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ABSTRACT

This paper focuses on Geodesic Principal Component Analysis (GPCA) on a
collection of probability distributions using the Otto-Wasserstein geometry. The
goal is to identify geodesic curves in the space of probability measures that best
capture the modes of variation of the underlying dataset. We first address the case
of a collection of Gaussian distributions, and show how to lift the computations
to the space of invertible linear maps. For the more general setting of absolutely
continuous probability measures, we leverage a novel approach to parameterizing
geodesics in Wasserstein space with neural networks. Finally, we compare to
classical tangent PCA through various examples and provide illustrations on real-
world datasets.

1 INTRODUCTION

In this paper, we are interested in computing the main modes of variation of a dataset of absolutely
continuous (a.c.) probability measures supported in Rd. For data points living in an arbitrary Hilbert
space, the classical approach defined by Principal Component Analysis (PCA) consists in finding a
sequence of nested affine subspaces on which the projected data retain a maximal part of the variance
of the original dataset, or equivalently, yield best lower-dimensional approximations. When dealing
with a set of a.c. probability distributions, a natural choice is to identify the probability measures
with their probability density functions and to perform PCA on these using the L2 Hilbert metric.
Unfortunately, as highlighted in Cazelles et al. (2018), the components computed in this manner fail
to capture the intrinsic structure of the dataset: the projections onto the components most likely result
in non-positive and un-normalized functions. Using the Wasserstein metric W2 instead has proven to
overcome these limitations by taking into account the geometry of the space of distributions.

The Wasserstein metric endows the space of probability distributions with a Riemannian-like structure,
framing the problem as PCA on a (positively) curved Riemannian manifold. A first approach to
solve this task, known as Tangent PCA (TPCA), consists in embedding the data into the tangent
space at a reference point, and applying classical PCA in this flat space, as in Fletcher et al. (2003).
TPCA is computationally advantageous but can generically induce distortion in the embedded data,
depending on the curvature of the manifold at the reference point and the dispersion of the data. A
more geometrically coherent approach is Geodesic PCA (GPCA) proposed for Riemannian manifolds
in Huckemann et al. (2010); Huckemann & Ziezold (2006), where principal modes of variations are
geodesics that minimize the variance of the projection residuals. Following this approach, the first
geodesic component of a set of probability measures ν1, . . . , νn in the Wasserstein space solves

inf
t 7→µ(t) geodesic

n∑
i=1

inf
ti

W 2
2 (µ(ti), νi). (1)

Interestingly, unlike in the Hilbert setting, this criterion is not equivalent to maximizing the variance
of the projections, which leads to a different notion of PCA on Riemannian manifolds (see Sommer
et al. (2010; 2014)).

Related works TPCA in the Wasserstein space was considered by Wang et al. (2013) through the
use of the linearized Wasserstein distance. In a similar approach, Boissard et al. (2015) restrict to
distributions that can be obtained by deforming a single template measure. For one-dimensional
probability measures, Bigot et al. (2017) have shown that GPCA and its linearized approximation
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TPCA coincide, as the embedding into a tangent space is then an isometry when constrained to a
convex set. An algorithm in this case has been proposed in Cazelles et al. (2018), with an approximate
extension in dimension 2. For higher-dimensional measures, Seguy & Cuturi (2015) solve an
approximate version of GPCA, replacing geodesics by generalized geodesics as defined in Ambrosio
et al. (2008). Despite all this, a method to solve the exact GPCA problem described in equation 1 is
still missing for Rd-valued probability measures. The goal of this paper is to fill this gap.

Main contributions In this paper, we introduce two algorithms to solve the exact GPCA problem in
the Wasserstein space of (1) centered Gaussian distributions and (2) a.c. probability measures on Rd.
Our methods are exact in the sense that they do not rely on a linearization of the Wasserstein space,
and the components are true geodesics that minimize the cost in equation 1. In the Gaussian case,
we leverage the Bures-Wasserstein geometry to lift the computations to the flat space of invertible
matrices. We show an example where GPCA and TPCA differ significantly, and relate this effect to
curvature. In the general case of a.c. probability distributions, we lift the probability distributions to
the space of (non necessarily optimal) maps that pushforward a given reference measure, as described
by Otto (2001). This approach is independent of the chosen reference measure and yields a convenient
way to parametrize geodesic components and define orthogonality with respect to the Wasserstein
metric. In practice, we parametrize geodesic components using multilayer perceptrons (MLPs),
trained to minimize the cost in equation 1. We show illustrations on images and 3D point clouds.
Along the way, we prove that for univariate Gaussian distributions, GPCA yields the same results
whether it is performed in the space of a.c. distributions or restricted to the Gaussian submanifold.

Organization of the paper In Section 2, we present the Wasserstein metric and its restriction to
Gaussian distributions, as well as the related Bures-Wasserstein and Otto-Wasserstein geometries. We
present GPCA for centered Gaussian distributions in Section 3, and the general case of a.c. probability
measures in Section 4. Experiments are presented in Section 5, and the paper ends with a discussion
in Section 6. All the proofs and additional experiments are deferred in the appendices.

2 BACKGROUND

The Wasserstein distance Optimal transport is about finding the optimal way to transport mass
from one distribution µ on Rd to another ν with respect to a ground cost, say the Euclidean squared
distance. The total transport cost defines the Wasserstein distance W2 between a.c. measures µ, ν
with moment of order 2, whose Monge (1781) formulation is given by

W 2
2 (µ, ν) =

∫
Rd
∥x− T νµ (x)∥2dµ(x), (2)

and where the map T νµ is the µ-a.s. unique gradient of a convex function verifying T νµ#µ = ν, as
proven by Brenier (1991). When the distributions µ and ν are centered (non-degenerate) Gaussian
distributions, they can be identified with their covariance matrices Σµ,Σν and equation 2 is referred
to as the Bures-Wasserstein distance BW2 on the manifold S++

d of symmetric positive definite (SPD)
matrices (see e.g. Modin (2017); Bhatia et al. (2019)):

BW 2
2 (Σµ,Σν) = tr

[
Σµ +Σν − 2(Σ1/2

µ ΣνΣ
1/2
µ )1/2

]
. (3)

Both distances can be induced by a Riemannian metric on their respective manifolds, i.e. the space of
a.c. distributions and S++

d , as we will see in the following. For more details, see Appendix B.

Bures-Wasserstein geometry of centered Gaussian distributions The set of centered non-
degenerate Gaussian distributions on Rd is identified with the manifold S++

d of SPD matrices.
The Riemannian geometry of the Bures-Wasserstein metric in equation 3 can be described by con-
sidering S++

d as the quotient of the manifold GLd of invertible matrices by the right action of the
orthogonal group Od. In this geometry, GLd is decomposed into equivalence classes called fibers.
The fiber over Σ ∈ S++

d is defined to be the pre-image of Σ under the projection

π : A ∈ GLd 7→ AA⊤ ∈ S++
d , (4)

and can be obtained as the result of the action of Od on a representative, e.g. Σ1/2 the only SPD
square root of Σ: π−1(Σ) = {A ∈ GLd, AA⊤ = Σ} = Σ1/2Od.2
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Tangent vectors to GLd are said to be horizontal if they
are orthogonal to the fibers with respect to the Frobenius
metric, i.e. if they belong to the space

HorA : = {X ∈ Rd×d, X⊤A−A⊤X = 0}, (5)

for a given point A ∈ GLd. Then the projection π in
equation 4 defines an isometry between the horizontal
subspace HorA equipped with the Frobenius inner prod-
uct ⟨X,Y ⟩ : = tr(XY ⊤), and S++

d equipped with a
Riemannian metric that induces the Bures-Wasserstein
distance (equation 3) as the geodesic distance. In partic-
ular, this means that moving horizontally along straight
lines in the top spaceGLd is equivalent to moving along
geodesics in the bottom space S++

d (see Figure 1), as
recalled in the following proposition.

S ++
d

Id A1

Σ2
Id

π

GLd

X ∈ HorA1

Σ1

A2

π
−
1 (
Id
)

π
−
1 (
Σ
1
)

π
−
1 (
Σ
2
)

horizont
al geode

sic

Wasserste
in geodesic

Figure 1: The Bures-Wasserstein geom-
etry of centered Gaussian distributions,
inspired by Khesin et al. (2021).

Proposition 1 (Takatsu (2011); Malagò et al. (2018); Bhatia et al. (2019)). Any geodesic t 7→ Σ(t) in
S++
d for the Bures-Wasserstein metric in equation 3 is the π-projection of a horizontal line segment

in GLd, that is
Σ(t) = π(A+ tX) = (A+ tX)(A+ tX)⊤, A ∈ GLd, X ∈ HorA, (6)

where t is defined in a certain time interval (tmin, tmax). Also, the Bures-Wasserstein distance between
two covariance matrices Σ1,Σ2 ∈ S++

d is given by the minimal distance between their fibers

BW2(Σ1,Σ2) = inf
Q1,Q2∈Od

∥Σ1/2
1 Q1 − Σ

1/2
2 Q2∥ = inf

Q∈SOd
∥Σ1/2

1 − Σ
1/2
2 Q∥, (7)

where ∥ · ∥ is the Frobenius norm and SOd is the special orthogonal group.

It is essential to note that the geodesic equation 6 cannot be extended for all time t ∈ R (the only
geodesic lines are those obtained by translation (Kloeckner, 2010, Proposition 3.6)). Therefore,
equation 6 is only defined on a time interval (tmin, tmax) that depends on the eigenvalues of XA−1

(see Appendix B.3). More details on the Bures-Wasserstein geometry can be found in Appendix B.2.

Otto-Wasserstein geometry of a.c. probability measures The Riemannian structure described for
Gaussian distributions is a special case of Otto (2001)’s more general construction : the bottom space
becomes the space Prob(Ω) of a.c. distributions supported in a compactset Ω ⊂ Rd while the top
space is the space of diffeomorphisms Diff(Ω) endowed with the L2 metric with respect to a fixed
reference measure ρ (see Figure 19 in Appendix B). The fibers of Diff(Ω) are then defined to be the
pre-images under the projection

π : φ ∈ Diff(Ω) 7→ π(φ) = φ#ρ ∈ Prob(Ω). (8)
In this setting, horizontal displacements in Diff(Ω) are along vector fields that are gradients of
functions. The projection π defines an isometry between the horizontal subspace equipped with the
L2(ρ)-inner product and Prob(Ω) equipped with a Riemannian metric that induces the Wasserstein
distance as the geodesic distance. In particular, we have the following result.
Proposition 2 (Otto (2001)). Any geodesic t 7→ µ(t) for the Wasserstein metric given in equation 2 is
the π-projection of a line segment in Diff(Ω) going through a diffeomorphism φ at horizontal speed
∇f ◦ φ for some smooth function f ∈ C(Rd). That is, for t defined in a certain interval (tmin, tmax),

µ(t) = π(φ+ t∇f ◦ φ) = (id+t∇f)#(φ#ρ). (9)

Another geodesic µ̃(t) = π(φ+ t∇f̃ ◦ φ) is orthogonal to µ(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if ⟨∇f ◦ φ,∇f̃ ◦ φ⟩L2(ρ) = 0.

