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Abstract001

Recently, many large language models (LLMs)002
have been proposed, showing advanced pro-003
ficiency in code generation. Such generation004
focuses on generating independent and often005
method-level code, thus leaving it unclear how006
LLMs perform in generating more complicated007
tasks. To fill this research gap, researchers have008
studied to construct prompt to achieve good009
performance in complicated code generation,010
i.e., class-level code generation, and they have011
launched a corresponding benchmark, ClassE-012
val, on generating and evaluating class-level013
code. However, the obvious difficulty of class-014
level code generation prompt construction lies015
in that class-level prompt has longer texts than016
those of method-level code generation, and at017
the same time the input length of the released018
models always has a limitation, such as: GPT-019
3.5 and GPT-4 with 4096 tokens and 8192 to-020
kens limitations respectively.021
Therefore, it is important to research how to022
construct the class-level prompt by pruning023
some code tokens. Through the pruning strat-024
egy, we add more code examples into prompt025
to deliver as many semantic information as pos-026
sible to LLMs. We introduce a new pruning027
strategy, namely attention-guided strategy, to028
this research point. By this pruning strategy,029
we conduct experiments on code generation by030
GPT-3.5, a kind of LLM proved to achieve ex-031
cellent performance on generation tasks. In our032
work, we adopt ClassEval benchmark dataset033
specialized for class-level code generation to034
conduct our experiments. Additionally, we035
evaluate the strategy both in method-level and036
class-level metrics, finding that this pruning037
strategy is effective to prune appropriate tokens038
for LLM to generate class-level code. Above039
all, attention-guided strategy outperforms the040
randomly pruning strategy with 4.2%, 10.2%041
and 13% higher class-level code generation ac-042
curacy by LLM. We also analyze the impact of043
the quantity of code reduction on the quality of044
code generation in LLM, concluding that prun-045

ing under 40% of code snippets with extra 4 046
examples included can take great advantage of 047
the intelligence of LLM to contribute to perfect 048
class-level code generation. 049

1 Introduction 050

With the rapid advancement of large language mod- 051

els (LLMs), code generation from natural language 052

descriptions has seen significant progress in recent 053

studies(Kang et al., 2023a,b; Vikram et al., 2023). 054

Researchers have developed numerous LLMs, such 055

as SantaCoder(Allal et al., 2023), InCoder(Fried 056

et al., 2023), StarCoder(Li et al., 2023), GPT- 057

4(OpenAI, 2024), Instruct-CodeGen(Yuan et al., 058

2023), Instruct-StarCoder(Du et al., 2024), and 059

CodeBERT(Feng et al., 2020a), all targeting code 060

generation by training on vast quantities of general 061

code corpus.These state-of-the-art models have im- 062

pressive capacities, capable of handling up to 2048 063

tokens with WizardCoder(Luo et al., 2023) and 064

8192 tokens with GPT-4(OpenAI, 2024). However, 065

the prevalent use of LLMs to generate short, inde- 066

pendent code snippets underutilizes their potential, 067

particularly in handling complex class-level code 068

generation tasks(Qin et al., 2024). 069

Current approaches often focus on generating short 070

code snippets with limited tokens, which fails to 071

leverage the full capacity of modern LLMs. De- 072

spite their advanced capabilities, these models are 073

often restricted by input length limitations, posing 074

a challenge for generating longer, more complex 075

code structures. The introduction of the ClassEval 076

benchmark(Du et al., 2023) aims to address this by 077

targeting class-level code generation with longer 078

and interdependent code snippets. However, man- 079

aging overlong inputs remains a critical concern, 080

as every LLM has inherent limitations on input 081

length. 082

Pruning strategies are essential for managing long 083

input code snippets(Lu and Debray, 2012), yet ex- 084

isting methods have limitations. Traditional code 085
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pruning methods, often based on delta debugging086

