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ABSTRACT

This paper focuses on Geodesic Principal Component Analysis (GPCA) on a
collection of probability distributions using the Otto-Wasserstein geometry. The
goal is to identify geodesic curves in the space of probability measures that best
capture the modes of variation of the underlying dataset. We first address the case
of a collection of Gaussian distributions, and show how to lift the computations
in the space of invertible linear maps. For the more general setting of absolutely
continuous probability measures, we leverage a novel approach to parameterizing
geodesics in Wasserstein space with neural networks. Finally, we compare to
classical tangent PCA through various examples and provide illustrations on real-
world datasets.

1 INTRODUCTION

In this paper, we are interested in computing the main modes of variation of a dataset of absolutely
continuous (a.c.) probability measures supported in R%. For data points living in an arbitrary Hilbert
space, the classical approach defined by Principal Component Analysis (PCA) consists in finding a
sequence of nested affine subspaces on which the projected data retain a maximal part of the variance
of the original dataset, or equivalently, yield best lower-dimensional approximations. When dealing
with a set of a.c. probability distributions, a natural choice is to identify the probability measures
with their probability density functions and to perform PCA on these using the L? Hilbert metric.
Unfortunately, as highlighted in|Cazelles et al.| (2018]), the components computed in this manner fail
to capture the intrinsic structure of the dataset. Using the Wasserstein metric W5 instead has proven
to overcome these limitations by taking into accound the geometry of the space of distributions.

The Wasserstein metric endows the space of probability distributions with a Riemannian-like structure,
framing the problem as PCA on a (positively) curved Riemannian manifold. A first approach to
solve this task, known as Tangent PCA (TPCA), consists in embedding the data into the tangent
space at a reference point, and applying classical PCA in this flat space, as in |Fletcher et al.| (2003)).
TPCA is computationally advantageous but can generically induce distortion in the embedded data,
depending on the curvature of the manifold at the reference point and the dispersion of the data. A
more geometrically coherent approach is Geodesic PCA (GPCA) proposed for Riemannian manifolds
in|Huckemann et al.| (2010); Huckemann & Ziezold (2006), where principal modes of variations are
geodesics that minimize the variance of the projection residuals. Following this approach, the first

geodesic component of a set of probability measures v, . . . , v, in the Wasserstein space solves
n
inf inf W2(u(t:). v). 1
t— 1 (t) geodesic zz—:l t; 2 (M( 1); z) (1

Interestingly, unlike in the Hilbert setting, this criterion is not equivalent to maximizing the variance
of the projections, which leads to a different notion of PCA on Riemannian manifolds (see Sommer
et al.| (20105 2014)).

Related works TPCA in the Wasserstein space was considered by Wang et al.| (2013)) through the
use of the linearized Wasserstein distance. In a similar approach, |Boissard et al.| (2015)) restrict to
distributions that can be obtained by deforming a single template measure. For one-dimensional
probability measures, [Bigot et al.| (2017) have shown that GPCA and its linearized approximation
TPCA coincide, as the embedding into a tangent space is then an isometry when constrained to a
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convex set. An algorithm in this case has been proposed in|Cazelles et al.|(2018)), with an approximate
extension in dimension 2. For higher-dimensional measures, Seguy & Cuturi| (2015) solve an
approximate version of GPCA, replacing geodesics by generalized geodesics as defined in|/Ambrosio
et al.|(2008). Despite all this, a method to solve the exact GPCA problem described in equation E]is
still missing for R%-valued probability measures. The goal of this paper is to fill this gap.

Main contributions In this paper, we introduce two algorithms to solve the exact GPCA problem in
the Wasserstein space of (1) centered Gaussian distributions and (2) a.c. probability measures on R4,
Our methods are exact in the sense that they do not rely on a linearization of the Wasserstein space,
and the components are true geodesics that minimize the cost in equation[I} In the Gaussian case,
we leverage the Bures-Wasserstein geometry to lift the computations in the flat space of invertible
matrices. We show an example where GPCA and TPCA differ significantly, and relate this effect to
curvature. In the general case of a.c. probability distributions, we lift the probability distributions to
the space of (non necessarily optimal) maps that pushforward a given reference measure, as described
by |Otto|(2001)). This approach is independent of the chosen reference measure and yields a convenient
way to parametrize geodesic components and define orthogonality with respect to the Wasserstein
metric. In practice, we parametrize geodesic components using multilayer perceptrons (MLPs),
trained to minimize the cost in equation [I] We show illustrations on images and 3D point clouds.
Along the way, we prove that for univariate Gaussian distributions, GPCA yields the same results
whether it is performed in the space of a.c. distributions or restricted to the Gaussian submanifold.

Organization of the paper In Section[2] we present the Wasserstein metric and its restriction to
Gaussian distributions, as well as the related Bures-Wasserstein and Otto-Wasserstein geometries. We
present GPCA for centered Gaussian distributions in Section[3] and the general case of a.c. probability
measures in Section[d] Experiments are presented in Section [5] and the paper ends with a discussion
in Section[6] All the proofs and additional experiments are deferred in the appendices.

2 BACKGROUND

The Wasserstein distance Optimal transport is about finding the optimal way to transport mass
from one distribution . on R to another v with respect to a ground cost, say the Euclidean squared
distance. The total transport cost defines the Wasserstein distance W5 between a.c. measures (i, v
with moment of order 2, whose Monge| (1781)) formulation is given by

W) = [ lle =T Pduta), @

and where the map 777 is the p-a.s. unique gradient of a convex function verifying T);#p = v, as
proven by Brenier| (1991). When the distributions p and v are centered (non-degenerate) Gaussian
distributions, they can be identified with their covariance matrices X,,, ¥, and equation 2]is referred
to as the Bures-Wasserstein distance BW5 on the manifold S of symmetric positive definite (SPD)
matrices (see e.g. [Modin| (2017); Bhatia et al.|(2019)):

BW2(S,,%,) = tr [2# vy, - 2(2}/22@}/2)1/2} . 3)

Both distances can be induced by a Riemannian metric on their respective manifolds, i.e. the space of
a.c. distributions and S;Jr, as we will see in the following. For more details, see Appendix

Bures-Wasserstein geometry of centered Gaussian distributions The set of centered non-
degenerate Gaussian distributions on R is identified with the manifold SjJr of SPD matrices.
The Riemannian geometry of the Bures-Wasserstein metric in equation [3|can be described by con-
sidering Sj* as the quotient of the manifold G L  of invertible matrices by the right action of the
orthogonal group Oy. In this geometry, G L, is decomposed into equivalence classes called fibers.
The fiber over X € Sj+ is defined to be the pre-image of 3 under the projection

m:A€GLy— AAT € SJT, “)

and can be obtained as the result of the action of O, on a representative, e.g. X'/2 the only SPD
square root of X: 77 H(X) = {A € GLg, AAT =X} = %1/20,.
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Tangent vectors to G L are said to be horizontal if they
are orthogonal to the fibers with respect to the Frobenius
metric, i.e. if they belong to the space

Hory == {X e R4 XTA—-ATX =0}, (5

for a given point A € GL4. Then the projection 7 in
equation 4] defines an isometry between the horizontal
subspace Hor 4 equipped with the Frobenius inner prod-
uct (X,Y) = tr(XYT), and SJ equipped with a
Riemannian metric that induces the Bures-Wasserstein
distance (equation [3) as the geodesic distance. In partic-
ular, this means that moving horizontally along straight

lines in the top space G L, is equivalent to moving along Figure 1: The Bures—Wasser.stei.n geom-
geodesics in the bottom space S; " (see Figure[l), as  etry of centered Gaussian distributions,
recalled in the following proposition. inspired by Khesin et al.| (2021).

Proposition 1 (Takatsu| (2011); Malago et al.[(2018); [Bhatia et al.|(2019)). Any geodesic t — X(t) in
Sl'iH' for the Bures-Wasserstein metric in equation is the m-projection of a horizontal line segment

in GLg, that is

Yt)=nm(A+tX)=(A+tX)(4 thX)T, A€ GLy, X € Hory, (6)
where t is defined in a certain time interval (tyin, tmax ). Also, the Bures-Wasserstein distance between
two covariance matrices Y1, € S;+ is given by the minimal distance between their fibers

BWa(21,%) = inf  [|2Y%2Q, - 2Y%Q,| = inf |22 - %3, 7
2(X1, %) = nf |50 - By770Qx]| = inf ) [|% 2 Ql @)
where || - || is the Frobenius norm and SOy is the special orthogonal group.

