input
prompt as explained before (i.e., the improvements
in all-success class-level generation range from
1.4% to 4.2% on Pass@Q1, from 3.3% to 10.2%
on Pass@3 and from 4% to 13% on Pass@5). In
addition, the attention-guided pruning strategy re-
mains better or approximate performance than ran-
dom pruning on method-level generation(i.e., the
improvements up to 6.5% on Pass@1, up to 13.6%
on Pass@3 and up to 16.4% on Pass@5). Even
though the pruning percentage comes up to 40%,

the attention-guided pruning still remains good per-
formance on code generation. The main reason of
the advantages of attention-guided pruning strategy
lies in two aspects.

Firstly, attention-guided strategy focuses on each
token of input prompt rather than an entire word
or statement as illustrated in Section 3.2. There-
fore, attention-guided strategy takes the smaller
granularity of input prompt into consideration com-
pared to the ablation study, which avoids conduct-
ing prompt roughly. As two examples depicted
in Figure 5, there are some meaningless tokens
like "_" are pruned under strategy we propose as
well as some tokens can be inferred from the con-
text like "item". Additionally, the tokens we con-
ducted through attention-guided pruning strategy
are generated from certain tokenizers and the LLM
recognizes the input text practically in this perspec-
tive. Therefore pruning tokens from input prompt
is an advanced manner resulting in awesome per-
formance of the attention-guided strategy.
Secondly, it is attention of input tokens that
attention-guided pruning strategy really concerns
with. The attention is produced by CodeBERT
model through delivering the batch by batch con-
text of input prompt into BERT model. Therefore,
the attention value represents the significance of
corresponding token amid the context. The higher
a token’s corresponding attention value is, the more
semantically meaningful the token is and the more
necessary it is to contribute to the understanding
of LLM on code generation. In other words, the
attention value is kind of measure scale on the im-
portance of its corresponding token in model’s view.

Finding 2: Attention-guided pruning strategy
is the effective pruning strategy we proposed
at the certain pruning percentage. This strategy
performs well on code generation task mainly
because of the small granularity of pruning and
the contextual consideration related to the atten-
tion score which generated from CodeBERT.

Comparing Class-level code generation and
Method-level code generation. As depicted in
Figure 2, both the class-level code generation and
the method-level generation performs well espe-
cially when the pruning percentage is under 40%
for it causes huge damage in prompt semantics.
Specifically, the method-level generation and the
class-level generation performs best when prun-
ing 20% input prompt tokens on ClassEval bench-
mark, which Pass@1 is 21.4% and 9.2% respec-
tively. Even with the pruning percentage set as
high as 40%, the accuracy performance is sustained
at 10.4% for class-level generation and 3.4% for
method-level generation. However, on the one
hand, the improvement at Pass@k in the class-
level code generation is not equivalent to an equal
improvement in the method-level experimental re-
sults. It is because a certain improvement in class-
level code tasks means several methods in this class
performs well. Therefore a little improvement in
class-level code generation task is of great signifi-
cance which means several methods are improved
through certain strategy. It can be concluded that
the method-level code generation has a better per-
formance Pass@Fk than the other one according
to the Table 2, 3, 4, 5 does not mean our strategy
is more suitable for method-level code generation
tasks.

On the other hand, improvements of Pass@Fk in
class-level code generation can lead to higher im-
provements in method-level code generation tasks,
because a class passing all test cases implies that
every method within the class successfully passes
all corresponding cases in method-level tasks. A
4.6%, 5.2%, and 4.4% increase in the final class-
level results contribute to a 7.6%, 8.4%, and 5.8%
increase in the final method-level results, respec-
tively. It is the improvements in class-level code
generation tasks that really make sense in our code
generation tasks which take contextual information
into consideration.

Finding 3: A large difference lying between
the class-level code generation and the method-
level code generation is the complexity in a
class including a large number of methods
and, most importantly, the context and relation
among methods in a class. Improvements in
class-level code generation tasks are of signifi-
cance and can result in the larger improvements
in method-level code generation. Through prun-
ing strategy we proposed class-level code gen-
eration performs great improvements leading to
method-level tasks’ improvements either.