prototypes(Zeller and Hildebrandt, 2002), require087

auxiliary deep models(Rabin et al., 2021; Suneja088

et al., 2021), making them complex and resource-089

intensive. Effective pruning must balance trimming090

excessive tokens while preserving essential seman-091

tic and structural information. This is particularly092

challenging in class-level code generation, where093

dependency and contextual information are crucial.094

This paper introduces an attention-guided prun-095

ing strategy, leveraging the attention mecha-096

nism(Bahdanau et al., 2016) from CodeBERT to097

selectively prune tokens from input prompts. By098

trimming 10%, 20%, 30%, and 40% of input to-099

kens, the strategy allows for the inclusion of more100

ground-truth code generation examples, thereby en-101

riching the prompt. Experiments conducted with102

GPT-3.5 on the ClassEval benchmark demonstrate103

the strategy’s effectiveness, showing improved per-104

formance in class-level code generation tasks. The105

attention-guided pruning method consistently out-106

performs random pruning, maintaining stable per-107

formance with minimal information loss when108

pruning up to 40% of tokens. Our results indi-109

cate advancements ranging from 4.2% to 13% in110

Pass@k evaluations, highlighting the strategy’s111

potential in enhancing LLM’s code generation ca-112

pabilities. However, it also underscores the greater113

complexity of class-level code generation com-114

pared to method-level tasks due to higher depen-115

dency and contextual requirements.116

The key contributions of this paper are as follows.117

• Pruning Strategy. We propose the simpli-118

fication strategy of LLM’s prompt, named119

attention-guided strategy.120

• Efficacy on LLM’s code generation. This121

simplification method optimizes the length of122

prompts for contextual learning in large lan-123

guage models, allowing them to encounter124

richer contextual scenarios. Consequently,125

this enhancement improves the effectiveness126

of class-level code generation.127

• Open Source. We have open-sourced all the128

code on https://zenodo.org/records/11640097,129

making it available for subsequent research to130

facilitate deeper replication and further explo-131

ration.132

2 Background133

In this section, we introduce the recent state-of-134

the-art LLMs for code generation. We introduce135

the benchmarks for code generation and focus on 136

class-level benchmark ClassEval in Appendix A. 137

2.1 Large Language Models for Code 138

Generation 139

Code generation is a classical task in computer 140

science which is to construct code snippets with 141

description in the human beings natural languages 142

and is nowadays been widely studied(Kang et al., 143

2023a,c; Vikram et al., 2023). The recent LLMs, 144

pre-trained by large quantities of text corpora with 145

enormous number of parameters, achieve fantastic 146

performances in various NLP tasks (Chang et al., 147

2024; Clark et al., 2020; Lample and Conneau, 148

2019) including code generation, such as: Chat- 149

GLM(Du et al., 2021) and the well-known GPT- 150

4(OpenAI, 2024). The prevalent LLM, GPT-4, 151

outperforms other models on HumanEval bench- 152

mark(Luo et al., 2023), and it achieves the highest 153

correctness score among other ten models on Clas- 154

sEval benchmark(Du et al., 2023). Hence, more 155

and more researchers tend to exploit the LLMs 156

to accomplish code generation tasks(Chen et al., 157

2021; Shen et al., 2023). The code LLMs, which 158

are pre-trained by plenty of code snippets on pur- 159

pose, have stronger capacity than general LLM in 160

code generation tasks(Luo et al., 2023; Zan et al., 161

2023; Christopoulou et al., 2022). From now on, a 162

large number of code LLMs have been proposed 163

including CodeBERT(Feng et al., 2020b), Wiz- 164

ardCoder(Luo et al., 2023), Instruct-StarCoder(Du 165

et al., 2024), Instruct-CodeGen(Yuan et al., 2023), 166

etc. Specifically, we take CodeBERT into detailed 167

introduction. CodeBERT is a bimodal pre-trained 168

language model by semantic representation from 169

several programming languages(Feng et al., 2020b). 170

The trained capacity of CodeBERT can be utilized 171

to solve kinds of downstream tasks including code 172

search and code summarization accomplished in 173

(Feng et al., 2020b). It has been demonstrated that 174

CodeBERT has a great advantage on understanding 175

semantics of code snippets than other deep learn- 176

ing models such as code2vec(Alon et al., 2019) and 177

ASTNN(Zhang et al., 2019). It is an encoder on 178

Transformer(Vaswani et al., 2017) structure. With 179

pre-trained CodeBERT, we can adopt it to down- 180

stream tasks by fine-tuning. 181

Additionally, prompt(Liu et al., 2023b) is widely- 182

used to inspire LLM’s creativity and intelligence so 183

prompt engineering arouses researchers’ attention 184

recently aiming to craft a well-structured prompt 185

tailored to a LLM and execute predictions with 186
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anticipated high performance. Prompt is poten-187

