
Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Blaise Munyampirwa 1 Vihan Lakshman 2 Benjamin Coleman 3

Abstract
Driven by recent breakthrough advances in neu-
ral representation learning, approximate near-
neighbor (ANN) search over vector embeddings
has emerged as a critical computational workload.
With the introduction of the seminal Hierarchi-
cal Navigable Small World (HNSW) algorithm,
graph-based indexes have established themselves
as the overwhelmingly dominant paradigm for ef-
ficient and scalable ANN search. As the name
suggests, HNSW searches a layered hierarchical
graph to quickly identify neighborhoods of sim-
ilar points to a given query vector. But is this
hierarchy even necessary? A rigorous experimen-
tal analysis to answer this question would provide
valuable insights into the nature of algorithm de-
sign for ANN search and motivate directions for
future work in this increasingly crucial domain.
We conduct an extensive benchmarking study cov-
ering more large-scale datasets than prior investi-
gations of this question. We ultimately find that a
flat navigable small world graph retains all of the
benefits of HNSW on high-dimensional datasets,
with latency and recall performance essentially
identical to the original algorithm but with less
memory overhead. Furthermore, we go a step
further and study why the hierarchy of HNSW
provides no benefit in high dimensions, hypothe-
sizing that navigable small world graphs contain
a well-connected, frequently traversed “highway”
of hub nodes that maintain the same purported
function as the hierarchical layers. We present
compelling empirical evidence that the Hub High-
way Hypothesis holds for real datasets and in-
vestigate the mechanisms by which the highway
forms. The implications of this hypothesis may
also provide future research directions in develop-
ing enhancements to graph-based ANN search.

1Argmax Inc., Mountain View, CA 2MIT CSAIL, Cambridge,
MA 3Google DeepMind, Mountain View, CA. Correspondence to:
Blaise Munyampirwa <blaisemunyampirwa@gmail.com>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

1. Introduction
Near neighbor search is a fundamental problem in compu-
tational geometry that lies at the heart of countless prac-
tical applications. From industrial-scale recommendation
(Feng et al., 2022) to retrieval-augmented generation (Lewis
et al., 2020) and even to computational biology (Zhao
et al., 2024), numerous data-intensive tasks utilize similarity
search at some location in the stack. As a result, similarity
indexes are very well-studied (Guo et al., 2019; Malkov &
Yashunin, 2016; Johnson et al., 2017; Aguerrebere et al.,
2023; Jayaram Subramanya et al., 2019) with multiple large-
scale benchmarks and leaderboards to compare techniques
(Aumüller et al., 2018; Simhadri et al., 2022).

Historically, the state-of-the-art for near neighbor search in-
volved constructing sophisticated tree-based data structures,
such as kd-trees (Bentley, 1975) and cover trees (Beygelz-
imer et al., 2006), that guaranteed exact solutions while
avoiding a brute-force examination of all points. However,
the recent advent of large-scale neural representation learn-
ing, including large language models (LLMs), places a sig-
nificant strain on these classical methods that were devel-
oped to target a much lower-dimensional search space. In
response, the community has turned to approximate search
methods. While alternative approximate indexing meth-
ods such as locality-sensitive hashing (Indyk & Motwani,
1998) and product quantization (Jegou et al., 2010), have
garnered significant interest, graph-based approaches gener-
ally achieve the strongest performance on established ANN
benchmarks (Aumüller et al., 2018; Simhadri et al., 2022).
Introduced in 2016, the Hierarchical Navigable Small World
(HNSW) algorithm (Malkov & Yashunin, 2016), emerged
as one of the first high-performance graph-based search in-
dexes at scale and still enjoys immense popularity to this
day with over 4300 Github stars1 and deployments in major
commercial search systems such as Apache Lucene (Xian
et al., 2024) and Pinterest (Pinterest, 2021).

As the name implies, a core feature of the HNSW index is its
hierarchically layered graph akin to a skip list (Pugh, 1990)
where the search process iteratively traverses through graphs
of increasing density before converging to a neighborhood
of similar points in the final graph layer. By drawing in-
tuition from skip lists, the HNSW authors argue that the

1https://github.com/nmslib/hnswlib

1

https://github.com/nmslib/hnswlib


Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Figure 1. We hypothesize that, in high dimensions, graph-based
ANN indexes naturally form a “highway-feeder” structure, where a
small subset of nodes and edges are easily reached, well-connected,
and heavily traversed.

initial coarse graph layers allow for efficiently identifying
the neighborhood of similar points in the collection through
fewer overall comparisons.

Despite its popularity, HNSW has notable scalability is-
sues; the hierarchical structure adds significant memory
overhead and, as noted in (Malkov & Yashunin, 2016), can
reduce throughput in distributed settings compared to flat
NSW graphs. Although this overhead is often justified by
the latency benefits of graph-based indexes, recent work
questions whether the hierarchy is still necessary. (Lin &
Zhao, 2019) report that the hierarchy only improves perfor-
mance for low-dimensional data (d < 32), and (Coleman
et al., 2022) reach similar conclusions in their ablation study.
These observations highlight the need for a more rigorous
investigation into whether the hierarchy remains useful in
modern, high-dimensional workloads.

Perhaps most importantly, we still have no satisfactory un-
derstanding of why hierarchy does not help. Hierarchical
structures are a mainstay of algorithm design, where a com-
mon trick is to reduce an O(n) search process to a sublin-
ear one by traversing a (balanced) hierarchy (Pugh, 1990;
Guibas & Sedgewick, 1978; Mikolov et al., 2013; Cormen
et al., 2022). Arguably, it is counterintuitive for this idea
to fail to hold in the context of high-dimensional similarity
search – especially when we have strong positive results
that hierarchy helps in low dimensions (Beygelzimer et al.,
2006; Dolatshah et al., 2015; Ram & Sinha, 2019; Lin &
Zhao, 2019). Thus, an exhaustive benchmark and deeper
analysis into the necessity of the hierarchy in HNSW would
shed further light on the nature of algorithm design in high-
dimensional spaces and thus may be of independent interest
to the community as well.

1.1. Contributions

In this paper, we study whether the hierarchical component
of HNSW is truly necessary. Our central research question
is, “Can we achieve the same performance on large-scale

benchmarks with simply a flat navigable small world graph?”
To that end, we organize the paper into two parts:

Benchmarking the hierarchy: We rigorously benchmark
HNSW to understand whether the hierarchy is necessary.
To do so, we reproduce and extend the hierarchy ablations
of previous studies, finding that, on high-dimensional vector
datasets, it is indeed beneficial to remove the ‘H’ from
HNSW.

Why does hierarchy not help? We hypothesize that the hi-
erarchy benefits decrease in high-dimensions due to hubness.
Hubness is a high-dimensional phenomenon that causes
a skewed distribution in the near-neighbor lists of search
queries (Radovanovic et al., 2010). We hypothesize that hub-
ness leads to preferential attachment in the similarity search
graph, inducing the formation of easily-traversed highways
that connect disparate regions of the graph. This hypothesis,
which we call the Hub Highway Hypothesis, explains why
we no longer need the hierarchy in high dimensions; we can
simply traverse the intrinsic highway structure that naturally
forms in high-dimensional spaces. Our results ultimately
show that hubness is responsible for driving the connectivity
of similarity search graphs. This insight opens up exciting
new research directions in graph construction, link pruning,
and graph traversal.

Our specific contributions are as follows.

• We release an implementation for a flattened version of
HNSW, called FlatNav2, that reaches performance par-
ity with the original hierarchical version with consider-
able memory savings. To our knowledge, flatnav is
the only actively maintained, high-performance NSW
search library in the open-source ecosystem and thus
fills a crucial void in the similarity search community.

• We demonstrate that hierarchy does not improve per-
formance in either the median or tail latency case by
building HNSW and FlatNav indexes for 13 popular
benchmark datasets ranging in size from 1 million to
100 million vectors.

• We present strong scientific evidence for the hub-
highway hypothesis, drawing empirical support from
analysis of hubness phenomena in high-dimensional
metric spaces and the resulting HNSW graphs.