We emphasize that f need not be convex in equation 9, unlike in the more classical parametrization
of geodesics due to McCann (1997) between two distributions µ0 and µ1 = ∇u#µ0 :

µ(t) = (id+t(∇u− id))#µ0,with t ∈ [0, 1] and u a convex function. (10)
Note that equation 9 parametrizes geodesics provided that id+t∇f is a diffeomorphism, and thus it
is defined on a time interval that depends on the eigenvalues of the Hessian of f . On the other hand,
the convexity condition on the function u in the parametrization of equation 10 ensures that time t is
defined on [0, 1]. Both are completely equivalent (see Appendix B.3 for details).

3
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3 GEODESIC PCA ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider the exact GPCA problem for the Bures-Wasserstein metric in equation 3.
The data are n centered Gaussian distributions identified with their covariance matrices Σ1, . . . ,Σn ∈
S++
d . Following Huckemann et al. (2010), we define the first component as the geodesic t 7→ Σ(t) ∈
S++
d that minimizes the sum of squared residuals of the BW2-projections of the data:

inf
t 7→Σ(t) geodesic

n∑
i=1

inf
ti

BW 2
2 (Σ(ti),Σi). (11)

The second principal component is defined to be the geodesic that minimizes the same cost function,
with the constraint of intersecting the previous component orthogonally. The subsequent principal
components have the additional constraint of going through the intersection of the first two principal
geodesics. This definition does not impose that the geodesic components go through the Wasserstein
barycenter (see Agueh & Carlier (2011)), and in Section 5 we show an example where this is indeed
not verified. This gives an observation of the phenomenon already described in Huckemann & Ziezold
(2006) for spherical geometry. The proofs of this section are deferred to Appendix D.

Learning the geodesic components Following Propositon 1, we lift the GPCA problem in equa-
tion 11 to the total space GLd of Otto’s fiber bundle. This has several advantages: the Bures-
Wasserstein distance in the cost function of equation 11 is replaced by the Frobenius norm ∥ · ∥, the
geodesic is replaced by a horizontal line segment, and the projection times ti become explicit. The
price to pay is an optimization over variables (Qi)ni=1 in SOd, needed to represent the covariance
matrices Σi by invertible matrices Σ1/2

i Qi in their respective fibers.

Proposition 3. Let π : GLd → S++
d , A 7→ AA⊤ and (A1, X1, (Qi)

n
i=1) be a solution of

inf F (A1, X1, (Qi)
n
i=1) : =

n∑
i=1

∥A1 + pA1,X1
(ti)X1 − Σ

1/2
i Qi∥2,

subject to A1 ∈ GLd, X1 ∈ HorA1 , ∥X1∥2 = 1, Q1, . . . , Qn ∈ SOd.
(12)

Then there exist tmin, tmax ∈ R such that the geodesic Σ : t ∈ [tmin, tmax] 7→ π(A1 + tX1) in S++
d

minimizes equation 11.

Here the ti are projection times given by ti = ⟨Σ1/2
i Qi −A1, X1⟩, and pA,X is a projection operator

that clips any t ∈ R onto a closed interval [tmin, tmax] depending onA andX , such thatA+pA,X(t)X
is invertible for any t in this interval (see Appendix B.3). Clipping the time parameter of the line
segment is necessary to ensure it remains within GLd and projects onto a geodesic in S++

d .

The second component is a geodesic of
S++
d that orthogonally intersects the first

component. Lifting again the problem
to GLd, this boils down to searching for
a horizontal line t 7→ A2 + tX2 where
A2 = (A1 + t∗X1)R

∗ for a rotation ma-
trix R∗, a time t∗ ∈ [tmin, tmax] and a
horizontal vector X2 ∈ HorA2

such that
⟨X2, X1R

∗⟩ = 0. The equation for A2

ensures that the π-projections of the first
two horizontal lines intersect, while the
condition onX2 ensures that they intersect
orthogonally (since X1R

∗ is horizontal at
A2 as can easily be checked). See Figure 2.

GLd

S++
d

π

A1
X1 A1 + t∗X1

X2

X1R
∗A2

π(A1) π(A2)

dπA2(X2)

dπA2(X1R
∗)

Figure 2: First (red) and second (blue) geodesic compo-
nents of Gaussian GPCA, where dπA denotes the dif-
ferential of the projection π : A 7→ AA⊤ at A ∈ GLd.

The second component is thus defined by Σ2(t) = π(A2 + tX2), found by solving:

inf F (A2, X2, (Qi)
n
i=1)

subject to A2 = (A1 + t∗X1)R
∗, R∗ ∈ SOd, t∗ ∈ [tmin, tmax]

X2 ∈ HorA2
, ∥X2∥2 = 1, ⟨X2, X1R

∗⟩ = 0, Q1, . . . , Qn ∈ SOd.
(13)

4
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Note that this step requires to find new rotation matrices (Qi)ni=1. The first two components fix the
intersection point π(A2) through which all other geodesic components will pass, see Figure 2. For
every higher order component, we search for a velocity vector Xk that is horizontal at some point in
the fiber over π(A2) and orthogonal to the lifts of the velocity vectors of the previous components.
Details on the implementation of these components are given in Appendix D.2.

Quantifying the difference between TPCA and GPCA In the following, we quantify the distortion
induced by linearization in the case of covariances matrices with same eigenvalues.
Proposition 4. Let Σ ∈ S++

2 with eigenvalues a2, b2 and Σ′ = PθΣP
⊤
θ where Pθ is the rotation

matrix of angle θ. Then, denoting Σ̄ = ((a+ b)/2)
2
I , we have

BW 2
2 (Σ,Σ

′)

BW 2
2,Σ̄

(Σ,Σ′)
= 1−

(
a− b
a+ b

)2

cos2 θ +O((a− b)4), (14)

where BW2,Σ̄ is the linearized Bures-Wasserstein distance at Σ̄ recalled in equation 29.

For a given θ, equation 14 shows that the distorsion is most important for |a−b|
|a+b| close to 1, which

corresponds to matrices that are close to the border of the cone, as illustrated in Section 5.1.

On the restriction to the space of Gaussian distributions Geodesic PCA can also be defined in
the more general space of a.c. probability distributions, as presented in Section 4. A natural question
that arises is whether performing GPCA in the whole space of probability distributions gives the
same result as restricting to the space of Gaussian distributions, which is totally geodesic. To our
knowledge, the answer to this question is not known in general, although it is true in one dimension.
Proposition 5. Let νi = N (mi, σ

2
i ) for i = 1, . . . , n, be n univariate Gaussian distributions. The

first principal geodesic component t ∈ [0, 1] 7→ µ(t) solving equation 1 remains in the space of
Gaussian distributions for all t ∈ [0, 1].

4 GEODESIC PCA ON A.C. PROBABILITY MEASURES: GPCAGEN

We now tackle the task of performing GPCA on a set of a.c. probability measures ν1, . . . , νn using
the Otto-Wasserstein geometry. We propose a parameterization of the geodesic principal components
based on Otto’s formulation, leveraging neural networks. Additionally, we introduce a dedicated cost
function to optimize the different geodesic components.

Parameterizing geodesics Following Proposition 2 and equation 9, any geodesic t 7→ µ(t) in
the Wasserstein space (Prob(Ω),W2) can be expressed as µ(t) = (φ+ t∇f ◦ φ)#ρ, for t in some
interval [tmin, tmax], φ : Rd → Rd a diffeomorphism, f : Rd → R a smooth function, and ρ a fixed
reference measure, taken to be the standard Gaussian distribution in this work. Using multilayer
perceptrons (MLPs) to parametrize the functions φ and f , denoted φθ and fψ , respectively, the curve

t 7→ µθ,ψ(t) = (id + t∇fψ)#(φθ#ρ)
is a geodesic for t ∈ [tmin, tmax], provided that id + t∇fψ ∈ Diff(Ω) for all t in this interval.
Equivalently, this condition holds if the Hessian matrix Id + tHfψ (x) is positive definite for all
x ∈ Rd and t ∈ [tmin, tmax], where Hfψ (x) denotes the Hessian of fψ at x. In practice, we enforce
this constraint by monitoring the eigenvalues of Id+tHfψ (x) (see Appendix B.3) and either clipping t
or adjusting the interval [tmin, tmax] to ensure that all eigenvalues remain positive. This representation
enables to sample from the distributions along the geodesic. Specifically, given the learned vector
field φθ and function fψ , one can sample from µθ,ψ(t) by first drawing x ∼ ρ and then applying the
transformations φθ and id + t∇fψ sequentially as φθ(x) + t∇fψ(φθ(x)) ∼ µθ,ψ(t).

Learning the geodesic components The first principal component in GPCA minimizes the objec-
tive in equation 1. The scalar variables ti specify the projection time of each distribution νi onto the
geodesic t 7→ µ(t). Leveraging the explicit form of Otto’s geodesic, equation 1 can be reformulated
as:

inf
f∈C(Rd),φ∈Diff(Ω)
t1,...,tn∈[tmin,tmax]

L(f, φ, t1, . . . , tn) : =

n∑
i=1

W 2
2 ((id+ti∇f)#(φ#ρ), νi). (15)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We jointly learn the parameters ti together with the neural networks φθ and fψ to minimize the
objective in equation 15. In practice, we use the Sinkhorn divergence Sε that has been proven to be a
differentiable and computationally efficient approximation of the squared Wasserstein distance W 2

2 ,
see Frogner et al. (2015); Genevay et al. (2018); Chizat et al. (2020), and represent the distributions ρ
and νi using batches of m samples xk ∼ ρ and yj ∼ νi. The optimization proceeds by updating the
parameters based on a single distribution νi sampled at each iteration, as detailed in Algorithm 1. To
compute tmin and tmax on line 5 of Algorithm 1, we approximate the extremal eigenvalues of Hfψ by
evaluating the largest and smallest eigenvalues over the finite set {Hfψ (xk)}mk=1, and substitute these
estimates into the theoretical bounds from Appendix B.3.

Algorithm 1 Geodesic PCA algorithm for a.c. measures: GPCAGEN

1: Initialize φθ, fψ and the ti for 1 ≤ i ≤ n
2: while not converged do
3: for i = 1 to n do
4: Draw m i.i.d samples y(i)j ∼ νi and draw m i.i.d samples xk ∼ ρ 1 ≤ j, k ≤ m
5: Estimate tmin, tmax with {Hfψ (xk)}mk=1 and set t′i = min(max(ti, tmin), tmax)

6: z
(i)
k ← (id+t′i∇fψ) ◦ (φθ)(xk) for 1 ≤ k ≤ m

7: Lθ,ψ,ti ← Sε

(
1
m

∑m
k=1 δz(i)k

, 1
m

∑m
j=1 δy(i)j

)
8: Update φθ, fψ and the ti with∇Lθ,ψ,ti
9: end for

10: end while

The second principal component minimizes the objective in equation 1 subject to the constraint that it
intersects the first component orthogonally. Similar to the first component, we use two MLPs, fψ2

and φθ2 , to parameterize the geodesic t 7→ µθ2,ψ2
(t), along with n scalar variables t2i , to optimize

the objective in equation 15. We also introduce two additional scalar variables, t1inter and t2inter, which
define the intersection times of the two geodesics, along with the regularization terms:

I(µ1, µ2, t
1
inter, t

2
inter) =W 2

2 (µ1(t
1
inter), µ2(t

2
inter)) and O(g, h) =

⟨g, h⟩2L2(ρ)

∥g∥2L2(ρ)∥h∥2L2(ρ)

,

where I enforces the geodesics µ1 = µθ,ψ and µ2 = µθ2,ψ2 to intersect at the respective times
t1inter and t2inter, and O(g, h) ensures orthogonality between the corresponding horizontal vector fields
g = ∇fψ(φθ) and h = ∇fψ2(φθ2) in L2(ρ). The total objective used to optimize the second
principal component incorporates these regularization terms and is given by:

L(fψ2 , φθ2 , t
2
1, . . . , t

2
n) + λII(µθ,ψ, µθ2,ψ2 , t

1
inter, t

2
inter) + λOO(∇fψ(φθ),∇fψ2(φθ2))

where λI and λO are the regularization parameters controlling the trade-off between the intersection
and orthogonality regularization terms, respectively. Note that in virtue of Proposition 2, the L2(ρ)
inner product in the regularization term O truly enforces orthogonality of the geodesic components
with respect to the Riemannian metric associated to the Wasserstein distance.