tial to be well self-adapted, proposing alternative188

prompts to elicit further information or generate as-189

sociated artifacts(White et al., 2023). There are two190

main prompt engineering tasks which are prompt191

template engineering and prompt answer engineer-192

ing(Liu et al., 2023a).193

3 Method194

As mentioned before, the more tokens we feed195

into input, the much more capability of understand-196

ing requirements the LLM will achieve and the197

more exactly the LLM will respond to your re-198

quests(Minaee et al., 2024). Every large-scale lan-199

guage model is subject to input token length restric-200

tions, such as GPT-4 with a limit of 8192 tokens201

and GPT-3.5 with a limit of 4096 tokens. There-202

fore, we wonder how to deliver input prompt into203

LLMs as many as possible meanwhile the LLM204

won’t return an exceeded maximum length error205

back.206

In this section, we introduce the pruning method207

to prune input tokens delivered into LLMs. Our208

principle is to remove some unimportant tokens209

and statements from the input of LLM, however,210

retain essential information of input. Meanwhile,211

we can add more practical code examples into the212

pruned short prompt leading LLM to produce a213

exact code answer.214

To be more specific, we define a code snippet215

C = {t1; ... : t|C|} , consisting of |C| tokens. Our216

goal is to produce a pruned code snippet Cp which217

retains only the max limitation length of L LLM218

input tokens.219

3.1 Implementation Process220

The work of this paper contributes to prompt prun-221

ing in order to convey more code generation exam-222

ples into LLM. And the prompt inspires the model223

to produce more specific code snippet to pass the224

more test cases. There are two main processes225

in the entire implementation including the prompt226

pruning and evaluate output code snippet produced227

by LLM as depicted in Figure 1.228

At the beginning of the implementation, we con-229

struct the prompt as mentioned in Appendix B and230

add as many code generation examples as possible231

from ClassEval dataset into the prompt. These ex-232

amples are composed in the form of input-output233

pairs which are the instruction of code generation234

as input and the ground truth code snippet as output.235

Certainly, these examples do not contain desired 236

code snippet and are chosen randomly. Then, we 237

conduct the emphasis of the work to prune the 238

prompt to restrict the length under the limitations 239

of token numbers of certain LLM, specifically the 240

"GPT-3.5-turbo" model1, with the methods intro- 241

duced in Section 3. The maximum input token 242

numbers of "GPT-3.5-turbo" model is set to 4096, 243

in other words we have to prune the instruction part 244

and examples part of the prompt other than testing 245

part in Appendix B due to the consistency of the 246

LLM input. 247

The second process is to request LLM with temper- 248

ature of 0 for the stability of LLM’s output, namely 249

GPT-3.5-turbo, to generate the code solution snip- 250

pet for each input processed prompt. Finally, we 251

evaluate the fresh produced code snippet by calcu- 252

lating the metrics Pass@1,Pass@3 and Pass@5 253

as illustrated in Section 4.2.

Prompt 
Construction Pruning 

GPTOutput Code  Snippet

EvaluationPass@k

Class-level Dataset Prompt Pruned Prompt 

섺 ⑦

Figure 1: Implementation Process On Prompt Pruning
and Evaluation

254

3.2 Attention-guided Pruning 255

The frequency-based selection strategy actually dif- 256

ferentiates the common used tokens and uncom- 257

mon used ones with great effectiveness in pruning 258

input code tokens, while it doesn’t perform well in 259

choosing the input code tokens of great significance 260

and semantic meaningfulness. In order to prune 261

tokens with regard for the semantic importance of 262

each token, we introduce an attention-guided prun- 263

ing strategy that chooses input tokens from code 264

snippet based on the attention weights produced by 265

BERT model, such as: CodeBERT and etc. The 266

tokens with high attention are not exactly matching 267

the tokens which occur frequently, especially some 268

1GPT-3.5-turbo is an advanced large language model de-
veloped by OpenAI, which serves as an enhanced version of
the GPT-3 series. And it is suitable for a variety of natural
language processing tasks.
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method or class names obtain high attention when269

feed into BERT model while these tokens just ap-270

pear several times in the code snippet.271

Algorithm 1 displays the simplified code program-272

ming process. Firstly, we generate the attention of273

each input code token through the BERT model274

according to the empirical studying. Then, we se-275

lect tokens separated from input code prompt with276

higher attention after acquiring the tokens and its277

corresponding attention. The algorithm is divided278

into two phases: generating tokens’ attentions and279

selecting tokens. In the first phase of the above al-

Algorithm 1: Attention-guided Pruning
Notation:

• C = t1, t2, . . . , t|C|: Input code snippet

• At: Attention scores from the BERT model

• Cp = t′1, t
′
2, . . . , t

′
|C|: Pruned code snippet

Procedure:

1. Generate attention scores
for each t1, t2, . . . , tm ∈ C do
output← BERT(t1, t2, . . . , tm);

At1,t2,...,tm ← output.attentions;

2. Conduct 0-1 knapsack optimization
{t}t∈C0 ← 0-1 knapsack(values =
{A(t)t∈C}, items = {t}t∈C ,weights =
{|t|}t∈C , capacity =
Model Input Length Limit);

3. Generate the final code snippet
Cp ← t′1, t

′
2, . . . , t

′
|C0|, where C0 ∈ C;