It is essential to note that the geodesic equation [ cannot be extended for all time ¢ € R (the only
geodesic lines are those obtained by translation (Kloeckner] 2010, Proposition 3.6)). Therefore,
equation@is only defined on a time interval (¢min, tmax) that depends on the eigenvalues of X Al
(see Appendix [C.3). More details on the Bures-Wasserstein geometry can be found in Appendix[C.2]

Otto-Wasserstein geometry of a.c. probability measures The Riemannian structure described for
Gaussian distributions is a special case of |Otto| (2001))’s more general construction : the bottom space
becomes the space Prob(2) of a.c. distributions supported in a compactset 2 C R? while the top
space is the space of diffeomorphisms Diff(Q2) endowed with the L? metric with respect to a fixed
reference measure p (see Figure in Appendix . The fibers of Diff (£2) are then defined to be the
pre-images under the projection

7 p € DIff(Q) — 7(p) = pup € Prob(). (8)
In this setting, horizontal displacements in Diff (Q2) are along vector fields that are gradients of
functions. The projection 7 defines an isometry between the horizontal subspace equipped with the
L?(p)-inner product and Prob(€2) equipped with a Riemannian metric that induces the Wasserstein
distance as the geodesic distance. In particular, we have the following result.
Proposition 2 (Otto| (2001)). Any geodesic t — (t) for the Wasserstein metric given in equation [Z] is
the m-projection of a line segment in Diff (Qd) going through a diffeomorphism ¢ at horizontal speed
V f o @ for some smooth function f € C(R®). That is, for t defined in a certain interval (yin, tmax),

pu(t) = m(p +tVfop) = (Ad+tV )4 (oxp). ©)
Another geodesic [i(t) = (¢ + tV f o @) is orthogonal to p(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if (V f o ¢,V f o @) 12(,) = 0.

We emphasize that f need not be convex in equation 9] unlike in the more classical parametrization
of geodesics due toMcCann| (1997) between two distributions po and p11 = Vuypug :

w(t) = (id +t(Vu — id)) g po, with t € [0, 1] and w a convex function. (10)
Note that equation [9] parametrizes geodesics provided that id +¢V f is a diffeomorphism, and thus it
is defined on a time interval that depends on the eigenvalues of the hessian of f. On the other hand,

the convexity condition on the function w in the parametrization of equation [I0]ensures that time ¢ is
defined on [0, 1]. Both are completely equivalent (see Appendix for details).
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3 GEODESIC PCA ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider the exact GPCA problem for the Bures-Wasserstein metric in equation
The data are n centered Gaussian distributions identified with their covariance matrices 1, ..., %, €
Sj*. Following |[Huckemann et al.| (2010), we define the first component as the geodesic ¢t — 3(t) €
SjJr that minimizes the sum of squared residuals of the BW3-projections of the data:

tl—>2(g1gfeodesic ; lgf BW2 (Z(tl)7 Z’L) (] ])
The second principal component is defined to be the geodesic that minimizes the same cost function,
with the constraint of intersecting the previous component orthogonally. The subsequent principal
components have the additional constraint of going through the intersection of the first two principal
geodesics. This definition does not impose that the geodesic components go through the Wasserstein
barycenter (see Agueh & Carlier|(2011)), and in SectionE] we show an example where this is indeed
not verified. This gives an observation of the phenomenon already described inHuckemann & Ziezold
(2006) for spherical geometry. The proofs of this section are deferred to Appendix [E]

Learning the geodesic components Following Propositon[I] we lift the GPCA problem in equa-
tion [TT] to the total space GL4 of Otto’s fiber bundle. This has several advantages: the Bures-
Wasserstein distance in the cost function of equation . is replaced by the Frobenius norm || - ||, the
geodesic is replaced by a horizontal line segment, and the projection times ¢; become explicit. The
price to pay is an optimization over variables (Q;)?_; in SOy, needed to represent the covariance

matrices YJ; by invertible matrices E,} / QQZ- in their respective fibers.
Proposition 3. Letm: GLq — ST+, A AAT and (A1, X1, (Q:)™,) be a solution of

inf F(Ay, X1, (Q)7,) ZnAlml X (t) X1 - 212Qi1%, -
=1

subject to AL eGLy, X, € HOI‘AI, HX1||2 =1, Q1>---;Qn € SOy.

Then there exist tyy, tmax € R such that the geodesic Y. : t € [tmin, tmax] — T(A1 +tX7) in SIJF
minimizes equation [

Here the ¢; are projection times given by ¢; = <E: / 2Q7; — Ay, X4), and py x is a projection operator
that clips any ¢t € R onto a closed interval [tmin, tmax] depending on A and X, such that A+py4 x (t) X
is invertible for any ¢ in this interval (see Appendix [C.3). Clipping the time parameter of the line
segment is necessary to ensure it remains within G L4 and projects onto a geodesic in S

The second component is a geodesic of

S d++ that onhogopally int.ersects the first X A X,
component. Lifting again the problem

in GLg, this boils down to searching for Aol XiR

a horizontal line ¢ — Ay + t X5 where ‘ X, '/7_’ ‘
Ay = (Ay + t* X)) R* for a rotation ma- | ;
trix R*, a time t* € [tmin,tmax] and a | o ‘
horizontal vector Xy € Hor,4, such that 7T(Alﬁ m(Ag)i/dma, (X1 RY)

(X2, X1R*) = 0. The equation for A, St
ensures that the m-projections of the first
two horizontal lines intersect, while the
condition on X5 ensures that they intersect
orthogonally (since X1 R* is horizontal at
A as can easily be checked). See Figure[2]

dma,(X52) /U

Figure 2: First (red) and second (blue) geodesic compo-
nents of Gaussian GPCA, where dm4 denotes the dif-
ferential of the projection 7 : A +— AAT at A € GLy.

The second component is thus defined by 3o (t) = m(As + tX5), found by solving:

inf F(Ag, X2, (Qi)i1)
subjectto Az = (A1 +t"X1)R*, R* € SOq4, t* € [tmin, tmax) (13)

X, € Horn,, | X2|? =1, (X9, XiR*) =0, Q1,...,Q, € SO,.

4
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Note that this step requires to find new rotation matrices (Q;)?_;. The first two components fix the
intersection point 7(A3) through which all other geodesic components will pass, see Figure For
every higher order component, we search for a velocity vector X}, that is horizontal at some point in
the fiber over m(Az) and orthogonal to the lifts of the velocity vectors of the previous components.
Details on the implementation of these components are given in Appendix [E.2]

On the restriction to the space of Gaussian distributions Geodesic PCA can also be defined in
the more general space of a.c. probability distributions, as presented in Section[d A natural question
that arises is whether performing GPCA in the whole space of probability distributions gives the
same result as restricting to the space of Gaussian distributions, which is totally geodesic. To our
knowledge, the answer to this question is not known in general, although it is true in one dimension.

Proposition 4. Let v; = N'(m;,02) fori = 1,...,n, be n univariate Gaussian distributions. The
first principal geodesic component t € [0,1] — u(t) solving equation || remains in the space of
Gaussian distributions for all t € [0, 1].

4 GEODESIC PCA ON A.C. PROBABILITY MEASURES: GPCAGEN

We now tackle the task of performing GPCA on a set of a.c. probability measures v, ..., v, using
the Otto-Wasserstein geometry. We propose a parameterization of the geodesic principal components
based on Otto’s formulation, leveraging neural networks. Additionally, we introduce a dedicated cost
function to optimize the different geodesic components.

Parameterizing geodesics Following Proposition [2{ and equation @], any geodesic ¢t — p(t) in
the Wasserstein space (Prob(2), W3) can be expressed as pu(t) = (¢ + tV f o @)up, for t in some
interval [tumin, tmax)» ¢ : R? — R? a diffeomorphism, f : R? — R a smooth function, and p a fixed
reference measure, taken to be the standard Gaussian distribution in this work. Using multilayer
perceptrons (MLPs) to parametrize the functions ¢ and f, denoted ¢g and f,, respectively, the curve

t > pgy(t) = (1d 4tV fy)u (Qorp)

is a geodesic for t € [tmin, tmax). provided that id + tV f,, € Diff(Q2) for all ¢ in this interval.
Equivalently, this condition holds if the Hessian matrix I4 + tH, (z) is positive definite for all
r € RYand t € [tyin, tmax)» Where H 7, () denotes the Hessian of fy, at 2. In practice, we enforce
this constraint by monitoring the eigenvalues of I;+tHy, () (see Appendix and either clipping ¢
or adjusting the interval [{y,in, tmax] to ensure that all eigenvalues remain positive. This representation
enables to sample from the distributions along the geodesic. Specifically, given the learned vector
field @y and function fy, one can sample from fig , (t) by first drawing = ~ p and then applying the
transformations @g and id + tV fy, sequentially as @g(x) + tV fy, (o (x)) ~ 16,5 (t).