The training algorithm used to optimize the second principal component follows the same structure as
Algorithm 1, except for the seventh line, where the regularization terms, estimated using the minibatch
xk ∼ ρ, are added to the loss function. Higher-order components can be computed similarly.

5 EXPERIMENTS

5.1 EXPERIMENTS ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider toy examples in S++
2 and compare GPCA to its widely used linearized

approximation, TPCA (see Appendix C). We use two coordinate systems for matrices in S++
2 : the

first comes from the spectral decomposition, and the second maps any SPD matrix to a point in the
interior of the cone C = {(x, y, z) ∈ R3, z > 0, z2 < x2 + y2}

Σ = Pθ

(
a2 0
0 b2

)
P⊤
θ =

(
z + y x
x z − y

)
, (a, b, θ) ∈ R∗

+ × R∗
+ × R, (x, y, z) ∈ C, (16)

6
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where Pθ is the rotation matrix of angle θ. Generically, GPCA and TPCA yield very similar results:
for sets of n = 50 covariance matrices randomly generated using a uniform distribution on the
parameters (a, b, θ), GPCA reduces the objective in equation 11 of less than 1% w.r.t. TPCA, on
average for 100 trials. This suggests that TPCA is generally a very good approximation of GPCA.
Two extreme cases are described below: (i) GPCA and TPCA are equivalent and (ii) GPCA and
TPCA drastically differ.

Matrices with same orientation If we consider a set of covariance matrices that live in the subspace
θ = constant in notations of equation 16, then both GPCA and TPCA yield exactly the same results,

namely that of linear PCA in the
(a, b)-coordinates. This is because
any such subspace has zero curva-
ture for the Wasserstein metric, and
geodesics are straight lines in the
(a, b)-coordinates (Appendix D.1).
Figure 3 shows the geodesic compo-
nents obtained for a set of matrices
in the subspace θ = 0 that form a
regular rectangular grid in the (a, b)
coordinates, i.e. Σij = diag(a2i , b

2
j )

where the ai’s and bj’s are equally
spaced. They are indeed straight
lines that capture the variations in
a and b respectively.

1
0

1 1

0
1

0

1

2

Figure 3: GPCA on a set of diagonal covariance matrices
Σij with varying eigenvalues 1 ≤ a2i ≤ 3, 1 ≤ b2j ≤ 2.
The matrices form a planar grid inside the cone C of SPD
matrices in equation 16 (left), and correspond to ellipses
of varying width and height (right). The first component
(red) captures the variation in a, while the second component
(blue) captures the variation in b.

Matrices with same eigenvalues Now we consider covariance matrices that all have the same
eigenvalues but different orientations. Specifically, we choose Σi = Pθidiag(a2, b2)P⊤

θi
, for positive

reals a > b, θi = iπ/n for i = 0, . . . , n − 1 and an even number n. In the (x, y, z) coordinates
(equation 16), the covariance matrices are displayed on a circle of equation x = cst (constant trace)
and y2+z2 = cst (constant determinant), as shown in Figure 4 (in practice, we choose a slightly open
circle to break the symmetry). Then the Bures-Wasserstein barycenter of the covariance matrices
Σ1, . . . ,Σn is given by Σ̄ = (a+ b)2/4 I (see Proposition 15 in Appendix D.1). When performing
TPCA on Σ1, . . . ,Σn at the barycenter Σ̄, the radial distances between Σ̄ and Σi are preserved, but
not the pairwise distances between the Σi’s. Proposition 4 evaluates the level of this distorsion. Note
that since (a − b)2/(a + b)2 = (x2 + y2)/z2, the distorsion is most important when covariance
matrices are close to the border of the cone, see Figure 4 (left). Indeed, in that case, the results of
GPCA can be very different from those of TPCA and the first component may not even go through
the Wasserstein barycenter Σ̄, see Figure 4 (middle) and Figure 8 in Appendix A. In that case GPCA
may be seen as worse-behaved as TPCA, as some of the Gaussian distributions will project onto
the first geodesic component boundaries, yielding a poor separation. Figure 4 (right) shows the
percentage of improvement of the cost in equation 11 (in terms of minimization) of GPCA with
respect to TPCA, in the setting previously described for different values of the ratio |a− b|/|a+ b|.
on average for 10 runs per value of the ratio. The blue strip indicates standard deviation.

Weather dataset In this paragraph, we use the Weather CORGIS Dataset to illustrate GPCA based
on empirical covariance matrices. The dataset provides weekly measures of precipitation and wind
speed recorded from from March 2016 to Junuary across the 50 U.S. states and the territory of Puerto
Rico. From these measures, we construct two histograms for each state: one for precipitation and
one for wind speed. We then compute the 51 empirical covariances from these histograms. We show
in Figure 14 the projection of each state onto the two first GPCA components computed from the
empirical covariance matrices. We can clearly identify clusters of different weather behavior among
the states.

5.2 EXPERIMENTS ON ABSOLUTELY CONTINUOUS DISTRIBUTIONS

We conduct a preliminary experiment on a synthetic dataset with known geodesics to verify that
our algorithm, GPCAGEN (Section 4), accurately recovers the first two principal components. We
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Figure 4: Comparison between tangent and geodesic PCA on a set of n = 20 covariance matrices
with same eigenvalues a2, b2 and different orientations θ. (left) They are equally spaced on an (open)
circle in a horizontal plane inside the cone of SPD matrices. The first component of TPCA (dashed red
line) goes through the Fréchet mean Σ̄ (magenta dot), a multiple of the identity, while the component
of GPCA (solid red line) does not. Here |a− b|/|a+ b| ≈ 0.8. (middle) Representation of the left
figure in the (x, y) coordinates. (right) Evolution of the first component cost improvement (in the
sense of minimization) of GPCA with respect to TPCA, as a function of the ratio |a− b|/|a+ b|.

then apply GPCAGEN to 3D point clouds from the ModelNet40 dataset (Wu et al. (2015)) and to
color distributions of images from the Landscape Pictures dataset (Rougetet (2020)). An additional
experiment in AppendixA.3 demonstrate how GPCA can be used for outlier detection. For these
experiments, fψ and φθ are MLPs with four hidden layers of size 128 and an output layer of size 1
and d respectively. We found that setting the regularization coefficients λI and λO to 1.0 ensures the
algorithm works as expected in all experiments. A discussion of the regularization coefficients, along
with details on the architecture and hyperparameters, is provided in Appendix E.

MNIST geodesics. We represent each image from the MNIST dataset (LeCun et al. (2010)) as a
probability measure over R4. The grayscale pixel intensities define a normalized density over spatial
coordinates (x, y) ∈ R2, and we further assign each pixel two additional values corresponding to red
and blue color channels. We construct two orthogonal geodesics: the first one interpolates between
a digit ”1” and a digit ”2”, both assigned a fixed purple by setting the color channels to 0.5. The
second one is defined from the midpoint of the first, by linearly interpolating the color from red to
blue. As shown in Figures 5 and 9, GPCAGEN successfully recovers the two geodesics intersecting
orthogonally. A second experiment on the MNIST dataset is displayed in Appendix A.

3D point cloud. We use the ModelNet40 3D point cloud dataset (Wu et al. (2015)) and apply
GPCA to a subset of 100 randomly selected lamp point clouds. Figure 6 (middle row) and Figure 7
(left) demonstrate that the first principal component captures the distinction between hanging lamps
(chandeliers) and standing lamps (floor lamps), while the second component reflects variations in
the thickness of the lamp structure. We conduct a similar experiment on 100 point clouds from
ModelNet40 representing different chairs. As shown in Figure 6 (top row) and Figure 10, the
first principal component captures the height of the seat, while the second component distinguishes
between chairs and armchairs.

Landscape images. We took 39 images from the Landscape Pictures dataset (Rougetet (2020))
and use GPCAGEN on the corresponding point clouds, where each point cloud represents color

Figure 5: Densities of probability distributions uniformly sampled along the first and second principal
geodesics components. GPCAGEN successfully recovers the two orthogonally intersecting geodesics
constructed from MNIST data. The first component (left) captures variation in color space, while the
second component (right) recovers the interpolation from the digit ”1” to the digit ”2”.
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Figure 6: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(left) and second (right) principal components, as computed by GPCAGEN in the 3D point cloud
of chairs experiment (top row), the 3D point cloud of lamps experiment (middle row) and the
Landscape images experiment (bottom row).

distribution in the image. Figure 6 (bottom row) and Figure 7 (right) show that the first component
captures variations in overall brightness, ranging from bright to dark images, while the second
component separates mostly green images from mostly blue ones.

Baselines An obvious baseline for GPCAGEN is TPCA. Unlike GPCAGEN, which learns continu-
ous geodesics from empirical distributions of absolutely continuous measures, TPCA acts on discrete
measures. A direct numerical comparison between the two methods is therefore not meaningful.
However, we include in Appendix A.2 the two principal components returned by TPCA on the
3D point cloud experiments. We observe in Figure 16 that the discrete nature of TPCA produces
artifacts, including holes in certain regions, excessive mass concentration in others, and intermediate
distributions that no longer resemble valid objects.

Another natural baseline consists in embedding point clouds into a latent space of dimension d
then performing standard PCA on the resulting latent vectors. This approach, in addition to being
computationally expensive, does not produce meaningful modes of variation, as shown in Section
A.2 of the appendices.

−3 −2 −1 0 1 2
ti

−2

−1

0

1

2

t(2
)

i

Figure 7: Each lamp point cloud (left) and each image (right) is embedded in the plane according to
its projection times onto the first and second principal components computed by GPCAGEN.
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6 DISCUSSION

GPCA is a statistical approach for learning the main modes of variations of a set of probability
distributions. The first components capture meaningful structure for data lying on a curved space,
which then enables downstream tasks such as classification, clustering, and outlier detection. In
this work, we have proposed two methods for computing exact GPCA : one tailored for Gaussian
distributions and the other for the more general case of a.c. probability distributions. In the Gaussian
case, our experiments suggest that GPCA and TPCA generically yield very similar results, except for
distributions with covariance matrices that are close to the boundary of the SPD cone, for which GPCA
can yield undesirable effects as suggested by the pathological example of Figure 4. In the general case
of a.c. probability measures, a key advantage of our approach is that it operates directly on continuous
distributions, avoiding the need for empirical approximations of the νi, which would require equal
sample sizes and can introduce discretization artifacts in the recovered components. Additionally, our
method enables sampling from any point along the geodesic components—something not possible
with discrete approximations commonly used in TPCA. Otto’s parametrization also allowed us to
avoid relying on input convex neural networks (ICNNs) by not requiring convex functions, with the
trade-off being the need to estimate the eigenvalues of the Hessian of f . This perspective opens new
directions for parametrizing convex functions without imposing hard architectural constraints.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details of our proposed method, including model architectures, training proce-
dures, and hyperparameter settings, are provided in Section 5 of the main paper and in Appendix E
and D.2. Original theoretical results are presented with complete proofs in Appendix D. The datasets
used in our experiments are publicly available. We will release the source code to reproduce all
experiments associated with this paper at a later stage.
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Luigi Malagò, Luigi Montrucchio, and Giovanni Pistone. Wasserstein Riemannian geometry of
Gaussian densities. Information Geometry, 1:137–179, 2018.