Practical implications: Our benchmarks reveal that HNSW
can be significantly optimized for modern high-dimensional
embedding workloads. For instance, as we show in Table 6
in the appendix, our implementation saves roughly 38%
and 39% of peak memory consumption during index con-
struction on two Big-ANN benchmark datasets compared
to hnswlib (and sizable further headroom is likely). Our

2https://github.com/BlaiseMuhirwa/flatnav

2

https://github.com/BlaiseMuhirwa/flatnav


Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

results confirm the folklore of the similarity search com-
munity, conclusively demonstrating that we can remove the
hierarchy on high-dimensional inputs with impunity.

2. Related Work
2.1. Near-Neighbor Benchmarks

Recent years have seen the emergence of large-scale
benchmarks for the k-NNS problem. ANN Benchmarks
(Aumüller et al., 2018) established the first standard evalua-
tion framework, expanding over time to cover 30+ methods
across 9 datasets. However, the ANN Benchmark datasets
are relatively small, with around one million points. To bet-
ter reflect real-world scale, Big ANN Benchmarks (Simhadri
et al., 2022) introduced five billion-scale datasets. Neverthe-
less, these benchmarks emphasize overall throughput and
omit tail latency metrics like the 99th percentile, which are
essential for evaluating hierarchical components such as
those in HNSW.

Hierarchy Studies: Many top-performing graph-based
ANN algorithms, including HNSW (Malkov & Yashunin,
2016), ONNG (Iwasaki & Miyazaki, 2018), PANNG
(Iwasaki, 2016), and HCNNG (Munoz et al., 2019), rely
on hierarchical structures. However, recent work has ques-
tioned this design. (Dobson et al., 2023) show that HNSW
can underperform both HCNNG (with a shallower hier-
archy) and DiskANN (Jayaram Subramanya et al., 2019)
(which lacks one). (Lin & Zhao, 2019) find hierarchy help-
ful only in low-dimensional synthetic settings (d < 32),
but study few real-world datasets and do not explain the
observed failure modes. We aim to address these gaps by
reproducing prior results (Malkov & Yashunin, 2016; Lin
& Zhao, 2019) with our own implementation and extending
the analysis to larger datasets with a focus on when and why
hierarchy matters.

2.2. Hubness in High Dimensional Spaces

Astute readers might observe that the HNSW graph con-
struction algorithm does not explicitly enforce the small
world property and instead adds edges between nodes based
on their proximity in the metric space. The connection be-
tween proximity and the small world property arises due to
hubness.

Hubness is a property of high-dimensional metric spaces
where a small subset of points (the “hubs”) occur a dispro-
portionate number of times in the near-neighbor lists of other
points in the dataset (Radovanovic et al., 2010). In other
words, a small fraction of nodes are highly connected to
other points in the near-neighbor graph. The concentration
of distance and measure in high-dimensional spaces provide
good intuition for how hubness can arise in a datasets. The
concentration of distances is a well-studied phenomenon

where the expected ℓ2 distance between independent and
identically distributed (i.i.d) vectors grows with

√
d while

the variance tends to a constant as d approaches infinity
(Talagrand, 1994). As a result, the ℓ2 distance loses its dis-
criminative power as d increases, a fact which also holds
for ℓp and fractional norms (François et al., 2007). Con-
centration of measure is a high-dimensional property where
random distributions have most of their mass near the bound-
ary of their domain. Taken together, these facts suggest that
hubs will form at extrema of high-dimensional datasets - a
result which holds true empirically (Low et al., 2013).

Due to undesirable consequences of the hubness phe-
nomenon, such as poor clustering quality, a large body of
work has focused on hubness reduction strategies. For in-
stance, (Zelnik-Manor & Perona, 2004) introduced local
scaling which scales distances d(x,y) by accounting for
local neighborhood information. Interestingly, our work
stands in contrast to this literature on hubness reduction by
presenting a case study where hubs provide tangible value in
an algorithmic setting, namely in accelerating greedy traver-
sal in near neighbor proximity graphs. This result may be
of independent interest to machine learning and algorithms
researchers as well.

3. FlatNav Benchmarking Experiments
In this section, we report the results of our benchmarking
study comparing the performance of flat HNSW search to
hierarchical search on a suite of standard high-dimensional
benchmark datasets drawn from real machine learning mod-
els. We fix the implementation in our experimental design
such that the same code is used to construct the indexes.
In particular, we use the hnswlib library as our baseline
HNSW implementation. To benchmark the flat NSW index
performance, we extract the bottom layer from hnswlib
after constructing the full hierarchical graph and reimple-
ment HNSW’s greedy search heuristic over the flat graph
via flatnav.

One natural question that arises from this experimental de-
sign is whether the hierarchical component of HNSW might
still be useful during construction even if the base layer suf-
fices for search. We find that there is no difference in perfor-
mance between these settings. Specifically, we include ad-
ditional results comparing HNSW to flat graphs constructed
from scratch (without the hierarchy) in Appendix E where
we see identical results to those reported in this section
of the paper. In this section, we focus on extracting the
base layer from the hnswlib graph to reduce any poten-
tial confounding effects from implementation differences.
Nevertheless, we obtain identical results regardless of how
the base graph is constructed.

3



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

3.1. Datasets and Compute

We utilize the benchmark datasets released through the pop-
ular leaderboards ANN Benchmarks (Aumüller et al., 2018)
(MIT Licensed) and Big ANN Benchmarks (MIT Licensed)
(Simhadri et al., 2022). The specific datasets and their asso-
ciated statistics are presented in Table 4. For the Big ANN
Benchmark datasets, we consider both the 10M and 100M
collection of vectors, for which the ground truth near neigh-
bors have previously been computed and released. We did
not experiment with the largest Big ANN datasets with 1 bil-
lion vectors since constructing HNSW indexes at this scale
requires over 1.5TB of RAM, which exceeded our compute
resources. In this section, we include our benchmarking
results for the four 100M-scale datasets available through
Big ANN Benchmarks. We see that our flat HNSW imple-
mentation achieves performance parity with the hierarchical
HNSW implementation.

For our benchmarks on datasets consisting of fewer than
100M vectors in the collection, we use an AWS c6i.8xlarge
instance with an Intel Ice Lake processor and 64GB of RAM.
We selected this particular public cloud instance to facili-
tate accessible reproducibility of our experiments. For the
100M-sized large-scale experiments, we use a cloud server
equipped with an AMD EPYC 9J14 96-Core Processor and
1 TB of RAM.

3.2. Latency Results

3.2.1. BIGANN BENCHMARKS (SIMHADRI ET AL.,
2022)

In Figures 2 and 3, we compare latency metrics for HNSW
and FlatNav at the 50th and 99th percentile for the four
100M datasets from BigANN benchmarks listed in Table
4. All of our results support the conclusion that flatnav
achieves nearly identical performance to hnswlib.

From the results in Figures 2 and 3, we observe that there
is no consistent and discernable gap between FlatNav and
HNSW in both the median and tail latency cases. These
results suggest that the hierarchical structure of HNSW
provides no tangible benefit on practical high-dimensional
embedding datasets.

3.2.2. ANN BENCHMARKS (AUMÜLLER ET AL., 2018)

We repeat the same experimental setup comparing HNSW
and FlatNav on the ANN Benchmark datasets listed in Table
4. In Figures 4 and 5, we report the p50 and p99 latency
of all of the non-GloVe ANN Benchmarks. Although these
datasets are smaller in scale than the BigANN Benchmarks,
we still see no discernible difference in latency between
HNSW and FlatNav which supports our hypothesis that
the vector dimensionality and not the size of the collection
is the main driver of eliminating the need for hierarchical

Figure 2. p50 Latency vs. Recall. FlatNav performs nearly identi-
cally to HNSW.

Figure 3. p99 Latency vs. Recall. FlatNav performs nearly identi-
cally to HNSW.

4



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

search in small world graphs. We see further evidence of
this idea in Figure 6, which confirms that there is no clear
performance benefit provided by the hierarchy of HNSW.

