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ABSTRACT

This paper focuses on Geodesic Principal Component Analysis (GPCA) on a
collection of probability distributions using the Otto-Wasserstein geometry. The
goal is to identify geodesic curves in the space of probability measures that best
capture the modes of variation of the underlying dataset. We first address the case
of a collection of Gaussian distributions, and show how to lift the computations
to the space of invertible linear maps. For the more general setting of absolutely
continuous probability measures, we leverage a novel approach to parameterizing
geodesics in Wasserstein space with neural networks. Finally, we compare to
classical tangent PCA through various examples and provide illustrations on real-
world datasets.

1 INTRODUCTION

In this paper, we are interested in computing the main modes of variation of a dataset of absolutely
continuous (a.c.) probability measures supported in R%. For data points living in an arbitrary Hilbert
space, the classical approach defined by Principal Component Analysis (PCA) consists in finding a
sequence of nested affine subspaces on which the projected data retain a maximal part of the variance
of the original dataset, or equivalently, yield best lower-dimensional approximations. When dealing
with a set of a.c. probability distributions, a natural choice is to identify the probability measures
with their probability density functions and to perform PCA on these using the L? Hilbert metric.
Unfortunately, as highlighted in|Cazelles et al.| (2018]), the components computed in this manner fail
to capture the intrinsic structure of the dataset: the projections onto the components most likely result
in non-positive and un-normalized functions. Using the Wasserstein metric W5 instead has proven to
overcome these limitations by taking into account the geometry of the space of distributions.

The Wasserstein metric endows the space of probability distributions with a Riemannian-like structure,
framing the problem as PCA on a (positively) curved Riemannian manifold. A first approach to
solve this task, known as Tangent PCA (TPCA), consists in embedding the data into the tangent
space at a reference point, and applying classical PCA in this flat space, as in Fletcher et al.|(2003)).
TPCA is computationally advantageous but can generically induce distortion in the embedded data,
depending on the curvature of the manifold at the reference point and the dispersion of the data. A
more geometrically coherent approach is Geodesic PCA (GPCA) proposed for Riemannian manifolds
in|Huckemann et al.|(2010); Huckemann & Ziezold (2006)), where principal modes of variations are
geodesics that minimize the variance of the projection residuals. Following this approach, the first

geodesic component of a set of probability measures v, . . ., v, in the Wasserstein space solves
n
inf inf W2(u(ts), v). 1
t—p(t) geodesic Zl ti 2 (M( Z)’ Z) M
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Interestingly, unlike in the Hilbert setting, this criterion is not equivalent to maximizing the variance
of the projections, which leads to a different notion of PCA on Riemannian manifolds (see [Sommer
et al. (20105 2014)).

Related works TPCA in the Wasserstein space was considered by Wang et al.| (2013)) through the
use of the linearized Wasserstein distance. In a similar approach, Boissard et al.|(2015)) restrict to
distributions that can be obtained by deforming a single template measure. For one-dimensional
probability measures, [Bigot et al.[|(2017)) have shown that GPCA and its linearized approximation
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TPCA coincide, as the embedding into a tangent space is then an isometry when constrained to a
convex set. An algorithm in this case has been proposed in|Cazelles et al.|(2018)), with an approximate
extension in dimension 2. For higher-dimensional measures, Seguy & Cuturi| (2015) solve an
approximate version of GPCA, replacing geodesics by generalized geodesics as defined in|/Ambrosio
et al| (2008). Despite all this, a method to solve the exact GPCA problem described in equation [I]is
still missing for R%-valued probability measures. The goal of this paper is to fill this gap.

Main contributions In this paper, we introduce two algorithms to solve the exact GPCA problem in
the Wasserstein space of (1) centered Gaussian distributions and (2) a.c. probability measures on R<,
Our methods are exact in the sense that they do not rely on a linearization of the Wasserstein space,
and the components are true geodesics that minimize the cost in equation[I] In the Gaussian case,
we leverage the Bures-Wasserstein geometry to lift the computations to the flat space of invertible
matrices. We show an example where GPCA and TPCA differ significantly, and relate this effect to
curvature. In the general case of a.c. probability distributions, we lift the probability distributions to
the space of (non necessarily optimal) maps that pushforward a given reference measure, as described
by|Otto|(2001)). This approach is independent of the chosen reference measure and yields a convenient
way to parametrize geodesic components and define orthogonality with respect to the Wasserstein
metric. In practice, we parametrize geodesic components using multilayer perceptrons (MLPs),
trained to minimize the cost in equation |1l We show illustrations on images and 3D point clouds.
Along the way, we prove that for univariate Gaussian distributions, GPCA yields the same results
whether it is performed in the space of a.c. distributions or restricted to the Gaussian submanifold.

Organization of the paper In Section[2] we present the Wasserstein metric and its restriction to
Gaussian distributions, as well as the related Bures-Wasserstein and Otto-Wasserstein geometries. We
present GPCA for centered Gaussian distributions in Section[3] and the general case of a.c. probability
measures in Section[d} Experiments are presented in Section 5] and the paper ends with a discussion
in Section[6] All the proofs and additional experiments are deferred in the appendices.

2 BACKGROUND

The Wasserstein distance Optimal transport is about finding the optimal way to transport mass
from one distribution . on R to another v with respect to a ground cost, say the Euclidean squared
distance. The total transport cost defines the Wasserstein distance W5 between a.c. measures i, v
with moment of order 2, whose Monge| (1781) formulation is given by

Wir) = [ llo =T Pduta), @

and where the map 7'/ is the p-a.s. unique gradient of a convex function verifying T} #p = v, as
proven by Brenier| (1991). When the distributions y and v are centered (non-degenerate) Gaussian
distributions, they can be identified with their covariance matrices X,,, >, and equation [2]is referred
to as the Bures-Wasserstein distance BW5 on the manifold S:{+ of symmetric positive definite (SPD)
matrices (see e.g. Modin| (2017)); Bhatia et al.|(2019)):

BWE(S,,%,) =tr [2# +3Y, - 2(2/3/22@}/2)1/2} , 3)

Both distances can be induced by a Riemannian metric on their respective manifolds, i.e. the space of
a.c. distributions and Sj*, as we will see in the following. For more details, see Appendix

Bures-Wasserstein geometry of centered Gaussian distributions The set of centered non-
degenerate Gaussian distributions on R is identified with the manifold S;* of SPD matrices.
The Riemannian geometry of the Bures-Wasserstein metric in equation [3|can be described by con-
sidering Sj* as the quotient of the manifold G L4 of invertible matrices by the right action of the
orthogonal group Oy. In this geometry, G L, is decomposed into equivalence classes called fibers.
The fiber over X € Sd++ is defined to be the pre-image of ¥ under the projection

m: A€ GLy— AAT € SJT, “)

and can be obtained as the result of the action of O, on a representative, e.g. X'/2 the only SPD
square root of ¥: 77 1(X) = {A € GLy, AAT 5 ) =220,
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Tangent vectors to G L are said to be horizontal if they
are orthogonal to the fibers with respect to the Frobenius
metric, i.e. if they belong to the space

Hory: = {X eR™ XTA—-ATX =0}, (5

for a given point A € GL4. Then the projection 7 in
equation 4] defines an isometry between the horizontal
subspace Hor 4 equipped with the Frobenius inner prod-
uct (X,Y): = tr(XYT), and S]* equipped with a
Riemannian metric that induces the Bures-Wasserstein
distance (equation [3) as the geodesic distance. In partic-
ular, this means that moving horizontally along straight

lines in the top space G L, is equivalent to moving along Figure 1: The Bures—Wasser.stei.n geom-
geodesics in the bottom space S; " (see Figure[l), as  etry of centered Gaussian distributions,
recalled in the following proposition. inspired by Khesin et al.| (2021).

Proposition 1 (Takatsu| (2011); Malago et al.[(2018); [Bhatia et al.|(2019)). Any geodesic t — X(t) in
Sl'iH' for the Bures-Wasserstein metric in equation is the m-projection of a horizontal line segment

in GLg, that is

Yt)=nm(A+tX)=(A+tX)(A4 thX)T, A€ GLy, X € Hory, (6)
where t is defined in a certain time interval (tyin, tmax ). Also, the Bures-Wasserstein distance between
two covariance matrices Y1, Yo € S;+ is given by the minimal distance between their fibers

BWa(21,%) = inf  |2Y2Q, — 2Y%Q,| = inf |22 - %3], 7
2(X1, %) = nf |50 - By770Qx]| = inf |2 2 Q@ @)
where || - || is the Frobenius norm and SOy is the special orthogonal group.

It is essential to note that the geodesic equation [6| cannot be extended for all time ¢ € R (the only
geodesic lines are those obtained by translation (Kloeckner] 2010, Proposition 3.6)). Therefore,
equation@is only defined on a time interval (¢min, tmax) that depends on the eigenvalues of X Al
(see Appendix [B.3). More details on the Bures-Wasserstein geometry can be found in Appendix

Otto-Wasserstein geometry of a.c. probability measures The Riemannian structure described for
Gaussian distributions is a special case of |Otto| (2001))’s more general construction : the bottom space
becomes the space Prob() of a.c. distributions supported in a compactset 2 C R? while the top
space is the space of diffeomorphisms Diff(Q2) endowed with the L? metric with respect to a fixed
reference measure p (see Figure in Appendix . The fibers of Diff(£2) are then defined to be the
pre-images under the projection

m: ¢ € Diff () — 7w(p) = pup € Prob(£2). 8)
In this setting, horizontal displacements in Diff (Q2) are along vector fields that are gradients of
functions. The projection 7 defines an isometry between the horizontal subspace equipped with the
L?(p)-inner product and Prob(€2) equipped with a Riemannian metric that induces the Wasserstein
distance as the geodesic distance. In particular, we have the following result.
Proposition 2 (Otto| (2001). Any geodesic t — (t) for the Wasserstein metric given in equation [Z] is
the m-projection of a line segment in Diff (Qd) going through a diffeomorphism ¢ at horizontal speed
V f o @ for some smooth function f € C(R®). That is, for t defined in a certain interval (yin, tmax),

pu(t) = (e +tVfop) = (Ad+tV )y (oxp). ©)
Another geodesic [i(t) = (¢ + tV f o @) is orthogonal to p(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if (V f o ¢,V f o @) 12(,) = 0.