Robert J McCann. A convexity principle for interacting gases. Advances in mathematics, 128(1):
153–179, 1997.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas,
Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas
Gerald, Paul Chauchat, Christian Shewmake, Daniel Brooks, Bernhard Kainz, Claire Donnat,
Susan Holmes, and Xavier Pennec. Geomstats: A Python package for Riemannian geometry
in machine learning. Journal of Machine Learning Research, 21(223):1–9, 2020. URL http:
//jmlr.org/papers/v21/19-027.html.

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information
geometry. Journal of Geometric Mechanics, 9(3):335–390, 2017.
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Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear optimal
transportation framework for quantifying and visualizing variations in sets of images. International
journal of computer vision, 101:254–269, 2013.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes, 2015. URL https://arxiv.
org/abs/1406.5670.

Constantin Zalinescu. Convex analysis in general vector spaces. World scientific, 2002.

Juan Zhou, Kangkang Deng, Hongxia Wang, and Zheng Peng. Inexact Riemannian gradient descent
method for nonconvex optimization. arXiv preprint arXiv:2409.11181, 2024.

13

https://arxiv.org/abs/1406.5670
https://arxiv.org/abs/1406.5670


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS AND FIGURES

A.1 GEODESIC PCA

Here we present additional figures to further explain the experiments described in the paper. Figure 8
concerns the experiment on Gaussian distributions with diagonal covariances described in Section 5.1
corresponding to Figure 4. It shows all three principal components found by tangent PCA (left) and
geodesic PCA, in two equally optimal solutions (middle, right).
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Figure 8: Principal geodesic components of a set of Gaussian distributions whose covariance matrices
have same eigenvalues and different orientations, as described in Section 5.1. Tangent PCA yields a
unique solution (left) where geodesic components cross at the barycenter, while geodesic PCA yields
two equally optimal solutions (middle, right) where the geodesic components cross at another point.
The first geodesic component is shown in red, the second in blue, the third in green.

Figure 9 displays on the plane the two first geodesic components of the MNIST experiment of Section
5.2, while Figure 10 shows the planar representation of the 3D point cloud of chairs experiment
given by the projection onto the first two geodesic components found by GPCAGEN algorithm and
depicted in Figure 6 (top row).

Figure 9: Each point cloud, corresponding to
a distribution along one of the artificially con-
structed geodesics, is embedded in the plane ac-
cording to its projection times onto the first and
second geodesics returned by the GPCAGEN
algorithm. We observe that GPCAGEN success-
fully recovers the two orthogonally intersecting
geodesics designed from MNIST-based interpo-
lations of digit shape and color.

Figure 10: Each chair point cloud is embedded in
the plane according to its projection times onto
the first and second geodesics returned by the
GPCAGEN algorithm.
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Finally, we present an additional experiment on the MNIST dataset. We use the same color construc-
tion as in the experiment presented in Section 5.2, we then apply GPCAGEN to a dataset of 20 red
digits ”1”, 20 blue digits ”1”, 20 red digits ”2”, and 20 blue digits ”2” (see Figure 12). As shown in
Figures 11 and 12, GPCAGEN again identifies two orthogonal geodesics: the first primarily captures
variation in color, while the second captures variation in shape—from digit ”2” to digit ”1”.

Figure 11: Densities of probability distributions uniformly sampled along the geodesics corresponding
to the first and second principal components. The first component (left) returned by GPCAGEN
captures variation in color space, while the second component (right) recovers the interpolation
between digit ”2” and digit ”1”.

Figure 12: Each MNIST digit is embedded in the plane (the arrows indicate the exact position of each
digit) according to its projection times onto the first and second geodesics returned by the GPCAGEN
algorithm. We observe that the first principal component recovered by GPCAGEN captures variation
in color, while the second component reflects the transformation from digit ”2” to digit ”1”.

A.2 COMPARISON OF GPCA TO RELATED METHODS

Other notions of PCA on Gaussian distributions There exist a wide variety of metrics on the
space of symmetric positive definite matrices, such as e.g. the log-Euclidean, Euclidean-Cholesky
or affine-invariant metrics (see Thanwerdas (2022) for a comprehensive overview). Each of these
metrics could be used to perform PCA on centered Gaussian distributions. However, there is no
obvious quantitative way to compare the results. Each method optimizes its own criterion, and any
metric that one could think of to compare the methods would rely on a choice of underlying metric
on the space of SPD matrices. Comparison of PCA methods with two different metrics thus boils
down to comparing the metrics themselves. We illustrate in Figure 13 the behavior of covariances
matrices along geodesics for different metrics.
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Figure 13: Geodesics on the space of symmetric positive definite matrices from left to right, for (top)
the Bures-Wasserstein metric, (middle) the log-Euclidean metric and (bottom) the Euclidean metric
on the Cholesky coefficients.
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Figure 14: Each dot represents a state projected onto the first two GPCA components computed from
the empirical covariance matrices, which are also shown in the figure.

TPCA on 3D Point Cloud Data Here we present the results returned by TPCA on the 3D point
cloud experiments, see Figures 16 and 15, and compare them to from those obtained by GPCAGEN.

For the lamps dataset, the first component is similar and captures the distinction between hanging and
standing lamps. The second component focuses on the object thickness, like the second GPCAGEN
component, but also on whether mass is concentrated at the extremities or the middle of the lamp
structure.

For the chairs dataset, both geodesics obtained by TPCA differ from those returned by GPCA. The
first component interpolates from a thin chair with a high seat to a low-seated armchair. The second
component captures a transition from a thin chair with a low seat to a high-seated armchair. The first
TPCA component appears to blend the first and second GPCAGEN geodesics, while the second is
complementary to the first TPCA component.
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Finally, due to the discrete nature of the TPCA algorithm, we observe discretization artifacts in the
TPCA components: holes in some parts of the space, mass concentration in others, and intermediate
distributions that do not resemble valid objects.

Figure 15: For the chair and the lamp experiment, each point cloud is embedded in the plane according
to its projection times onto the first and second principal components computed by TPCA.

Figure 16: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(first line) and second (second line) principal components, as computed by TPCA in the 3D point
cloud of chairs experiment (top rows) and the 3D point cloud of lamps experiment (bottom rows).
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PCA computed in the latent space of PointNet. For the 3D point-cloud datasets, we evaluated
the natural baseline that consists in embedding point clouds into a latent space of dimension d
and then performing standard PCA on the resulting latent vectors. We used a pretrained PointNet
autoencoder (Qi et al., 2017) from the public repository https://github.com/vinits5/
pc_autoencoder, trained on ModelNet40, to encode each point cloud (chairs and lamps) into
a d-dimensional latent representation, on which PCA was applied. Figure 17 shows the resulting
2D projections. We observe some clustering of similar objects; for example, large lamps tend to
group together in the lamp dataset, and chairs versus armchairs form distinguishable clusters. The
second principal component for chairs appears to correlate with the height of the seat. Beyond these
observations, however, PCA provides limited separability (especially for lamps), and the recovered
components are difficult to interpret.

More generally, this approach presents several important limitations:

• Training a point-cloud autoencoder requires a large collection of distributions. In our case
(100 distributions), we need to rely on a pretrained autoencoder trained on related dataset.

• PCA on autoencoder embeddings relies heavily on the geometry learned by the encoder.
The learned geometry is not guaranteed to align with the Wasserstein structure and the
recovered principal components may not reflect meaningful modes of variation (as observed
in the experiments above). Moreover, for a given autoencoder that we wish to train, different
random seeds at initialization can lead to different learned geometries and thus different
PCA components, which is not suitable.

Figure 17: For the lamp (left) and the chair (right) experiment, each point cloud is embedded in the
plane according to its projection times onto the first and second principal components computed by
the POINTNET + PCA method.

A.3 APPLICATION OF GPCA TO OUTLIER DETECTION

In this section, we demonstrate how GPCA can be used for outlier detection. The underlying intuition
is that GPCA components capture the structure of the dataset on which they are trained, and samples
from a different dataset are expected to lie far from the learned components in Wasserstein distance.
In this experiment, we use the ModelNet40 3D point cloud dataset (Wu et al., 2015) and apply
GPCA to a subset of 100 randomly selected chair point clouds to compute the first two components.
For a new point cloud X , we define its score as the sum of the Wasserstein distances between
X and its projections onto the first two learned GPCA components. To compute the Wasserstein
distance between X and a component, we use ot.emd from the POT library. Specifically, for each
component, we perform a grid search over 20 equally spaced values of t between tmin and tmax,
computing the Wasserstein distance between X and 2048 samples drawn from the component at
each t, and select the t that minimizes this distance. We repeat the same procedure for the second
component and sum the two minimal distances to obtain the final score.
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We evaluate this approach on 120 point clouds: 60 new chairs (not used for training) and 60 point
clouds of cars. The left histogram in Figure 18 shows the resulting scores. We observe that the scores
of the chair point clouds (in blue) are lower than those of the car point clouds (in green), indicating
that it is possible to detect whether a point cloud is not a chair using this score. We also repeat the
experiment with 60 point clouds of planes, shown in the right histogram of Figure 18, and observe
that the separation between chair and plane scores is even more pronounced.

Figure 18: GPCA scores obtained on 60 new point clouds of chairs (never seen during training) and
60 point clouds of cars (left) / planes (right). The separation of the histograms indicates that GPCA
can be used for outlier detection.

B THE OTTO-WASSERSTEIN GEOMETRY

In this section, we briefly describe the fiber bundle structure over the Wasserstein space due to Otto
(2001), that is behind the Riemannian interpretation of the Wasserstein distance. We then present its
restriction to the space of centered non-degenerate Gaussian distributions, which coincides with the
Bures-Wasserstein Riemannian geometry on SPD matrices. Finally, we relate Otto’s parametrization
of geodesics to McCann’s interpolation.

We present these well-known results without proofs and refer the interested reader to Otto (2001);
Khesin et al. (2021) and (Ambrosio et al., 2013, Section 6.1) for more details in the general setting
and to Takatsu (2011); Malagò et al. (2018); Bhatia et al. (2019) for details and proofs in the Gaussian
setting.