6 conclusion

This work proposes a novel attention-guided prun-
ing strategy for tackling challenging class-level
token-level code generation, where attention is
used to optimise LLMs’ input prompts. We report
experiments on the challenging ClassEval bench-
mark code generation tasks, where our attention-
guided pruning outperforms random pruning on
class-level code generation when pruning less than
40% of tokens from inputs. Taking advantage of
the context and focusing on the fine-grained token-
level adjustment demonstrates that attention-guided
pruning is significantly better than random pruning
for both class-level and well-studied method-level
code.

Our results illustrate the potential of attention-
guided pruning to boost the performance of LLM:s.
Future work will continue to evaluate the appli-
cation of this approach under various program-
ming languages and more diverse coding con-
texts, and develop a reliable system that effectively
utilises pruning in delivering code, both human-
and machine-sounding, efficiently.

7 Limitations

This paper proposes an attention-guided prompt
pruning strategy and demonstrates through experi-
ments its efficacy in enabling large language mod-
els (LLMs) to generate desired class-level code
with validated accuracy. However, there are sev-
eral limitations to this study. Firstly, the study
employs only the ClassEval benchmark dataset for
code generation and evaluation, without applying
and testing the proposed strategy on other class-
level datasets. Secondly, the evaluation metric used
is PassQFk, without conducting subjective manual
assessments from a programmer’s perspective on

class-level code generation. Lastly, this work uti-
lizes only GPT-3.5 for class-level code generation,
lacking validation of the strategy’s generalizabil-
ity across various state-of-the-art LLLMs. These
aspects will be potential directions for future re-
search.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo Garcia del Rio, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
Santacoder: don’t reach for the stars! Preprint,
arXiv:2301.03988.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2016. Neural machine translation by
jointly learning to align and translate. Preprint,
arXiv:1409.0473.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2024. A survey on evaluation of large language mod-
els. ACM Trans. Intell. Syst. Technol., 15(3).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Fenia Christopoulou, Gerasimos Lampouras, Milan
Gritta, Guchun Zhang, Yinpeng Guo, Zhongqi Li,
Qi Zhang, Meng Xiao, Bo Shen, Lin Li, Hao Yu,
Li Yan, Pingyi Zhou, Xin Wang, Yuchi Ma, Ignacio
Tacobacci, Yasheng Wang, Guangtai Liang, Jiansheng
Wei, Xin Jiang, Qianxiang Wang, and Qun Liu. 2022.
Pangu-coder: Program synthesis with function-level
language modeling. Preprint, arXiv:2207.11280.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. Preprint,
arXiv:2308.01861.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,
Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1-13.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. All
NLP tasks are generation tasks: A general pretraining
framework. CoRR, abs/2103.10360.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020a. Code-
bert: A pre-trained model for programming and natu-
ral languages. CoRR, abs/2002.08155.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020b. Code-
bert: A pre-trained model for programming and natu-
ral languages. Preprint, arXiv:2002.08155.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
Preprint, arXiv:2204.05999.

Benyamin Ghojogh and Ali Ghodsi. 2020. Attention
mechanism, transformers, bert, and gpt: tutorial and
survey.

Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang
Lou. 2023a. Explainable automated debugging via
large language model-driven scientific debugging.
Preprint, arXiv:2304.02195.

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2304.02195
https://arxiv.org/abs/2304.02195
https://arxiv.org/abs/2304.02195

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023b.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. Preprint,
arXiv:2209.11515.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023c.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 2312-2323.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muifioz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you! Preprint, arXiv:2305.06161.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.
Improving chatgpt prompt for code generation. arXiv
e-prints, pages arXiv—2305.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Gen Lu and Saumya Debray. 2012. Automatic simpli-
fication of obfuscated javascript code: A semantics-
based approach. In 2012 IEEE Sixth International
Conference on Software Security and Reliability,
pages 31-40. IEEE.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

Silvano Martello and Paolo Toth. 1987. Algorithms
for knapsack problems. North-Holland Mathematics
Studies, 132:213-257.

10

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. Preprint, arXiv:2402.06196.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu,
Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S. Yu. 2024. Large language models
meet nlp: A survey. Preprint, arXiv:2405.12819.