We emphasize that f need not be convex in equation 9] unlike in the more classical parametrization
of geodesics due toMcCann| (1997) between two distributions po and p11 = Vugpg :

w(t) = (id +t(Vu — id)) g po, with t € [0, 1] and w a convex function. (10)
Note that equation [9] parametrizes geodesics provided that id +¢V f is a diffeomorphism, and thus it
is defined on a time interval that depends on the eigenvalues of the Hessian of f. On the other hand,

the convexity condition on the function u in the parametrization of equation [I0]ensures that time ¢ is
defined on [0, 1]. Both are completely equivalent (see Appendix for details).
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3 GEODESIC PCA ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider the exact GPCA problem for the Bures-Wasserstein metric in equation
The data are n centered Gaussian distributions identified with their covariance matrices 1, ..., %, €
Sj*. Following |[Huckemann et al.| (2010), we define the first component as the geodesic ¢t — 3(t) €
SjJr that minimizes the sum of squared residuals of the BWj-projections of the data:

tl—>2(g1gfeodesic ; lgf BW2 (Z(tl)7 Z’L) (] ])
The second principal component is defined to be the geodesic that minimizes the same cost function,
with the constraint of intersecting the previous component orthogonally. The subsequent principal
components have the additional constraint of going through the intersection of the first two principal
geodesics. This definition does not impose that the geodesic components go through the Wasserstein
barycenter (see Agueh & Carlier|(2011)), and in SectionE] we show an example where this is indeed
not verified. This gives an observation of the phenomenon already described inHuckemann & Ziezold
(2006)) for spherical geometry. The proofs of this section are deferred to Appendix

Learning the geodesic components Following Propositon[I] we lift the GPCA problem in equa-
tion [TT] to the total space GL,4 of Otto’s fiber bundle. This has several advantages: the Bures-
Wasserstein distance in the cost function of equation|11is replaced by the Frobenius norm || - ||, the
geodesic is replaced by a horizontal line segment, and the projection times ¢; become explicit. The
price to pay is an optimization over variables (Q;)?_; in SOy, needed to represent the covariance

matrices YJ; by invertible matrices E,} / QQZ- in their respective fibers.
Proposition 3. Letm: GLy — S+, A AAT and (A1, X1, (Q;),) be a solution of

inf F(A1, X1, Q) = D 141 +payx, (8) X1 — 22Qi%, .
=1

subjectto A € GLq4, X1 € Horga,, ||X1||2 =1, Q,...,Q, € SO,.

Then there exist tyy, tmax € R such that the geodesic Y. : t € [tumin, tmax] — T(A1 +tX7) in SIJF
minimizes equation [

Here the ¢; are projection times given by ¢; = <E: / 2Q7; — Ay, X4), and py x is a projection operator
that clips any ¢ € R onto a closed interval [tmin, tmax] depending on A and X, such that A+py x (t) X
is invertible for any ¢ in this interval (see Appendix [B.3). Clipping the time parameter of the line
segment is necessary to ensure it remains within G L4 and projects onto a geodesic in S&H'.

The second component is a geodesic of
++ :
S, " that orthogonally intersects the first GL, A X, A+ X,
m

component. Lifting again the problem

to G L4, this boils down to searching for Aol X1R

a horizontal line ¢ — Ay + t X5 where X, '/7_’ |
Ay = (Ay + t* X)) R* for a rotation ma- ;
trix R*, a time t* € [tmin, tmax] and a | o ‘
horizontal vector Xy € Hor,4, such that 7T(Alﬁ m(Ag)i/dma, (X1 RY)

4

(X5, X1R*) = 0. The equation for A, St
ensures that the m-projections of the first
two horizontal lines intersect, while the
condition on X5 ensures that they intersect
orthogonally (since X1 R* is horizontal at
A as can easily be checked). See Figure[2]

dma, (X /U ;

Figure 2: First (red) and second (blue) geodesic compo-
nents of Gaussian GPCA, where dmw 4 denotes the dif-
ferential of the projection m: A — AAT at A € GL,.

The second component is thus defined by Yo (t) = w(As + tX5), found by solving:
inf F<A23X27 (Ql);n:l)
subjectto  As = (A1 +t*X1)R*, R* € SOy, t* € [tmin, tmax) (13)
X, € Horn,, | X2|? =1, (X9, XiR*) =0, Q1,...,Q, € SO,.

4
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Note that this step requires to find new rotation matrices (Q;)?_,. The first two components fix the
intersection point 7(A3) through which all other geodesic components will pass, see Figure For
every higher order component, we search for a velocity vector X}, that is horizontal at some point in
the fiber over m(Az) and orthogonal to the lifts of the velocity vectors of the previous components.
Details on the implementation of these components are given in Appendix [D.2]

Quantifying the difference between TPCA and GPCA In the following, we quantify the distortion
induced by linearization in the case of covariances matrices with same eigenvalues.

Proposition 4. Let 3 € S; * with eigenvalues a?,b* and ¥/ = PQZP(,T where Py is the rotation
matrix of angle 0. Then, denoting & = ((a + b)/2)* I, we have
BWZ(%,%)
BWQQE(E, P

. a—>b 2 2 4
11— <a+b> cos” 0 + O((a — b)*), (14)

where BW,, 5, is the linearized Bures-Wasserstein distance at Y. recalled in equation IZE
For a given 6, equation |14|shows that the distorsion is most important for IZ;Z} close to 1, which
corresponds to matrices that are close to the border of the cone, as illustrated in Section

On the restriction to the space of Gaussian distributions Geodesic PCA can also be defined in
the more general space of a.c. probability distributions, as presented in Section[d A natural question
that arises is whether performing GPCA in the whole space of probability distributions gives the
same result as restricting to the space of Gaussian distributions, which is totally geodesic. To our
knowledge, the answer to this question is not known in general, although it is true in one dimension.

Proposition 5. Let v; = N (m;,02) fori = 1,...,n, be n univariate Gaussian distributions. The
first principal geodesic component t € [0,1] — u(t) solving equation |I| remains in the space of
Gaussian distributions for all t € [0, 1].

4 GEODESIC PCA ON A.C. PROBABILITY MEASURES: GPCAGEN

We now tackle the task of performing GPCA on a set of a.c. probability measures v1, ..., v, using
the Otto-Wasserstein geometry. We propose a parameterization of the geodesic principal components
based on Otto’s formulation, leveraging neural networks. Additionally, we introduce a dedicated cost
function to optimize the different geodesic components.

Parameterizing geodesics Following Proposition |2 and equation @], any geodesic ¢t — p(t) in
the Wasserstein space (Prob(2), Ws) can be expressed as ((t) = (¢ + tV f o ¢)up, for t in some
interval [tmin, tmax)s @ : RY 5 R%a diffeomorphism, f : R? — R a smooth function, and p a fixed
reference measure, taken to be the standard Gaussian distribution in this work. Using multilayer
perceptrons (MLPs) to parametrize the functions ¢ and f, denoted ¢y and f;, respectively, the curve

t pop(t) = (d + 1tV fp) 4 (osp)

is a geodesic for t € [tmin, tmax), provided that id + tV f,, € Diff(Q2) for all ¢ in this interval.
Equivalently, this condition holds if the Hessian matrix I; + tHy, (x) is positive definite for all
z€R%andt € [tmins tmax),» where H fu («) denotes the Hessian of fy, at «. In practice, we enforce
this constraint by monitoring the eigenvalues of I;+tH, () (see Appendix and either clipping ¢
or adjusting the interval [tmin, tmax] to ensure that all eigenvalues remain positive. This representation
enables to sample from the distributions along the geodesic. Specifically, given the learned vector
field @y and function fy, one can sample from fig , (t) by first drawing = ~ p and then applying the
transformations ¢g and id + ¢V f,, sequentially as g (x) + tV fy, (o (x)) ~ p1o,5(t).

Learning the geodesic components The first principal component in GPCA minimizes the objec-
tive in equation[I] The scalar variables ¢; specify the projection time of each distribution ; onto the
geodesic ¢t — p(t). Leveraging the explicit form of Otto’s geodesic, equation |1|can be reformulated
as:

dinf L(f, 0,81,y tn): :Z W3 ((id +t;V ) u(pup), vi). (15)
FEC(R®),pEDiff(Q) i=1
tl,---,tne[tminytmax]



Under review as a conference paper at ICLR 2026

We jointly learn the parameters ¢; together with the neural networks ¢g and f, to minimize the
objective in equation[T3] In practice, we use the Sinkhorn divergence S. that has been proven to be a
differentiable and computationally efficient approximation of the squared Wasserstein distance W2,
see [Frogner et al.|(2015));|Genevay et al.| (2018)); |Chizat et al.|(2020), and represent the distributions p
and v; using batches of m samples x;, ~ p and y; ~ v;. The optimization proceeds by updating the
parameters based on a single distribution v; sampled at each iteration, as detailed in Algorithm[I] To
compute ¢y, and ¢y, on line 5 of AlgorithmE], we approximate the extremal eigenvalues of Hy, by
evaluating the largest and smallest eigenvalues over the finite set { H s, ()}~ and substitute these
estimates into the theoretical bounds from Appendix

Algorithm 1 Geodesic PCA algorithm for a.c. measures: GPCAGEN

1: Initialize g, fy and the t; for 1 <7 < n
2: while not converged do
3: fori=1tondo

(@)

4 Draw m i.i.d samples Y;  ~ v and draw m i.idsamplesxy ~p 1< jk<m
5 Estimate ¢min, tmax With {H, (2)}72, and set t; = min(max(t;, tmin), tmax)

6 2 (id 441V f4) o (9)(z ) for1<k<m

7: [,9 bty Se ( Z’ 1 1) (1), poe Z;nzl 5y(i))

8 Update g, fy and the t; W1th VLo,

9 end for

10: end while

The second principal component minimizes the objective in equation [T]subject to the constraint that it
intersects the first component orthogonally. Similar to the first component, we use two MLPs, f,
and (g, , to parameterize the geodesic t — g, 4, (t), along with n scalar variables ¢2, to optimize
the objective in equatlon. 15| We also introduce two additional scalar variables, ¢}, and {2 o> Which
define the intersection times of the two geodesics, along with the regularization terms:

I ST
191Z2 () 121172,

where 7 enforces the geodesics (11 = g,y and po = pig, 4, to intersect at the respective times
tllmer and ¢2,,, and O(g, h) ensures orthogonality between the corresponding horizontal vector fields

V fy(pg) and h = V fy,(p,) in L?(p). The total objective used to optimize the second
principal component incorporates these regularization terms and is given by:

E(f1/12790927t%7 cee t2> + )‘II(N9 Py /L9271/127ti1ntera 1mer) + AOO(Vfw(%) vf1/12 (9092))

where A\; and \p are the regularization parameters controlling the trade-off between the intersection
and orthogonality regularization terms, respectively. Note that in virtue of Proposition l 2l the L?(p)
inner product in the regularization term O truly enforces orthogonality of the geodesic components
with respect to the Riemannian metric associated to the Wasserstein distance.

inter®

I(Mh H2, tmter? tmter) W2 (:ul( mter) H2 (tmter)) and O(ga h) =

The training algorithm used to optimize the second principal component follows the same structure as
Algorithm[T] except for the seventh line, where the regularization terms, estimated using the minibatch
x) ~ p, are added to the loss function. Higher-order components can be computed similarly.