B.1 THE OTTO-WASSERSTEIN GEOMETRY OF A.C. DISTRIBUTIONS

Consider the space Prob(Ω) of absolutely continuous probability measures with smooth densities
with respect to the Lebesgue measure, and support included in a compact set Ω ⊂ Rd, as well as the
space Diff(Ω) of diffeomorphisms on Ω. These spaces can be equipped with an infinite-dimensional
manifold structure, see e.g. Ebin & Marsden (1970), that we will not describe here. The tangent
space of Diff(Ω) at φ ∈ Diff(Ω) is given by

TφDiff(Ω) = {v ◦ φ, v : Ω→ Rd vector field}.

We fix a reference measure ρ ∈ Prob(Ω) and equip Diff(Ω) with the L2-metric with respect to ρ,
defined for any tangent vectors u ◦ φ, v ◦ φ ∈ TφDiff(Ω) as

⟨u ◦ φ, v ◦ φ⟩L2(ρ) : =

∫
(u ◦ φ) · (v ◦ φ) dρ =

∫
u · v dµ,

where µ = φ#ρ. Then the space of diffeomorphisms can be decomposed into fibers, defined to be
equivalence classes under the projection

π : Diff(Ω)→ Prob(Ω), φ 7→ φ#ρ.
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Specifically, the fiber over µ ∈ Prob(Ω) is given by π−1(µ) = {φ ∈ Diff(Ω), φ#ρ = µ}, see Figure
19 (right). The tangent space to the fiber π−1(µ) at φ ∈ Diff(Ω) and its orthogonal with respect to
the L2(ρ)-metric are refered to as the vertical and horizontal spaces respectively :

Verφ : = ker dπφ, Horφ := (Verφ)
⊥,

where dπφ : TφDiff(Ω)→ Tπ(φ)Prob(Ω) denotes the differential of π at φ. Moving along vertical
vectors in Diff(Ω) means staying in the same fiber, i.e. projecting always to the same measure µ in
the bottom space. On the contrary, moving along horizontal vectors means moving orthogonally to
the fibers, i.e., in the direction that gets fastest away from the fiber. The following proposition gives
the form of vertical and horizontal vectors.
Proposition 6. Let φ ∈ Diff(Ω). Then

Verφ = {w ◦ φ, ∇ · (wµ) = 0},
Horφ = {∇f ◦ φ, f ∈ C∞(Ω)}.

The following results state that line segments and L2(ρ)-distances in Diff(Ω) can be used to compute
Wasserstein geodesics and distances in the space of probability measures Prob(Ω), provided we
restrict to horizontal displacements.
Proposition 7. The projection π : Diff(Ω) → Prob(Ω) is a Riemannian submersion, i.e.
dπφ : Horφ → Tπ(φ)Prob(Ω) is an isometry for any φ ∈ Diff(Ω).

This implies the following.
Proposition 8 (Proposition 2 in main). Any geodesic t 7→ µ(t) for the Wasserstein metric in
equation 2 is the π-projection of a line segment in Diff(Ω) going through a diffeomorphism φ at
horizontal speed ∇f ◦ φ for some smooth function f ∈ C(Rd). That is, for t defined in a certain
interval (tmin, tmax),

µ(t) = π(φ+ t∇f ◦ φ) = (id+t∇f)#(φ#ρ). (17)

Another geodesic µ̃(t) = π(φ+ t∇f̃ ◦ φ) is orthogonal to µ(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if ⟨∇f ◦ φ,∇f̃ ◦ φ⟩L2(ρ) = 0.

We comment on the link between this parametrization and McCann’s interpolation in Section B.3.

B.2 THE OTTO-WASSERSTEIN GEOMETRY OF GAUSSIAN DISTRIBUTIONS

The Bures-Wasserstein distance in equation 3 on the space S++
d of symmetric positive definite

(SPD) matrices is the geodesic distance induced by a Riemannian metric gBW , which can be written
in different ways. Here we use the expression from (Thanwerdas, 2022, Table 4.7), defined for
Σ = PDP⊤ ∈ S++

d and U = PU ′P⊤ ∈ Sd, by

gBWΣ (U,U) =
1

2

∑
1≤i,j≤d

1

di + dj
U ′
ij

2
, (18)

where the di’s are the diagonal elements of D. The associated Riemannian geometry can be described
by Otto’s fiber bundle restricted to the space of centered Gaussian distributions, in the following way.

In this setting, diffeomorphisms are restricted to invertible linear maps φ : u 7→ Au for some invertible
matrix A, i.e. the space of diffeomorphisms is replaced by the Lie group of invertible matrices GLd.
Tangent vectors are then given by linear maps u 7→ Xu for any matrix X ∈ Rd×d. Fixing the
standard normal distribution ρ = N (0, Id) as reference measure, the L2-metric with respect to ρ
between u 7→ Xu and u 7→ Y u is then written, for any X,Y ∈ Rd×d:∫

Rd
φ(u)⊤ψ(u)dρ(u) =

∫
Rd

tr(φ(u)ψ(u)⊤)dρ(u) = tr

(∫
Rd
Xuu⊤Y ⊤dρ(u)

)
= tr(XY ⊤),

yielding the standard Frobenius inner product on (the tangent space of) GLd. We obtain a fibration of
the top space GLd over the bottom space S++

d by considering the following projection

π : GLd → S++
d , A 7→ AA⊤, (19)
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see Figure 19 (left). The fiber over Σ ∈ S++
d is

π−1(Σ) = {A ∈ GLd, AA⊤ = Σ} = Σ1/2Od, (20)

where Od denotes the space of orthogonal matrices and Σ1/2 denotes the only SPD square root of the
SPD matrix Σ. The differential of the projection π(A) = AA⊤ is given by

dπA(X) = XA⊤ +AX⊤. (21)

Therefore, vertical vectors, which are those tangent to the fibers, or equivalently, those belonging to
the kernel of dπA(X), are given by

VerA : = {X ∈ Rd×d, XA⊤ +AX⊤ = 0}
= {X ∈ Rd×d, XA⊤ is antisymmetric}
= {X = K(A⊤)−1, K ∈ S⊥

d } = S⊥
d (A

⊤)−1.

where S⊥
d denotes the space of antisymmetric matrices of size d. Once again, moving along vertical

vectors in GLd means staying in the same fiber, i.e. projecting always to the same SPD matrix in the
bottom space S++

d . Horizontal vectors are those that are orthogonal to all vertical vectors (for the
Frobenius metric), i.e. matrices X such that for any antisymmetric matrix K:

0 = ⟨X,K(A⊤)−1⟩ = tr(XA−1K⊤)

which is equivalent to XA−1 symmetric (this can be seen by taking for K the basis elements of S⊥
d

in the above equation), yielding

HorA : = {X ∈ Rd×d, (A⊤)−1X⊤ = XA−1}
= {X ∈ Rd×d, X⊤A−A⊤X = 0}
= {X = KA, K ∈ Sd} = SdA

where Sd denotes the space of symmetric matrices.
Proposition 9. The projection π : GLd → S++

d , A 7→ AA⊤ is a Riemannian submersion, i.e. dπA
is an isometry from HorA equipped with the Frobenius inner product to Tπ(A)S

++
d equipped with the

inner product gBWπ(A), for any A ∈ GLd.

Just like in the general case, this yields a way to lift the computation of geodesics and distances.
Proposition 10 (Propositon 1 in main). Any geodesic t 7→ Σ(t) in S++

d for the Bures-Wasserstein
metric in equation 3 is the π-projection of a horizontal line segment in GLd, that is

Σ(t) = π(A+ tX) = (A+ tX)(A+ tX)⊤, A ∈ GLd, X ∈ HorA, (22)

where t is defined in a certain time interval (tmin, tmax). Also, the Bures-Wasserstein distance between
two covariance matrices Σ1,Σ2 ∈ S++

d is given by the minimal distance between their fibers

BW2(Σ1,Σ2) = inf
Q1,Q2∈Od

∥Σ1/2
1 Q1 − Σ

1/2
2 Q2∥ = inf

Q∈SOd
∥Σ1/2

1 − Σ
1/2
2 Q∥, (23)

where ∥ · ∥ is the Frobenius norm and SOd is the special orthogonal group.

Formula in equation 22 and the first equality of equation 23 are direct consequences of the fact that
π is a Riemannian submersion. To obtain the second equality of equation 23, we first notice that
optimizing on Q1, Q2 ∈ Od is equivalent to optimizing on a single Q ∈ Od thanks to the invariance
of the Frobenius metric w.r.t. the right action of Od. And second, that the infimum is attained at (see
(Bhatia et al., 2019, Equations 3 and 35))

Q∗ = Σ
−1/2
2 TΣ

1/2
1 , where T = Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1

is the Monge map from Σ1 to Σ2 (see (Malagò et al., 2018, equation 8)), and so Q∗ has positive
determinant and belongs to SOd.

Thus the closest element of the fiber π−1(Σ2) to Σ
1/2
1 is given by Σ

1/2
2 Q∗ = TΣ

1/2
1 , i.e. by left

multiplying Σ
1/2
1 by the Monge map T . This is more generally true for any representative of Σ1:
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Figure 19: The Otto-Wasserstein geometry of (left) centered Gaussian distributions and (right) a.c.
probability distributions. Figures inspired by Khesin et al. (2021).

Proposition 11. Let Σ1,Σ2 ∈ S++
d , T the Monge map from Σ1 to Σ2, A1 ∈ π−1(Σ1). Then

A2 := TA1 is said to be aligned with respect to A1, that is, it is the closest point in π−1(Σ2) to A1.
More precisely, we have

1. A2 −A1 = (T − I)A1 ∈ HorA1

2. LogΣ1
(Σ2) : = dπA1

((T − I)A1) = (T − I)Σ1 +Σ1(T − I)

3. BW2(Σ1,Σ2) = ∥LogΣ1
Σ2∥BWΣ1

= ∥(T − I)A1∥

where Log is the Riemannian logarithm map, ∥ · ∥BWΣ =
√
gBWΣ (·, ·) and ∥ · ∥ is the Frobenius norm.

This means that to compute the Bures-Wasserstein distance between two covariance matrices Σ1 and
Σ2, one can consider any representative A1 in the fiber over Σ1, compute the representative A2 of Σ2

aligned to A1 (using the Monge map) and finally compute the Frobenius norm of A2 −A1.

B.3 GEODESIC PARAMETRIZATION

There are two classical parameterizations for Wasserstein geodesics in the space of a.c. probability
measures.

McCann’s interpolation The first one, due to McCann (1997), is given between two probability
distributions µ0 and µ1, and depends on the optimal transport map in equation 2, obtained as the
gradient of a convex function u, that is Tµ1

µ0
= ∇u and

µt = ((1− t) id+t∇u)#µ0 = (id+t(∇u− id))#µ0, t ∈ [0, 1]. (24)

Otto’s geodesic The second one, exploiting Otto’s fiber bundle geometry in Otto (2001), consists in
writing a geodesic in the Wasserstein space as the projection of a horizontal geodesic in the total space
of diffeomorphisms. Such a horizontal geodesic is a line segment going through a diffeomorphism φ
with a horizontal speed ∇f ◦ φ, where f is any smooth function (not necessarily convex). Therefore
we get

µs = (φ+ s∇f ◦ φ)#ρ = (id+s∇f)#(φ#ρ), s ∈ (s0, s1). (25)
In this second expression, the bounds on the time s depends on the function f . Indeed, for µs to be a
geodesic, id+s∇f needs to remain is the space of diffeomorphisms for a given s, which means that
id+sHess f needs to be positive definite. Therefore, we get the following conditions depending on
the minimum λmin and maximum λmax eigenvalues of Hess f :

s ∈ (−∞,−1/λmin) if λmax < 0,

s ∈ (−1/λmax,+∞) if λmin > 0,

s ∈ (−1/λmax,−1/λmin) if λmin < 0 < λmax.