280
gorithm, generating attention phase, first we divide281

the input code snippet into input tokens which the282

BERT model requires with the certain tokenizer.283

Then we send several batches of input tokens into284

BERT model and receive the output of the model,285

and the each batch size m depends on the limita-286

tion of the BERT model input length. Last, we287

can extract the attention of each input token corre-288

spondingly.289

Second phase will contribute to the well-pruned290

code snippet based on the attentions produced dur-291

ing the first phase. We adapt a 0-1 backpack strat-292

egy(Martello and Toth, 1987) to choose input to-293

kens, where the separated input tokens can be con-294

sidered as the items to be collected into the back-295

pack, with the attention of each token being the296

values, and the token numbers being the weights 297

because it is the number of tokens that really acts 298

when LLM preforms. Then chosen input code to- 299

kens will be detokenized into original input code 300

and concatenated into the pruned input code snip- 301

pet and finally the pruned input code snippet will 302

be sent into LLM which generates code we wanted 303

without exceeded input limitation error. 304

The time complexity of attention-guided pruning 305

algorithm is O(N ∗ LT ), where LT denotes the 306

target numbers of tokens. The cost of time mainly 307

owes to the 0-1 backpack algorithm. Additionally, 308

the 0-1 backpack algorithm demands to handle two- 309

dimensional array when programming dynamically, 310

costing space in memory. 311

4 EMPIRICAL STUDY 312

As mentioned before, we utilize the state-of-the-art 313

ClassEval benchmark to evaluate our methods of 314

class-level prompt engineering. 315

4.1 Models 316

In this work, our goal is to generate code in the 317

accordance with the processed prompt by means 318

of the method in Section 3, therefore we adopt the 319

prevalent GPT series models. 320

The core of GPT series models lies in the Trans- 321

former architecture(Ghojogh and Ghodsi, 2020), 322

a deep neural network framework renowned for 323

its proficiency in handling sequential data, particu- 324

larly in capturing long-range dependencies. Typi- 325

cally, GPT models consist of multiple Transformer 326

blocks, each comprising self-attention mechanisms 327

and feed-forward neural networks, stacked together 328

to form the entire model(OpenAI, 2024). The 329

uniqueness of GPT models lies in their pre-training 330

process. During pre-training, GPT models employ 331

unlabeled, large-scale text data for self-supervised 332

learning. By predicting the next token in a se- 333

quence task, GPT models learn semantic and syn- 334

tactic information from the text data, enabling 335

them to exhibit strong generalization capabilities 336

in downstream tasks. Masked language model- 337

ing is commonly employed as a pre-training task 338

for GPT models, which requires the model to pre- 339

dict masked tokens based on context. The two 340

most commonly used models are GPT-3.5 and 341

GPT-4 which just differ slightly in performance, 342

so we choose GPT-3.5 to generate the final output 343

code demanded by ClassEval benchmark. Table 344

1 presents the model we chose with their specific 345
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Table 1: Expeimental Settings

Item Value

Model Name GPT-3.5-turbo-0613
Context Window 4096 Tokens

Temperature 0

parametres.346

4.2 Metrics347

To evaluate the output of LLMs, we adopt the348

commonly-used Pass@k(Chen et al., 2021) metric349

to measure the performance of LLMs, which calcu-350

late the pass percentage of k generated code snippet351

samples for each task. The calculation formula is:352

Pass@k = E
Problems

[
1−

(
n− c

k

)
/

(
n

k

)]
(1)353

In Eq. 1, n stands for the total number of code354

samples, c denotes the number of passed code sam-355

ples, and k represents the number of samples cho-356

sen from n code samples which is k in pass@k.357

In our work, although we pay more attention on358

class-level code generation performance by LLMs,359

we also take both the class-level Pass@k and360

the method-level Pass@k into consideration with361

class granularity and method granularity respec-362

tively. The generated class-level code sample is363

determined to be correct only if it has passed all364

the method-level and class-level test cases.365

For each method we test, we conducted sampling366

to generate code samples and evaluate the per-367

formance of each method by Pass@k with k =368

{1, 3, 5}. We calculate the success rate of code369

generation based on two kinds of Pass@k. The370

first one, all success, indicates that the code snip-371

pets generated in both attempts passed all test cases.372

The second one, partial success, indicates that the373

code snippets generated in one of the two attempts374

passed all test cases without any exceptions or er-375

rors. More details of implementation process are376

displayed in Section 3.1.377

4.3 Baselines378

In this section, we introduce the baseline experi-379

ments. To perform a strong and effective validation,380

the baselines are conducted under the same imple-381

mentation pipeline as depicted in Section 3.1.382

The first experiment we conduct, compared with383

the pruning strategy we propose, is few-shot learn-384

ing of LLM without pruning. Compared with the385

experiments we test out pruning strategy, this base- 386

line is conducted under the process depicted in Fig- 387

ure 1 without the pruning process. In other words, 388

the prompt constructed from the ClassEval dataset 389

is directly fed into GPT. Furthermore, the prompt 390

includes only a single code generation example in 391

its examples part as described in Appendix B. 392

The second baseline experiment is conducted for 393

ablation study, named random pruning. This base- 394

line experiments are completely conducted under 395

the implementation same as the process depicted 396

in Figure 1. The core of this experiments to be 397

conducted is to prune stochastically the generated 398

prompt from ClassEval dataset with certain stochas- 399

tical distribution. This experiment is designed to 400

demonstrate whether our proposed strategy is effec- 401

tual when pruning for this experiment also conduct 402

prompt pruning but with random. 403

4.4 Experiment Settings 404

To validate the effectiveness of our method, 405

we tested the effects of the strategy under the 406

same baseline while ensuring consistent external 407

conditions for each strategy, including LLM 408

hyperparameters, the number of experiments, 409

and other factors. To simplify the complexity 410

of our experiments, we utilized the ClassEval 411

benchmark, as it is the most comprehensive for 412

class-level code generation, featuring a class-level 413

dataset, pipeline, and evaluation framework. In our 414

work, we take all 100 class -level code generation 415

tasks in ClassEval into experiments. The prompt 416

consists of examples in the form of input-output 417

pairs which are the instruction as input and the 418

ground truth code snippet as output. In addition, 419

the desired code snippet does not emerge in 420

those examples, chosen stochastically, in the 421

prompt. With several tries of pruning tokens from 422

prompt, we find that pruning over 40% tokens can 423

destroy both semantics and structure of prompt 424

and the prompt just contains some meaningless 425

and unrelated tokens. Therefore the the pruning 426

strategy is tested with the set of prune percentages: 427

10%, 20%, 30%, and 40% which averagely supply 428

4 code generation examples to the prompt. For 429

the attention-based pruning strategy, we used 430

the CodeBERT model with default parameters 431

to generate specific attention values and set the 432

window length to 500 tokens. 433

During the code generation phase, we employed the 434

GPT-3.5 model from the GPT series, specifically 435

using the official model name GPT-3.5-turbo-0613, 436
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with a temperature setting of 0.437