Learning the geodesic components The first principal component in GPCA minimizes the objec-
tive in equation |1} The scalar variables ¢; specify the projection time of each distribution v; onto the
geodesic t — p(t). Leveraging the explicit form of Otto’s geodesic, equation can be reformulated

as:
n

JnfL(ft e tn) =Y W ((d 46V ) (ppp), vi)- (14)
FeC(R ),[gaeDiff(Q)] P
t1,.-stn €[tmin,tmax

We jointly learn the parameters ¢; together with the neural networks ¢y and fy to minimize the
objective in equation In practice, we use the Sinkhorn divergence S. that has been proven to be a
differentiable and computationally efficient approximation of the squared Wasserstein distance W2,
see [Frogner et al.|(2015));|Genevay et al.| (2018)); |Chizat et al.|(2020), and represent the distributions p
and v; using batches of m samples z;, ~ p and y; ~ v;. The optimization proceeds by updating the
parameters based on a single distribution »; sampled at each iteration, as detailed in Algorithm[I] To
compute tpip and tp,, on line 5 of Algorithm E], we approximate the extremal eigenvalues of Hy, by
evaluating the largest and smallest eigenvalues over the finite set { Hy, () };-,, and substitute these
estimates into the theoretical bounds from Appendix[C.3]
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Algorithm 1 Geodesic PCA algorithm for a.c. measures: GPCAGEN
1: Initialize g, fy and the t; for1 <7 < n
2: while not converged do
3: fori=1tondo
: Draw m i.i.d samples y ;
Estimate tmin, tmax With {Hy,, (2x)}7L, and set t; = min(max(t;, tmin), tmax)

4
5

6 2 ([d 44V f) o (9o)(zy) forl <k <m
7. ﬁg’w’ti ~ S. (i Z;nzl 6Z,(j)’ % E;nzl 1) (i))
8

9

0:

@ v; and draw mii.dsampleszp ~p 1< 73,k <m

’y :
Update ¢y, fy and the t; with VLg 4 1, ’
end for

10: end while

The second principal component minimizes the objective in equation|I{subject to the constraint that it
intersects the first component orthogonally. Similar to the first component, we use two MLPs, f,
and (g, , to parameterize the geodesic t — 119, 4, (t), along with n scalar variables ¢2, to optimize
the objective in equation We also introduce two additional scalar variables, ¢! and ¢2 _, which

nter nter?
define the intersection times of the two geodesics, along with the regularization terms:

_ oMy
91172y 171172

)

I(Mlv M2, tilnteﬁ tiZnter) = VV22 (:U’l (tilnter)’ K2 (tiQnterD and O(g’ h)

where 7 enforces the geodesics j11 = pg . and po = pg, ., to intersect at the respective times
th o and t2 ., and O(g, h) ensures orthogonality between the corresponding horizontal vector fields

g = Vfu(pe) and h = V fy,(ps,) in L?(p). The total objective used to optimize the second
principal component incorporates these regularization terms and is given by:

E(ﬂbz?‘ﬂ%»ﬁ? s ati) + )‘II(M971ZM Mezﬂbz?tilntera ti2111er) + /\OO(Vfw(SOQ)’ Vfwz (‘pez))

where \; and Ao are the regularization parameters controlling the trade-off between the intersection
and orthogonality regularization terms, respectively. Note that in virtue of Proposition the L2(p)
inner product in the regularization term O truly enforces orthogonality of the geodesic components
with respect to the Riemannian metric associated to the Wasserstein distance.

The training algorithm used to optimize the second principal component follows the same structure as
Algorithm([I] except for the seventh line, where the regularization terms, estimated using the minibatch
xy, ~ p, are added to the loss function. Higher-order components can be computed similarly.

5 EXPERIMENTS

5.1 EXPERIMENTS ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider toy examples in S;"t and compare GPCA to its widely used linearized
approximation, TPCA (see Appendix @) We use two coordinate systems for matrices in S5 the
first comes from the spectral decomposition, and the second maps any SPD matrix to a point in the
interior of the cone C = {(z,y,2) € R3, 2z >0, 22 < 2% + y?}

2
s =P (‘B b%) Py = (Z—Jty ny) . (a.b,0) €RL xRS xR, (1,,2) €C, (15)
where P is the rotation matrix of angle 6. Generically, GPCA and TPCA yield very similar results:
for sets of n = 50 covariance matrices randomly generated using a uniform distribution on the
parameters (a, b, 8), GPCA reduces the objective in equation |1 I|of less than 1% w.r.t. TPCA, on
average for 100 trials. This suggests that TPCA is generally a very good approximation of GPCA.
Two extreme cases are described below: (i) GPCA and TPCA are equivalent and (ii)) GPCA and
TPCA drastically differ.

Matrices with same orientation If we consider a set of covariance matrices that live in the subspace
f = constant in notations of equation then both GPCA and TPCA yield exactly the same results,

6
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namely that of linear PCA in the
(a,b)-coordinates. This is because
any such subspace has zero curva-
ture for the Wasserstein metric, and
geodesics are straight lines in the
(a, b)-coordinates (Appendix [E.T).
Figure3|shows the geodesic compo-
nents obtained for a set of matrices
in the subspace § = 0 that form a
regular rectangular grid in the (a, b)
coordinates, i.e. ¥;; = diag(ay, b3)
where the a;’s and b;’s are equally
spaced. They are indeed straight
lines that capture the variations in
a and b respectively.

OO0
OO
OO
O O
O O

00 00O
00000

Figure 3: GPCA on a set of diagonal covariance matrices
¥;; with varying eigenvalues 1 < a? < 3,1 < b? < 2.
The matrices form a planar grid inside the cone C of SPD
matrices in equation (left), and correspond to ellipses
of varying width and height (right). The first component

(red) captures the variation in a, while the second component

(blue) captures the variation in b.

Matrices with same eigenvalues Now we consider covariance matrices that all have the same
eigenvalues but different orientations. Specifically, we choose ; = Py, diag(a?, bg)PEI , for positive
reals a > b, 0; = im/n fori = 0,...,n — 1 and an even number n. In the (z,y, z) coordinates
(equation|15)), the covariance matrices are displayed on a circle of equation x = cst (constant trace)
and y? + 22 = cst (constant determinant), as shown in Figure (in practice, we choose a slightly open
circle to break the symmetry). Then the Bures-Wasserstein barycenter of the covariance matrices
Y100, 8, is given by ¥ = (a + b)2 /41 (see Propositionin Appendix . When performing
TPCA on X4, ..., %, at the barycenter Y, the radial distances between X and ¥; are preserved, but
not the pairwise distances between the 3;’s. The following result evaluates the level of this distorsion.

Proposition 5. Let 3 € S;‘ T with eigenvalues a?,b* and ¥/ = PgZP(;r where Py is the rotation
matrix of angle 0. Then, denoting & = ((a + b)/2)* I, we have

BW2(%,%) a—b\> .
— =1 — 0 —b 1
3”7222(272/) at+b cos + O((a ) )7 ( 6)

where BW, s, is the linearized Bures-Wasserstein distance at ¥ recalled in equation IZE

For a given 6, equation [16|shows that the distorsion induced by linearization is most important for
|a — b|/|a + b| close to 1, which corresponds to covariance matrices that are close to the border of
the cone (since (a — b)?/(a + b)? = (2% + y*)/2?%), see Figure 4| (left). Indeed, in that case, the
results of GPCA can be very different from those of TPCA and the first component may not even go
through the Wasserstein barycenter ¥, see Figure (middle) and Figurein Appendix |Al In that case
GPCA may be seen as worse-behaved as TPCA, as some of the Gaussian distributions will project
onto the first geodesic component boundaries, yielding a poor separation. Figure ] (right) shows
the percentage of improvement of the cost in equation [IT](in terms of minimization) of GPCA with
respect to TPCA, in the setting previously described for different values of the ratio |a — b|/|a + b|.
on average for 10 runs per value of the ratio. The blue strip indicates standard deviation.