Md Rafiqul Islam Rabin, Vincent J. Hellendoorn, and
Mohammad Amin Alipour. 2021. Understanding
neural code intelligence through program simplifica-
tion. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE *21. ACM.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang
Wang. 2023. Pangu-coder2: Boosting large language
models for code with ranking feedback. Preprint,
arXiv:2307.14936.

KR Srinath. 2017. Python—the fastest growing program-
ming language. International Research Journal of
Engineering and Technology, 4(12):354-357.

Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Laredo,
and Alessandro Morari. 2021. Probing model signal-
awareness via prediction-preserving input minimiza-
tion. Preprint, arXiv:2011.14934.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Vasudev Vikram, Caroline Lemieux, and Rohan Pad-
hye. 2023. Can large language models write good
property-based tests? Preprint, arXiv:2307.04346.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. Preprint, arXiv:2302.11382.

Zhigiang Yuan, Junwei Liu, Qiancheng Zi, Ming-
wei Liu, Xin Peng, and Yiling Lou. 2023. Eval-
uating instruction-tuned large language models on
code comprehension and generation. arXiv preprint
arXiv:2308.01240.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-
Guang Lou. 2023. Large language models meet
nl2code: A survey. Preprint, arXiv:2212.09420.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying
and isolating failure-inducing input. /EEE Transac-
tions on software engineering, 28(2):183-200.

https://arxiv.org/abs/2209.11515
https://arxiv.org/abs/2209.11515
https://arxiv.org/abs/2209.11515
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2405.12819
https://arxiv.org/abs/2405.12819
https://arxiv.org/abs/2405.12819
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/3468264.3468539
https://arxiv.org/abs/2307.14936
https://arxiv.org/abs/2307.14936
https://arxiv.org/abs/2307.14936
https://arxiv.org/abs/2011.14934
https://arxiv.org/abs/2011.14934
https://arxiv.org/abs/2011.14934
https://arxiv.org/abs/2011.14934
https://arxiv.org/abs/2011.14934
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2307.04346
https://arxiv.org/abs/2307.04346
https://arxiv.org/abs/2307.04346
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783-794. IEEE.

A ClassEval Benchmark and Class
Skeleton in ClassEval

A benchmark typically encompasses various NLP
tasks, and likewise, a code benchmark requests a
natural language description of the task and pro-
vides the ground truth code snippet as output. Clas-
sEval benchmark(Du et al., 2023) is one such code
benchmark designed specifically for class-level
code generation. This benchmark comprises con-
structed class skeletons, test suites, and canoni-
cal solutions, collectively forming the ClassEval
class-level code generation benchmark(Du et al.,
2023). All 100 class-level code tasks within Clas-
sEval were manually constructed in Python due
to its prevalence (Srinath, 2017) incurring nearly
500 person-hours of effort. These class-level code
generation tasks encompass practical programming
scenarios prevalent in industry and are derived from
three sources. Firstly, they draw upon the prece-
dent of code tasks from previously proposed bench-
marks such as HumanEval(Luo et al., 2023) and
MBPP(Austin et al., 2021). Secondly, they lever-
age the Python Package Index (PyPI), which houses
a vast array of Python development packages that
can be used to design various code tasks manu-
ally. Thirdly, they are shaped by the insights of
experienced programmers with 2-8 years of Python
development experience.

To streamline the construction of test suites, Clas-
sEval adopts the widely-used unittest framework
of Python along with diverse assertion APIs. For
class-level benchmarking, ClassEval test cases en-
compass all methods within a class, ensuring that
each method is invoked at least once during testing.
A notable feature of the ClassEval benchmark is the
design of the class skeleton format, as illustrated in
Figure 4. The manual skeleton structure has been
carefully crafted based on the consensus of expe-
rienced authors, adhering to four key principles:
dependency, class constructor, method functional-
ity, and method parameter and return value.