438

5 Results439

5.1 Overall Evaluation Accuracy440

Through the above experiments, the attention-441

guided strategy performs really well on class-level442

code generation especially when the pruning pro-443

portion is 10% to 30%. Figure 2 shows the class-444

level and method-level Pass@1 of LLM, GPT-445

3.5-turbo, on ClassEval benchmark by pruning446

prompt. Considering space limits, we just present447

the class-level Pass@1 and, certainly, method-448

level Pass@1 with attention-guided pruning strat-449

egy. Table 2, 3, 4, 5 present the evaluation results,450

Pass@k, of both the class-level generation and the451

method-level generation with nucleus sampling2452

on ClassEval benchmark by means of the pruning453

algorithm. Those tables present the strategy we454

propose, the ablation study and few-shot experi-455

ments without pruning which generates code snip-456

pets with one example fed into the LLM without457

any pruning. As indicated in tables, the achieved458

results are presented in the form of "A/B", where A459

represents the Pass@k when each generated exam-460

ple passes through all test cases, while B represents461

the Pass@k when the generated examples only462

satisfy a subset of the test cases in the ClassEval463

benchmark. In accordance with Figure 2 and Table464

2, 3, 4, 5 , we have the following observations.465

Comparison among pruning quantities. As466

shown in Figure 2, it is obvious to conclude that467

LLM performs similarly when we prune a little468

fraction of input prompt at the range of percent-469

age from 10% to 30%. The Class-level Pass@k470

is around 8.7% and the method-level Pass@k sta-471

bilises at around 20.1% with the max difference472

of 0.5% and 1.3% respectively. This is mainly be-473

cause we feed as many examples as possible into474

the input prompt when cutting some tokens out.475

Therefore, the LLM reserves the enough under-476

standing of the input prompt and obtains abundant477

code generation information from the input prompt478

even pruned. However, the LLM performs inferior479

when the pruning percentage of input prompt aug-480

ments to 40% with the only Pass@k of Class-level481

and Method-level, 3.4% and 10.4% respectively.482

2Nucleus sampling is also known as top-p sampling. By
selecting the next token from a subset of top-probability to-
kens, it ensures the generated content is both coherent and
contextually rich.

The sharp declination of the LLM performance 483

is on account of the excessive pruning of the in- 484

put prompt which contributes to the destruction of 485

prompt semantics, misunderstanding the LLM to 486

generate code snippets casually. 487

488

Finding 1: The performance of both method-
level and class-level code generation stabilizes
when pruning the input prompt of LLM in a
small portion mainly because of its structural
integrity and appended extra examples. In ad-
dition, pruning really works in code generation
tasks compared to the few-shot learning with-
out pruning. Whereas huge amount of prompt
pruning destroys the basic structure of input
prompt and limits the intelligence of LLM to
generate code as wanted which causes the lower
Pass@k. These findings indicate that it is un-
necessary to pay more attention on pruning
quantities of input prompt tokens.
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Figure 2: Pass@1 on ClassEval with Attention-guided
Pruning

5.2 Ablation Study and Analysis 489

We conduct ablation study with the simplest and 490

most straightforward strategy, the lexical exclu- 491

sion, which randomly selects some tokens from 492

initial code snippet Cp and drop them out to meet 493

the input length limitation of LLM. For every to- 494

ken t ∈ T , we define the variable pw to imply 495

whether the token chosen will be kept(rw = 1) 496

or dropped(rw = 0) which follows the Bernoulli 497

distribution: 498

rw ∼ Bernoulli(p)

Cp = {w|w ∈ Candrw > 0}
(2) 499

where p = L/|C|is the probability of choosing a 500

token from the code snippet. From the above equa- 501

tion, lexical exclusion has been proved to be robust 502
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Table 2: Pass@k of Code Generation by Pruning Strategy with 20% Reduction

Experiments
Class-level

All Success/Partial Success
Method-level

All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Few-shot Without Pruning 4%/7.0% 9%/16.5% 10%/20% 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 6%/10.8% 15.3%/27.0% 21%/36% 15.0%/19.7% 36.6%/47.9% 47.4%/61.2%