(26)
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It is clear that equation 24 is a particular case of equation 25, where we choose φ#ρ = µ0 and
∇f = ∇u− id. Conversely, one can write equation 25 under the form of equation 24. For a given
diffeomorphism φ and function f , consider the geodesic given by equation 25, and set µ0 = φ#ρ.
Assume that we are in the case where all eigenvalues of Hess f are negative, then s must be in
] −∞,−1/λmin[. Consider s∗ ∈]0,−1/λmin[, and define µ1 : = µs∗ = (id+s∗∇f)#µ0. Setting
t = s/s∗ we have that the geodesic between µ0 and µ1 is written

µt = (id+ts∗∇f)#µ0 = (id+t(∇u− id))#µ0, t ∈ [0, 1].

for u(x) = s∗f + ∥x∥2/2. Now for any eigenvalue λi of Hf the Hessian of f , we have

λi > λmin > −1/s∗ i.e. s∗λi + 1 > 0.

by the interval of definition of s∗. This means that the Hessian Hu = s∗Hf + id is positive definite,
which means that u is necessarily convex. The other cases work similarly.

The Gaussian case Transposing Otto’s formulation in equation 25 to the case of a geodesic between
Gaussian distributions means that for A ∈ GLd and X ∈ HorA such that ∥X∥ = 1, the interval of
definition of a geodesic depends on the invertibility of A + sX . In turn, the maximal interval of
definition of s ∈ (s0, s1) is defined from the eigenvalues of XA−1, through the same formula in
equation 26.

C LINEARIZED OPTIMAL TRANSPORT AND TANGENT PCA

In this section, we provide the definition of linearized Wasserstein distance and details on how to
perform tangent PCA for both Gaussian distributions and general a.c. distributions. Tangent PCA
is a widely used approach to compute PCA on the Wasserstein space, that consists in embedding
probability distributions into the tangent space at some reference measure ρ, and performing PCA in
the tangent space with respect to the linearized Wasserstein distance.

C.1 THE CASE OF CENTERED GAUSSIAN DISTRIBUTIONS

We consider n covariance matrices Σ1, . . . ,Σn and their Bures-Wasserstein barycenter (or Fréchet
mean) Σ̄, that is, the SPD matrix verifying (see Agueh & Carlier (2011)):

Σ̄ = argmin
Σ∈S++

d

n∑
i=1

BW 2
2 (Σ,Σi). (27)

The idea behind tangent PCA is to represent each data point by the corresponding tangent vector,
given by the Riemannian logarithm map, in the tangent space at the reference point Σ̄, i.e.

{LogΣ̄Σi}ni=1 ⊂ TΣ̄S++
d . (28)

Now, one can lift the computations from the tangent space at Σ̄ to the horizontal space at a point in the
fiber over Σ̄, say A : = Σ̄1/2, by aligning all representatives to A, see Proposition 11. The key point
is that the tangent space at Σ̄ equipped with the Bures-Wasserstein Riemannian metric is isometric to
HorA : = SdA equipped with the Frobenius inner product – where we recall that Sd is the space of
symmetric matrices. This means that instead of performing PCA for the Bures-Wasserstein inner
product on the tangent vectors in equation 28, we can instead perform linear PCA on their pre-images
by dπA, see Proposition 11:

{(Ti − I)A}ni=1 ⊂ HorA1
, where Ti = Σ

−1/2
i (Σ

1/2
i Σ̄Σ

1/2
i )1/2Σ

−1/2
i .

Ti is the optimal transport map from Σ̄ to Σi, see Section B.2. Now, noticing that

⟨K1A,K2A⟩ = Tr(K1AA
⊤K⊤

2 ) = Tr(K1Σ̄K
⊤
2 ), ∀K1,K2 ∈ Sd,

we see that the space HorA equipped with the Frobenius inner product is itself isometric to Sd
equipped with the Frobenius inner product weighted by Σ̄. Therefore, tangent PCA is performed
through Euclidean PCA on the (centered) vectors {Ti − I}ni=1, in the vector space Sd, with respect
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to the Frobenius metric weighted by Σ̄. Another way to see this is by noticing that the linearized
Bures-Wasserstein distance BW2,Σ̄ with respect to Σ̄ is given by

BW2,Σ̄(Σ1,Σ2) : = ∥LogΣ̄Σ1 − LogΣ̄Σ2∥BWΣ̄

= ∥dπΣ̄1/2((T1 − I)Σ̄1/2)− dπΣ̄1/2((T2 − I)Σ̄1/2∥BWΣ̄

= ∥(T1 − I)Σ̄1/2 − (T2 − I)Σ̄1/2∥
= ∥(T1 − T2)Σ̄1/2∥

where ∥·∥BW denotes the norm associated to the Bures Wasserstein Riemannian metric in equation 18,
π is Otto’s projection in equation 19, and we have used Propositions 9 and 11. Finally,

BW2,Σ̄(Σ1,Σ2) : = ∥LogΣ̄Σ1 − LogΣ̄Σ2∥BWΣ̄ = ∥T1 − T2∥Σ̄, (29)

where ∥ · ∥Σ̄ denotes the Frobenius norm weighted by Σ̄.

C.2 THE CASE OF A.C. DISTRIBUTIONS

Similarly, one can embed a.c. probability distributions ν1, . . . , νn into the L2(ρ) space at some a.c.
reference measure ρ through the optimal maps νi 7→ T νiρ in the Monge problem in equation 2. Then,
the Wasserstein distance can be approximated by the linearized Wasserstein distance in Wang et al.
(2013) given by

W2,ρ(ν1, ν2) = ∥T ν1ρ − T ν2ρ ∥L2(ρ). (30)

Note that as previously mentioned, this metric induces distortions : while the radial distances
from ρ to any µi are preserved, that is ∥id − T νiρ ∥L2(ρ) = W2(ρ, νi), other distances are not
∥T ν1ρ − T ν2ρ ∥L2(ρ) ̸=W2(ν1, ν2). A recent paper by Letrouit & Mérigot (2024) proved however, that
under some assumptions, W2,ρ is bi-Hölder equivalent to W2, which indicates that the distortion
effect can be controlled.

Then, denoting ν̄n the Wasserstein barycenter as in Agueh & Carlier (2011) of ν1, . . . , νn, that is the
solution of

ν̄n ∈ argmin
ν

n∑
i=1

W 2
2 (ν, νi), (31)

tangent PCA consists in performing classical PCA, see e.g. Ramsay & Silverman (2002), of
(T νiν̄n − id)ni=1 in the Hilbert space L2(ν̄n).

D GEODESIC PCA FOR GAUSSIAN DISTRIBUTIONS

In this section, we present the proofs related to geodesic PCA for Gaussian distributions and the
implementation of our algorithm in this case.

D.1 PROOFS RELATED TO GPCA FOR GAUSSIAN DISTRIBUTIONS

We first prove the existence of mimimizers for the GPCA problems lifted to Otto’s fiber bundle.

Lemma 1. The GPCA problem in equation 12 for the first component admits a global minimum.

Proof. First, let us define the set of normalized matrices B : = {X ∈ Rd×d, ∥X∥ = 1}. By
denoting λmin (resp. λmax) the smallest (resp. largest) eigenvalue of XA−1, extending the geodesic
t 7→ A+ tX as far as possible (see Section B.3) means that the closed interval [tmin, tmax] is defined
for some fixed ε > 0 by

(−∞,−1/λmin − ε] if λmax < 0,

[−1/λmax + ε,+∞) if λmin > 0,

[−1/λmax + ε,−1/λmin − ε] if λmin < 0 < λmax.

(32)
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Let us now consider the function

F : GLd × B× (Rd×d)n −→ R

(A,X, (Qi)
n
i=1) 7−→

n∑
i=1

∥A+ p(A,X)(ti)X − Σ
1/2
i Qi∥2 =:

n∑
i=1

gi(A,X,Qi),

where ti = ⟨Σ1/2
i Qi −A,X⟩ and p(A,X) : R→ R is the projection operator that clips a point t into

[tmin, tmax], which depends on A and X . Then the function F is continuous on GLd × B× (Rd×d)n
as composition of linear and continuous functions. Note that the function (A,X) 7→ p(A,X)(ti)
is continuous by eigenvalue continuity, see Li & Zhang (2019). Additionally, the function F
is coercive (see e.g. Zalinescu (2002)) on GLd × B × (Rd×d)n. Indeed, on a diagonal {A =

Σ
1/2
i Qi, for (A,Qi) ∈ GLd × Rd×d} for some i ∈ {1, . . . , n}, we have ti = 0, and therefore

we have either gi(A,X,Qi) = 0 if p(A,X)(0) = 0, or gi(A,X,Qi) = ε∥X∥2 = ε otherwise.
This would imply that gi(A,X,Qi) doesn’t go to infinity when the norm ∥(A,X,Qi)∥ → ∞.
However, in this case, we have gj(A,X,Qj) → ∞ when ∥(A,X,Qj)∥ → ∞ for any j ̸= i.
Moreover, as p(A,X)(ti) is a clipping, it won’t play a role in the coercivity. We conclude by the
fact that the function (A,X) 7→ X⊤A − A⊤X is continuous, implying that the set of constraint
{(A,X) ∈ GLd × Rd×d : X⊤A − A⊤X = 0} is closed and B and SOd are compact. The
optimization problem in equation 12 thus admits a global minimum.

Note that this result also applies for the second component in equation 13 and the higher order
components.

Proposition 12 (Proposition 3 in main). Let π : GLd → S++
d , A 7→ AA⊤ and (A1, X1, (Qi)

n
i=1)

be a solution of

inf F (A1, X1, (Qi)
n
i=1) : =

n∑
i=1

∥A1 + pA1,X1
(ti)X1 − Σ

1/2
i Qi∥2,

subject to A1 ∈ GLd, X1 ∈ HorA1 , ∥X1∥2 = 1, Q1, . . . , Qn ∈ SOd.

Then there exist tmin, tmax ∈ R such that the geodesic Σ: t ∈ [tmin, tmax] 7→ π(A1 + tX1) in S++
d

minimizes equation 11.

Proof. A horizontal geodesic in GLd is a straight line going through a base point A ∈ GLd in
the direction of a horizontal vector X ∈ HorA (that we consider normalized, ie. ∥X∥2 = 1), i.e.
t 7→ A+ tX ∈ GLd. Denoting [tmin, tmax] the interval constructed in equation 32 which depends on
the eigenvalues ofXA−1, we have that (π(A+ tX))t∈[tmin,tmax] is a geodesic in the Bures-Wasserstein
sense, see Proposition 1, and

min
t∈[tmin,tmax]

BW 2
2 (π(A+ tX),Σi) = min

t∈[tmin,tmax]
inf

Qi∈SOd
∥A+ tX − Σ

1/2
i Qi∥2

= inf
Qi∈SOd

∥A+ p(A,X)(ti)X − Σ
1/2
i Qi∥2,

where ti = ⟨Σ1/2
i Qi−A,X⟩ is the (orthogonal) projection time of Σ1/2

i Qi onto the line t 7→ A+tX .