4. The Hub Highway Hypothesis
We now turn our attention to studying why the hierarchy
appears to provide no benefit in the search process. In our
experiments, we observed that a small fraction of nodes
appear in the set of near neighbors for a disproportionate
number of other vectors. We thus conjecture that the hub
structure prevalent in high-dimensional data performs the
same functional role as the hierarchy.
HYPOTHESIS (Hub Highways). In high-dimensional metric
spaces, k-NN proximity graphs form a highway routing
structure where a small subset of nodes are well-connected
and heavily traversed, particularly in the early stages of
graph search.

We remark that the existence of hub nodes in high-
dimensional space is not a new observation (Radovanovic
et al., 2010). The novelty of our hypothesis lies in connect-
ing the idea of hubness to the notion of accelerating near
neighbor search in ANN proximity graphs. In particular,
we conjecture that near neighbor queries over proximity
graphs in high dimensions often spend the majority of their
time visiting hub nodes early on in the search process be-
fore converging to a local neighborhood of near neighbors.
This procedure succeeds because hub nodes are very well
connected to other parts of the graph and thereby efficiently
route queries to the appropriate neighborhood in much the
same manner that the layered hierarchy purports to do.

In the remainder of this section, we present an experimental
design and a series of results that provide empirical evidence
in the affirmative for the existence of such a highway routing
mechanism amongst hubs in navigable small world graphs.

4.1. Methodology

Argument sketch: We will demonstrate the Hub Highway
Hypothesis by providing empirical evidence for the follow-
ing claims.

1. Some nodes are visited by queries much more fre-
quently than others. The relative popularity of these
hub nodes is explained by the hubness phenomenon
that arises in high dimensions.

2. The hub nodes form a well-connected subgraph of hubs
(the highway network).

3. Queries visit many hub nodes early in the search pro-
cess, before visiting less well-traversed neighborhoods.

Empirical measures of hubness: To support the first

Figure 4. p50 Latency vs. Recall. FlatNav performs nearly identi-
cally to HNSW.

Figure 5. p99 Latency vs. Recall. FlatNav performs nearly identi-
cally to HNSW.

5



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Figure 6. p50 and p99 Latency vs. Recall for HNSW and FlatNav
over GloVe datasets.

Figure 7. Log-normalized Node access count distribution Pm(xi)
for datasets using angular (left) and l2 (right) distances.

part of our argument, we require a formal characteriza-
tion of hubness. Following (Radovanovic et al., 2010), let
x,x1, . . . ,xn be vectors drawn from the same probability
distribution supported on S ⊆ Rd, and let ϕ : S × S → R
be a distance function. For 1 ≤ i, k ≤ n, define pi,k(x) = 1
if x is among the k-NN set of xi under ϕ, and 0 otherwise.
Define N(x) :=

∑n
i=1 pi,k(x), the number of vectors xi

for which x appears in their k-NN set.

Given a dataset D, the values {N(x)}x∈D form a distri-
bution Nk, whose skewness is given by SNk

= E[(Nk −
µNk

)3] / σ3
Nk

. We use SNk
to measure the hubness of a

dataset.

This measure characterizes the asymmetry of the k-
occurrence distribution Nk, and it is the metric most often
used to estimate the presence of hubs. The more skewed
the distribution of Nk, the greater the chance that a small
number of vectors (hubs) will occur in the k-NN sets of

other vectors.

Synthetic and ANN Benchmark Datasets: We use real
and synthetic datasets as shown in Table 5 to study the
Hub-Highway Hypothesis. In addition to a subset of ANN
Benchmark datasets, we generate synthetic datasets by draw-
ing vectors from the standard normal distribution.

4.2. Skewness of the Node Access Distribution

The goal of this study is to support our claim that some
nodes are visited far more frequently, and that this process
is driven by hubs in the metric space. We examine the
discrete distribution of the number of times each node in
the index is visited during search given a fixed number of
queries, which we write as Pm(xi) (i.e., node xi is visited
m times). If Pm(xi) is right-skewed, it means that some
nodes are very frequently visited.

Table 1. Similarity search index parameters
m ef -construction ef -search k

32 100 200 100

Figure 7 shows the log-normalized node access count dis-
tribution for different datasets. We observe that as the di-
mension d increases, this distribution becomes right-skewed
for ℓ2 distance-based datasets. While this is strong evidence
for the first part of our claim, it leaves open the possibility
that some mechanism other than hubness is driving our ob-
servations. To control for this possibility, we also study the
cosine distance, which is known to have anti-hub properties
that prevent hub formation (Radovanovic et al., 2010). We
find that the cosine distance does not have a dramatic skew,
even for d ∈ {1024, 1536}. The increased skewness of the
Pm(xi) distribution as d increases demonstrates that high-
way nodes become increasingly prevalent as the dimension
increases, and the differences between the ℓ2 and cosine
results suggest that the hubness phenomenon is responsible
for the formation of the highway nodes.

4.3. Subgraph Connectivity of the Hub-Highway Nodes

In this section we present empirical evidence confirming
that hub-highway nodes exhibit strong connectivity in the
graph. We begin by explaining our procedure to identify
hubs. Let {xi}ni=1 be the vectors in a similarity search index
for a dataset D.

• We identify hub nodes as those that fall into the top
percentile of the empirical node access distribution
Pm(xi). We use 95th and 99th percentile of node access
counts as our threshold. We assign a binary label to
each node to indicate whether it is a hub. Let h : D →
{0, 1} be this assignment function with h(xi) = 1 for

6



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

nodes identified as hubs.

• We wish to estimate the likelihood that a randomly-
chosen out-neighbor of a hub node is, itself, a hub. To
do so, we examine the 1-hop out-degree expansion of
each hub and count the number of adjacent hub nodes.
This yields a discrete distribution for the number of
hubs to which each hub node is connected.

• Similarly, we select a set of random non-hub nodes
from V := D\

⋃n
i=1 h(xi) = 1. For each node xi ∈ V ,

we compute the same quantity to find the number of
hubs with which non-hubs are connected, allowing us
to construct the equivalent distribution for non-hubs.

We test whether hubs differ from non-hubs in connectivity
behavior by using statistical tests on the two distributions.
Under the null hypothesis, both groups are equally likely
to connect to other hubs; the alternative asserts that hubs
preferentially attach to hubs.

We apply both a two-sample t-test and the Mann-Whitney
U-test (Mann & Whitney, 1947), the latter of which is more
suitable for ANN datasets since it makes no normality as-
sumption. With dataset sizes n > 103, Table 2 reports
results using the top 5% of nodes as hubs. At a 0.05 signifi-
cance threshold, we reject the null in all but five cases using
the U-test (and all but six with the t-test). Effect sizes are
largest in synthetic ℓ2 datasets, likely due to their stronger
hubness under this metric.

Using a stricter top-1% threshold (Table 3), we reject the
null in all but one case for both tests, with substantially
larger effect sizes. These findings indicate that the most
prominent hubs tend to form tightly connected subgraphs,
consistent with our Hub Highway Hypothesis.

4.4. Hub-Highway Nodes Enable Fast Traversal

Our final question is whether the highway nodes allow
queries to quickly traverse the similarity search graph.
While it is not surprising that a well-connected subgraph
of frequently visited nodes would enable this behavior, it is
not necessarily the case that queries would use the highway
in the way predicted by our hypothesis, namely to quickly
identify a neighborhood for deep exploration. To investigate
this question, we track the sequence of nodes visited during
beam search for several thousand queries. This allows us
to determine the fraction of time spent within hub nodes in
different phases of search.

Since beam search takes a variable number of steps for each
query, we normalize by the total search length when present-
ing the results. More formally, suppose that x1,x2, . . . ,xl

is a length-l sequence of such nodes visited by a query. We
use the hub node assignment heuristic discussed in section
4.3 to label h(xi) each of these nodes as hubs / non-hubs.

Table 2. Two-sample t-test and Mann-Whitney U-test results. Hub
nodes are selected using the P95 threshold of the node access distri-
bution.