Attention-guided Pruning 9.2%/17.0% 22.2%/40.8% 28%/51% 21.4%/26.9% 50.2%/63.1% 60.2%/75.7%
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Figure 3: Class-level Results of Three Strategies

to diverse networks and models, meanwhile it could503

prune input tokens exceeding max length limitation504

effectively. With the same implementation process505

described in Section 3.1, lexical exclusion is con-506

ducted as the ablation study for its random choices507

of tokens from input prompt. Through compari-508

son between their results, it is clear whether the509

attention-guided strategy is actually effective.510

After conducting the above ablation study, we take511

this study and the attention-guided strategy into512

comparison. Table 2, 3, 4 present the performance513

of the prompt pruning strategy introduced in Sec-514

tion 3 with the proportion of pruning from 10% to515

40% under two generation strategies, class-level516

and method-level, on ClassEval benchmark. Based517

on results presented in these tables, the pruning518

strategy deliver quite great performances on LLM519

code generation.520

Ablation study results show that attention-521

guided pruning strategy works well. On the one522

hand, the attention-guided pruning strategy achieve523

the better performance of both the class-level and524

method-level generation, when the pruning percent-525

age is lower than 40% leading to the effective input526

prompt as explained before (i.e., the improvements527

in all-success class-level generation range from528

1.4% to 4.2% on Pass@1, from 3.3% to 10.2%529

on Pass@3 and from 4% to 13% on Pass@5). In530

addition, the attention-guided pruning strategy re-531

mains better or approximate performance than ran-532

dom pruning on method-level generation(i.e., the533

improvements up to 6.5% on Pass@1, up to 13.6%534

on Pass@3 and up to 16.4% on Pass@5). Even535

though the pruning percentage comes up to 40%,536

the attention-guided pruning still remains good per- 537

formance on code generation. The main reason of 538

the advantages of attention-guided pruning strategy 539

lies in two aspects. 540

Firstly, attention-guided strategy focuses on each 541

token of input prompt rather than an entire word 542

or statement as illustrated in Section 3.2. There- 543

fore, attention-guided strategy takes the smaller 544

granularity of input prompt into consideration com- 545

pared to the ablation study, which avoids conduct- 546

ing prompt roughly. As two examples depicted 547

in Figure 5, there are some meaningless tokens 548

like "_" are pruned under strategy we propose as 549

well as some tokens can be inferred from the con- 550

text like "item". Additionally, the tokens we con- 551

ducted through attention-guided pruning strategy 552

are generated from certain tokenizers and the LLM 553

recognizes the input text practically in this perspec- 554

tive. Therefore pruning tokens from input prompt 555

is an advanced manner resulting in awesome per- 556

formance of the attention-guided strategy. 557

Secondly, it is attention of input tokens that 558

attention-guided pruning strategy really concerns 559

with. The attention is produced by CodeBERT 560

model through delivering the batch by batch con- 561

text of input prompt into BERT model. Therefore, 562

the attention value represents the significance of 563

corresponding token amid the context. The higher 564

a token’s corresponding attention value is, the more 565

semantically meaningful the token is and the more 566

necessary it is to contribute to the understanding 567

of LLM on code generation. In other words, the 568

attention value is kind of measure scale on the im- 569

portance of its corresponding token in model’s view. 570
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571

Finding 2: Attention-guided pruning strategy
is the effective pruning strategy we proposed
at the certain pruning percentage. This strategy
performs well on code generation task mainly
because of the small granularity of pruning and
the contextual consideration related to the atten-
tion score which generated from CodeBERT.

Comparing Class-level code generation and572

Method-level code generation. As depicted in573

Figure 2, both the class-level code generation and574

the method-level generation performs well espe-575

cially when the pruning percentage is under 40%576

for it causes huge damage in prompt semantics.577

Specifically, the method-level generation and the578

class-level generation performs best when prun-579

ing 20% input prompt tokens on ClassEval bench-580

mark, which Pass@1 is 21.4% and 9.2% respec-581

tively. Even with the pruning percentage set as582

high as 40%, the accuracy performance is sustained583

at 10.4% for class-level generation and 3.4% for584

method-level generation. However, on the one585

hand, the improvement at Pass@k in the class-586

level code generation is not equivalent to an equal587

improvement in the method-level experimental re-588

sults. It is because a certain improvement in class-589

level code tasks means several methods in this class590

performs well. Therefore a little improvement in591

class-level code generation task is of great signifi-592

cance which means several methods are improved593

through certain strategy. It can be concluded that594

the method-level code generation has a better per-595

formance Pass@k than the other one according596

to the Table 2, 3, 4, 5 does not mean our strategy597

is more suitable for method-level code generation598

tasks.599

On the other hand, improvements of Pass@k in600

class-level code generation can lead to higher im-601

provements in method-level code generation tasks,602

because a class passing all test cases implies that603

every method within the class successfully passes604

all corresponding cases in method-level tasks. A605

4.6%, 5.2%, and 4.4% increase in the final class-606

level results contribute to a 7.6%, 8.4%, and 5.8%607

increase in the final method-level results, respec-608

tively. It is the improvements in class-level code609

generation tasks that really make sense in our code610

generation tasks which take contextual information611

into consideration.612

Finding 3: A large difference lying between
the class-level code generation and the method-
level code generation is the complexity in a
class including a large number of methods
and, most importantly, the context and relation
among methods in a class. Improvements in
class-level code generation tasks are of signifi-
cance and can result in the larger improvements
in method-level code generation. Through prun-
ing strategy we proposed class-level code gen-
eration performs great improvements leading to
method-level tasks’ improvements either.