11

import logging
import datetime

class AccessGatewayFilter: Class Name

def __init__ (self):

pass

Class Constructor

def filter(self, request): Method Signature

:param request: dictionary, the incoming request Parameters and

details Return
:return: bool, True if the request is allowed, False.
Otherwise
>>> filter = AccessGatewayFilter() Method Invoking
>>>filter.is_start with('/api/data’)
True™"

def is_start_with(self, request_uri): Method Signature

Parameters and

:param request_uri: str, the URI of the request\n

:return: bool, True if the URI starts with certain. Return
prefixes, False otherwise
>>> filter = AccessGatewayFilter()

>>> filter.is_start_with('/api/data’)

Method Invoking

True™"

Figure 4: An Example of Class Skeleton in ClassEval

B Prompt Design

Then we describe the designation of the original
prompt without pruning in the class-level code gen-
eration task. The prompt can be divided into three
parts as follows:

* Instruction
The instruction part is the core of the whole
input prompt, which contains the name and
skeleton of the target code. Here is the con-
struction of the instruction part with the name
and skeleton of the ground truth class.

Please complete the class ${Class
Name} in the subsequent code. ${Class
Skeleton}

* Examples
As mentioned in Section 2, we feed examples
into the input prompt as many as possible in
order to lead LLMs to better understanding of
code generation. In this way, the Examples
part is necessarily contained with the longest
length of the three parts. Our pruning strategy
is conducted in this part to shorten the whole
length of the prompt. The following is the

sample of an example, which the whole exam-
ples’ part consists of several diverse examples
from ClassEval benchmark dataset. Certainly,
each example contains instruction part, simi-
lar as presented before, and solution part from
ClassEval benchmark dataset.

Example n:

Please complete the class ${Example
Class Name} in the following code.
${Example Class Skeleton} //To be
pruned.

The solution is:

${Example Class Solution} //To be
pruned.

Testing

The testing part is the final prompt fed into
LLM with the required class skeleton and ex-
amples of code generation. The ultimate struc-
ture of the input prompt is shown as follows:

#You are an expert programmer.Here
are some coding examples, you can
learn from these examples:

Example 1:

Please complete the class xxx in the
following code.

class samplel :

defmi(pl,...):

‘d.e.fmZ(tI,. o)l

#Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

Instruction:

class xxx: // Required class
defmi(pl,...):

// Method Introduction

def m2(tl,...):

// Method Introduction

Response:

C Attention-guided Pruning Visualization

As presented in the paper, attention-guided pruning
performs effectively in class-level code generation.

12

Below, we visually demonstrate the effect of the
attention-guided pruning strategy on an initial class
within the ClassEval benchmark dataset. The two
images of Figure 5a and 5c show the original code
of the class examples we selected from the Clas-
sEval dataset. The two images Figure 5b and 5d
display the code after applying the aforementioned
attention-guided pruning strategy. We set the prun-
ing percentage to 20% (our previous results indi-
cate that pruning 20% of the code tokens achieves
the best performance with Attention-guided prun-
ing). As shown in Figure 5, the attention-guided
pruning strategy indeed removes some tokens, but
essentially retains the structure of the original class.
Pruned by our proposed strategy, the prompt still in-
cludes the class name, method names, and method
signatures. Specifically, some meaningless tokens
like "_" in methods name, some tokens can be eas-
ily inferred from context like "item" and other un-
necessary symbols like "*" are pruned according
to Figure 5 in red lines. As we can see, the pruned
class remains almost complete semantics which
are "to manage shopping items, their prices, quan-
tities, and allows to for add, remove, view items,
and calculate the total price" and "to calculate the
area of different shapes, including circle, sphere,
cylinder, sector and annulus" respectively in Fig-
ure 5b and 5d. Also it remains the main structure
of the original class. This is mainly because the
attention-guided pruning strategy is based on the
LLM’s understanding of the text, specifically the
attention mechanism, to perform the pruning.

D Experiment Results on Different
Pruning Proportion

This section presents, Table 3,4,5, the other results
of our experiments of both the class-level gener-
ation and the method-level generation which the
pruning proportions are 10%, 30% and 40%.