5.2 EXPERIMENTS ON ABSOLUTELY CONTINUOUS DISTRIBUTIONS

We conduct a preliminary experiment on a synthetic dataset with known geodesics to verify that
our algorithm, GPCAGEN (Sectiond), accurately recovers the first two principal components. We
then apply GPCAGEN to 3D point clouds from the ModelNet40 dataset (Wu et al.[(2015)) and
to color distributions of images from the Landscape Pictures dataset (Rougetet| (2020)). For these
experiments, fy and ¢g are MLPs with four hidden layers of size 128 and an output layer of size 1
and d respectively. We found that setting the regularization coefficients Ay and Ao to 1.0 ensures the
algorithm works as expected in all experiments. A discussion of the regularization coefficients, along
with details on the architecture and hyperparameters, is provided in Appendix [F] We also include in
Appendix [B] the two principal components returned by TPCA on the 3D point cloud experiments.
Unlike GPCAGen, which learns continuous geodesics from empirical distributions of absolutely
continuous measures, TPCA acts on discrete measures. A direct numerical comparison between
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Figure 4: Comparison between tangent and geodesic PCA on a set of n = 20 covariance matrices
with same eigenvalues a2, b? and different orientations 6. (left) They are equally spaced on an (open)
circle in a horizontal plane inside the cone of SPD matrices. The first component of TPCA (dashed red
line) goes through the Fréchet mean X (magenta dot), a multiple of the identity, while the component
of GPCA (solid red line) does not. Here |a — b|/|a + b| ~ 0.8. (middle) Representation of the left
figure in the (z,y) coordinates. (right) Evolution of the first component cost improvement (in the
sense of minimization) of GPCA with respect to TPCA, as a function of the ratio |a — b|/|a + b|.

the two methods is therefore not meaningful. However, we observe in Figure[13] that the discrete
nature of TPCA produces artifacts, including holes in certain regions, excessive mass concentration
in others, and intermediate distributions that no longer resemble valid objects.

MNIST geodesics. We represent each image from the MNIST dataset (LeCun et al.|(2010)) as a
probability measure over R%. The grayscale pixel intensities define a normalized density over spatial
coordinates (z,y) € R?, and we further assign each pixel two additional values corresponding to red
and blue color channels. We construct two orthogonal geodesics: the first one interpolates between
a digit 1" and a digit ”2”, both assigned a fixed purple by setting the color channels to 0.5. The
second one is defined from the midpoint of the first, by linearly interpolating the color from red to
blue. As shown in Figures [5|and[0] GPCAGEN successfully recovers the two geodesics intersecting
orthogonally. A second experiment on the MNIST dataset is displayed in Appendix

3D point cloud. We use the ModelNet40 3D point cloud dataset (Wu et al.| (2015)) and apply
GPCA to a subset of 100 randomly selected lamp point clouds. Figure 6] (middle row) and Figure
(left) demonstrate that the first principal component captures the distinction between hanging lamps
(chandeliers) and standing lamps (floor lamps), while the second component reflects variations in
the thickness of the lamp structure. We conduct a similar experiment on 100 point clouds from
ModelINet40 representing different chairs. As shown in Figure [6] (top row) and Figure the
first principal component captures the height of the seat, while the second component distinguishes
between chairs and armchairs.

Landscape images. We took 39 images from the Landscape Pictures dataset (Rougetet (2020))
and use GPCAGEN on the corresponding point clouds, where each point cloud represents color
distribution in the image. Figure[6] (bottom row) and Figure 7] (right) show that the first component
captures variations in overall brightness, ranging from bright to dark images, while the second
component separates mostly green images from mostly blue ones.

AN

Figure 5: Densities of probability distributions uniformly sampled along the first and second principal
geodesics components. GPCAGEN successfully recovers the two orthogonally intersecting geodesics
constructed from MNIST data. The first component (left) captures variation in color space, while the
second component (right) recovers the interpolation from the digit 1" to the digit 72”.
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Figure 6: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(left) and second (right) principal components, as computed by GPCAGEN in the 3D point cloud
of chairs experiment (top row), the 3D point cloud of lamps experiment (middle row) and the
Landscape images experiment (bottom row).
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Figure 7: Each lamp point cloud (left) and each image (right) is embedded in the plane according to
its projection times onto the first and second principal components computed by GPCAGEN.

6 DISCUSSION

We have proposed two methods for computing exact GPCA : one tailored for Gaussian distributions
and the other for the more general case of a.c. probability distributions. In the Gaussian case,
our experiments suggest that GPCA and TPCA generically yield very similar results, except for
distributions with covariance matrices that are close to the boundary of the SPD cone, for which GPCA
can yield undesirable effects as suggested by the pathological example of Figure[d] In the general case
of a.c. probability measures, a key advantage of our approach is that it operates directly on continuous
distributions, avoiding the need for empirical approximations of the v;, which would require equal
sample sizes and can introduce discretization artifacts in the recovered components. Additionally, our
method enables sampling from any point along the geodesic components—something not possible
with discrete approximations commonly used in TPCA. Otto’s parametrization also allowed us to
avoid relying on input convex neural networks (ICNNs) by not requiring convex functions, with the
trade-off being the need to estimate the eigenvalues of the Hessian of f. This perspective opens new
directions for parametrizing convex functions without imposing hard architectural constraints.
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REPRODUCIBILITY STATEMENT

All implementation details of our proposed method, including model architectures, training proce-
dures, and hyperparameter settings, are provided in Section [5]of the main paper and in Appendix[F
and[E.2] Original theoretical results are presented with complete proofs in Appendix [E] The datasets
used in our experiments are publicly available. We will release the source code to reproduce all
experiments associated with this paper at a later stage.
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A ADDITIONAL EXPERIMENTS AND FIGURES

In this section, we present additional figures to further explain the experiments described in the paper
as well as an additional experiment on a.c. distributions.

Figure 8| concerns the experiment on Gaussian distributions with diagonal covariances described in
Section [5.1] corresponding to Figure[d] It shows all three principal components found by tangent PCA
(left) and geodesic PCA, in two equally optimal solutions (middle, right).

0505 -050°

Figure 8: Principal geodesic components of a set of Gaussian distributions whose covariance matrices
have same eigenvalues and different orientations, as described in Section[5.1] Tangent PCA yields a
unique solution (left) where geodesic components cross at the barycenter, while geodesic PCA yields
two equally optimal solutions (middle, right) where the geodesic components cross at another point.
The first geodesic component is shown in red, the second in blue, the third in green.

Figure[Q]displays on the plane the two first geodesic components of the MNIST experiment of Section
[5.2] while Figure [0 shows the planar representation of the 3D point cloud of chairs experiment
given by the projection onto the first two geodesic components found by GPCAGEN algorithm and
depicted in Figure[6] (top row).
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Figure 9: Each point cloud, corresponding to
a distribution along one of the artificially con-
structed geodesics, is embedded in the plane ac-
cording to its projection times onto the first and
second geodesics returned by the GPCAGEN
algorithm. We observe that GPCAGEN success-
fully recovers the two orthogonally intersecting
geodesics designed from MNIST-based interpo-
lations of digit shape and color.

Figure 10: Each chair point cloud is embedded in
the plane according to its projection times onto
the first and second geodesics returned by the
GPCAGEN algorithm.
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Finally, we present an additional experiment on the MNIST dataset. We use the same color construc-
tion as in the experiment presented in Section[5.2} we then apply GPCAGEN to a dataset of 20 red
digits 17, 20 blue digits 17, 20 red digits 27, and 20 blue digits 2" (see Figure[I2). As shown in
Figures [[T]and[T2] GPCAGEN again identifies two orthogonal geodesics: the first primarily captures
variation in color, while the second captures variation in shape—from digit 2" to digit ’1”.

deeoo2a2ii |

Figure 11: Densities of probability distributions uniformly sampled along the geodesics corresponding
to the first and second principal components. The first component (left) returned by GPCAGEN
captures variation in color space, while the second component (right) recovers the interpolation
between digit 72" and digit ’1”".
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Figure 12: Each MNIST digit is embedded in the plane (the arrows indicate the exact position of each
digit) according to its projection times onto the first and second geodesics returned by the GPCAGEN
algorithm. We observe that the first principal component recovered by GPCAGEN captures variation
in color, while the second component reflects the transformation from digit 72" to digit ’1”.

B TPCA oN 3D POINT CLOUD DATA

In this section, we present the results returned by TPCA on the 3D point cloud experiments. We
observe that the geodesics recovered by TPCA differ from those obtained by GPCAGen.

For the lamps dataset, the first component is similar and captures the distinction between hanging and
standing lamps. The second component focuses on the object thickness, like the second GPCAGen
component, but also on whether mass is concentrated at the extremities or the middle of the lamp
structure.

For the chairs dataset, both geodesics obtained by TPCA differ from those returned by GPCA. The
first component interpolates from a thin chair with a high seat to a low-seated armchair. The second
component captures a transition from a thin chair with a low seat to a high-seated armchair. The first
TPCA component appears to blend the first and second GPCAGen geodesics, while the second is
complementary to the first TPCA component.

14
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Finally, due to the discrete nature of the TPCA algorithm, we observe discretization artifacts in the

TPCA components: holes in some parts of the space, mass concentration in others, and intermediate
distributions that do not resemble valid objects.
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Figure 13: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(first line) and second (second line) principal components, as computed by TPCA in the 3D point
cloud of chairs experiment (top rows) and the 3D point cloud of lamps experiment (bottom rows).
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Figure 14: For the chair and the lamp experiment, each point cloud is embedded in the plane according
to its projection times onto the first and second principal components computed by TPCA.
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C THE OTTO-WASSERSTEIN GEOMETRY

In this section, we briefly describe the fiber bundle structure over the Wasserstein space due to [Otto
(2001)), that is behind the Riemannian interpretation of the Wasserstein distance. We then present its
restriction to the space of centered non-degenerate Gaussian distributions, which coincides with the
Bures-Wasserstein Riemannian geometry on SPD matrices. Finally, we relate Otto’s parametrization
of geodesics to McCann’s interpolation.