6 conclusion 613

This work proposes a novel attention-guided prun- 614

ing strategy for tackling challenging class-level 615

token-level code generation, where attention is 616

used to optimise LLMs’ input prompts. We report 617

experiments on the challenging ClassEval bench- 618

mark code generation tasks, where our attention- 619

guided pruning outperforms random pruning on 620

class-level code generation when pruning less than 621

40% of tokens from inputs. Taking advantage of 622

the context and focusing on the fine-grained token- 623

level adjustment demonstrates that attention-guided 624

pruning is significantly better than random pruning 625

for both class-level and well-studied method-level 626

code. 627

Our results illustrate the potential of attention- 628

guided pruning to boost the performance of LLMs. 629

Future work will continue to evaluate the appli- 630

cation of this approach under various program- 631

ming languages and more diverse coding con- 632

texts, and develop a reliable system that effectively 633

utilises pruning in delivering code, both human- 634

and machine-sounding, efficiently. 635

7 Limitations 636

This paper proposes an attention-guided prompt 637

pruning strategy and demonstrates through experi- 638

ments its efficacy in enabling large language mod- 639

els (LLMs) to generate desired class-level code 640

with validated accuracy. However, there are sev- 641

eral limitations to this study. Firstly, the study 642

employs only the ClassEval benchmark dataset for 643

code generation and evaluation, without applying 644

and testing the proposed strategy on other class- 645

level datasets. Secondly, the evaluation metric used 646

is Pass@k, without conducting subjective manual 647

assessments from a programmer’s perspective on 648

8



class-level code generation. Lastly, this work uti-649

lizes only GPT-3.5 for class-level code generation,650

lacking validation of the strategy’s generalizabil-651

ity across various state-of-the-art LLMs. These652

aspects will be potential directions for future re-653

search.654
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A ClassEval Benchmark and Class880

Skeleton in ClassEval881

A benchmark typically encompasses various NLP882

tasks, and likewise, a code benchmark requests a883

natural language description of the task and pro-884

vides the ground truth code snippet as output. Clas-885

sEval benchmark(Du et al., 2023) is one such code886

benchmark designed specifically for class-level887

code generation. This benchmark comprises con-888

structed class skeletons, test suites, and canoni-889

cal solutions, collectively forming the ClassEval890

class-level code generation benchmark(Du et al.,891

2023). All 100 class-level code tasks within Clas-892

sEval were manually constructed in Python due893

to its prevalence (Srinath, 2017) incurring nearly894

500 person-hours of effort. These class-level code895

generation tasks encompass practical programming896

scenarios prevalent in industry and are derived from897

three sources. Firstly, they draw upon the prece-898

dent of code tasks from previously proposed bench-899

marks such as HumanEval(Luo et al., 2023) and900

MBPP(Austin et al., 2021). Secondly, they lever-901

age the Python Package Index (PyPI), which houses902

a vast array of Python development packages that903

can be used to design various code tasks manu-904

ally. Thirdly, they are shaped by the insights of905

experienced programmers with 2-8 years of Python906

development experience.907

To streamline the construction of test suites, Clas-908

sEval adopts the widely-used unittest framework909

of Python along with diverse assertion APIs. For910

class-level benchmarking, ClassEval test cases en-911

compass all methods within a class, ensuring that912

each method is invoked at least once during testing.913

A notable feature of the ClassEval benchmark is the914

design of the class skeleton format, as illustrated in915

Figure 4. The manual skeleton structure has been916

carefully crafted based on the consensus of expe-917

rienced authors, adhering to four key principles:918

dependency, class constructor, method functional-919

ity, and method parameter and return value.920

921

 

import logging 

import datetime 

Import Statements 

class AccessGatewayFilter:  Class Name 
"""This class is a filter used for accessing  

gateway filtering, primarily for authentication  
and access log recording. """ 

Class Profile 

  def __init__(self): 

pass 

 Class Constructor 

def filter(self, request): Method Signature 

"""Filter the incoming request based on certain rules 

and conditions. 

Method Profile 

:param request: dictionary, the incoming request 

details 

:return: bool, True if the request is allowed, False. 

Otherwise 

Parameters and 

Return 

>>> filter = AccessGatewayFilter()      

>>>filter.is_start_with('/api/data')        
True""" 

Method Invoking 

def is_start_with(self, request_uri): Method Signature 
"""Check if the request URI starts with certain. 

prefixes. 

Method Profile 

:param request_uri: str, the URI of the request\n 

:return: bool, True if the URI starts with certain. 

prefixes, False otherwise 

Parameters and 

Return 

>>> filter = AccessGatewayFilter()        

>>> filter.is_start_with('/api/data') 
True""" 

Method Invoking 

 

Figure 4: An Example of Class Skeleton in ClassEval

B Prompt Design 922

Then we describe the designation of the original 923

prompt without pruning in the class-level code gen- 924

eration task. The prompt can be divided into three 925

parts as follows: 926

• Instruction 927

The instruction part is the core of the whole 928

input prompt, which contains the name and 929

skeleton of the target code. Here is the con- 930

struction of the instruction part with the name 931

and skeleton of the ground truth class. 932

Please complete the class ${Class
Name} in the subsequent code. ${Class
Skeleton}

• Examples 933

As mentioned in Section 2, we feed examples 934

into the input prompt as many as possible in 935

order to lead LLMs to better understanding of 936

code generation. In this way, the Examples 937

part is necessarily contained with the longest 938

length of the three parts. Our pruning strategy 939

is conducted in this part to shorten the whole 940

length of the prompt. The following is the 941
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sample of an example, which the whole exam-942

ples’ part consists of several diverse examples943

from ClassEval benchmark dataset. Certainly,944

each example contains instruction part, simi-945

lar as presented before, and solution part from946

ClassEval benchmark dataset.947

Example n:
Please complete the class ${Example
Class Name} in the following code.
${Example Class Skeleton} //To be
pruned.
The solution is:
${Example Class Solution} //To be
pruned.