Table 3: Pass@k of Code Generation by Pruning Strategy with 10% Reduction

Class-level Method-level
Experiments All Success/Partial Success All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Few-shot Without Pruning 4%I17.0% 9%/16.5% 10%/20% 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 5.6%/11.2% 13.5%/27.0% 17%/34% 15.8%/21.0% 38.4%/50.6% 49.0%/63.7%
Attention-guided Pruning | 8.6%/16.7% 21.4%/39.2% 28.6%/47.3% | 20.6%/26.5% 48.9%/62.3% 60.1%/74.9%

Table 4: Pass@k of Code Generation by Pruning Strategy with 30% Reduction

Class-level Method-level
Experiments All Success/Partial Success All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Few-shot Without Pruning 4%/7.0% 9%/16.5% 10%/20% | 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 4.2%17.6% 10.2%/183% 13%/23% | 13.3%/189% 31.7%/44.9% 39.0%/55.0%
Attention-guided Pruning | 8.4%/15.6% 20.4%/37.5% 26%/47% | 18.8%/23.3% 44.9%/55.6% 55.4%/68.5%

Table 5: Pass@k of Code Generation by Pruning Strategy with 40% Reduction

Class-level Method-Ievel
Experiments All Success/Partial Success All Success/Partial Success
P Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Few-shot Without Pruning | 4%/7.0% 9%/16.5% 10%/20% | 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 2%/4.6% 5.4%/11.4% 8%/15% 11.1%/16.0% 27.43%/38.2% 35.3%/47.4%
Attention-guided Pruning | 3.4%/7.0% 8.7%/17.4% 12%/23% | 10.4%/14.9% 25.9%/36.3% 34.1%/46.6%
class ShoppingCart: class ShoppingCart:
def __init__(self): def __init_ (self):
self.items = {} self.items = {}
def (add@item(self, item, price, quantity=1): def (additem(self, item, price, quantity=1):
if @tem in self.items: if in self.items:
selffitems[item] = {'price': price, 'quantity': quantity} self.[item] = {'price': price, 'quantity': quantity}
else: else:
self.@tems[item] = {'price': price, 'quantity': quantity} self.[item] = {'price': price, 'quantity': quantity}
def remove_item(self, d@tem, quantity=1): def removeitem(self, , quantity=1):
if (item in self.items: if in self.items:
self.@tems[item] ['quantity'] -= quantity self.[item] ['quantity'] -= quantity
else: else:
pass pass
def wiewliitems(self) —> dict: def @iewWitems(self) —> dict:
return self.items return self.items
def (totalliprice(self) — float: 16 def tutalhrice(self) —> float:
17 return sum([item['quantity'] * item['price'] for @tem in return sum([item['quantity'] *x ['price']l for in self.items.
self.items Malues()]) On
(a) Original Class 1 (b) Class 1 After Attention-guided Pruning
import math import math
class AreaCalculator: class AreaCalculator:
def __init__ (self, radius): def __init_ (self, radius):
self.radius = radius self.radius = radius
def calculate_circle_area(self): def calculate_circle_area(self):
return math.pi * self.radius *x 2 return math. *x self.radius **x 2
def calculatelsphere_area(self): def calculatehere_area(self):
return 4 x math.pi x self.radius %k 2 return 4 * math. * self.radius *x 2
def calculaté_cylinder_area(self, height): def calculatecylinder_area(self,):
return 2 x math.pi * self.radius & (self.radius +(height) return 2 * math. * self.radiusself.radius +)
def calculate_sector_area(self, angle): def calculatearea(self, angle):
return self.radius *x 2 @& angle @/ 2 return.radius *x 2(angle 2
def calculate_annulus_area(self, inner_radius, outer_radius): def calculateann(self, innerradius, outerradius):
14 return math.pi® (outer_radius sk 2(= inner_radius & 2) 14 return math. (outerradius ** 2 innerradius)

(c) Original Class 2

(d) Class 2 After Attention-guided Pruning

Figure 5: Two pairs of examples of original class(left) and pruned class(right) by attention-guided pruning

13

	Introduction
	Background
	Large Language Models for Code Generation

	Method
	Implementation Process
	Attention-guided Pruning

	EMPIRICAL STUDY
	Models
	Metrics
	Baselines
	Experiment Settings

	Results
	Overall Evaluation Accuracy
	Ablation Study and Analysis

	conclusion
	Limitations
	ClassEval Benchmark and Class Skeleton in ClassEval
	Prompt Design
	Attention-guided Pruning Visualization
	Experiment Results on Different Pruning Proportion