Dataset Dim Mann-Whitney Two-Sample t-Test Effect Size

IID Normal (Angular) 16 0.3629 0.3090 0.0267
IID Normal (L2) 16 <10−5 <10−5 0.3737
IID Normal (Angular) 32 0.0335 0.0516 0.0872
IID Normal (L2) 32 <10−5 <10−5 0.4275
IID Normal (Angular) 64 0.0216 0.0148 0.1165
IID Normal (L2) 64 <10−5 <10−5 0.3965
IID Normal (Angular) 128 0.0083 0.0083 0.1284
IID Normal (L2) 128 <10−5 <10−5 0.3773
IID Normal (Angular) 256 0.0009 0.0007 0.1723
IID Normal (L2) 256 <10−5 <10−5 0.2620
IID Normal (Angular) 1024 0.1000 0.1114 0.0652
IID Normal (L2) 1024 <10−5 <10−5 0.2361
IID Normal (Angular) 1536 0.0957 0.1141 0.0645
IID Normal (L2) 1536 <10−5 <10−5 0.2512
GloVe 100 <10−5 <10−5 0.2550
NYTimes 256 <10−5 <10−5 0.4488
GIST 960 <10−5 <10−5 0.3645
Yandex-DEEP 96 0.5002 0.5000 0.0000
Microsoft-SpaceV 100 0.1586 0.1585 0.0535

Table 3. Two-sample t-test and Mann-Whitney U-test results. Hub
nodes are selected using the P99 threshold of the node access distri-
bution.

Dataset Dim Mann-Whitney Two-Sample t-Test Effect Size

IID Normal (Angular) 16 0.0006 0.0006 0.1745
IID Normal (L2) 16 <10−5 <10−5 0.6621
IID Normal (Angular) 32 0.0347 0.0347 0.0972
IID Normal (L2) 32 <10−5 <10−5 0.8173
IID Normal (Angular) 64 0.0359 0.0417 0.0927
IID Normal (L2) 64 <10−5 <10−5 0.8725
IID Normal (Angular) 128 0.0093 0.0070 0.1316
IID Normal (L2) 128 <10−5 <10−5 0.8428
IID Normal (Angular) 256 <10−5 <10−5 0.3110
IID Normal (L2) 256 <10−5 <10−5 0.8582
IID Normal (Angular) 1024 0.1472 0.1318 0.0598
IID Normal (L2) 1024 <10−5 <10−5 0.8314
IID Normal (Angular) 1536 <10−5 <10−5 0.2356
IID Normal (L2) 1536 <10−5 <10−5 0.8568
GloVe 100 <10−5 <10−5 0.7642
NYTimes 256 <10−5 <10−5 0.9305
GIST 960 <10−5 <10−5 0.6829
Yandex-DEEP 96 0.0013 0.0013 0.1614
Microsoft-SpaceV 100 0.0011 0.0011 0.1644

We then split the sequence into bins and compute the preva-
lence of hubs in each bin. For bin Bi, this is given by(

1

|Bi|

) ∑
xj∈Bi

h(xj)

where |Bi| is the bin size (fixed to 30 in our analysis). By av-
eraging this value over all queries, we can plot the likelihood
of visiting a hub as the search progresses.

Figure 8 shows results for the Gist, GloVe, Microsoft
SpaceV and Yandex-DEEP benchmark datasets. We observe
that queries tend to concentrate in the highway structures
early in search, shown by the high percentage of hub nodes
visited in the first 5-10% of the search steps. This result
suggests that the highway allows queries to quickly navigate
the similarity search graph until they find the region of the
graph best suited for deep exploration. The propensity of
the query to visit hubs appears to be tied to the hubness
properties of the dataset. For example, the GloVe dataset

7



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

uses the angular distance, has less pronounced hubs (Fig-
ure 7), and queries spend a lower percentage of their time in
hub nodes in this dataset (Figure 8b). On the other hand, the
GIST dataset has some of the highest highway utilization
rates and is also our highest-dimensional ℓ2 dataset.

(a) Gist (b) GloVe

(c) Microsoft SpaceV (d) Yandex Deep

Figure 8. Highway nodes allow queries to traverse the graph faster.

4.5. Discussion

Our sequence of experiments provide substantial evidence
supporting the Hub Highway Hypothesis. Although it has
long been established that the hubness phenomenon nega-
tively affect common applications, such as clustering and
even near neighbor search recall, existing ANNS methods,
such as HNSW and NSG (Zhao et al., 2023) mostly em-
phasize algorithmic improvements and performance opti-
mizations only. We have shown that leveraging the inherent
structures in the data, particularly hub-highway occurrences,
should be central to the design of new scalable similarity
search indexes.

Scientific Implications: Our work reveals that the hub
highway is an intrinsic and naturally-forming structure in
high-dimensional proximity graphs. We believe this obser-
vation is both novel and has important implications for the
scaling potential of many traversal heuristics. Specifically,
we expect the benefits of sophisticated search initialization
methods to decay under hub-style preferential attachment.

Initialization is a recurring and popular research direction
for graph-based near-neighbor search, and leading algo-
rithms vary greatly in their initialization techniques. The
research question dates back to the seminal 1993 paper by
Arya and Mount (Arya & Mount, 1993), which conjectured
that clever search initialization – in their case, via kd-tree –
could improve performance over random initialization. Over
the following three decades, the research community has in-
vestigated diverse stratified sampling based on clusters (Se-

bastian & Kimia, 2002), vantage-point trees (Iwasaki, 2010),
seeds formed from the graph expansion of kd-trees (Iwasaki
& Miyazaki, 2018) and previously-visited nodes (Wang
& Li, 2012), hierarchical graphs (Malkov & Yashunin,
2016), hierarchical clustering (Munoz et al., 2019), dataset
medoids (Jayaram Subramanya et al., 2019), and several
other methods before finally returning to cluster-stratified
candidates (Oguri & Matsui, 2024; Ni et al., 2023) and
random entry nodes (Jaiswal et al., 2022).

How is it that these early papers on graph search show
performance gains, even as today’s best vector databases
return to simple initializations without performance loss?
Our hub highway hypothesis offers a clear explanation for
this apparent contradiction: In the early 2000s and 2010s,
datasets were low-dimensional and initialization was impor-
tant to avoid local minima and long graph detours. However,
modern vector databases contain data that is sufficiently
high-dimensional to naturally form a fast-routing structure,
explaining why initialization no longer drives performance.
Based on our results, we conjecture that the largest algo-
rithmic improvements to graph-based ANNS should come
from optimizations that affect the connectivity and cost of
traversal in the base graph, such as link pruning and search
algorithm design.

5. Conclusion
Approximate near neighbor search has become an increas-
ingly crucial computational workload in recent years with
the seminal Hierarchical Navigable Small World (HNSW)
algorithm continuing to garner significant interest and adop-
tion from practitioners. We present the first comprehensive
study on the utility of the hierarchical component of HNSW
over numerous large-scale datasets and performance metrics.
Ultimately, we find that the hierarchy of HNSW provides
no clear benefit on high-dimensional datasets and can be
removed without any discernible loss in performance while
providing memory savings.

While similar observations have been made before in the
literature (Lin & Zhao, 2019; Coleman et al., 2022; Dobson
et al., 2023), we are, to our knowledge, the first to con-
duct an exhaustive study over modern benchmark datasets
and taking extensive care to compare implementations with
performance engineering parity. Furthermore, we go be-
yond prior works and study why the hierarchy does not help,
culminating in our introduction of the Hub Highway Hy-
pothesis, an empirical result on how proximity graphs built
over high-dimensional metric spaces leverage a small subset
of well-connected nodes to traverse the network quickly.
We believe that our results provide immediate implications
for practitioners seeking to save memory or simplify their
vector database implementations and we look forward to
further partnering with the community on these endeavors.

8



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Acknowledgments

This material is based upon work supported by the U.S. Na-
tional Science Foundation under Grant No. 2313998. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the U.S. National Science
Foundation.

References
Aguerrebere, C., Bhati, I., Hildebrand, M., Tepper, M.,

and Willke, T. Similarity search in the blink of an eye
with compressed indices. Proceedings of the VLDB
Endowment, 16:3433–3446, 08 2023. doi: 10.14778/
3611479.3611537.