We present these well-known results without proofs and refer the interested reader to |Otto| (2001));
Khesin et al.|(2021) and (Ambrosio et al.l 2013}, Section 6.1) for more details in the general setting
and to|Takatsu! (2011); Malago et al.|(2018)); |Bhatia et al.|(2019) for details and proofs in the Gaussian
setting.

C.1 THE OTTO-WASSERSTEIN GEOMETRY OF A.C. DISTRIBUTIONS

Consider the space Prob(2) of absolutely continuous probability measures with smooth densities
with respect to the Lebesgue measure, and support included in a compact set 2 C R, as well as the
space Diff () of diffeomorphisms on ). These spaces can be equipped with an infinite-dimensional
manifold structure, see e.g. [Ebin & Marsden| (1970), that we will not describe here. The tangent
space of Diff () at ¢ € Diff(€2) is given by

T,Diff(Q) = {vop, v:Q — R? vector field}.

We fix a reference measure p € Prob(Q) and equip Diff(2) with the L?-metric with respect to p,
defined for any tangent vectors u o ¢, v o ¢ € T, Diff(Q2) as

(uop,v0p)r2() = /(uw%(vw)dp:/wvdu,

where 11 = @ p. Then the space of diffeomorphisms can be decomposed into fibers, defined to be
equivalence classes under the projection

m: Diff () — Prob(£2), ¢ — pup.

Specifically, the fiber over ;1 € Prob(Q) is given by 771 (1) = { € Diff(Q), p4p = p}, see Figure
(right). The tangent space to the fiber 7= (1) at ¢ € Diff(2) and its orthogonal with respect to
the L?(p)-metric are refered to as the vertical and horizontal spaces respectively :

Ver,, := kerdr,, Hor, := (Ver,)",

where dr,, : T,Diff () — T, Prob(£2) denotes the differential of 7 at ¢. Moving along vertical
vectors in Diff (2) means staying in the same fiber, i.e. projecting always to the same measure p in
the bottom space. On the contrary, moving along horizontal vectors means moving orthogonally to
the fibers, i.e., in the direction that gets fastest away from the fiber. The following proposition gives
the form of vertical and horizontal vectors.

Proposition 6. Let ¢ € Diff (2). Then
Ver, = {wo g, V- (wu) =0},
Hor, = {Vfop, feC®(Q)}.

The following results state that line segments and L?(p)-distances in Diff () can be used to compute
Wasserstein geodesics and distances in the space of probability measures Prob((2), provided we
restrict to horizontal displacements.

Proposition 7. The projection w : Diff () — Prob(Q2) is a Riemannian submersion, i.e. dm, :
Hory, — T () Prob(Q) is an isometry for any ¢ € Diff (2).
This implies the following.

Proposition 8 (Proposition [2| in main). Any geodesic t — u(t) for the Wasserstein metric in
equation [2] is the w-projection of a line segment in Diff () going through a diffeomorphism ¢ at
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horizontal speed V f o ¢ for some smooth function f € C(RY). That is, for t defined in a certain
interval (tmim tmux);

u(t) = m(e +tVf o) = (Id+tVf)u(pup). (17)
Another geodesic [i(t) = w(p + tV f o @) is orthogonal to ju(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if (V f o @, Vf o) r2(p) = 0.

We comment on the link between this parametrization and McCann’s interpolation in Section [C.3]

C.2 THE OTTO-WASSERSTEIN GEOMETRY OF GAUSSIAN DISTRIBUTIONS

The Bures-Wasserstein distance in equation [3| on the space SjJr of symmetric positive definite

(SPD) matrices is the geodesic distance induced by a Riemannian metric g”", which can be written
in different ways. Here we use the expression from (Thanwerdas) 2022, Table 4.7), defined for
Y =PDP" €S/ andU = PU'PT € Sy, by

1 1 5
U =5 > Ui (18)
1<i,j<d * J

where the d;’s are the diagonal elements of D. The associated Riemannian geometry can be described
by Otto’s fiber bundle restricted to the space of centered Gaussian distributions, in the following way.

In this setting, diffeomorphisms are restricted to invertible linear maps ¢ : v — Awu for some
invertible matrix A, i.e. the space of diffeomorphisms is replaced by the Lie group of invertible
matrices G'L4. Tangent vectors are then given by linear maps v +— Xu for any matrix X € R?x4,
Fixing the standard normal distribution p = A(0,1d) as reference measure, the L*-metric with
respect to p between u + Xu and u — Y'u is then written, for any X,Y € R4x4:

/ () (w)dp(u) = / tr(so(u)ww)dp(u):tr( quTYpom)):tr(XW),
Rd ]Rd Rd

yielding the standard Frobenius inner product on (the tangent space of) G L4. We obtain a fibration of
the top space G L, over the bottom space S;* by considering the following projection

m:GLg— ST, A AAT, (19)
see Figure (left). The fiber over X3 € S;+ is
7 U(E) ={A e GLy, AAT =%} = %120, (20)

where O denotes the space of orthogonal matrices and $'/2 denotes the only SPD square root of the
SPD matrix Y. The differential of the projection 7(A) = AAT is given by

dra(X)=XA" + AX". (1)

Therefore, vertical vectors, which are those tangent to the fibers, or equivalently, those belonging to
the kernel of dm 4 (X), are given by

Very :={X e R4 XAT + AXT =0}
= {X e R™? X AT is antisymmetric}
= {X=KA") L, KeS;}=5;(A"""1
where S j‘ denotes the space of antisymmetric matrices of size d. Once again, moving along vertical
vectors in G L4 means staying in the same fiber, i.e. projecting always to the same SPD matrix in the

bottom space S:[J“. Horizontal vectors are those that are orthogonal to all vertical vectors (for the
Frobenius metric), i.e. matrices X such that for any antisymmetric matrix K:

0=(X,K(A")™) =tr(XA'KT)

which is equivalent to X A~* symmetric (this can be seen by taking for K the basis elements of S3-
in the above equation), yielding

Hory := {X e R4 (AT)71xT = XA~1}
={XeR™ XTA-ATX =0}
={X =KA, KeS5;} =5,A

where S; denotes the space of symmetric matrices.
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Proposition 9. The projection : GLg — S’d++, A AAT is a Riemannian submersion, i.e. dr 4
is an isometry from Hor 4 equipped with the Frobenius inner product to T A)Sj"' equipped with the
inner product gf(VX), forany A € GLyg.

Just like in the general case, this yields a way to lift the computation of geodesics and distances.

Proposition 10 (Propositonin main). Any geodesic t — X(t) in Sj+ for the Bures-Wasserstein
metric in equation[3]is the T-projection of a horizontal line segment in G Lg, that is

Y(t)=m(A+tX)=(A+tX)(A+tX)", AeGLg, X € Hory, (22)

where t is defined in a certain time interval (i, tmax)- Also, the Bures-Wasserstein distance between
two covariance matrices 1, Yo € S;J’ is given by the minimal distance between their fibers

BWy(S1,%) = inf  |2V%Q — 2Y%Q.| = inf |=V% -3, 23
2(X1, %) = Inf |50 - B,770Qx]| = inf [|% Sl (23)
where || - || is the Frobenius norm and SOy is the special orthogonal group.

Formula in equation [22|and the first equality of equation [23|are direct consequences of the fact that
7 is a Riemannian submersion. To obtain the second equality of equation 23] we first notice that
optimizing on @1, Q2 € Oy is equivalent to optimizing on a single ) € O thanks to the invariance
of the Frobenius metric w.r.t. the right action of O,4. And second, that the infimum is attained at (see
(Bhatia et al., 2019} Equations 3 and 35))

Q =, "*Ts/?, where T =x;'2(x1/?5,51/%)1 /2512

is the Monge map from X7 to X5 (see (Malago et al., [2018| equation 8)), and so Q* has positive
determinant and belongs to SO,.

Thus the closest element of the fiber 7=1(35) to Z}/Z is given by Eé/QQ* = T21/2, i.e. by left
multiplying E}/ 2 by the Monge map 7. This is more generally true for any representative of >1:

Proposition 11. Let $1,%5 € ST, T the Monge map from %1 to $a, Ay € 7 1(1). Then
Ay := TAj is said to be aligned with respect to Ay, that is, it is the closest point in 7=1(3) to Aj.
More precisely, we have

1. Ay — A = (T*I)Al S HOI"A1
2. Logg, (£2) :=dma, (T' = 1)A1) = (T — )Xy + E4(T = 1)

3. BW3(31, %) = [[Logs, Lol |8 = (T — 1) A4|

NBW = \/gBW (-,-) and || - || is the Frobenius norm.