5 EXPERIMENTS

5.1 EXPERIMENTS ON CENTERED GAUSSIAN DISTRIBUTIONS

In this section, we consider toy examples in S5 * and compare GPCA to its widely used linearized
approximation, TPCA (see Appendix . We use two coordinate systems for matrices in S5 the
first comes from the spectral decomposition, and the second maps any SPD matrix to a point in the
interior of the cone C = {(z,y,2) € R3, 2 >0, 2% < 2% +y?}

2
E:P9<% 52)13?:(2;9 ny) (a,b,0) €R% xR" xR, (2,4,2) €C, (16)
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where Py is the rotation matrix of angle #. Generically, GPCA and TPCA yield very similar results:
for sets of n = 50 covariance matrices randomly generated using a uniform distribution on the
parameters (a, b, 8), GPCA reduces the objective in equation |l I|of less than 1% w.r.t. TPCA, on
average for 100 trials. This suggests that TPCA is generally a very good approximation of GPCA.
Two extreme cases are described below: (i) GPCA and TPCA are equivalent and (ii)) GPCA and
TPCA drastically differ.

Matrices with same orientation If we consider a set of covariance matrices that live in the subspace
6 = constant in notations of equation[T6] then both GPCA and TPCA yield exactly the same results,

namely that of linear PCA in the

(a, b)-coordinates. This is because O O OO
any such subspace has zero curva-
ture for the Wasserstein metric, and 0 0 OCO
geodesics are straight lines in the 0O O OO
(a, b)-coordinates (Appendix [D.I). O O O oD
Figure[3|shows the geodesic compo-

O O OO

nents obtained for a set of matrices
in the subspace 6 = 0 that form a

regular rectangular grid in the (a, b) Figure 3: GPCA on a set of diagonal covariance matrices
coordinates, i.e. Eij = dlag(a37b?) Eij with varying eigenvalues 1< (112 <3 1L b? < 2.
where the a;’s and bj’s are equally The matrices form a planar grld inside the cone C of SPD
spaced. They are indeed straight matrices in equation @ (left), and correspond to ellipses
lines that capture the variations in of varying width and height (right). The first component
a and b respectively. (red) captures the variation in a, while the second component

(blue) captures the variation in b.

Matrices with same eigenvalues Now we consider covariance matrices that all have the same
eigenvalues but different orientations. Specifically, we choose 3; = Py, diag(a?, bQ)PoTi , for positive
realsa > b, 0; = im/nfori = 0,...,n — 1 and an even number n. In the (z,y, z) coordinates
(equation|16), the covariance matrices are displayed on a circle of equation x = cst (constant trace)
and y? + 2% = cst (constant determinant), as shown in Figure(in practice, we choose a slightly open
circle to break the symmetry). Then the Bures-Wasserstein barycenter of the covariance matrices
S1,y..., Ny, is given by ¥ = (a + b)? /41 (see Propositionin Appendix . When performing
TPCA on ¥y, ..., %, at the barycenter 3, the radial distances between X and 3J; are preserved, but
not the pairwise distances between the X;’s. Proposition ff] evaluates the level of this distorsion. Note
that since (a — b)%/(a + b)? = (22 + y?)/22, the distorsion is most important when covariance
matrices are close to the border of the cone, see Figure E| (left). Indeed, in that case, the results of
GPCA can be very different from those of TPCA and the first component may not even go through
the Wasserstein barycenter 3, see Figure (middle) and Figure in Appendix In that case GPCA
may be seen as worse-behaved as TPCA, as some of the Gaussian distributions will project onto
the first geodesic component boundaries, yielding a poor separation. Figure [] (right) shows the
percentage of improvement of the cost in equation [T1] (in terms of minimization) of GPCA with
respect to TPCA, in the setting previously described for different values of the ratio |a — b|/|a + b|.
on average for 10 runs per value of the ratio. The blue strip indicates standard deviation.

Weather dataset In this paragraph, we use the Weather CORGIS Dataset to illustrate GPCA based
on empirical covariance matrices. The dataset provides weekly measures of precipitation and wind
speed recorded from from March 2016 to Junuary across the 50 U.S. states and the territory of Puerto
Rico. From these measures, we construct two histograms for each state: one for precipitation and
one for wind speed. We then compute the 51 empirical covariances from these histograms. We show
in Figure[T4] the projection of each state onto the two first GPCA components computed from the
empirical covariance matrices. We can clearly identify clusters of different weather behavior among
the states.

5.2 EXPERIMENTS ON ABSOLUTELY CONTINUOUS DISTRIBUTIONS

We conduct a preliminary experiment on a synthetic dataset with known geodesics to verify that
our algorithm, GPCAGEN (Section[d), accurately recovers the first two principal components. We
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Figure 4: Comparison between tangent and geodesic PCA on a set of n = 20 covariance matrices
with same eigenvalues a2, b? and different orientations 6. (left) They are equally spaced on an (open)
circle in a horizontal plane inside the cone of SPD matrices. The first component of TPCA (dashed red
line) goes through the Fréchet mean X (magenta dot), a multiple of the identity, while the component
of GPCA (solid red line) does not. Here |a — b|/|a + b| ~ 0.8. (middle) Representation of the left
figure in the (z,y) coordinates. (right) Evolution of the first component cost improvement (in the
sense of minimization) of GPCA with respect to TPCA, as a function of the ratio |a — b|/|a + b|.

then apply GPCAGEN to 3D point clouds from the ModelNet40 dataset (Wu et al.[|(2015)) and to
color distributions of images from the Landscape Pictures dataset (Rougetet| (2020)). An additional
experiment in AppendiqA.3]demonstrate how GPCA can be used for outlier detection. For these
experiments, fy and @9 are MLPs with four hidden layers of size 128 and an output layer of size 1
and d respectively. We found that setting the regularization coefficients Ay and Ao to 1.0 ensures the
algorithm works as expected in all experiments. A discussion of the regularization coefficients, along
with details on the architecture and hyperparameters, is provided in Appendix

MNIST geodesics. We represent each image from the MNIST dataset (LeCun et al.| (2010)) as a
probability measure over R*. The grayscale pixel intensities define a normalized density over spatial
coordinates (z,y) € R?, and we further assign each pixel two additional values corresponding to red
and blue color channels. We construct two orthogonal geodesics: the first one interpolates between
a digit ’1” and a digit 2", both assigned a fixed purple by setting the color channels to 0.5. The
second one is defined from the midpoint of the first, by linearly interpolating the color from red to
blue. As shown in Figures[5|and[0] GPCAGEN successfully recovers the two geodesics intersecting
orthogonally. A second experiment on the MNIST dataset is displayed in Appendix [A]

3D point cloud. We use the ModelNet40 3D point cloud dataset (Wu et al.| (2015)) and apply
GPCA to a subset of 100 randomly selected lamp point clouds. Figure 6| (middle row) and Figure
(left) demonstrate that the first principal component captures the distinction between hanging lamps
(chandeliers) and standing lamps (floor lamps), while the second component reflects variations in
the thickness of the lamp structure. We conduct a similar experiment on 100 point clouds from
ModelNet40 representing different chairs. As shown in Figure [6] (top row) and Figure [I0] the
first principal component captures the height of the seat, while the second component distinguishes
between chairs and armchairs.

Landscape images. We took 39 images from the Landscape Pictures dataset (Rougetet| (2020))
and use GPCAGEN on the corresponding point clouds, where each point cloud represents color

AN

Figure 5: Densities of probability distributions uniformly sampled along the first and second principal
geodesics components. GPCAGEN successfully recovers the two orthogonally intersecting geodesics
constructed from MNIST data. The first component (left) captures variation in color space, while the
second component (right) recovers the interpolation from the digit 1" to the digit 72”.
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Figure 6: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(left) and second (right) principal components, as computed by GPCAGEN in the 3D point cloud
of chairs experiment (top row), the 3D point cloud of lamps experiment (middle row) and the
Landscape images experiment (bottom row).

distribution in the image. Figure [6] (bottom row) and Figure[7] (right) show that the first component
captures variations in overall brightness, ranging from bright to dark images, while the second
component separates mostly green images from mostly blue ones.

Baselines An obvious baseline for GPCAGEN is TPCA. Unlike GPCAGEN, which learns continu-
ous geodesics from empirical distributions of absolutely continuous measures, TPCA acts on discrete
measures. A direct numerical comparison between the two methods is therefore not meaningful.
However, we include in Appendix [A.2] the two principal components returned by TPCA on the
3D point cloud experiments. We observe in Figure [T6]that the discrete nature of TPCA produces
artifacts, including holes in certain regions, excessive mass concentration in others, and intermediate
distributions that no longer resemble valid objects.

Another natural baseline consists in embedding point clouds into a latent space of dimension d
then performing standard PCA on the resulting latent vectors. This approach, in addition to being
computationally expensive, does not produce meaningful modes of variation, as shown in Section
[A2] of the appendices.