Arya, S. and Mount, D. M. Approximate nearest neighbor
queries in fixed dimensions. In SODA, volume 93, pp.
271–280. Citeseer, 1993.

Aumüller, M., Bernhardsson, E., and Faithfull, A. J.
Ann-benchmarks: A benchmarking tool for approximate
nearest neighbor algorithms. Inf. Syst., 87, 2018.
URL https://api.semanticscholar.org/
CorpusID:36089988.

Bentley, J. L. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18
(9):509–517, 1975.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 97–104,
2006.

Boytsov, L. and Naidan, B. Engineering efficient and effec-
tive non-metric space library. In Similarity Search and
Applications: 6th International Conference, SISAP 2013,
A Coruña, Spain, October 2-4, 2013, Proceedings 6, pp.
280–293. Springer, 2013.

Campos, D. F., Nguyen, T., Rosenberg, M., Song, X.,
Gao, J., Tiwary, S., Majumder, R., Deng, L., and Mitra,
B. Ms marco: A human generated machine reading
comprehension dataset. ArXiv, abs/1611.09268, 2016.
URL https://api.semanticscholar.org/
CorpusID:1289517.

Coleman, B., Segarra, S., Smola, A. J., and Shrivastava, A.
Graph reordering for cache-efficient near neighbor search.
Advances in Neural Information Processing Systems, 35:
38488–38500, 2022.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2022.

Dobson, M., Shen, Z., Blelloch, G. E., Dhulipala, L., Gu,
Y., Simhadri, H. V., and Sun, Y. Scaling graph-based
anns algorithms to billion-size datasets: A comparative
analysis. arXiv preprint arXiv:2305.04359, 2023.

Dolatshah, M., Hadian, A., and Minaei-Bidgoli, B. Ball*-
tree: Efficient spatial indexing for constrained nearest-
neighbor search in metric spaces. arXiv preprint
arXiv:1511.00628, 2015.

Feng, C., Li, W., Lian, D., Liu, Z., and Chen, E. Recom-
mender forest for efficient retrieval. Advances in Neural
Information Processing Systems, 35:38912–38924, 2022.

François, D., Wertz, V., and Verleysen, M. The concen-
tration of fractional distances. IEEE Transactions on
Knowledge and Data Engineering, 19:873–886, 2007.
URL https://api.semanticscholar.org/
CorpusID:13220558.

Guibas, L. J. and Sedgewick, R. A dichromatic framework
for balanced trees. In 19th Annual Symposium on Foun-
dations of Computer Science (sfcs 1978), pp. 8–21. IEEE,
1978.

Guo, R., Sun, P., Lindgren, E. M., Geng, Q., Simcha,
D., Chern, F., and Kumar, S. Accelerating large-scale
inference with anisotropic vector quantization. In
International Conference on Machine Learning, 2019.
URL https://api.semanticscholar.org/
CorpusID:218614141.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, 1998.

Iwasaki, M. Proximity search in metric spaces using approx-
imate k nearest neighbor graph. IPSJ Trans. Database, 3
(1):18–28, 2010.

Iwasaki, M. Pruned bi-directed k-nearest neighbor graph
for proximity search. In International Conference on
Similarity Search and Applications, pp. 20–33. Springer,
2016.

Iwasaki, M. and Miyazaki, D. Optimization of indexing
based on k-nearest neighbor graph for proximity search in
high-dimensional data. arXiv preprint arXiv:1810.07355,
2018.

Jaiswal, S., Krishnaswamy, R., Garg, A., Simhadri, H. V.,
and Agrawal, S. Ood-diskann: Efficient and scalable
graph anns for out-of-distribution queries. arXiv preprint
arXiv:2211.12850, 2022.

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Kr-
ishnawamy, R., and Kadekodi, R. Diskann: Fast accurate

9

https://api.semanticscholar.org/CorpusID:36089988
https://api.semanticscholar.org/CorpusID:36089988
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:13220558
https://api.semanticscholar.org/CorpusID:13220558
https://api.semanticscholar.org/CorpusID:218614141
https://api.semanticscholar.org/CorpusID:218614141


Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32,
2019.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2010.

Johnson, J., Douze, M., and Jégou, H. Billion-scale
similarity search with gpus. IEEE Transactions
on Big Data, 7:535–547, 2017. URL https:
//api.semanticscholar.org/CorpusID:
926364.

Kleinberg, J. M. Navigation in a small world. Nature, 406
(6798):845–845, 2000.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Kuttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. ArXiv, abs/2005.11401, 2020. URL https:
//api.semanticscholar.org/CorpusID:
218869575.

Lin, P.-C. and Zhao, W.-L. Graph based nearest neigh-
bor search: Promises and failures. arXiv preprint
arXiv:1904.02077, 2019.

Low, T., Borgelt, C., Stober, S., and Nürnberger, A. The
hubness phenomenon: Fact or artifact? Towards Ad-
vanced Data Analysis by Combining Soft Computing and
Statistics, pp. 267–278, 2013.

Malkov, Y. and Yashunin, D. A. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable
small world graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42:824–836, 2016.
URL https://api.semanticscholar.org/
CorpusID:8915893.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov,
V. Scalable distributed algorithm for approximate nearest
neighbor search problem in high dimensional general
metric spaces. In Similarity Search and Applications:
5th International Conference, SISAP 2012, Toronto, ON,
Canada, August 9-10, 2012. Proceedings 5, pp. 132–147.
Springer, 2012.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov,
V. Approximate nearest neighbor algorithm based on
navigable small world graphs. Information Systems, 45:
61–68, 2014.

Mann, H. B. and Whitney, D. R. On a test of whether one
of two random variables is stochastically larger than the
other. The annals of mathematical statistics, pp. 50–60,
1947.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. Advances in neural informa-
tion processing systems, 26, 2013.

Munoz, J. V., Gonçalves, M. A., Dias, Z., and Torres, R. d. S.
Hierarchical clustering-based graphs for large scale ap-
proximate nearest neighbor search. Pattern Recognition,
96:106970, 2019.

Ni, J., Xu, X., Wang, Y., Li, C., Yao, J., Xiao, S., and
Zhang, X. Diskann++: Efficient page-based search over
isomorphic mapped graph index using query-sensitivity
entry vertex. arXiv preprint arXiv:2310.00402, 2023.

Oguri, Y. and Matsui, Y. Theoretical and empirical anal-
ysis of adaptive entry point selection for graph-based
approximate nearest neighbor search. arXiv preprint
arXiv:2402.04713, 2024.

Pinterest. Manas hnsw realtime: Powering re-
altime embedding-based retrieval, Jan 2021.
URL https://medium.com/pinterest-
engineering/manas-hnsw-realtime-
powering-realtime-embedding-based-
retrieval-dc71dfd6afdd.

Pugh, W. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33(6):668–676, 1990.

Radovanovic, M., Nanopoulos, A., and Ivanovic, M. Hubs
in space: Popular nearest neighbors in high-dimensional
data. Journal of Machine Learning Research, 11(sept):
2487–2531, 2010.

Ram, P. and Sinha, K. Revisiting kd-tree for nearest neigh-
bor search. In Proceedings of the 25th acm sigkdd in-
ternational conference on knowledge discovery & data
mining, pp. 1378–1388, 2019.

Reimers, N. and Gurevych, I. Sentence-bert: Sen-
tence embeddings using siamese bert-networks.
In Conference on Empirical Methods in Natu-
ral Language Processing, 2019. URL https:
//api.semanticscholar.org/CorpusID:
201646309.

Sebastian, T. B. and Kimia, B. B. Metric-based shape re-
trieval in large databases. In 2002 International Con-
ference on Pattern Recognition, volume 3, pp. 291–296.
IEEE, 2002.

Simhadri, H., Williams, G., Aumüller, M., Douze, M.,
Babenko, A., Baranchuk, D., Chen, Q., Hosseini, L.,
Krishnaswamy, R., Srinivasa, G., Subramanya, S., and
Wang, J. Results of the neurips’21 challenge on billion-
scale approximate nearest neighbor search, 05 2022.