This means that to compute the Bures-Wasserstein distance between two covariance matrices 1 and
3o, one can consider any representative A; in the fiber over X1, compute the representative As of Yo
aligned to A; (using the Monge map) and finally compute the Frobenius norm of A — A;.

where Log is the Riemannian logarithm map,

C.3 GEODESIC PARAMETRIZATION

There are two classical parameterizations for Wasserstein geodesics in the space of a.c. probability
measures.

McCann’s interpolation The first one, due to McCann| (1997), is given between two probability
distributions po and p1, and depends on the optimal transport map in equation [2} obtained as the
gradient of a convex function u, that is T[jﬂl = Vuand

pe = (1 —t)id +tVu)gpo = (id +6(Vu — id)) gpo, ¢ € [0,1]. (24)
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Figure 15: The Otto-Wasserstein geometry of (left) centered Gaussian distributions and (right) a.c.
probability distributions. Figures inspired by |Khesin et al.[(2021).

Otto’s geodesic The second one, exploiting Otto’s fiber bundle geometry in (Otto| (2001), consists in
writing a geodesic in the Wasserstein space as the projection of a horizontal geodesic in the total space
of diffeomorphisms. Such a horizontal geodesic is a line segment going through a diffeomorphism ¢
with a horizontal speed V f o ¢, where f is any smooth function (not necessarily convex). Therefore
we get

s = (p+ sV fop)up=(d+sVf)ulpnp), s € (s0,51). (25)
In this second expression, the bounds on the time s depends on the function f. Indeed, for us to be a
geodesic, id +sV f needs to remain is the space of diffeomorphisms for a given s, which means that
id +sHess f needs to be positive definite. Therefore, we get the following conditions depending on
the minimum A\, and maximum A, eigenvalues of Hess f:

s €] —00,—1/Amin[ I Amax <0,
5 €l 1/ Amas 00| i o > 0 26)
s e] - 1/)‘maX7 _I/Amin[ if )\min <0< )\max-

It is clear that equation [24]is a particular case of equation where we choose p4p = pg and
V f = Vu — id. Conversely, one can write equation [25|under the form of equation[24] For a given
diffeomorphism ¢ and function f, consider the geodesic given by equation and set (g = Qup.
Assume that we are in the case where all eigenvalues of Hess f are negative, then s must be in
] = 00, =1/ Amin[- Consider s* €]0, —1/Amin[, and define p; = pg = (Id+s*Vf)xpo. Setting
t = s/s* we have that the geodesic between po and fiq is written

pe = (id +ts"V f)apo = (id +6(Vu —id))gpo, ¢ € [0,1].
for u(z) = s*f + ||z||? /2. Now for any eigenvalue \; of H the hessian of f, we have
i > Amin > —1/8* ie. s\ +1>0.

by the interval of definition of s*. This means that the hessian H,, = s* H ¢ + id is positive definite,
which means that v is necessarily convex. The other cases work similarly.

The Gaussian case Transposing Otto’s formulation in equation[25]to the case of a geodesic between
Gaussian distributions means that for A € GLg and X € Hor 4 such that | X || = 1, the interval of
definition of a geodesic depends on the invertibility of A + sX. In turn, the maximal interval of
definition of s € (sg, s1) is defined from the eigenvalues of X A~!, through the same formula in

equation 26
D LINEARIZED OPTIMAL TRANSPORT AND TANGENT PCA

In this section, we provide the definition of linearized Wasserstein distance and details on how to
perform tangent PCA for both Gaussian distributions and general a.c. distributions. Tangent PCA
is a widely used approach to compute PCA on the Wasserstein space, that consists in embedding
probability distributions into the tangent space at some reference measure p, and performing PCA in
the tangent space with respect to the linearized Wasserstein distance.
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D.1 THE CASE OF CENTERED GAUSSIAN DISTRIBUTIONS

We consider n covariance matrices X1, ..., %, and their Bures-Wasserstein barycenter (or Fréchet
mean) X, that is, the SPD matrix verifying (see Agueh & Carlier| (2011))):

n

Y =argmin Y  BW3(Z, ;). (27)
Nesit o1
The idea behind tangent PCA is to represent each data point by the corresponding tangent vector,
given by the Riemannian logarithm map, in the tangent space at the reference point X, i.e.
{LogEEi}z’;l - TES&H. (28)
Now, one can lift the computations from the tangent space at ¥ to the horizontal space at a point in the
fiber over 3, say A := %1/ 2, by aligning all representatives to A, see Proposition The key point
is that the tangent space at > equipped with the Bures-Wasserstein Riemannian metric is isometric to
Hor 4 := S4A equipped with the Frobenius inner product — where we recall that Sy is the space of
symmetric matrices. This means that instead of performing PCA for the Bures-Wasserstein inner

product on the tangent vectors in equation [28] we can instead perform linear PCA on their pre-images
by dm 4, see Proposition

{((Ty = 1)A}?_, CHory,, where T;=yx;'?(xl/?sxl/?)1/2g712,
T; is the optimal transport map from X to 3;, see Section Now, noticing that
(K1A, Ky A) = Tr(K,AATK) ) = Tr(K 3K, ), VK, Ky € Sy,

we see that the space Hor4 equipped with the Frobenius inner product is itself isometric to Sy
equipped with the Frobenius inner product weighted by . Therefore, tangent PCA is performed
through Euclidean PCA on the (centered) vectors {1; — I} ,, in the vector space Sy, with respect
to the Frobenius metric weighted by X. Another way to see this is by noticing that the linearized
Bures-Wasserstein distance BW,, 5, with respect to 3 is given by

BW, 5(%1,%) = ||[LogsX1 — LogsXa|Ig"
— Jldmsya((Th — DEY2) = drgua((To — DEV2|EW
= (1 = DSV — (T - DS
= Ty = T5) 52
where ||| " denotes the norm associated to the Bures Wasserstein Riemannian metric in equation|[18]
7 is Otto’s projection in equation and we have used Propositions[9]and[T1] Finally,
BW, 5(51, 52) := ||Logs 31 — Logs Do £ = |1 — Talls, (29)

where || - || denotes the Frobenius norm weighted by 3.

D.2 THE CASE OF A.C. DISTRIBUTIONS

Similarly, one can embed a.c. probability distributions v1, . .., v, into the L?(p) space at some a.c.
reference measure p through the optimal maps v; — T in the Monge problem in equation [2l Then,
the Wasserstein distance can be approximated by the linearized Wasserstein distance in|Wang et al.
(2013) given by

Wa (i, v2) = T30 = T32 2. (50)
Note that as previously mentionned, this metric induces distortions : while the radial distances
from p to any y; are preserved, that is [[id — T}%([12(,) = Wa(p,v;), other distances are not

T3 — T3 L2(p) # Wa(vi, v2). A recent paper by |[Letrouit & Mérigot (2024) proved however, that
under some assumptions, W5 , is bi-Holder equivalent to /5, which indicates that the distortion
effect can be controlled.

Then, denoting 7,, the Wasserstein barycenter as in|Agueh & Carlier|(2011) of v, . .., v,, that is the
solution of .
Up € argmin ZW%(V, Vi), 31
v i=1

tangent PCA consists in performing classical PCA, see e.g. [Ramsay & Silverman| (2002), of
(T, —id)!, in the Hilbert space L?(i7,,).
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E GEODESIC PCA FOR GAUSSIAN DISTRIBUTIONS

In this section, we present the proofs related to geodesic PCA for Gaussian distributions and the
implementation of our algorithm in this case.

E.1 PROOFS RELATED TO GPCA FOR GAUSSIAN DISTRIBUTIONS

We first prove the existence of mimimizers for the GPCA problems lifted in Otto’s fiber bundle.

Lemma 1. The GPCA problem in equation[I2|for the first component admits a global minimum.