Figure 7: Each lamp point cloud (left) and each image (right) is embedded in the plane according to
its projection times onto the first and second principal components computed by GPCAGEN.
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6 DISCUSSION

GPCA is a statistical approach for learning the main modes of variations of a set of probability
distributions. The first components capture meaningful structure for data lying on a curved space,
which then enables downstream tasks such as classification, clustering, and outlier detection. In
this work, we have proposed two methods for computing exact GPCA : one tailored for Gaussian
distributions and the other for the more general case of a.c. probability distributions. In the Gaussian
case, our experiments suggest that GPCA and TPCA generically yield very similar results, except for
distributions with covariance matrices that are close to the boundary of the SPD cone, for which GPCA
can yield undesirable effects as suggested by the pathological example of Figure[d] In the general case
of a.c. probability measures, a key advantage of our approach is that it operates directly on continuous
distributions, avoiding the need for empirical approximations of the v;, which would require equal
sample sizes and can introduce discretization artifacts in the recovered components. Additionally, our
method enables sampling from any point along the geodesic components—something not possible
with discrete approximations commonly used in TPCA. Otto’s parametrization also allowed us to
avoid relying on input convex neural networks (ICNNs) by not requiring convex functions, with the
trade-off being the need to estimate the eigenvalues of the Hessian of f. This perspective opens new
directions for parametrizing convex functions without imposing hard architectural constraints.

10
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REPRODUCIBILITY STATEMENT

All implementation details of our proposed method, including model architectures, training proce-
dures, and hyperparameter settings, are provided in Section 5] of the main paper and in Appendix[E]
and[D.2] Original theoretical results are presented with complete proofs in Appendix [D] The datasets
used in our experiments are publicly available. We will release the source code to reproduce all
experiments associated with this paper at a later stage.
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A ADDITIONAL EXPERIMENTS AND FIGURES

A.1 GEODESIC PCA

Here we present additional figures to further explain the experiments described in the paper. Figure
concerns the experiment on Gaussian distributions with diagonal covariances described in Section
corresponding to Figure[d] It shows all three principal components found by tangent PCA (left) and
geodesic PCA, in two equally optimal solutions (middle, right).

_ _ 0.5
-0503 -0.503 -0.5

Figure 8: Principal geodesic components of a set of Gaussian distributions whose covariance matrices
have same eigenvalues and different orientations, as described in Section[5.1} Tangent PCA yields a
unique solution (left) where geodesic components cross at the barycenter, while geodesic PCA yields

two equally optimal solutions (middle, right) where the geodesic components cross at another point.
The first geodesic component is shown in red, the second in blue, the third in green.

Figure Q]displays on the plane the two first geodesic components of the MNIST experiment of Section
[5.2] while Figure [T0] shows the planar representation of the 3D point cloud of chairs experiment
given by the projection onto the first two geodesic components found by GPCAGEN algorithm and
depicted in Figure[§ (top row).
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Figure 9: Each point cloud, corresponding to
a distribution along one of the artificially con-
structed geodesics, is embedded in the plane ac-
cording to its projection times onto the first and
second geodesics returned by the GPCAGEN
algorithm. We observe that GPC AGEN success-
fully recovers the two orthogonally intersecting
geodesics designed from MNIST-based interpo-
lations of digit shape and color.

Figure 10: Each chair point cloud is embedded in
the plane according to its projection times onto
the first and second geodesics returned by the
GPCAGEN algorithm.
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Finally, we present an additional experiment on the MNIST dataset. We use the same color construc-
tion as in the experiment presented in Section[5.2} we then apply GPCAGEN to a dataset of 20 red
digits 17, 20 blue digits 17, 20 red digits 27, and 20 blue digits 2" (see Figure[I2). As shown in
Figures[IT]and[T2] GPCAGEN again identifies two orthogonal geodesics: the first primarily captures
variation in color, while the second captures variation in shape—from digit 2" to digit ’1”.

pose222200 ) |

t t

Figure 11: Densities of probability distributions uniformly sampled along the geodesics corresponding
to the first and second principal components. The first component (left) returned by GPCAGEN
captures variation in color space, while the second component (right) recovers the interpolation
between digit ”2” and digit ”1”.
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Figure 12: Each MNIST digit is embedded in the plane (the arrows indicate the exact position of each
digit) according to its projection times onto the first and second geodesics returned by the GPCAGEN
algorithm. We observe that the first principal component recovered by GPCAGEN captures variation
in color, while the second component reflects the transformation from digit 2" to digit ’1”.

A.2 COMPARISON OF GPCA TO RELATED METHODS

Other notions of PCA on Gaussian distributions There exist a wide variety of metrics on the
space of symmetric positive definite matrices, such as e.g. the log-Euclidean, Euclidean-Cholesky
or affine-invariant metrics (see [[hanwerdas| (2022) for a comprehensive overview). Each of these
metrics could be used to perform PCA on centered Gaussian distributions. However, there is no
obvious quantitative way to compare the results. Each method optimizes its own criterion, and any
metric that one could think of to compare the methods would rely on a choice of underlying metric
on the space of SPD matrices. Comparison of PCA methods with two different metrics thus boils
down to comparing the metrics themselves. We illustrate in Figure[T3]the behavior of covariances
matrices along geodesics for different metrics.
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Figure 13: Geodesics on the space of symmetric positive definite matrices from left to right, for (top)
the Bures-Wasserstein metric, (middle) the log-Euclidean metric and (bottom) the Euclidean metric
on the Cholesky coefficients.
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Figure 14: Each dot represents a state projected onto the first two GPCA components computed from
the empirical covariance matrices, which are also shown in the figure.

TPCA on 3D Point Cloud Data Here we present the results returned by TPCA on the 3D point
cloud experiments, see Figures [I6]and[T3] and compare them to from those obtained by GPCAGEN.

For the lamps dataset, the first component is similar and captures the distinction between hanging and
standing lamps. The second component focuses on the object thickness, like the second GPCAGEN
component, but also on whether mass is concentrated at the extremities or the middle of the lamp
structure.

For the chairs dataset, both geodesics obtained by TPCA differ from those returned by GPCA. The
first component interpolates from a thin chair with a high seat to a low-seated armchair. The second
component captures a transition from a thin chair with a low seat to a high-seated armchair. The first
TPCA component appears to blend the first and second GPCAGEN geodesics, while the second is
complementary to the first TPCA component.
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Finally, due to the discrete nature of the TPCA algorithm, we observe discretization artifacts in the
TPCA components: holes in some parts of the space, mass concentration in others, and intermediate
distributions that do not resemble valid objects
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Figure 15: For the chair and the lamp experiment, each point cloud is embedded in the plane according

to its projection times onto the first and second principal components computed by TPCA
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Figure 16: Empirical distributions uniformly sampled along the geodesics corresponding to the first
(first line) and second (second line) principal components, as computed by TPCA in the 3D point
cloud of chairs experiment (top rows) and the 3D point cloud of lamps experiment (bottom rows)
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PCA computed in the latent space of PointNet. For the 3D point-cloud datasets, we evaluated
the natural baseline that consists in embedding point clouds into a latent space of dimension d
and then performing standard PCA on the resulting latent vectors. We used a pretrained PointNet
autoencoder from the public repository https://github.com/vinits5/
pc_autoencoder, trained on ModelNet40, to encode each point cloud (chairs and lamps) into
a d-dimensional latent representation, on which PCA was applied. Figure [[7]shows the resulting
2D projections. We observe some clustering of similar objects; for example, large lamps tend to
group together in the lamp dataset, and chairs versus armchairs form distinguishable clusters. The
second principal component for chairs appears to correlate with the height of the seat. Beyond these
observations, however, PCA provides limited separability (especially for lamps), and the recovered
components are difficult to interpret.

More generally, this approach presents several important limitations:

* Training a point-cloud autoencoder requires a large collection of distributions. In our case
(100 distributions), we need to rely on a pretrained autoencoder trained on related dataset.

* PCA on autoencoder embeddings relies heavily on the geometry learned by the encoder.
The learned geometry is not guaranteed to align with the Wasserstein structure and the
recovered principal components may not reflect meaningful modes of variation (as observed
in the experiments above). Moreover, for a given autoencoder that we wish to train, different
random seeds at initialization can lead to different learned geometries and thus different
PCA components, which is not suitable.
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Figure 17: For the lamp (left) and the chair (right) experiment, each point cloud is embedded in the
plane according to its projection times onto the first and second principal components computed by
the POINTNET + PCA method.

A.3 APPLICATION OF GPCA TO OUTLIER DETECTION

In this section, we demonstrate how GPCA can be used for outlier detection. The underlying intuition
is that GPCA components capture the structure of the dataset on which they are trained, and samples
from a different dataset are expected to lie far from the learned components in Wasserstein distance.
In this experiment, we use the ModelNet40 3D point cloud dataset and apply
GPCA to a subset of 100 randomly selected chair point clouds to compute the first two components.
For a new point cloud X, we define its score as the sum of the Wasserstein distances between
X and its projections onto the first two learned GPCA components. To compute the Wasserstein
distance between X and a component, we use ot . emd from the POT library. Specifically, for each
component, we perform a grid search over 20 equally spaced values of ¢ between .,in and tyax,
computing the Wasserstein distance between X and 2048 samples drawn from the component at
each ¢, and select the ¢ that minimizes this distance. We repeat the same procedure for the second
component and sum the two minimal distances to obtain the final score.
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We evaluate this approach on 120 point clouds: 60 new chairs (not used for training) and 60 point
clouds of cars. The left histogram in Figure[T8]shows the resulting scores. We observe that the scores
of the chair point clouds (in blue) are lower than those of the car point clouds (in green), indicating
that it is possible to detect whether a point cloud is not a chair using this score. We also repeat the
experiment with 60 point clouds of planes, shown in the right histogram of Figure[I8] and observe
that the separation between chair and plane scores is even more pronounced.
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Figure 18: GPCA scores obtained on 60 new point clouds of chairs (never seen during training) and
60 point clouds of cars (left) / planes (right). The separation of the histograms indicates that GPCA
can be used for outlier detection.

B THE OTTO-WASSERSTEIN GEOMETRY

In this section, we briefly describe the fiber bundle structure over the Wasserstein space due toOtto]
(2001)), that is behind the Riemannian interpretation of the Wasserstein distance. We then present its
restriction to the space of centered non-degenerate Gaussian distributions, which coincides with the
Bures-Wasserstein Riemannian geometry on SPD matrices. Finally, we relate Otto’s parametrization
of geodesics to McCann’s interpolation.