10

https://api.semanticscholar.org/CorpusID:926364
https://api.semanticscholar.org/CorpusID:926364
https://api.semanticscholar.org/CorpusID:926364
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:8915893
https://api.semanticscholar.org/CorpusID:8915893
https://medium.com/pinterest-engineering/manas-hnsw-realtime-powering-realtime-embedding-based-retrieval-dc71dfd6afdd
https://medium.com/pinterest-engineering/manas-hnsw-realtime-powering-realtime-embedding-based-retrieval-dc71dfd6afdd
https://medium.com/pinterest-engineering/manas-hnsw-realtime-powering-realtime-embedding-based-retrieval-dc71dfd6afdd
https://medium.com/pinterest-engineering/manas-hnsw-realtime-powering-realtime-embedding-based-retrieval-dc71dfd6afdd
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309


Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Talagrand, M. Concentration of measure and isoperi-
metric inequalities in product spaces. Publications
Mathématiques de l’Institut des Hautes Études
Scientifiques, 81:73–205, 1994. URL https:
//api.semanticscholar.org/CorpusID:
119668709.

Travers, J. and Milgram, S. An experimental study of the
small world problem. In Social networks, pp. 179–197.
Elsevier, 1977.

Wang, J. and Li, S. Query-driven iterated neighborhood
graph search for large scale indexing. In Proceedings of
the 20th ACM international conference on Multimedia,
pp. 179–188, 2012.

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998.

Xian, J., Teofili, T., Pradeep, R., and Lin, J. Vector search
with openai embeddings: Lucene is all you need. In
Proceedings of the 17th ACM International Conference
on Web Search and Data Mining, pp. 1090–1093, 2024.

Zelnik-Manor, L. and Perona, P. Self-tuning spectral clus-
tering. In Neural Information Processing Systems, 2004.
URL https://api.semanticscholar.org/
CorpusID:17066951.

Zhao, J., Both, J. P., Rodriguez-R, L. M., and Konstantinidis,
K. T. Gsearch: ultra-fast and scalable genome search by
combining k-mer hashing with hierarchical navigable
small world graphs. Nucleic Acids Research, 52(16):
e74–e74, 2024.

Zhao, X., Tian, Y., Huang, K., Zheng, B., and Zhou,
X. Towards efficient index construction and approx-
imate nearest neighbor search in high-dimensional
spaces. Proc. VLDB Endow., 16:1979–1991, 2023.
URL https://api.semanticscholar.org/
CorpusID:258718568.

11

https://api.semanticscholar.org/CorpusID:119668709
https://api.semanticscholar.org/CorpusID:119668709
https://api.semanticscholar.org/CorpusID:119668709
https://api.semanticscholar.org/CorpusID:17066951
https://api.semanticscholar.org/CorpusID:17066951
https://api.semanticscholar.org/CorpusID:258718568
https://api.semanticscholar.org/CorpusID:258718568


Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Appendix

A. Background: Similarity Search & HNSW
A.1. Similarity Search

In the similarity search (or k-NNS) problem, we are in-
terested in retrieving k elements from a dataset D =
{xi, . . . ,xn} ⊂ Rd that minimize the distance to a given
query q ∈ Rd (or, equivalently, maximize the vector
similarity). More precisely, given a similarity function
ϕ : Rd × Rd → R, the nearest neighbor x∗ ∈ X of q
is defined as

x∗ := argmax
xi∈D

ϕ(xi, q)

where ϕ is usually the ℓ2 or cosine similarity. With the enor-
mity of modern data workloads and the underlying vector
dimensionality, it becomes computationally infeasible to ex-
haustively search for the true top-k neighbors for any query
q. Thus, approximate search algorithms trade-off quality of
the search for lower latency.

In the approximate nearest neighbor search (ANNS) regime,
we evaluate the quality of the search procedure typically
by the Recall@k metric. More formally, suppose a given
ANNS search algorithm outputs a subset O ⊆ D, |O| = k,
and let G ⊆ D be the true k nearest neighbors of a query q.

We define Recall@k by |O∩G|
k . ANNS algorithms seek to

maximize this metric while retrieving results as quickly as
possible.

A.2. HNSW Overview

With this formalization of the ANNS problem, we will now
briefly review the key elements of the HNSW algorithm,
which is the central focus of our benchmarking study. As
we alluded to previously, HNSW builds off of prior work in
navigable small world graph indexes introduced in (Malkov
et al., 2014). Small world graphs are a well-studied phe-
nomenon in both computing and the social sciences and
are primarily defined by the fact that the average length
of a shortest path between two vertices is small (typically
scaling logarithmically with the number of nodes in the net-
work) (Travers & Milgram, 1977; Watts & Strogatz, 1998;
Kleinberg, 2000). Small world graphs are also often charac-
terized by the presence of well-connected hub nodes which
we discuss further in the next section.

While small world graphs are, by construction, suited for
efficient greedy graph traversal, the HNSW authors argue
that the polylogarithmic scaling of the search process is still
too inefficient for the demands of near neighbor search on
large datasets. This claim motivates the design of HNSW
where the hierarchy allows for computing a fixed number
of distances in each graph layer independent of the network
size.

Specifically, the HNSW index is constructed in an iterative
fashion. For a newly inserted element x, the algorithm will
randomly select a maximum layer l and then insert the new
point into every layer up to l. This randomized process is
executed with an exponentially decaying probability dis-
tribution such that, in expectation, each subsequent layer
has exponentially more nodes than its predecessor. Within
a layer, HNSW greedily adds edges between x and its M
closest neighbors (where M is a hyperparameter) where
the neighbors consist of previously inserted points. This
process then repeats in the subsequent layer below using the
closest neighbors found in the prior graph as entry points.
Through this process, the top layer of the hierarchy will be
the coarsest directed graph, consisting of the fewest nodes
and edges, and the bottom layer will be the densest and
contain all of the nodes, each with connections to (up to) M
neighbors. As an additional, and important, optimization,
HNSW also implements the pruning heuristic of (Arya &
Mount, 1993) that will prune an edge from u to v if there
exists another edge from u to a neighbor w of v such that
the distance from u to w is less than that of u to v.

The search procedure of HNSW, described in Algorithm 2
also executes iteratively where the algorithm maintains a list
of candidate points at each layer of the hierarchical graph
before returning the final list k nearest neighbor candidates
after traversing the base graph layer.

B. Reproduction of Prior Studies
In this section, we present a replicability study using four
flatnav NSW implementation. In particular, we revisit
the experimental design of two prior works in the literature:
the original 2016 HNSW paper of (Malkov & Yashunin,
2016) and a subsequent 2019 paper from (Lin & Zhao,
2019) that found limitations with the hierarchical compo-
nent of HNSW. As we discussed in the previous section,
these prior works possess limitations in experimental de-
sign, scope of benchmarking datasets, and a lack of analysis
into understanding the results, which motivates our work
in this paper. Nevertheless, we use these prior studies as
a starting point to see if we can independently replicate
these results via our own FlatNav implementation. Such a
reproduction would both further validate the soundness of
these previous experiments over the test of time as well as
provide confirmation of the correctness of FlatNav before
we proceed to new, larger-scale benchmarks.