Proof. First, let us define the set of normalized matrices B := {X € R?*? || X|| = 1}. By denoting
Amin (Tesp. Amax) the smallest (resp. largest) eigenvalue of X A~!, extending the geodesic t ++ A+tX
as far as possible (see Section D means that the closed interval [¢min, tmax] is defined for some fixed
€ > 0by

(—00, =1/ Amin — €] if  Amax <0,

[—1/Amax + €, +00) if  Amin > 0, (32)

[_1/)\max + ¢, _1//\min — E] if Amin < 0 < Apax-

Let us now consider the function

F:GLyxB x (R>*H)" — R

(A, X, (Qi)imy) — DA+ piax) ()X — 9°Qil* = Zgz A, X,Qu),

i=1 i=1

where t; = (Ei/QQi — A, X) and p4,x) : R — R is the projection operator that clips a point ¢ into
[tmin, tmax)» Which depends on A and X. Then the function F is continuous on GLg x B x (R¥xd)n
as composition of linear and continuous functions. Note that the function (A4, X) + p(a x)(t;) is
continuous by eigenvalue continuity, see Li & Zhang (2019). Additionally, the function F' is coercive
on GLg xBx (R¥4)" Indeed, on a diagonal {A = 23/26,21-, for (4, Q;) € GLyxR¥*?} for some
i€ {1,...,n}, wehave t; = 0, and therefore we have either g;(A4, X, Q;) = 0if p(4,x)(0) = 0, or
9i(A, X,Q;) = || X||* = € otherwise. This would imply that g;(A, X, Q;) doesn’t go to infinity
when the norm ||(4, X, Q;)|| — oo. However, in this case, we have g;(A4, X,Q;) — oo when
(A, X,Q;)|| — oo forany j # i. Moreover, as p(4,x)(t;) is a clipping, it won’t play a role in
the coercivity. We conclude by the fact that the function (A4, X 2r — XTA— AT X is continuous,
implying that the set of constraint {(A4, X) € GL4 x RdXd XTA— ATX =0} isclosed and B
and SOg are compact. The optimization problem in equation [I2]thus admits a global minimum. [

Note that this result also applies for the second component in equation [I3] and the higher order
components.

Proposition 12 (Proposition[3in main). Let w: GLy — S+, A AAT and (A1, X1, (Qi)1)
be a solution of

inf F(A1, X1, (Qi)! Z 1AL+ pa, x, (#) X1 = 272Qu 1%,

=1

subjectto Ay € GLg, X1 € Hory,, | X1]? =1, Q1,...,Q, € SO4.

Then there exist tyy, tmax € R such that the geodesic Y. : t € [tiin, tmax] — T(A1 +tX7) in SjJr
minimizes equation [

Proof. A horizontal geodesic in GLg is a straight line going through a base point A e GLgin
the direction of a horizontal vector X € Hor 4 (that we consider normalized, ie. || X||* = 1), i.e.
t— A+tX € GLg. Denoting [tmin, tmax] the interval constructed in equatlonﬁwhlch depends on
the eigenvalues of X A~*, we have that (m(A~+1X))se[t,, tne] IS @ geodesic in the Bures-Wasserstein

21



Under review as a conference paper at ICLR 2026

sense, see Propositionm and

min  BW2(m(A+tX),%;) = min _inf [A+tX —S2Q;|

te[tminvtmax] tE[tminatmax] Q'iESOd
= inf |4 )X — 212Q)1?
o A+ P ()X = SQu,

where t; = (Zg/QQi — A, X) is the (orthogonal) projection time of Zg/QQi onto the line t — A+t X.

We therefore deduce that a set of solution (A, X, (Q;)?_,) of equationdeﬁnes a proper geodesic
(T(A 4 tX))t€[tmn,tma]» SOlUtion of problem in equation

O

Proposition 13 (Proposition 4| in main). Let v; = N(m;,0?) for i = 1,...n be n univariate
Gaussian distributions. The first principal geodesic component t € [0, 1] — p(t) solving equation
remains in the geodesic space of Gaussian distributions for all t € [0, 1].

Proof. Let Proby(R) be the set of a.c. probability measures on R that have finite second moment,
and Q the set of corresponding quantile functions :

Q= {F,'; v € Proby(R)}

Q is the set of increasing, left-continuous functions ¢ : (0,1) — R, and a convex cone in L?([0, 1]),
the set of square-integrable functions on [0, 1]. The mapping

@IV'—)F;l (33)

defines an isometry between Probs(IR) equipped with the Wasserstein metric, and Q equipped with
the L? metric (see e.g. Bigot et al.[(2017)), that is, for any p, v € Proby(R),

Wa(p,v) = |F7 0 = F 2 o))

The map & in equation[33also defines an isometry from the set of (univariate) Gaussian distributions
to the set of all Gaussian quantile functions G. This space G is the upper-half of the plane F spanned
by the constant function 1 and the quantile function FO*1 of the standard normal distribution:

G=R-1+R%-F ' CF:=span(l,F; ).

Now, consider n normal distributions vy, . .., vy, and (4(t))se(o,1) the first principal geodesic com-
ponent found by minimizing equation |1} the sum of squared residuals in Probs(RR). Since p is
a Wasserstein geodesic in Proby(R) and ® is an isometry, the curve ¢t — ®(u)(t) = Fu_(i) is an

L?([0,1])-geodesic in Q, i.e. a line segment

-1 _ -1 -1

te0,1] — Flo= (1-— t)Fu(o) +1E, -
Since {1, FO*I} forms an orthonormal basis of F, the orthogonal projection of this line segment on
F is given by

t € [07 1] = <F‘u_(1), 1>1 + <Fl:(1)7FO_1>FO_17

which lies in G. To see this, we need to show that the following value is positive:

(Fr Fo ) = / Fob ) Fy  (y)dy = / eFy ' o Fyp (x)dp(t)(z) = E(XT(X)),

where X ~ i(t)and T = Fj 'oF),,; is the Monge map from 1(t) to the standard normal distribution.
Since T is increasing, we indeed have E(XT'(X)) > 0 (see e.g. the proof of Theorem 2.2 in|[Schmidt
(2014)).

Finally, since ® (1) orthogonally projects from Q to G w.r.t the L? metric and ® defines an isometry,
we get that the geodesic p orthogonally projects to a geodesic 7(u) in the space of Gaussian
distributions, w.r.t. the Wasserstein metric. By the distance minimizing property of orthogonal
projections, we know that the cost function in equation (1| evaluated at 7w(u) is no larger than its
value at p. Since p is optimal, we get that 1 = 7(u) and p belongs to the space of Gaussian
distributions. O
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Proposition 14. Ler X1, X5 two SPD matrices that are diagonalizable in the same orthonormal basis,
ie.
2 2
o ay 0 T o as 0 T
El_P(O b%)P and 22_P<O b%)P’

where P is orthogonal. Then BWZ(X1, ) = (a1 —a2)?+ (b1 —b2)?, and thus the Bures-Wasserstein
geodesic between Y1 and Y5 is given by

_ ((1 — t)a1 + tbl)Z 0 T
E(t)_P< 0 (1= t)as + thy)? P, 0<t<1.
Proof. This is a straightforward computation using equation 3] O
Proposition 15. Let us consider n = 2p covariance matrices ¥; = ¥(a,b,0;) as defined in
equation where 8; = im/n fori = 0,...,n — 1. Then, the Bures-Wasserstein barycenter in

equation |27 of these covariance matrices is given by ¥ = (a + b)? /4 I.

Proof. Each pair of covariance matrices

0,2 0 T T b2 0 T
2 = P, 0 PGN and Xy, = P0i+77/2DP9i+7T/2 = by, 0 a2 P9¢

are diagonalizable in the same basis, and so by Proposition[[4} the geodesic from X; to X, is

B (1 —t)a +tb)? 0 T

X(t) = Py, ( 0 (1= )b+ ta)? Py, 0<t<1

In particular, the Fréchet mean is given by ¥ = %(1/2) = ((a + b)/2)?I. Since each pair of
covariance matrices has the same Fréchet mean, the Fréchet mean of the whole set Xq,..., %, is
also given by X. O

Proposition 16 (Propositionin main). Let ¥ € S with eigenvalues a®,b? and X' = Py¥P,
where Py is the rotation matrix of angle 6. Then, denoting & = ((a + b) /2)* I we have

BW2,(,%)

BW2(%,Y) a—b\> .
1-— <a+b) cos” 0+ O((a —b)%). (34)

Proof. Recall that the linearized Bures-Wasserstein distance at . between X and X’ is given by the
distance between their images by the Riemannian logarithm map U := Logs XY and U’ := Loggs '
in the tangent space at X, i.e.

BW,5(5,%) = U - U"|IZ",

where ||-||2" denotes the norm associated to the Bures-Wasserstein Riemannian metric in equation
As in any Riemannian manifold, the true geodesic distance can be approximated by this linearized
distance in the tangent space, corrected by the curvature (see e.g. Lemma 1 in Harms et al.|(2019)) :

2 1
BWE(3,%) = (U -U'[I€")" = 3Re(U, U, UU) + O(UIIEY + [U'IEY)°, (39)

where Ry, is the curvature tensor.