We present these well-known results without proofs and refer the interested reader to (2001);

Khesin et al| (2021)) and (Ambrosio et al.,[2013] Section 6.1) for more details in the general setting
and to|Takatsu| (2011)); Malago et al|(2018); Bhatia et al.| (2019) for details and proofs in the Gaussian

setting.

B.1 THE OTTO-WASSERSTEIN GEOMETRY OF A.C. DISTRIBUTIONS

Consider the space Prob(2) of absolutely continuous probability measures with smooth densities
with respect to the Lebesgue measure, and support included in a compact set Q C R?, as well as the
space Diff () of diffeomorphisms on 2. These spaces can be equipped with an infinite-dimensional
manifold structure, see e.g. [Ebin & Marsden| (1970), that we will not describe here. The tangent
space of Diff () at ¢ € Diff({2) is given by

T,Diff(Q) = {vop, v: Q — R? vector field}.

We fix a reference measure p € Prob(Q2) and equip Diff(Q2) with the L2-metric with respect to p,
defined for any tangent vectors u o o, v o ¢ € T,Diff () as

(uop,vop)r2(): =/(u0s0)~(voso)dp=/u-vdu,

where 1 = ¢4 p. Then the space of diffeomorphisms can be decomposed into fibers, defined to be
equivalence classes under the projection

m: Diff () — Prob(Q2), ¢ — @up.

19



Under review as a conference paper at ICLR 2026

Specifically, the fiber over ;1 € Prob(Q) is given by 71 (1) = { € Diff(Q), p2p = p}, see Figure
(right). The tangent space to the fiber 7—1(u) at ¢ € Diff(Q2) and its orthogonal with respect to
the L?(p)-metric are refered to as the vertical and horizontal spaces respectively :

Ver,,: = kerdr,, Hor, = (Ver,)",

where dm,: T,Diff (2) — T} (,)Prob(£2) denotes the differential of 7 at 0. Moving along vertical
vectors in Diff (2) means staying in the same fiber, i.e. projecting always to the same measure y in
the bottom space. On the contrary, moving along horizontal vectors means moving orthogonally to
the fibers, i.e., in the direction that gets fastest away from the fiber. The following proposition gives
the form of vertical and horizontal vectors.

Proposition 6. Ler p € Diff (Q). Then
Vertp = {w °op, V- (’LU[L) = O}a
Hor, = {Vf oy, f € C®(Q)}.

The following results state that line segments and L?(p)-distances in Diff (Q2) can be used to compute
Wasserstein geodesics and distances in the space of probability measures Prob((2), provided we
restrict to horizontal displacements.

Proposition 7. The projection w: Diff () — Prob(Q) is a Riemannian submersion, i.e.
dm,: Hory, — T, Prob(Q) is an isometry for any ¢ € Diff (Q2).

This implies the following.
Proposition 8 (Proposition [2| in main). Any geodesic t — u(t) for the Wasserstein metric in
equation [2|is the T-projection of a line segment in Diff () going through a diffeomorphism ¢ at
horizontal speed NV f o o for some smooth function f € C(R?). That is, for t defined in a certain
interval (tyin, tmax),

pu(t) = (e +1Vfop) = (d+tV[)y(pxp). (17)
Another geodesic [i(t) = (¢ 4+ tV f o @) is orthogonal to ju(t) at t = 0 for the Riemannian metric
inducing the Wasserstein distance if and only if (V f o ¢,V f o @) 12(,) = 0.

We comment on the link between this parametrization and McCann’s interpolation in Section [B.3]

B.2 THE OTTO-WASSERSTEIN GEOMETRY OF GAUSSIAN DISTRIBUTIONS

The Bures-Wasserstein distance in equation [3| on the space SIJF of symmetric positive definite

(SPD) matrices is the geodesic distance induced by a Riemannian metric gZ", which can be written
in different ways. Here we use the expression from (Thanwerdas| 2022, Table 4.7), defined for
Y =PDP" €S/ andU = PU'PT € Sy, by

1 1 5
g U0 =5 > Ui (18)
1<i,j<d * J

where the d;’s are the diagonal elements of D. The associated Riemannian geometry can be described
by Otto’s fiber bundle restricted to the space of centered Gaussian distributions, in the following way.

In this setting, diffeomorphisms are restricted to invertible linear maps ¢ : u — Aw for some invertible
matrix A, i.e. the space of diffeomorphisms is replaced by the Lie group of invertible matrices GL,.
Tangent vectors are then given by linear maps u +— Xwu for any matrix X € R9*4, Fixing the
standard normal distribution p = A/(0,1d) as reference measure, the L?-metric with respect to p
between u — Xwu and u — Yu is then written, for any X, Y € R4x¢:

UT u u) = T m uT ) = tr
[ et otuinte = [ xtotuowi Mot =

yielding the standard Frobenius inner product on (the tangent space of) G L. We obtain a fibration of
the top space G L4 over the bottom space S&H' by considering the following projection

y quTYpo(u)) =tr(XY"),

T GLg— ST, A~ AAT, (19)
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see Figure (left). The fiber over X € S is
7 H8) = {A e GLy, AAT =%} =xY20,, (20)

where Oy denotes the space of orthogonal matrices and ¥'/2 denotes the only SPD square root of the
SPD matrix Y. The differential of the projection 7(A) = AAT is given by

dra(X)=XAT + AXT. 1)

Therefore, vertical vectors, which are those tangent to the fibers, or equivalently, those belonging to
the kernel of dm 4 (X), are given by

Very: = {X eR™ XAT + AXT =0}
= {X e R™4 X AT is antisymmetric}
={X=KA") L, KeS;}=85(A")"1
where S, j‘ denotes the space of antisymmetric matrices of size d. Once again, moving along vertical
vectors in G L4 means staying in the same fiber, i.e. projecting always to the same SPD matrix in the

bottom space S;[*. Horizontal vectors are those that are orthogonal to all vertical vectors (for the
Frobenius metric), i.e. matrices X such that for any antisymmetric matrix K:

0= (X,K(AT)™) =tr(XAT'KT)

which is equivalent to X A~! symmetric (this can be seen by taking for K the basis elements of S
in the above equation), yielding

Horg: = {X e R (AT)71xT = xA™ 1}
={X eR™ XTA-ATX =0}
={X=KA KeS;} =5A

where S, denotes the space of symmetric matrices.

Proposition 9. The projection m: GLy — S(}H', A AAT is a Riemannian submersion, i.e. dr 4
is an isometry from Hor 4 equipped with the Frobenius inner product 1o T A)S[iH' equipped with the
inner product gf(VX), forany A € GLg.

Just like in the general case, this yields a way to lift the computation of geodesics and distances.

Proposition 10 (Propositonin main). Any geodesic t — X(t) in S;r+ for the Bures-Wasserstein
metric in equation[3]is the T-projection of a horizontal line segment in G Lg, that is

Y(t)=m(A+tX)=(A+tX)(A+tX)", AeGLyg, X € Hory, (22)

where t is defined in a certain time interval (i, tmax)- Also, the Bures-Wasserstein distance between
two covariance matrices 31,9 € S;+ is given by the minimal distance between their fibers

BWy(S1,%) = inf  |2V%Q — 2Y%Q.| = inf |ZV% -3, 23
2(X1, %) = Inf |50 - By70Qxf| = inf [|% 2 Ql (23)
where || - || is the Frobenius norm and SOy is the special orthogonal group.

Formula in equation [22|and the first equality of equation [23|are direct consequences of the fact that
7 is a Riemannian submersion. To obtain the second equality of equation 23] we first notice that
optimizing on @1, Q2 € Oy is equivalent to optimizing on a single ) € O thanks to the invariance
of the Frobenius metric w.r.t. the right action of O,4. And second, that the infimum is attained at (see
(Bhatia et al., 2019} Equations 3 and 35))

Q* =x,'*T5/?, where T =x;3(n1/?5,n1/%) /2512
is the Monge map from ¥; to X5 (see (Malago et al., |2018| equation 8)), and so Q* has positive
determinant and belongs to SO,.
Thus the closest element of the fiber 7—1(33) to Z}/Q is given by Eé/QQ* = TEi/Q, i.e. by left
multiplying E}/ 2 by the Monge map 7. This is more generally true for any representative of >;:

21



Under review as a conference paper at ICLR 2026

|
SHdesie
ge ?(\
i P2
H

i
drpy
v

|
Jt )ﬁ'\wm, al
i

. Wl}VfE

Figure 19: The Otto-Wasserstein geometry of (left) centered Gaussian distributions and (right) a.c.
probability distributions. Figures inspired by |Khesin et al.[(2021).

Proposition 11. Let 31,35 € S;+, T the Monge map from X1 to Y9, Ay € 7 Y(31). Then
Ag := T Ay is said to be aligned with respect to Ay, that is, it is the closest point in m=(33) to A;.
More precisely, we have

1. Ay — A1 = (T — I)Al S I‘IOI‘A1
2. Logy, (S2): = dma, (T — DAy) = (T — )Xy + 54(T — I)

3. BWa(31, ¥2) = ||[Logy, 2| F}" = (T — 1) A4

NBW = \/gBW (-,-) and || - || is the Frobenius norm.

This means that to compute the Bures-Wasserstein distance between two covariance matrices X1 and
3o, one can consider any representative A; in the fiber over X1, compute the representative As of Yo
aligned to A; (using the Monge map) and finally compute the Frobenius norm of A — Aj;.

where Log is the Riemannian logarithm map,

B.3 GEODESIC PARAMETRIZATION

There are two classical parameterizations for Wasserstein geodesics in the space of a.c. probability
measures.