We therefore deduce that a set of solution (A,X, (Qi)
n
i=1) of equation 12 defines a proper geodesic

(π(A+ tX))t∈[tmin,tmax], solution of problem in equation 11.

Proposition 13 (Proposition 5 in main). Let νi = N (mi, σ
2
i ) for i = 1, . . . n be n univariate

Gaussian distributions. The first principal geodesic component t ∈ [0, 1] 7→ µ(t) solving equation 1
remains in the geodesic space of Gaussian distributions for all t ∈ [0, 1].

Proof. Let Prob2(R) be the set of a.c. probability measures on R that have finite second moment,
and Q the set of corresponding quantile functions :

Q = {F−1
ν ; ν ∈ Prob2(R)}
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Q is the set of increasing, left-continuous functions q : (0, 1)→ R, and a convex cone in L2([0, 1]),
the set of square-integrable functions on [0, 1]. The mapping

Φ: ν 7→ F−1
ν (33)

defines an isometry between Prob2(R) equipped with the Wasserstein metric, and Q equipped with
the L2 metric (see e.g. Bigot et al. (2017)), that is, for any µ, ν ∈ Prob2(R),

W2(µ, ν) = ∥F−1
µ − F−1

ν ∥L2([0,1]).

The map Φ in equation 33 also defines an isometry from the set of (univariate) Gaussian distributions
to the set of all Gaussian quantile functions G. This space G is the upper-half of the plane F spanned
by the constant function 1 and the quantile function F−1

0 of the standard normal distribution:

G = R · 1+ R∗
+ · F−1

0 ⊂ F : = span(1, F−1
0 ).

Now, consider n normal distributions ν1, . . . , νn, and (µ(t))t∈[0,1] the first principal geodesic com-
ponent found by minimizing equation 1, the sum of squared residuals in Prob2(R). Since µ is
a Wasserstein geodesic in Prob2(R) and Φ is an isometry, the curve t 7→ Φ(µ)(t) = F−1

µ(t) is an
L2([0, 1])-geodesic in Q, i.e. a line segment

t ∈ [0, 1] 7→ F−1
µ(t) = (1− t)F−1

µ(0) + tF−1
µ(1).

Since {1, F−1
0 } forms an orthonormal basis of F , the orthogonal projection of this line segment on

F is given by
t ∈ [0, 1] 7→ ⟨F−1

µ(t),1⟩1+ ⟨F−1
µ(t), F

−1
0 ⟩F−1

0 ,

which lies in G. To see this, we need to show that the following value is positive:

⟨F−1
µ(t), F

−1
0 ⟩ =

∫ 1

0

F−1
µ(t)(y)F

−1
0 (y)dy =

∫
R
xF−1

0 ◦ Fµ(t)(x)dµ(t)(x) = E(XT (X)),

whereX ∼ µ(t) and T = F−1
0 ◦Fµ(t) is the Monge map from µ(t) to the standard normal distribution.

Since T is increasing, we indeed have E(XT (X)) > 0 (see e.g. the proof of Theorem 2.2 in Schmidt
(2014)).

Finally, since Φ(µ) orthogonally projects from Q to G w.r.t the L2 metric and Φ defines an isometry,
we get that the geodesic µ orthogonally projects to a geodesic π(µ) in the space of Gaussian
distributions, w.r.t. the Wasserstein metric. By the distance minimizing property of orthogonal
projections, we know that the cost function in equation 1 evaluated at π(µ) is no larger than its
value at µ. Since µ is optimal, we get that µ = π(µ) and µ belongs to the space of Gaussian
distributions.

Proposition 14. Let Σ1,Σ2 two SPD matrices that are diagonalizable in the same orthonormal basis,
i.e.

Σ1 = P

(
a21 0
0 b21

)
P⊤ and Σ2 = P

(
a22 0
0 b22

)
P⊤,

where P is orthogonal. ThenBW 2
2 (Σ1,Σ2) = (a1−a2)2+(b1−b2)2, and thus the Bures-Wasserstein

geodesic between Σ1 and Σ2 is given by

Σ(t) = P

(
((1− t)a1 + tb1)

2 0
0 ((1− t)a2 + tb2)

2

)
P⊤, 0 ≤ t ≤ 1.

Proof. This is a straightforward computation using equation 3.

Proposition 15. Let us consider n = 2p covariance matrices Σi = Σ(a, b, θi) as defined in
equation 16, where θi = iπ/n for i = 0, . . . , n − 1. Then, the Bures-Wasserstein barycenter in
equation 27 of these covariance matrices is given by Σ̄ = (a+ b)2/4 I .

Proof. Each pair of covariance matrices

Σi = Pθi

(
a2 0
0 b2

)
P⊤
θi , and Σi+p = Pθi+π/2DP

⊤
θi+π/2

= Pθi

(
b2 0
0 a2

)
P⊤
θi
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are diagonalizable in the same basis, and so by Proposition 14, the geodesic from Σi to Σi+p is

Σ(t) = Pθi

(
((1− t)a+ tb)2 0

0 ((1− t)b+ ta)2

)
P⊤
θi , 0 ≤ t ≤ 1.

In particular, the Fréchet mean is given by Σ̄ = Σ(1/2) = ((a + b)/2)2I . Since each pair of
covariance matrices has the same Fréchet mean, the Fréchet mean of the whole set Σ1, . . . ,Σn is
also given by Σ̄.

Proposition 16 (Proposition 4 in main). Let Σ ∈ S++
2 with eigenvalues a2, b2 and Σ′ = PθΣP

⊤
θ

where Pθ is the rotation matrix of angle θ. Then, denoting Σ̄ = ((a+ b)/2)
2
I we have

BW 2
2 (Σ,Σ

′)

BW 2
2,Σ̄

(Σ,Σ′)
= 1−

(
a− b
a+ b

)2

cos2 θ +O((a− b)4). (34)

Proof. Recall that the linearized Bures-Wasserstein distance at Σ̄ between Σ and Σ′ is given by the
distance between their images by the Riemannian logarithm map U : = LogΣ̄Σ and U ′ : = LogΣ̄Σ

′

in the tangent space at Σ̄, i.e.

BW2,Σ̄(Σ,Σ
′) = ∥U − U ′∥BWΣ̄ ,

where ∥·∥BW denotes the norm associated to the Bures-Wasserstein Riemannian metric in equation 18.
As in any Riemannian manifold, the true geodesic distance can be approximated by this linearized
distance in the tangent space, corrected by the curvature (see e.g. Lemma 1 in Harms et al. (2019)) :

BW 2
2 (Σ,Σ

′) =
(
∥U − U ′∥BWΣ̄

)2 − 1

3
RΣ̄(U,U

′, U, U ′) +O(∥U∥BWΣ̄ + ∥U ′∥BWΣ̄ )6, (35)

where RΣ̄ is the curvature tensor.

Recall from equation 18 that the Bures-Wasserstein norm of a vector U is expressed in an eigenvector
basis of the base point, here Σ̄. Since any basis is an eigenvector basis of Σ̄, it is convenient to
choose that of Σ, which we can assume without loss of generality to be the canonical basis. Thus
we write Σ = D where D = diag(a2, b2) and Σ′ = PθDP

⊤
θ , and the norm associated to the

Bures-Wasserstein Riemannian metric is given by

∥U∥BWΣ̄ =
1

2

∑
1≤i,j≤2

1

di + dj
U2
ij

where the di’s are the eigenvalues of Σ̄, given here by d1 = d2 = ((a+ b)/2)2. From Proposition 11
we have

U : = LogΣ̄Σ = (T − I)Σ̄ + Σ̄(T − I),
U ′ : = LogΣ̄Σ

′ = (T ′ − I)Σ̄ + Σ̄(T ′ − I),
where

T : = Σ̄−1/2(Σ̄1/2ΣΣ̄1/2)1/2Σ̄−1/2 =
2

a+ b
D1/2,

T ′ : = Σ̄−1/2(Σ̄1/2Σ′Σ̄1/2)1/2Σ̄−1/2 =
2

a+ b
PθD

1/2P⊤
θ ,

and easily get

U =
a2 − b2

2
J, U ′ =

a2 − b2
2

PθJP
⊤
θ , where PθJP

⊤
θ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
and J = diag(1,−1). Thus after some computations we obtain

∥U∥BWΣ̄ = ∥U ′∥BWΣ̄ = |a− b|/
√
2,

BW2,Σ̄(Σ,Σ
′) = ∥U − U ′∥BWΣ̄ =

√
2|(a− b) sin θ|.

(36)

To compute the curvature tensor, we use the following formula from (Thanwerdas, 2022, Table 4.7)

RΣ̄(U,U
′, U, U ′) =

3

2

∑
i,j

didj
di + dj

[U0, U
′
0]

2
ij
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where [A,B] = AB−BA is the Lie bracket of matrices, U0 and U ′
0 are the only symmetric matrices

verifying the Sylvester equations U = U0Σ̄ + Σ̄U0 and U ′ = U ′
0Σ̄ + Σ̄U ′

0 respectively. Since Σ̄ is a
multiple of the identity, we easily get

U0 =
a− b
a+ b

J, U ′
0 =

a− b
a+ b

PθJP
⊤
θ

and straightforward computations yield

RΣ̄(U,U
′, U, U ′) =

3

2

(a− b)4
(a+ b)2

sin2 2θ. (37)

Finally, putting together equation 35, equation 36 and equation 37 and we obtain

BW 2
2 (Σ,Σ

′) = BW 2
2,Σ̄(Σ,Σ

′)− 2
(a− b)4
(a+ b)2

sin2 θ cos2 θ +O((a− b)6),

and dividing by the squared linearized optimal transport distance yields the desired result.

D.2 IMPLEMENTATION OF GPCA FOR GAUSSIAN DISTRIBUTIONS

As described in Section 3, the first and second components of geodesic PCA are respectively found
by solving the minimization problems in equation 12 and equation 13. The geodesic components are
given by

Σi(t) = (Ai + tXi)(Ai + tXi)
⊤, for i = 1, 2,

where A1 ∈ GLd and X1 ∈ HorA1 are minimizers of equation 12, and A2 ∈ GLd and X2 ∈ HorA2

minimizers of equation 13. The matrix π(A2) is the crossing point through which all geodesic
components intersect, see Figure 2. The higher order components are found in a analogous way:
for the k-th component, we search for a horizontal segment t 7→ Ak + tXk where Ak belongs to
the fiber over the intersection point (we parametrize it w.r.t. the previous position in the fiber, i.e.
Ak = Ak−1Rk−1 for a certain Rk−1 ∈ SOd) and the horizontal velocity vector Xk is orthogonal to
the lifts of the velocity vectors of the previous component. Thus, the k-th component, k ≥ 3, solves:

inf F (Ak, Xk, (Qi)
n
i=1)

subject to Ak = Ak−1Rk−1, Rk−1 ∈ SOd, Xk ∈ HorAk , ∥Xk∥2 = 1,

⟨Xk, Xk−ℓRk−ℓ . . . Rk−1⟩ = 0, 1 ≤ ℓ ≤ k − 1, Q1, . . . , Qn ∈ SOd.
(38)

Following Huckemann et al. (2010) and Calissano et al. (2024), we propose an iterative algorithm to
implement these components, that, for each component, alternates two steps:

(Step 1) minimization of the objective function F (see equation 12) with respect to (Qi)
n
i=1 for fixed

(A,X),
(Step 2) minimization of the objective function F with respect to (A,X) for fixed (Qi)

n
i=1.