• Testing948

The testing part is the final prompt fed into949

LLM with the required class skeleton and ex-950

amples of code generation. The ultimate struc-951

ture of the input prompt is shown as follows:952

#You are an expert programmer.Here
are some coding examples, you can
learn from these examples:
Example 1:
Please complete the class xxx in the
following code.
class sample1:
def m1(p1,. . . ):
. . .
def m2(t1,. . . ):
. . .

. . .

#Below is an instruction that describes a
task. Write a response that appropriately
completes the request.
### Instruction:
class xxx: // Required class
def m1(p1,. . . ):
// Method Introduction
def m2(t1,. . . ):
// Method Introduction
### Response:

C Attention-guided Pruning Visualization953

As presented in the paper, attention-guided pruning954

performs effectively in class-level code generation.955

Below, we visually demonstrate the effect of the 956

attention-guided pruning strategy on an initial class 957

within the ClassEval benchmark dataset. The two 958

images of Figure 5a and 5c show the original code 959

of the class examples we selected from the Clas- 960

sEval dataset. The two images Figure 5b and 5d 961

display the code after applying the aforementioned 962

attention-guided pruning strategy. We set the prun- 963

ing percentage to 20% (our previous results indi- 964

cate that pruning 20% of the code tokens achieves 965

the best performance with Attention-guided prun- 966

ing). As shown in Figure 5, the attention-guided 967

pruning strategy indeed removes some tokens, but 968

essentially retains the structure of the original class. 969

Pruned by our proposed strategy, the prompt still in- 970

cludes the class name, method names, and method 971

signatures. Specifically, some meaningless tokens 972

like "_" in methods name, some tokens can be eas- 973

ily inferred from context like "item" and other un- 974

necessary symbols like "*" are pruned according 975

to Figure 5 in red lines. As we can see, the pruned 976

class remains almost complete semantics which 977

are "to manage shopping items, their prices, quan- 978

tities, and allows to for add, remove, view items, 979

and calculate the total price" and "to calculate the 980

area of different shapes, including circle, sphere, 981

cylinder, sector and annulus" respectively in Fig- 982

ure 5b and 5d. Also it remains the main structure 983

of the original class. This is mainly because the 984

attention-guided pruning strategy is based on the 985

LLM’s understanding of the text, specifically the 986

attention mechanism, to perform the pruning. 987

D Experiment Results on Different 988

Pruning Proportion 989

This section presents, Table 3,4,5, the other results 990

of our experiments of both the class-level gener- 991

ation and the method-level generation which the 992

pruning proportions are 10%, 30% and 40%. 993
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Table 3: Pass@k of Code Generation by Pruning Strategy with 10% Reduction

Experiments
Class-level

All Success/Partial Success
Method-level

All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Few-shot Without Pruning 4%/7.0% 9%/16.5% 10%/20% 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 5.6%/11.2% 13.5%/27.0% 17%/34% 15.8%/21.0% 38.4%/50.6% 49.0%/63.7%

Attention-guided Pruning 8.6%/16.7% 21.4%/39.2% 28.6%/47.3% 20.6%/26.5% 48.9%/62.3% 60.1%/74.9%

Table 4: Pass@k of Code Generation by Pruning Strategy with 30% Reduction

Experiments
Class-level

All Success/Partial Success
Method-level

All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Few-shot Without Pruning 4%/7.0% 9%/16.5% 10%/20% 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 4.2%/7.6% 10.2%/18.3% 13%/23% 13.3%/18.9% 31.7%/44.9% 39.0%/55.0%

Attention-guided Pruning 8.4%/15.6% 20.4%/37.5% 26%/47% 18.8%/23.3% 44.9%/55.6% 55.4%/68.5%

Table 5: Pass@k of Code Generation by Pruning Strategy with 40% Reduction

Experiments
Class-level

All Success/Partial Success
Method-level

All Success/Partial Success
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Few-shot Without Pruning 4%/7.0% 9%/16.5% 10%/20% 13.0%/15.9% 29.4%/36.2% 33.0%/41.2%
Random Pruning 2%/4.6% 5.4%/11.4% 8%/15% 11.1%/16.0% 27.43%/38.2% 35.3%/47.4%

Attention-guided Pruning 3.4%/7.0% 8.7%/17.4% 12%/23% 10.4%/14.9% 25.9%/36.3% 34.1%/46.6%

(a) Original Class 1 (b) Class 1 After Attention-guided Pruning

(c) Original Class 2 (d) Class 2 After Attention-guided Pruning

Figure 5: Two pairs of examples of original class(left) and pruned class(right) by attention-guided pruning
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