Recall from equation[I8]that the Bures-Wasserstein norm of a vector U is expressed in an eigenvector
basis of the base point, here . Since any basis is an eigenvector basis of %, it is convenient to
choose that of ¥, which we can assume without loss of generality to be the canonical basis. Thus
we write ¥ = D where D = diag(a?,b?) and ¥’ = PyDP,", and the norm associated to the
Bures-Wasserstein Riemannian metric is given by

1 1
sw _ — E )
||U||Z 2 dz + dj U’Lj

1<i,j<2
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where the d;’s are the eigenvalues of 3, given here by d; = do = ((a + b)/2)%. From Proposition
we have

U:=LogsX = (T - D)X + ( =),
— )X

U':=LogsY = (T" (T - 1),
where
T = 5-1/2(S12n51/2)1/25-1/2 — 2 D2
a+b ’
T 225212512 2 P,DY2PT
Cl+b 0 >

and easily get

a? — b? a? — b?

U= J, U =

PyJP), where PyJP; = (gfﬁgg _Sg;fge>

and J = diag(1, —1). Thus after some computations we obtain
IUIE" = 1U"1I2Y = la —bl/ V2,
BW,5(2,Y) = |U - U'||IEY = V2|(a — b)sinf|.
To compute the curvature tensor, we use the following formula from (Thanwerdas| 2022} Table 4.7)
3 d;d;
d +d;

(36)

Rs (U U, UU") = [Uo, UTZ

where [A, B] = AB — BA is the Lie bracket of matrices, Uy and Uy, are the only symmetric matrices
verifying the Sylvester equations U = UpX + LU and U’ = U)X + XU}, respectively. Since ¥ is a
multiple of the identity, we easily get

a—>b —-b
Uy=——J U,=——PyJP,
0T uT 0T Gy 0
and straightforward computations yield
3(a—0b)* .

/ / 2
> == 26. 37
Rs(U,U',U,U") CEEE sin 37

Finally, putting together equation [35] equation [36|and equation [37)and we obtain

—_p)4
BWE(S,5') = BW2g(S,5) - 2 EZ - b;Q sin2 0 cos? 0 + O((a — b)°),

and dividing by the squared linearized optimal transport distance yields the desired result. O

E.2 IMPLEMENTATION OF GPCA FOR GAUSSIAN DISTRIBUTIONS

As described in Section 3] the first and second components of geodesic PCA are respectively found
by solving the minimization problems in equation[I2)and equation[I3] The geodesic components are
given by
Yi(t) = (A; +tX)(A; +tX;) ", for i=1,2,

where A; € GL; and X, € Hory, are minimizers of equatlon | and Ay € GLg and X € Horg,
minimizers of equation “ The matrix 7(As) is the crossing pomt through which all geodesic
components intersect, see Figure 2] The higher order components are found in a analogous way:
for the k-th component, we search for a horizontal segment ¢ — Ay + t X} where A belongs to
the fiber over the intersection point (we parametrize it w.r.t. the previous position in the fiber, i.e.
Ay = Ax_1Ry_1 for a certain R, € SOy) and the horizontal velocity vector X}, is orthogonal to
the lifts of the velocity vectors of the previous component. Thus, the k-th component, k& > 3, solves:

inf F(Ak;Xka (Q )z 1)
subjectto A = Ay_1Rg_1, Ri_1 € SOq, X, € Horga,, | Xi|* =1, (38)
(X Xp—teRi—p .. . Ri—1) =0, 1 <<k —1, Q,...,Qn € SOq.

Following |Huckemann et al.|(2010) and |Calissano et al.|(2024), we propose an iterative algorithm to
implement these components, that, for each component, alternates two steps:
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(Step 1) minimization of the objective function F' (see equation with respect to (Q);)7_, for fixed
(A7 X)’

(Step 2) minimization of the objective function I with respect to (A, X) for fixed (Q;)7;.

In dimension d = 2, any rotation matrix () can be parametrized by a scalar angle 6 and both steps
are solved using the Sequential Least Squares Programming (SLSQP) algorithm (see e.g. [Ma et al.
(2024)) available on the scipy python library and given by |Virtanen et al.|(2020). In higher dimension,
each minimization with respect to a rotation matrix is performed using Riemannian gradient descent
on SOy, relying on the Riemannian geometry of SO, induced by the standard Frobenius metric of
the ambient space R¢*¢. In particular we use the exponential map implemented in the Python library
geomstats developed by [Miolane et al.| (2020). More details on the Riemannian geometry of SOy
and the Riemannian gradient descent procedure can be found e.g. in (Boumall [2023, Sections 7.4 and
4.3).

Unfortunately, we cannot ensure the convergence of the iterates of the proposed block alternating
algorithm, as classical arguments require uniqueness of the minimizer at each iterations as proven
in [Powell| (1973). This is unachievable in our problem: the line with base point A and direction
X € Hor 4 and the line with base point AQ) and direction X () € Hor 4¢ for Q € O, project onto the
same geodesic in the bottom space. However, regarding (Step 1), and thanks to Theorem 3.7 in|Huang
& Wei (2022), we have for fixed (A, X) that the cost function f : (Q1,...,Qn) — F(A, X, (Q:)14)
has the Riemannian Kurdyka-Lojasiewicz property at any point of (O4)". Finally, we have the
convergence of the iterates towards an accumulation point thanks to Theorem 3.14 in|[Zhou et al.
(2024). The three assumptions in this theorem are verified in our case : Assumption (3.5) (L-
Retraction Smoothness) is obtained because gradf is Lipschitz, and Corollary 10.54 in [Boumal
(2023)); Assumption (3.7) (bounded from below) directly holds because f > 0; Assumption (3.8)
(ndividual Retraction Lipschitzness) is verified thanks to Corollary 10.47 in[Boumal (2023).

F HYPERPARAMETERS

All experiments were conducted on a single V100 GPU with 32GB of memory, using a shared set
of hyperparameters detailed in Table [T} The same hyperparameters are used for computing both the
first and second geodesic components, except for the number of gradient steps (see Table[I), which
is increased for the second component. This is likely due to the additional complexity introduced
by the intersection and orthogonality constraints enforced through regularization. Both fy, and g
are implemented as standard multilayer perceptrons (MLPs) with four hidden layers of width 128.
We use ELU activation functions in fy, because its gradient is used to parameterize a transport map
in our formulation, and ELUs are commonly employed in such settings. The Sinkhorn divergence
Se is used in the loss function as a surrogate for the squared Wasserstein distance to compute the
geodesic components. The regularization parameter € must be adapted to the scale of the data; we set
itase = 0.01 E; 4y, ||z — 2’||%, where the expectation is approximated via Monte Carlo using the
current minibatch samples. Note that setting € this way is the default configuration in the OTT-JAX
library. For computing the second geodesic component, we fix the regularization coefficients A and
Az to 1.0, which we found to be robust across all experiments. While increasing them (e.g., to 10.0)
typically yields similar results, excessively large values may degrade performance. Conversely, if
these regularization terms are too small, the algorithm tends to recover the first component as the
second, due to its lower cost. In practice, we monitor the regularization terms during optimization
to ensure they decrease sufficiently relative to their initial values, confirming that the optimization
effectively optimize the intersection and orthogonality constraints. To determine the hyperparameters
in Table[1} we performed a grid search over the optimizer learning rate for the ; in 10~%,1073,1072,
and over the regularization coefficients A\p and Az in 0.1, 1.0, 10.0, 100.0. We found that setting both
regularization terms to 1.0 consistently yielded good performance across all experiments.
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Hyperparameter

Value

fy architecture

dense MLP
d— 128 - 128 - 128 - 128 - 1
ELU activation functions

f optimizer

Adam
step size = 0.0005

g architecture

dense MLP
d— 128 - 128 - 128 - 128 —» d
RELU activation functions

Adam
g optimizer step size = 0.0005
£1=0.9
B2 = 0.999
Adam
. step size = 0.001
t; optimizer 8 =0.9
B2 = 0.999
batch size 1024
number of gradient steps first 120,000
component
number of gradient steps second 200,000
component
Ao 1.0
AT 1.0

Table 1: Hyperparameters used across all experiments.

Note on ¢ parameterization. Note that although ¢ is theoretically required to be a diffeomorphism
in Otto’s parameterization of geodesics (equation[J), we parameterize it using a simple MLP. Initially,
we experimented with normalizing flows to ensure invertibility, but observed that a standard MLP
yielded similar results. In Otto’s geodesic framework, ¢ serves to modify the reference measure p
and define the measure at t = 0 along the geodesic. If ¢ is not a diffeomorphism and the pushforward
4 p is not absolutely continuous, the resulting geodesic becomes degenerate, which may hinder
optimization of the loss equation in equation[I] In practice, however, we found that the MLP g

reliably produces absolutely continuous measures, which is sufficient for our method.

G USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only to assist with polishing the writing; all research ideas, experiments, and

analyses were conducted independently by the authors.
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