McCann’s interpolation The first one, due to McCann|(1997)), is given between two probability
distributions /o and /i1, and depends on the optimal transport map in equation [2} obtained as the
gradient of a convex function u, that is T[jol = Vu and

pe = (1 —t)id+tVu)ppo = (1d+t(Vu —id))gpo, t € [0,1]. (24)

Otto’s geodesic The second one, exploiting Otto’s fiber bundle geometry in |Otto|(2001)), consists in
writing a geodesic in the Wasserstein space as the projection of a horizontal geodesic in the total space
of diffeomorphisms. Such a horizontal geodesic is a line segment going through a diffeomorphism ¢
with a horizontal speed V f o ¢, where f is any smooth function (not necessarily convex). Therefore
we get

s = (p+sVfop)up=(d+sV [ )glpgp), s€ (so,51) (25)
In this second expression, the bounds on the time s depends on the function f. Indeed, for 5 to be a
geodesic, id +sV f needs to remain is the space of diffeomorphisms for a given s, which means that
id +sHess f needs to be positive definite. Therefore, we get the following conditions depending on
the minimum Ap;, and maximum Ay« eigenvalues of Hess f:

s € (=00, =1/ Amin) if  Amax <0,
s € (—=1/Amax, +00) if  Amin > 0, (26)
s € <_1/)\max; _1/)\min) if )\min <0< )\max-
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It is clear that equation 24]is a particular case of equation [25] where we choose w4 p = pg and
V[ = Vu —id. Conversely, one can write equation [25|under the form of equation[24] For a given
diffeomorphism ¢ and function f, consider the geodesic given by equation@ and set g = Qup.
Assume that we are in the case where all eigenvalues of Hess f are negative, then s must be in
] — 00, =1/Amin[. Consider s* €]0, —1/Amin[, and define p1: = pgr = (id +8*V f)xpo. Setting
t = s/s* we have that the geodesic between 119 and p; is written

pe = (id +ts*V fapo = (d +t(Vu — id)) gpo, t € [0,1].
for u(z) = s* f + ||z||? /2. Now for any eigenvalue \; of H the Hessian of f, we have
Ai > Amin > —1/8* ie. s\ +1>0.

by the interval of definition of s*. This means that the Hessian H,, = s*H ¢ + id is positive definite,
which means that u is necessarily convex. The other cases work similarly.

The Gaussian case Transposing Otto’s formulation in equation[25]to the case of a geodesic between
Gaussian distributions means that for A € GLg and X € Hor 4 such that | X || = 1, the interval of
definition of a geodesic depends on the invertibility of A 4+ sX. In turn, the maximal interval of
definition of s € (sg,s1) is defined from the eigenvalues of X A~!, through the same formula in

equation 26
C LINEARIZED OPTIMAL TRANSPORT AND TANGENT PCA

In this section, we provide the definition of linearized Wasserstein distance and details on how to
perform tangent PCA for both Gaussian distributions and general a.c. distributions. Tangent PCA
is a widely used approach to compute PCA on the Wasserstein space, that consists in embedding
probability distributions into the tangent space at some reference measure p, and performing PCA in
the tangent space with respect to the linearized Wasserstein distance.

C.1 THE CASE OF CENTERED GAUSSIAN DISTRIBUTIONS

We consider n covariance matrices X1, ..., %, and their Bures-Wasserstein barycenter (or Fréchet
mean) X, that is, the SPD matrix verifying (see Agueh & Carlier| (2011))):

n

¥ = arg min ZBWQQ(E, %) (27)

zesit =1

The idea behind tangent PCA is to represent each data point by the corresponding tangent vector,
given by the Riemannian logarithm map, in the tangent space at the reference point %, i.e.

{LogsXi}i, c TsS;+. (28)

Now, one can lift the computations from the tangent space at ¥ to the horizontal space at a point in the
fiber over ¥, say A: = 211 2 by aligning all representatives to A, see Proposition The key point
is that the tangent space at > equipped with the Bures-Wasserstein Riemannian metric is isometric to
Hors: = S4A equipped with the Frobenius inner product — where we recall that S is the space of
symmetric matrices. This means that instead of performing PCA for the Bures-Wasserstein inner
product on the tangent vectors in equation 28] we can instead perform linear PCA on their pre-images
by dr 4, see Proposition

(T, =AY, CHoru,, where T;=x;'/*}/25xl/?)1/2571/2
T; is the optimal transport map from ¥ to X;, see Section Now, noticing that
(K1A, KyA) = Tr(K,AATK) ) = Tr(K 3K, ), VK, Ky € Sy,

we see that the space Hor4 equipped with the Frobenius inner product is itself isometric to Sg
equipped with the Frobenius inner product weighted by . Therefore, tangent PCA is performed
through Euclidean PCA on the (centered) vectors {T; — I}?,, in the vector space Sy, with respect
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to the Frobenius metric weighted by 3. Another way to see this is by noticing that the linearized
Bures-Wasserstein distance BW, 5, with respect to 3 is given by
BW, (51,%2): = |Logs¥1 — Logg |87
= ||dnsa (11 — DEY?) = dmso (To = DEV2|EY
=|[(Th - DS — (T - DS
= [Ty — T2)EV2|

where |||V denotes the norm associated to the Bures Wasserstein Riemannian metric in equation|18]
7 is Otto’s projection in equation [I9] and we have used Propositions[9)and [[] Finally,

BW, 5(31,%52): = ||[Logs¥1 — Logs Sa[|8Y = ||Ty — |5, (29)

where || - || denotes the Frobenius norm weighted by 3.

C.2 THE CASE OF A.C. DISTRIBUTIONS

Similarly, one can embed a.c. probability distributions v1, . . ., v, into the L?(p) space at some a.c.
reference measure p through the optimal maps v; — 7% in the Monge problem in equation 2] Then,
the Wasserstein distance can be approximated by the linearized Wasserstein distance in[Wang et al.
(2013) given by

Wa p(vi,v2) = T = T,° | L2(p)- (30)

Note that as previously mentioned, this metric induces distortions : while the radial distances
from p to any y; are preserved, that is [[id — 7}%([12(,) = Wa(p,v;), other distances are not
T3+ — T3 L2(p) # Wa(vi, v2). A recent paper by [Letrouit & Mérigot (2024) proved however, that
under some assumptions, W5 , is bi-Holder equivalent to /5, which indicates that the distortion
effect can be controlled.

Then, denoting 7,, the Wasserstein barycenter as in|Agueh & Carlier|(2011) of v, . . ., v,, that is the
solution of
Up, € argmin Z:VVQQ(V7 v;), 31
v i=1

tangent PCA consists in performing classical PCA, see e.g. |Ramsay & Silverman| (2002), of
(T —id)?_, in the Hilbert space L*(1,).

D GEODESIC PCA FOR GAUSSIAN DISTRIBUTIONS

In this section, we present the proofs related to geodesic PCA for Gaussian distributions and the
implementation of our algorithm in this case.

D.1 PROOFS RELATED TO GPCA FOR GAUSSIAN DISTRIBUTIONS

We first prove the existence of mimimizers for the GPCA problems lifted to Otto’s fiber bundle.
Lemma 1. The GPCA problem in equation[I2|for the first component admits a global minimum.

Proof. First, let us define the set of normalized matrices B: = {X € R4 || X| = 1}. By
denoting Apin (resp. Amax) the smallest (resp. largest) eigenvalue of X A~1, extending the geodesic
t — A+ tX as far as possible (see Section means that the closed interval [tmin, tmax] is defined
for some fixed € > 0 by

(=00, =1/ Amin — €] if  Amax <0,
[—1/Amax + €, +00) if  Amin > 0, (32)
[_1/)\max + ¢, _1/)\min — E] if Amin < 0 < Apax-
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Let us now consider the function

F:GLgx B x (R”*H" R

(4, X, (Qi)iy) — D A+ peax)(t)X - 512Qi)% =: > 0i(A,X,Q),
i=1

i=1

where t; = <Z}/ 2Qi — A, X) and p(4 x): R — R is the projection operator that clips a point ¢ into
[tmins tmax)» Which depends on A and X. Then the function F is continuous on GLg x B x (R4*?)»
as composition of linear and continuous functions. Note that the function (A4, X) — pca x)(t;)
is continuous by eigenvalue continuity, see |Li & Zhang| (2019). Additionally, the function F'
is coercive (see e.g. Zalinescu (2002)) on GLg x B x (R%*9)", Indeed, on a diagonal {A =
E;/zQi, for (A, Q;) € GLq x R4} for some i € {1,...,n}, we have t; = 0, and therefore
we have either g;(4,X,Q;) = 0if pia,x)(0) = 0, or g;(4, X,Q;) = ¢[| X||*> = ¢ otherwise.
This would imply that g;(A, X, Q;) doesn’t go to infinity when the norm ||(4, X, Q;)|| — oc.
However, in this case, we have g;(A4, X,Q;) — oo when ||(4,X,Q;)|| — oo for any j # i.
Moreover, as p(4,x)(t;) is a clipping, it won’t play a role in the coercivity. We conclude by the
fact that the function (A4, X) — X T A — AT X is continuous, implying that the set of constraint
{(A,X) € GLg x R4 : XTA - ATX = 0} is closed and B and SO, are compact. The
optimization problem in equation [I2]thus admits a global minimum. O

Note that this result also applies for the second component in equation [I3] and the higher order
components.

Proposition 12 (Propositionin main). Letm: GLq — Si+, A~ AAT and (A1, X1, (Qi),)
be a solution of

inf F(AL, X1, (Q)imr): = 3 141 +pa, x, () X1 — =°Qi1%,

i=1

subjectto A1 € GLy, X1 € Hory,, || X1]? =1, Q1,...,Qn € SO,.

Then there exist tyin, tmax € R such that the geodesic ¥.: t € [tyin, tmax) — (A1 +tX1) in SjJr
minimizes equation [

Proof. A horizontal geodesic in GLg is a straight line going through a base point A € GL, in
the direction of a horizontal vector X € Hor 4 (that we consider normalized, ie. || X||? = 1), i.e.
t— A+ tX € GLy. Denoting [tmin, tmax] the interval constructed in equationwhich depends on
the eigenvalues of X A~!, we have that (7(A+tX ))t€ [t tmer] 18 @ ge0desic in the Bures-Wasserstein
sense, see Proposition and

min 5

min  BW3(r(A+tX),%;) = min inf ||JA+tX — 23/2622-”2
te[tmlnytmax] tE[tmm;tmax] Qiesod

A+ pa,x)(t)X — =2Qi?,

inf
Q€504
where t; = (E}/zQi — A, X)) is the (orthogonal) projection time of 23/2621' onto the line ¢t — A+tX.