Following the same setups as (Malkov & Yashunin, 2016)
and (Lin & Zhao, 2019) we generate a series of random
vector datasets of varying dimensionality where each vec-
tor component is sampled uniformly at random from the
range [0, 1). In particular, we consider dimensionalities of
d = 4, 8, 16 and 32. As in (Lin & Zhao, 2019), we set the
number of near neighbors to retrieve to k = 1 (departing

12



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Algorithm 1 HNSW Construction

1: Input: Set of data points D, max layer Lmax, max
connections per layer M , layer insertion probability ml,
size of dynamic candidate list efc

2: Output: HNSW graph with hierarchical layers
3: procedure CONSTRUCT(D,Lmax,M,ml, efc)
4: Initialize empty hierarchical graph G
5: Initialize entry point ep← None
6: for each p ∈ D do
7: Lp ← GeometricDistribution(ml)
8: if ep = None then
9: Set p as entry point ep

10: Insert p into all levels ≤ Lp

11: end if
12: for l = Lmax to Lp do
13: ep← SearchLayer(G, l, p, ep, efc) ▷

Algorithm 2
14: end for
15: for l = 0 to Lp do
16: N ← SelectNeighbors(p,G, l,M )
17: Add edges from q to each neighbor n ∈ N

at layer l
18: if n ∈ N has < M edges then
19: Add back-connections to q to node n.
20: else
21: Run SelectNeighbors on {q, edges of

n}.
22: end if
23: end for
24: end for
25: if Lp > Lep then
26: ep← p
27: end if
28: end procedure
29:
30: function SELECTNEIGHBORS(p,G, l,M )
31: Compute distances from p to all nodes in G[l]
32: Return M nodes based on selection heuristic in

(Arya & Mount, 1993)
33: end function

Algorithm 2 HNSW Query

1: Input: Graph G, layer l, query q, starting point p, num-
ber of nearest neighbors to return efs

2: procedure SEARCHLAYER(G, l, q, p, efs)
3: Candidate queue C = p, currently top results queue

T = p, visited list V = p
4: while C is not empty do
5: c← nearest element from C to q
6: f ← furthest element from T to q
7: if dist(c, q) ¿ dist(f, q) then return T
8: end if
9: for e ∈ neighbourhood(c) at layer l do

10: if e ∈ V then
11: continue
12: end if
13: V.add(e)
14: if dist(e, q) ≤ dist(f, q) or |T | ≤ efs

then
15: C.add(e)
16: T.add(e)
17: end if
18: if |T | ≥ efs then
19: Remove furthest point to q from T
20: end if
21: f ← furthest element from T to q
22: end for

return T
23: end while
24: end procedure

13



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

from the default of k = 100 we use elsewhere in this pa-
per). We also tried including the sw-graph NSW baseline
(Boytsov & Naidan, 2013) that (Malkov & Yashunin, 2016)
used in their evaluation to benchmark against HNSW, but
we were not able to run this older library successfully. How-
ever, we were able to replicate these prior findings using our
own flatnav implementation which is conceptually iden-
tical to sw-graph but with more software optimizations
to achieve engineering parity with hnswlib.

Figure 9. Median Latency vs. Recall of HNSW and FlatNav across
dimensions d = 4, 8, 16, 32. We observe that the hierarchical
structure accelerates search only when d < 32, matching the find-
ings of (Lin & Zhao, 2019). Our results demonstrating a significant
advantage with HNSW on synthetic datasets with dimensionality
d = 4 and d = 8 also match the findings of the original HNSW
paper (Malkov & Yashunin, 2016)

.

As shown in Figure 9, we successfully replicated the experi-
ments benchmarking HNSW versus a flat NSW graph from
two prior research papers. Notably, both of these previous
works primarily experiment with randomly generated vector
data with very low dimensionality by the standards of mod-
ern machine learning. Coupled with our findings in the next
section where we find no discernible difference between
HSNW and a flat graph index on high-dimensional datasets,
our results suggest a simple decision criterion for selecting a
search index: For dimensionality d < 32, HNSW and the
hierarchy provide a speedup. Otherwise, the simplicity
and memory savings of a flat NSW index provide more
benefit.

We also had the opportunity to discuss our findings with the
lead author of (Malkov & Yashunin, 2016) who confirmed
that the hierarchy provides a robust speedup on these low-
dimensional datasets but noted the performance on higher
dimensional vectors remained less clear, which further mo-
tivated us to take up the benchmarking study in the next

section.

C. Dataset Statistics
C.1. Benchmark Datasets for the Latency-Recall

Tradeoff

Table 4 shows the different benchmark datasets used in
Section 3.1.

Dataset Dimensionality # Points # Queries

BigANN† 128 100M 10K
Microsoft SpaceV† 100 100M 29.3K
Yandex DEEP† 96 100M 10K
Yandex Text-to-Image† 200 100M 100K
GloVe {25, 50, 100, 200} 1.2M 10K
NYTimes 256 290K 10K
GIST 960 1M 1K
SIFT 128 1M 10K
MNIST 784 60K 10K
DEEP1B 96 10M 10K

Table 4. Dataset Statistics. The datasets marked by † are from the
BigANN benchmarks (Simhadri et al., 2022). The remaining are
taken from ANN Benchmarks (Aumüller et al., 2018).

C.2. Benchmark Datasets for the Hub-Highway
Hypothesis Experiments

Table 5 details the various ANN and Big-ANN benchmark
datasets as well as the synthetic datasets used in Section 4
for illustrating the empirical evidence of the hub-highway
hypothesis.

Table 5. Hub-Highway Experimental Datasets
Dataset Dimensionality # Points # Queries

GIST 960 1M 1k
GloVe 100 1.2M 10k
NYTimes 256 290K 10k
Yandex-DEEP 96 10M 10k
Microsoft-SpaceV 100 10M 29.3k
IID Normal {24, 25, 26, 27, 28, 210, 1.5 · 210} 1M 10k
IID Normal {24, 25, 26, 27, 28, 210, 1.5 · 210} 1M 10k

D. Extended Discussion and Limitations
D.1. Extended Discussion

Small-World Graphs: The network science research com-
munity has known for decades that long-range connections
and hubs induce the formation of “small-world” graphs that
are easily traversed (Watts & Strogatz, 1998). This idea
has been enormously influential in ANNS, providing the
motivation for both NSW and HNSW (Malkov et al., 2012;
2014), but our results suggest that ANN graphs constructed
over low-dimensional datasets may not in fact exhibit small-
world properties. Because the k-occurrence distribution is
near-uniform for intrinsically low-dimensional data distri-
butions, a pure kNN graph (without pruning or long-range

14



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

links) will not create hubs with a high in-degree. We believe
that hierarchical structures are helpful in low dimensions
because they help to induce hub behavior, by ensuring that
search always begins from a small set of nodes. However,
this is not necessary to produce hubs and induce small-world
properties in high dimensions. The kNN graph construction
process is sufficient on its own, because the hub highway
emerges in high dimensions.

D.2. Limitations

Despite our notable empirical evidence for the hug-highway
hypothesis and its significance in understanding graph-based
ANN search, a principled understanding of this phenomenon
from theoretical grounds is still lacking. Future research
efforts can be directed towards explicit bounds on the prob-
ability of a query q reaching high latency on a proximity
graph G = (V,E) consisting of hub nodes H .

There are several reasons why such a theoretical formula-
tion is hard to attain. First, query latency is a metric that is
the most perturbed by both engineering optimizations, such
as SIMD operations, as well as the underlying hardware.
Therefore, even if one attains a theoretical framework for
bounding the expected query latency on a proximity graph,
it is still very plausible that pure engineering optimizations
could realize better performance in practice. Second, even
if we control for engineering optimizations and the under-
lying hardware, it is not sufficient to consider the most
obvious factors including graph complexity (i.e., |V | and
|E|) and the dimensionality of the underlying vector space
d. Different graph construction procedures and pruning
algorithms will induce different expected latency bounds.
Future research directed to this theoretical understanding of
the hub-highway hypothesis will prove to be invaluable to
both theoreticians and practitioners alike.

E. Extended Benchmarks
E.1. Building FlatNav from Scratch

In the main body of the paper, we present a series of results
demonstrating that there is essentially no difference in per-
formance between search over HNSW with a full hierarchy
and search over the flat NSW base graph. As we discuss
in Section 3, we fix the experimental design in the main
body of the paper to extract the base NSW graph from the
same hnswlib code that constructs the full HSNW index
and use our flatnav implementation of the search algo-
rithm to traverse the graph. In other words, we construct
the full hierarchical graph with hnswlib and then extract
the base layer as our separate flat graph index. We designed
the benchmarking experiments in this manner to avoid any
potential confounding effects from differences in code be-
tween the baseline HNSW graph construction and our own

version.