In dimension d = 2, any rotation matrix Q can be parametrized by a scalar angle θ and both steps
are solved using the Sequential Least Squares Programming (SLSQP) algorithm (see e.g. Ma et al.
(2024)) available on the scipy python library and given by Virtanen et al. (2020). In higher dimension,
each minimization with respect to a rotation matrix is performed using Riemannian gradient descent
on SOd, relying on the Riemannian geometry of SOd induced by the standard Frobenius metric of
the ambient space Rd×d. In particular we use the exponential map implemented in the Python library
geomstats developed by Miolane et al. (2020). More details on the Riemannian geometry of SOd
and the Riemannian gradient descent procedure can be found e.g. in (Boumal, 2023, Sections 7.4 and
4.3).

Unfortunately, we cannot ensure the convergence of the iterates of the proposed block alternating
algorithm, as classical arguments require uniqueness of the minimizer at each iterations as proven
in Powell (1973). This is unachievable in our problem: the line with base point A and direction
X ∈ HorA and the line with base point AQ and direction XQ ∈ HorAQ for Q ∈ Od project onto the
same geodesic in the bottom space. However, regarding (Step 1), and thanks to Theorem 3.7 in Huang
& Wei (2022), we have for fixed (A,X) that the cost function f : (Q1, . . . , Qn) 7→ F (A,X, (Qi)

n
i=1)

has the Riemannian Kurdyka-Lojasiewicz property at any point of (Od)n. Finally, we have the
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convergence of the iterates towards an accumulation point thanks to Theorem 3.14 in Zhou et al.
(2024). The three assumptions in this theorem are verified in our case : Assumption (3.5) (L-
Retraction Smoothness) is obtained because gradf is Lipschitz, and Corollary 10.54 in Boumal
(2023); Assumption (3.7) (bounded from below) directly holds because f ≥ 0; Assumption (3.8)
(ndividual Retraction Lipschitzness) is verified thanks to Corollary 10.47 in Boumal (2023).

Scalability of the algorithm Surely, the computational time of our algorithm for Gaussian distri-
butions will increase with the dimension. However, the algorithm can be made less sensitive to the
number of input covariance matrices by parallelizing (Step 2) of our algorithm, which consists in
updating the orthogonal matrices (Qi)ni=1. This would significantly reduce the overall computational
cost of the algorithm. Also, we currently use the scipy toolbox to solve (Step 1), which could also be
accelerated using a more powerful optimization toolbox.

E HYPERPARAMETERS

E.1 HYPERPARAMETERS SETTING

Hyperparameter Value

fψ architecture dense MLP
d � 128 � 128 � 128 � 128 � 1

ELU activation functions

fψ optimizer

Adam
step size = 0.0005

β1 = 0.9
β2 = 0.999

φθ architecture dense MLP
d � 128 � 128 � 128 � 128 � d

RELU activation functions

φθ optimizer

Adam
step size = 0.0005

β1 = 0.9
β2 = 0.999

ti optimizer

Adam
step size = 0.001

β1 = 0.9
β2 = 0.999

batch size 1024
number of gradient steps first

component
120,000

number of gradient steps second
component

200,000

λO 1.0
λI 1.0

Table 1: Hyperparameters used across all experiments.

All experiments were conducted on a single V100 GPU with 32GB of memory, using a shared set
of hyperparameters detailed in Table 1. The same hyperparameters are used for computing both the
first and second geodesic components, except for the number of gradient steps (see Table 1), which
is increased for the second component. This is likely due to the additional complexity introduced
by the intersection and orthogonality constraints enforced through regularization. Both fψ and φθ
are implemented as standard multilayer perceptrons (MLPs) with four hidden layers of width 128.
We use ELU activation functions in fψ because its gradient is used to parameterize a transport map
in our formulation, and ELUs are commonly employed in such settings. The Sinkhorn divergence
Sε is used in the loss function as a surrogate for the squared Wasserstein distance to compute the
geodesic components. The regularization parameter ε must be adapted to the scale of the data; we set
it as ε = 0.01 Ex,x′∼νi∥x− x′∥2, where the expectation is approximated via Monte Carlo using the
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current minibatch samples. Note that setting ε this way is the default configuration in the OTT-JAX
library. For computing the second geodesic component, we fix the regularization coefficients λO and
λI to 1.0, which we found to be robust across all experiments. While increasing them (e.g., to 10.0)
typically yields similar results, excessively large values may degrade performance. Conversely, if
these regularization terms are too small, the algorithm tends to recover the first component as the
second, due to its lower cost. In practice, we monitor the regularization terms during optimization
to ensure they decrease sufficiently relative to their initial values, confirming that the optimization
effectively optimize the intersection and orthogonality constraints. To determine the hyperparameters
in Table 1, we performed a grid search over the optimizer learning rate for the ti in 10−4, 10−3, 10−2,
and over the regularization coefficients λO and λI in 0.1, 1.0, 10.0, 100.0. We found that setting both
regularization terms to 1.0 consistently yielded good performance across all experiments, see Section
E.2.

Note on φ parameterization. Note that although φ is theoretically required to be a diffeomorphism
in Otto’s parameterization of geodesics (equation 9), we parameterize it using a simple MLP. Initially,
we experimented with normalizing flows to ensure invertibility, but observed that a standard MLP
yielded similar results. In Otto’s geodesic framework, φ serves to modify the reference measure ρ
and define the measure at t = 0 along the geodesic. If φ is not a diffeomorphism and the pushforward
φ#ρ is not absolutely continuous, the resulting geodesic becomes degenerate, which may hinder
optimization of the loss equation in equation 1. In practice, however, we found that the MLP φθ
reliably produces absolutely continuous measures, which is sufficient for our method.

E.2 IMPACT OF THE REGULARIZATIONS ON GPCA

For the estimation of the second GPCA component, we introduce two regularization terms,
I(µθ,ψ, µθ2,ψ2

, t1inter, t
2
inter) and O(∇fψ(φθ),∇fψ2

(φθ2)), with their associated regularization co-
efficients λI and λO. The first term enforces that the two components intersect, while the second
ensures that the components remain orthogonal. Experimentally, we observe that setting both co-
efficients to λI = λO = 1.0 robustly enforces these constraints across all experiments while still
producing meaningful principal components. Conversely, if these regularization terms are too small,
the algorithm tends to recover the first component as the second, at it gives the lowest cost. In
practice, we monitor the regularization terms during optimization to ensure they decrease sufficiently
relative to their initial values. This permits to confirm that the optimization effectively optimize the
intersection and orthogonality constraints. This section aims at quantifying the impact of the two
regularizing coefficients λI and λO on the computed geodesics. We focus on the 3D point-cloud
experiments with lamps.

E.2.1 ORTHOGONALITY REGULARIZATION

In this part, we set the regularization term λI to 1.0 and compute GPCA for different values of
λO. The resulting second component is shown in Figure 20. The GPCA cost of this component, as
defined in equation 15, together with the quantity measuring the orthogonality between components,
O(∇fψ(φθ),∇fψ2

(φθ2)), are reported in Table 2. The quantities reported in Table 2 are estimated
on batches of size 2048. The variance is computed over 100 runs for the orthogonality measure
and 5 runs for the GPCA cost. Note that each run of the orthogonality estimation already involves
computing 100 Wasserstein distances, since we have 100 point clouds.

λO Orthogonality: O(∇fψ(φθ),∇fψ2(φθ2)) GPCA cost (second component)

0.001 0.823 ± 0.007 3.22 ± 0.007
0.01 0.722 ± 0.008 3.30 ± 0.01
0.1 2.72× 10−3 ± 7× 10−5 5.08 ± 0.01
1.0 1.12× 10−4 ± 0.07× 10−4 5.13 ± 0.02

10.0 8.6× 10−6 ± 5× 10−7 5.36 ± 0.02
100.0 4.8× 10−6 ± 3× 10−7 5.45 ± 0.02

Table 2: Orthogonality regularization value and second-component loss for different values of λO.
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Figure 20: Empirical distributions sampled uniformly along the geodesics associated with the
second GPCA principal component for different values of the regularization coefficient λO. In all
experiments, the other regularization coefficient is fixed at λI = 1.0.

Note that the GPCA cost of the second component should be compared with that of the first com-
ponent, which is 3.295± 0.006. Table 2 shows that for low values of λO (i.e., 0.001 and 0.01), the
orthogonality quantity is large, and the recovered ”second” component is in fact identical to the first
component, as illustrated in Figure 20. This is also reflected in the GPCA cost (see Table 2), which
matches the one of the first component. For higher values of λO (0.1, 1.0, 10.0, 100.0), the algorithm
successfully recovers a distinct second component.

E.2.2 REGULARIZATION ON THE INTERSECTION OF THE GEODESICS

λI Intersection: I(µθ,ψ, µθ2,ψ2 , t
1
inter, t

2
inter) GPCA cost (second component)

0.001 1.9× 10−3 ± 2× 10−4 5.16 ± 0.01
1.0 1.3× 10−3 ± 1× 10−4 5.13 ± 0.02

10.0 1.19× 10−4 ± 2× 10−6 5.18 ± 0.02
100.0 1.48× 10−5 ± 5× 10−7 5.08 ± 0.01

Table 3: Wasserstein distance between µ1(t
1
inter) and µ2(t

2
inter) and second-component loss for different

values of λI .

Figure 21: Empirical distributions sampled uniformly along the geodesics associated with the second
GPCA principal component for different values of the regularization coefficient λI . In all experiments,
the other regularization coefficient is fixed at λO = 1.0.
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In this part, we set the regularization term λO to 1.0 and compute GPCA for different values of λI .
The second component is displayed in Figure 21; the GPCA cost of this component, as well as the
quantity measuring the intersection of the components, I(µθ,ψ, µθ2,ψ2

, t1inter, t
2
inter), are reported in

Table 3. The quantities reported in Table 3 are estimated on batches of size 2048. The variance is
computed over 100 runs for the intersection measure and 5 runs for the GPCA cost.

We observe from the recovered geodesics in Figure 21 that this regularization term plays a less
significant role than the orthogonality term. Moreover, Table 3 shows that increasing λI does not
affect negatively the GPCA cost of the recovered component.

E.2.3 SCALABILITY OF OUR GPCAGEN ALGORITHM

For general distributions, there are two types of “scaling” that can affect the algorithm:

1. Number of probability measures (n): The number of measures νi directly determines the
iterations of the inner loop in Algorithm 1 (line 3). Consequently, the training time scales
linearly with n.

2. Dimension of the space (d): As the dimension of the space in which the νi lies increases, the
main challenge consists in accurately estimating the maximum and minimum eigenvalues
that the Hessian of f can take. As discussed with reviewer oUMT, in high dimensions, it
becomes necessary to use algorithms that avoid computing the full Hessian and instead rely
on matrix-vector products, such as the LOBPCG algorithm Duersch et al. (2018). Further-
more, rather than relying solely on the samples in the training batch, an adversarial approach
would be needed to track the eigenvectors corresponding to the worst-case eigenvalues.

F USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only to assist with polishing the writing; all research ideas, experiments, and
analyses were conducted independently by the authors.
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