We therefore deduce that a set of solution (A4, X, (Q;)_,) of equation[12]defines a proper geodesic
(T(A + X)) t€[tmin tme] » SOlUtiON Of problem in equation

O

Proposition 13 (Proposition [5|in main). Let v; = N(m;,02) fori = 1,...n be n univariate
Gaussian distributions. The first principal geodesic component t € [0, 1] — u(t) solving equation
remains in the geodesic space of Gaussian distributions for all t € [0, 1].

Proof. Let Probs(R) be the set of a.c. probability measures on R that have finite second moment,
and Q the set of corresponding quantile functions :

Q = {F; % v € Proby(R)}
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Q is the set of increasing, left-continuous functions ¢ : (0,1) — R, and a convex cone in L*([0, 1]),
the set of square-integrable functions on [0, 1]. The mapping

Qv FL (33)

defines an isometry between Probs(R) equipped with the Wasserstein metric, and Q equipped with
the L? metric (see e.g. Bigot et al.| (2017)), that is, for any u, v € Probs(R),

Wa(p,v) = ||F; = F, L2 o,

The map & in equation [33|also defines an isometry from the set of (univariate) Gaussian distributions
to the set of all Gaussian quantile functions G. This space G is the upper-half of the plane F spanned
by the constant function 1 and the quantile function F(;1 of the standard normal distribution:

G=R-1+R%} -F;' CF: =span(1, Fj ).

Now, consider n normal distributions vy, ..., v, and ((t))¢c[o,1) the first principal geodesic com-
ponent found by minimizing equation |1} the sum of squared residuals in Probs(R). Since u is
a Wasserstein geodesic in Proby(R) and @ is an isometry, the curve ¢t — O (u)(t) = F;:(ilt) is an
L?([0,1])-geodesic in Q, i.e. a line segment
-1 _ g _ -1 -1

tel0,1] — Fu(t) =(1 t>FM(0) + tFM(l).
Since {1, Fofl} forms an orthonormal basis of F, the orthogonal projection of this line segment on
F is given by ) ) . )

t € [07 1] = <Fp._(t)’ 1>1 + <F'u_(t)vFO_ >FO_ 9
which lies in G. To see this, we need to show that the following value is positive:

1
(FayFo ') = / F () Fy  (y)dy = / 2Fy b o Flu(2)du(t)(z) = E(XT(X)),

where X ~ i(t) and T = Fy 'oF,,; is the Monge map from 11(t) to the standard normal distribution.
Since T is increasing, we indeed have E(XT'(X)) > 0 (see e.g. the proof of Theorem 2.2 in|Schmidt
(2014)).

Finally, since ® () orthogonally projects from Q to G w.r.t the L? metric and ® defines an isometry,
we get that the geodesic p orthogonally projects to a geodesic 7(u) in the space of Gaussian
distributions, w.r.t. the Wasserstein metric. By the distance minimizing property of orthogonal
projections, we know that the cost function in equation (1| evaluated at 7w(u) is no larger than its
value at p. Since p is optimal, we get that 4 = 7(u) and p belongs to the space of Gaussian
distributions. O

Proposition 14. Ler X1, X5 two SPD matrices that are diagonalizable in the same orthonormal basis,
ie.
2 2
o ay 0 T o as 0 T
ElP(O b%)P and ZgP(O b%)P’

where P is orthogonal. Then BW3 (31, %) = (a1—az)?+(b1—bs)?, and thus the Bures-Wasserstein
geodesic between 31 and X5 is given by

(1 —t)ay + tby)? 0 T

_ <t<1.

() P( 0 (1= tag+thp)2) P 0=t

Proof. This is a straightforward computation using equation [
Proposition 15. Let us consider n = 2p covariance matrices ¥.; = X(a,b,0;) as defined in

equation |16] where 0; = imt/n fori = 0,...,n — 1. Then, the Bures-Wasserstein barycenter in
equation |27 of these covariance matrices is given by ¥ = (a + b)? /4 I.

Proof. Each pair of covariance matrices

a2 0 T T b2 0 T
Ei = PGi 0 b2 Pgi7 and Zi+p S P97’+W/2DP01_+71_/2 = P()l. 0 CL2 Pai

26



Under review as a conference paper at ICLR 2026

are diagonalizable in the same basis, and so by Proposition[I4} the geodesic from X; to Xy, is

(1 —t)a+tb)? 0 T

= Py <t<I1.

() Pﬂ( 0 (1= t)b+ta)?) T OSTS1

In particular, the Fréchet mean is given by ¥ = 3(1/2) = ((a + b)/2)?I. Since each pair of
covariance matrices has the same Fréchet mean, the Fréchet mean of the whole set X4,...,%,, is
also given by . O

Proposition 16 (Propositionin main). Let ¥ € S5 T with eigenvalues a®,b? and ¥/ = PyX P,

where Py is the rotation matrix of angle 0. Then, denoting &> = ((a + b) /2)* I we have
BW2(S,3)
BW2s(3.%)

— a-b\’ 4
_1_<a—|—b> cos” 0+ O((a —b)*). (34)

Proof. Recall that the linearized Bures-Wasserstein distance at ¥ between X and X’ is given by the
distance between their images by the Riemannian logarithm map U: = LogsX and U’: = Logs Y’
in the tangent space at X, i.e.

BW, 5(,3) = U -U"IE",
where ||-||2" denotes the norm associated to the Bures-Wasserstein Riemannian metric in equation

As in any Riemannian manifold, the true geodesic distance can be approximated by this linearized
distance in the tangent space, corrected by the curvature (see e.g. Lemma 1 inHarms et al.|(2019)) :

2 1
BW3(2,%) = (JU-U"|1EY)" - 3R, UL U U) +O([U|IEY + IU"1€Y)°,  (39)

where Ry is the curvature tensor.

Recall from equation [I8]that the Bures-Wasserstein norm of a vector U is expressed in an eigenvector
basis of the base point, here . Since any basis is an eigenvector basis of ¥, it is convenient to
choose that of ¥, which we can assume without loss of generality to be the canonical basis. Thus
we write ¥ = D where D = diag(a?,b?) and ¥’ = PyDP,’, and the norm associated to the
Bures-Wasserstein Riemannian metric is given by

1 1
UIEY = = E U?
|| ||Z 2 dz + dj ]

1<i,j<2

where the d;’s are the eigenvalues of 3, given here by d; = do = ((a + b)/2)%. From Proposition
we have

U: =Logs¥ = (T - D)X + ( —1I),
— )X

U': =LogsX = (T" (T - 1),
where
T: = S-U2(SU2ps1/2)1/25-1/2 _ 2 e
a+b ’
2

. — 2—1/2(21/22/21/2)1/22_1/2 _ 7P9D1/2P9T
a+b
and easily get
a2_b2J . a2 — b2
2 ’ N

and J = diag(1, —1). Thus after some computations we obtain
IUIEY = 101" = la —bl/V2,
BW,5(2,%) = |U - U||18Y = V2|(a — b)sinf|.
To compute the curvature tensor, we use the following formula from (Thanwerdas, 2022}, Table 4.7)
3 d;d;
d +d;

U =

20 sin26
PyJ P(;r ,  Where PyJP, BT = (Z?S 20 —Slcr(l)s 29>
(36)

Re(U, U, U,U) =

[UOa U6]12]
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where [A, B] = AB — BA is the Lie bracket of matrices, Uy and Uy are the only symmetric matrices
verifying the Sylvester equations U = UpX + XUy and U’ = U{X + ZU/ respectively. Since X is a
multiple of the identity, we easily get

a—>b a—>b

Up=——J, Uy=——PyJP,
LR A e
and straightforward computations yield
3(a—b)* .
Rs (U, U, U U') = = ——sin? 20. 37
E( ) s Y ) 2(a+b)2 Sin ( )
Finally, putting together equation [35] equation [36|and equation[37)and we obtain
BW}(%,Y) = BW2. (%, %) — QM sin® 6 cos? 0 + O((a — b)°)
5 (%, = 5 5 (2, (@t )7 sin“ 0 cos a ,

and dividing by the squared linearized optimal transport distance yields the desired result. O

D.2 IMPLEMENTATION OF GPCA FOR GAUSSIAN DISTRIBUTIONS

As described in Section [3] the first and second components of geodesic PCA are respectively found
by solving the minimization problems in equation[I2]and equation[I3] The geodesic components are
given by
El(f) = (Az + t)(l)(flZ + tXZ')T, for = 1, 2,

where A; € GLg4 and X; € Hor 4, are minimizers of equation@, and Ay € GLg and X, € Hory,
minimizers of equation The matrix 7(As) is the crossing point through which all geodesic
components intersect, see Figure 2l The higher order components are found in a analogous way:
for the k-th component, we search for a horizontal segment ¢ — Ay + tX}, where Ay belongs to
the fiber over the intersection point (we parametrize it w.r.t. the previous position in the fiber, i.e.
Ay = Ap_1 Ry for acertain R € SOy) and the horizontal velocity vector X}, is orthogonal to
the lifts of the velocity vectors of the previous component. Thus, the k-th component, k£ > 3, solves:

inf F(Ag, Xi, (Qi)i=1)
subjectto A = A_1Ry_1, Ry_1 € SO4, X}, € Horga,, || Xi|? =1, (38)
(Xpy Xp—eRi—g .. . Rp—1) =0, 1<l <k—1, Q1,...,Qn € SOq.

Following |[Huckemann et al.|(2010) and |Calissano et al.|(2024), we propose an iterative algorithm to
implement these components, that, for each component, alternates two steps:

(Step 1) minimization of the objective function F' (see equation with respect to (Q;)?_, for fixed
(4, X),

(Step 2) minimization of the objective function F' with respect to (A, X) for fixed (Q;)7;.

In dimension d = 2, any rotation matrix () can be parametrized by a scalar angle 6 and both steps
are solved using the Sequential Least Squares Programming (SLSQP) algorithm (see e.g. Ma et al.
(2024))) available on the scipy python library and given by |Virtanen et al.|(2020). In higher dimension,
each minimization with respect to a rotation matrix is performed using Riemannian gradient descent
on SOy, relying on the Riemannian geometry of SO, induced by the standard Frobenius metric of
the ambient space R%*?. In particular we use the exponential map implemented in the Python library
geomstats developed by Miolane et al.| (2020). More details on the Riemannian geometry of SOy
and the Riemannian gradient descent procedure can be found e.g. in (Boumall 2023} Sections 7.4 and
4.3).