However, this experimental setup raises a separate concern
over whether the hierarchical component of HNSW might
still be useful to construct the base graph index even if
the hierarchy is not used during search. In this extended
benchmark, we provide additional results to demonstrate
that this is not the case. In particular, when we benchmark
the full hierarchical HNSW index from hnswlib against
a flat graph built from scratch with no hierarchy at all via
our flatnav library, we observe identical results to what
we report in Section 3. Thus, we can conclude that the hier-
archical component of HNSW does not seem to be useful
for high-dimensional workloads for either construction or
search.

In Figures 10 and 11 we show the benchmarking results of
HNSW and FlatNav with the latter built from scratch with
no hierarchy even in construction. The results are identical
to our findings in Figures 4 and 5 in Section 3 in the main
body of the paper. For these extended benchmarks, we use
a cloud server equipped with an AMD EPYC 9J14 96-Core
Processor and 1 TB of RAM.

F. Extended Hubness Experiments
F.1. Extending the Hub-Highway Hypothesis to LLM

Embeddings

To evaluate whether the Hub-Highway Hypothesis general-
izes beyond sythetic gaussian-distributed and ANN bench-
mark datasets, we apply the same analysis to large language
model (LLM) embeddings used in information retrieval.
In particular, we examine the MSMARCO (Campos et al.,
2016) dataset, a widely-used retrieval benchmark compris-
ing millions of real-world queries and documents.

Data generation. We encode all training split queries in
MSMARCO using the all-MiniLM-L6-v2 model from the
SentenceTransformers (Reimers & Gurevych, 2019)
library. This yields 384-dimensional vector representations.
Using these embeddings, we construct a k-NN proximity
graph (using k = 100) and compute the node access dis-
tribution Pm(xi), defined as the number of times node xi

is visited across a fixed set of queries using HNSW beam
search heuristic. As with all experiments, we fix the number
of queries to be 10,000.

Results. Figure 12 shows the log-normalized node access
frequency distribution for MSMARCO. The distribution
exhibits a long-tail behavior similar to what we observed in
synthetic ℓ2 datasets and the Big-ANN benchmarks, with
a clear skew indicating that a small subset of nodes are
accessed orders of magnitude more frequently than others.
This supports our hypothesis that highway-like structures
emerge naturally even in real-world retrieval embeddings

15



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

Figure 10. The p50 Latency vs Recall relationship between HNSW
and FlatNav (constructed from scratch) is identical to the rela-
tionship between HNSW and FlatNav (base layer extracted from
HNSW) shown in Figure 4.

Figure 11. The p50 Latency vs Recall relationship between HNSW
and FlatNav (constructed from scratch) is identical to the rela-
tionship between HNSW and FlatNav (base layer extracted from
HNSW) shown in Figure 5.

Figure 12. Log-normalized node access count distribution Pm(xi)
for ℓ2 datasets along with MSMARCO embeddings.

generated by LLMs.

These findings suggest that the routing behavior of hub
nodes is not an artifact of synthetic data or benchmark con-
struction, but a general phenomenon in high-dimensional
embedding spaces. This reinforces our claim that such hubs
can effectively replace the hierarchy in modern ANN graph
indexes.

F.2. No Hierarchy Memory Savings

Dataset Dataset Size hnswlib flatnav

BigANN 100M 183 113
Microsoft SpaceV 100M 104 85.5
Yandex DEEP 100M 100 60.7

Table 6. Peak Index Construction Memory in GBs. We observe
that flatnav requires considerably less memory during construc-
tion compared to hnswlib.

Section 3 focused on demonstrating that we can remove
the hierarchy in HNSW with impunity for latency bench-
marks. Here we turn our attention to memory consumption
and measure the memory savings from removing the hier-
archy by running a memory profiler during index construc-
tion. In terms of memory allocation, similarly to flatnav,
hnswlib allocates static memory during index construc-
tion comprising base layer node allocation, a visited node
list and a list of mutexes in the multi-threaded setting. Ad-
ditionally, it also incurs memory cost attributable to the hi-
erarchy, particularly maintaning the dynamically allocated
links between nodes at each layer.

We benchmarked both libraries against a subset of the Bi-
gANN benchmarks. Table 6 shows the peak memory allo-
cated by the two implementations during index construc-
tion for the BigANN, Microsoft SpaceV and Yandex DEEP
benchmarks. Since multithreading has a runtime overhead,
we fix the number of cores to 32 in each one of the stated
benchmark. For BigANN, we observe a 38% reduction in

16



Down with the Hierarchy: The ‘H’ in HNSW Stands for “Hubs”

peak memory, a 39% reduction for Yandex DEEP, and an
18% reduction for the Microsoft SpaceV benchmark. This
shows that we are able to save significant memory by re-
moving the hierarchy, and it is likely that we can optimize
flatnav implementation to save memory further.

One caveat of these reported memory savings is that we
are comparing different two software implementations in
hnswlib and flatnav. Since hnswlib is a mature li-
brary widely used by practitioners as well as researchers,
it supports more features than flatnav and thus must
maintain additional complexity whereas our implementa-
tion, while performant, is more of a research prototype.
Therefore, differences in code may account for a significant
part of the peak memory usage differences. Nevertheless,
we believe our findings are relevant and still noteworthy
given that hnswlib is so widely adopted. By demonstrat-
ing that we can considerably reduce the memory overhead
of hnswlib without sacrificing performance, we hope to
bring the community’s attention to the opportunities for
further optimization in this direction.

F.3. Hub formation: Discerning Metric Space Hubness
from Preferential Attachment

While Figure 7 confirms the existence of hub nodes in the
dataset, it does not distinguish between hubs that arise from
the properties of the underlying metric space and hubs that
form through some other mechanism. It is possible that pref-
erential attachment explains the formation of hubs, since
NSW graphs are built incrementally by sequentially adding
points to an existing graph. Nodes that are added early in
graph construction may become hubs by accumulating a
greater-than-average share of inbound graph links, rather
than by being popular neighbors in the metric space.

To investigate the effects of preferential attachment, we
computed the variance (R2 of a linear model) in the em-
pirical node access distribution explained by the insertion
ordering(Table 7). We log-transformed both the node ac-
cess count and the insertion order before running the linear
model and confirmed that the residuals are approximately
normal after examining the QQ plots (p < 10−6 for all
models).

We observe a modest effect from the node insertion order in
our synthetic data. This is particularly true for the angular
datasets, which we believe to be due to the weaker hubness
phenomena produced by the angular distance metric. Prefer-
ential attachment may account for a relatively greater share
of the node access distribution when metric hubs are not
present to heavily skew the distribution.

Ideally, we would repeat this analysis using the K-
occurrence distribution, to show that the hubness of the
metric space is more strongly predictive of the node acc-

cess count than the insertion order. Unfortunately, it is not
feasible to compute the K-occurrence distribution due to
the O(n2) brute-force computation cost. However, we be-
lieve that the results in Table 7 still support the idea that
the dimensionality of the metric space strongly contributes
to the formation of hubs in the Hub-Highway Hypothesis,
especially when combined with the evidence in Figure 7.

Table 7. Correlation analysis for node insertion order and node
access count, to determine effects of preferential attachment.

Dataset Dimension Explained Variance (%)

IID Normal (Angular) 16 3.0%
IID Normal (Angular) 32 8.7%
IID Normal (Angular) 64 16.6%
IID Normal (Angular) 128 23.3%
IID Normal (Angular) 256 24.6%
IID Normal (Angular) 1024 24.1%
IID Normal (Angular) 1536 23.9%
IID Normal (L2) 16 < 0.1%
IID Normal (L2) 32 3.1%
IID Normal (L2) 64 7.6%
IID Normal (L2) 128 8.7%
IID Normal (L2) 256 7.1%
IID Normal (L2) 1024 7.1%
IID Normal (L2) 1536 6.6%

GloVe (Angular) 100 0.2%
NYTimes (Angular) 256 0.3%
GIST (L2) 960 < 0.1%
Yandex-DEEP (L2) 96 0.3%
Microsoft-SpaceV (L2) 100 0.5%

17