Unfortunately, we cannot ensure the convergence of the iterates of the proposed block alternating
algorithm, as classical arguments require uniqueness of the minimizer at each iterations as proven
in [Powell| (1973)). This is unachievable in our problem: the line with base point A and direction
X € Hor 4 and the line with base point AQ and direction X () € Hor 4¢ for @ € Oy project onto the
same geodesic in the bottom space. However, regarding (Step 1), and thanks to Theorem 3.7 inHuang
& Wei(2022), we have for fixed (A, X)) that the cost function f: (Q1,...,Qn) — F(A, X, (Q:),)
has the Riemannian Kurdyka-Lojasiewicz property at any point of (O4)™. Finally, we have the
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convergence of the iterates towards an accumulation point thanks to Theorem 3.14 in Zhou et al.
(2024). The three assumptions in this theorem are verified in our case : Assumption (3.5) (L-
Retraction Smoothness) is obtained because gradf is Lipschitz, and Corollary 10.54 in |Boumal
(2023)); Assumption (3.7) (bounded from below) directly holds because f > 0; Assumption (3.8)
(ndividual Retraction Lipschitzness) is verified thanks to Corollary 10.47 in|{Boumal| (2023)).

Scalability of the algorithm Surely, the computational time of our algorithm for Gaussian distri-
butions will increase with the dimension. However, the algorithm can be made less sensitive to the
number of input covariance matrices by parallelizing (Step 2) of our algorithm, which consists in
updating the orthogonal matrices (Q;)?_;. This would significantly reduce the overall computational
cost of the algorithm. Also, we currently use the scipy toolbox to solve (Step 1), which could also be
accelerated using a more powerful optimization toolbox.

E HYPERPARAMETERS
E.1 HYPERPARAMETERS SETTING

Hyperparameter Value

dense MLP
d— 128 - 128 - 128 - 128 = 1
ELU activation functions

fy architecture

Adam
step size = 0.0005
81 =09
B2 = 0.999

[ optimizer

dense MLP
d— 128 - 128 - 128 - 128 - d
RELU activation functions

(g architecture

Adam
. step size = 0.0005
(pp optimizer 8 =09
B2 = 0.999
Adam
t; optimizer stepgllze:—o .(3).001
B2 = 0.999
batch size 1024
number of gradient steps first 120,000
component
number of gradient steps second 200,000
component
Ao 1.0
AT 1.0

Table 1: Hyperparameters used across all experiments.

All experiments were conducted on a single V100 GPU with 32GB of memory, using a shared set
of hyperparameters detailed in Table[I] The same hyperparameters are used for computing both the
first and second geodesic components, except for the number of gradient steps (see Table[T), which
is increased for the second component. This is likely due to the additional complexity introduced
by the intersection and orthogonality constraints enforced through regularization. Both fy, and g
are implemented as standard multilayer perceptrons (MLPs) with four hidden layers of width 128.
We use ELU activation functions in f,, because its gradient is used to parameterize a transport map
in our formulation, and ELUs are commonly employed in such settings. The Sinkhorn divergence
Se is used in the loss function as a surrogate for the squared Wasserstein distance to compute the
geodesic components. The regularization parameter € must be adapted to the scale of the data; we set
itase = 0.01 E; 4/, ||z — 2’||%, where the expectation is approximated via Monte Carlo using the
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current minibatch samples. Note that setting ¢ this way is the default configuration in the OTT-JAX
library. For computing the second geodesic component, we fix the regularization coefficients Ao and
Az to 1.0, which we found to be robust across all experiments. While increasing them (e.g., to 10.0)
typically yields similar results, excessively large values may degrade performance. Conversely, if
these regularization terms are too small, the algorithm tends to recover the first component as the
second, due to its lower cost. In practice, we monitor the regularization terms during optimization
to ensure they decrease sufficiently relative to their initial values, confirming that the optimization
effectively optimize the intersection and orthogonality constraints. To determine the hyperparameters
in Table[1} we performed a grid search over the optimizer learning rate for the ; in 10~%, 1073, 1072,
and over the regularization coefficients Ao and Az in 0.1,1.0, 10.0, 100.0. We found that setting both
regularization terms to 1.0 consistently yielded good performance across all experiments, see Section
E.2)

Note on ¢ parameterization. Note that although ¢ is theoretically required to be a diffeomorphism
in Otto’s parameterization of geodesics (equation[J), we parameterize it using a simple MLP. Initially,
we experimented with normalizing flows to ensure invertibility, but observed that a standard MLP
yielded similar results. In Otto’s geodesic framework, ¢ serves to modify the reference measure p
and define the measure at ¢ = 0 along the geodesic. If ¢ is not a diffeomorphism and the pushforward
4 p is not absolutely continuous, the resulting geodesic becomes degenerate, which may hinder
optimization of the loss equation in equation[I} In practice, however, we found that the MLP g
reliably produces absolutely continuous measures, which is sufficient for our method.

E.2 IMPACT OF THE REGULARIZATIONS ON GPCA

For the estimation of the second GPCA component, we introduce two regularization terms,
(110,455 03,15 tingers toner) @0d O(V fis(00), V fun (00, )), With their associated regularization co-
efficients A\; and \p. The first term enforces that the two components intersect, while the second
ensures that the components remain orthogonal. Experimentally, we observe that setting both co-
efficients to A\; = Ao = 1.0 robustly enforces these constraints across all experiments while still
producing meaningful principal components. Conversely, if these regularization terms are too small,
the algorithm tends to recover the first component as the second, at it gives the lowest cost. In
practice, we monitor the regularization terms during optimization to ensure they decrease sufficiently
relative to their initial values. This permits to confirm that the optimization effectively optimize the
intersection and orthogonality constraints. This section aims at quantifying the impact of the two
regularizing coefficients A; and Ao on the computed geodesics. We focus on the 3D point-cloud
experiments with lamps.

E.2.1 ORTHOGONALITY REGULARIZATION

In this part, we set the regularization term A; to 1.0 and compute GPCA for different values of
Ao. The resulting second component is shown in Figure 20} The GPCA cost of this component, as
defined in equation[T3] together with the quantity measuring the orthogonality between components,
O(V (o), V fy, (ps,)). are reported in Table The quantities reported in Tableare estimated
on batches of size 2048. The variance is computed over 100 runs for the orthogonality measure
and 5 runs for the GPCA cost. Note that each run of the orthogonality estimation already involves
computing 100 Wasserstein distances, since we have 100 point clouds.

Ao | Orthogonality: O(V fy(wg), V fy,(¢s,)) | GPCA cost (second component)

0.001 0.823 £ 0.007 3.22 + 0.007
0.01 0.722 £ 0.008 3.30 £ 0.01
0.1 2.72x 1073 £ 7x107° 5.08 £ 0.01
1.0 1.12 x 107* + 0.07 x 1074 5.13 £ 0.02
10.0 8.6x107¢ &£ 5x 1077 5.36 £ 0.02
100.0 48 x107% £ 3x 1077 5.45 £ 0.02

Table 2: Orthogonality regularization value and second-component loss for different values of \o.
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Figure 20: Empirical distributions sampled uniformly along the geodesics associated with the
second GPCA principal component for different values of the regularization coefficient Ap. In all
experiments, the other regularization coefficient is fixed at A\; = 1.0.

Note that the GPCA cost of the second component should be compared with that of the first com-
ponent, which is 3.295 4 0.006. Table|2| shows that for low values of Ao (i.e., 0.001 and 0.01), the
orthogonality quantity is large, and the recovered “’second” component is in fact identical to the first
component, as illustrated in Figure@ This is also reflected in the GPCA cost (see Table |Z|) which
matches the one of the first component. For higher values of Ao (0.1, 1.0, 10.0, 100.0), the algorithm
successfully recovers a distinct second component.

E.2.2 REGULARIZATION ON THE INTERSECTION OF THE GEODESICS

Ar | Intersection: Z(1o,y, Loy, s tiners taer) | GPCA cost (second component)

0.001 1.9x 1073 +£ 2x 1074 5.16 + 0.01
1.0 1.3x107% £ 1x 1074 5.13 + 0.02
10.0 1.19x 1074 + 2x 1076 5.18 + 0.02
100.0 1.48 x107° + 5 x 1077 5.08 + 0.01

Table 3: Wasserstein distance between /i1 (£},..) and po(t2,.,) and second-component loss for different
values of A\g.
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Figure 21: Empirical distributions sampled uniformly along the geodesics associated with the second
GPCA principal component for different values of the regularization coefficient ;. In all experiments,
the other regularization coefficient is fixed at A\p = 1.0.
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In this part, we set the regularization term Ao to 1.0 and compute GPCA for different values of A;.
The second component is displayed in Figure 2T} the GPCA cost of this component, as well as the
quantity measuring the intersection of the components, Z (g, 15 » tigers tiager ) ar€ Teported in
Table3] The quantities reported in Table [B]are estimated on batches of size 2048. The variance is

computed over 100 runs for the intersection measure and 5 runs for the GPCA cost.

We observe from the recovered geodesics in Figure [21] that this regularization term plays a less
significant role than the orthogonality term. Moreover, Table 3] shows that increasing A\; does not
affect negatively the GPCA cost of the recovered component.

E.2.3 SCALABILITY OF OUR GPCAGEN ALGORITHM

For general distributions, there are two types of “scaling” that can affect the algorithm:

1. Number of probability measures (n): The number of measures v; directly determines the
iterations of the inner loop in Algorithm 1 (line 3). Consequently, the training time scales
linearly with n.

2. Dimension of the space (d): As the dimension of the space in which the v; lies increases, the
main challenge consists in accurately estimating the maximum and minimum eigenvalues
that the Hessian of f can take. As discussed with reviewer oUMT, in high dimensions, it
becomes necessary to use algorithms that avoid computing the full Hessian and instead rely
on matrix-vector products, such as the LOBPCG algorithm |[Duersch et al.|(2018). Further-
more, rather than relying solely on the samples in the training batch, an adversarial approach
would be needed to track the eigenvectors corresponding to the worst-case eigenvalues.

F USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only to assist with polishing the writing; all research ideas, experiments, and
analyses were conducted independently by the authors.
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