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Abstract

In minimax optimization, the extragradient (EG) method has been extensively
studied because it outperforms the gradient descent-ascent method in convex-
concave (C-C) problems. Yet, stochastic EG (SEG) has seen limited success in C-C
problems, especially for unconstrained cases. Motivated by the recent progress of
shuffling-based stochastic methods, we investigate the convergence of shuffling-
based SEG in unconstrained finite-sum minimax problems, in search of convergent
shuffling-based SEG. Our analysis reveals that both random reshuffling and the
recently proposed flip-flop shuffling alone can suffer divergence in C-C problems.
However, with an additional simple trick called anchoring, we develop the SEG
with flip-flop anchoring (SEG-FFA) method which successfully converges in C-C
problems. We also show upper and lower bounds in the strongly-convex-strongly-
concave setting, demonstrating that SEG-FFA has a provably faster convergence
rate compared to other shuffling-based methods.

1 Introduction

Minimax problems with a finite-sum structure, which are optimization problems of the form

min
x

max
y

f(x,y) :=
1

n

n∑
i=1

fi(x,y), (1)

can be found in many interesting applications, such as generative adversarial networks [19], refining
diffusion models [28], adversarial training [37], optimal transport based generative models [48],
multi-agent reinforcement learning [53], and so on. Deterministic methods for minimax problems,
such as gradient descent-ascent (GDA) [3] and extragradient (EG) [29], have been extensively studied
in the literature. It is though known that, unlike gradient descent (GD) for minimization problems,
GDA may diverge even when f is convex on x and concave on y. On the other hand, EG employs
a two-step update procedure, named extrapolation and update steps (see Section 2 for details), which
allows it to find an optimum under this convex-concave setting [29, 51], and moreover, attains a
convergence rate faster than GDA [4] when f is strongly convex on x and strongly concave on y.

In contrast, attempts to construct stochastic variants of these algorithms have not been so fruitful.
When f is convex-concave, stochastic gradient descent-ascent (SGDA) clearly may diverge, just as
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in the deterministic GDA. To make matters worse, stochastic extragradient (SEG) methods have also
had limited success on unconstrained convex-concave problems. As we elaborate in Section 2 in
more detail, existing versions of SEG and their analyses have limitations that hinder its application to
general unconstrained finite-sum convex-concave problems, requiring additional assumptions such as
bounded domain, increasing batch size, convex-concavity of each component fi, uniformly bounded
gradient variance, and/or absence of convergence rates.

In the context of finite-sum optimization, most of the theoretical studies on stochastic methods have
long been based on the with-replacement sampling scheme, where an index i(t) is independently
and uniformly sampled among {1, . . . , n} at each iteration t. Such a sampling scheme is relatively
easy to theoretically analyze, because the sampled fi(t) is an unbiased estimator of the full objective
function f . In practice, however, inspired by the empirical observations of faster convergence in
finite-sum minimization [8, 47], the without-replacement sampling schemes have been the de facto
standard. Among them, the most popular is the random reshuffling (RR) scheme, where in every
epoch consisting of n iterations, the indices are chosen exactly once in a randomly shuffled order.

This gap between theory and practice in minimization problems is being closed by the recent
breakthroughs in stochastic gradient descent (SGD), namely that SGD with RR leads to a provably
faster convergence compared to with-replacement SGD when the number of epochs is large enough [1,
35, 39, 41, 55, 56]. This has motivated further studies on finding other shuffling-based sampling
schemes that can improve upon RR, resulting in the discoveries such as the flip-flop scheme [46]
and gradient balancing (GraB) [11, 32]. The flip-flop scheme is a particularly simple yet interesting
modification of RR with improved rates in quadratic problems: a random permutation is used twice
in a single epoch (i.e., two passes over n components in an epoch), but the order is reversed in the
second pass.

The aforesaid progress in minimization also triggered the study of stochastic minimax methods with
shuffling. Similar to minimization problems, SGDA with RR indeed converges faster than the with-
replacement SGDA, under assumptions such as strongly-convex-strongly-concave objectives [15] or
f satisfying the Polyak-Łojasiewicz condition [13]. Despite the superiority of EG over GDA, the
SEG with shuffling has not been shown to have a solid theoretical advantage over the SGDA with
shuffling yet. This motivated us to study the following question:

Can shuffling schemes provide convergence guarantees for SEG, improved upon SGDA
with shuffling, in unconstrained finite-sum (strongly-)convex-(strongly-)concave settings?

There are two types of SEG: same-sample SEG, where a sample chosen is used both for the
extrapolation step and the update step, and independent-sample SEG, where two independently
chosen samples are used in each step. We will particularly focus on the same-sample SEG because it
combines more naturally with shuffling-based schemes than independent-sample SEG. Therefore, to
be more specific, we are interested in developing shuffling-based variants of same-sample SEG in
unconstrained finite-sum minimax problems with minimal modifications to the algorithm. We show
that (a) in convex-concave settings, our new method reaches an optimum with a guarantee on the
rate of convergence, overcoming the limitations of existing results; (b) in strongly-convex-strongly-
concave settings, the method converges faster than other SGDA/SEG variants.

1.1 Our Contributions

In this paper, we study various same-sample SEG algorithms under different shuffling schemes, and
propose the stochastic extragradient with flip-flop anchoring (SEG-FFA) method, which is SEG
amended with the techniques of flip-flop shuffling scheme and anchoring. Here, by anchoring we refer
to a step of taking a convex combination between the initial and final iterates of an epoch, resembling
the celebrated Krasnosel’skiı̆-Mann iteration [30, 33] as we discuss in Section 5. With such minimal
modifications to SEG, we show that SEG-FFA achieves provably improved convergence guarantees.
More precisely, our contributions can be listed as follows (see Table 1 for a summary). For clarity,
we use SEG-US to refer to with-replacement SEG, where US stands for uniform sampling.

• We first study the same-sample versions of SEG-US, SEG with RR (SEG-RR), and SEG
with flip-flop (SEG-FF). We show that they all can diverge when f is convex-concave,1

1This does not contradict the result in [25], which shows that the independent-sample SEG with carefully
designed step sizes rule converges to optima for convex-concave settings, albeit without a convergence rate.
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Table 1: Summary of upper/lower convergence rate bounds of same-sample SEG for unconstrained
finite-sum minimax problems, without requiring increasing batch size, convex-concavity of each
component, and uniformly bounded gradient variance. Pseudocode of algorithms can be found in
Appendix A. We only display terms that become dominant for sufficiently large T and K. To compare
the with-replacement versions (-US) against shuffling-based versions, one can substitute T = nK. The
optimality measure used for SC-SC problems is E[∥ẑ − z∗∥2] for the last iterate ẑ. For C-C problems,
we consider mint=0,...,T E[∥Fzt∥2] for with-replacement methods and mink=0,...,K E[

∥∥Fzk
0

∥∥2
] for

shuffling-based methods.

STRONGLY-CONVEX-STRONGLY-CONCAVE CONVEX-CONCAVE

METHOD UPPER BOUND LOWER BOUND UPPER BOUND LOWER BOUND

SGDA-US O( 1
T
) [31] Ω( 1

T
) [13] N/A Ω(1) (AS GDA)

SEG-US O( 1
T
) [20] Ω( 1

T
) [6] N/A†‡ Ω(1) (THM. 4.1)

SGDA-RR Õ( 1
nK2 ) [15] Ω( 1

nK3 ) (THM. 5.6) N/A Ω(1) (AS GDA)

SEG-RR Õ( 1
nK2 ) [18] Ω( 1

nK3 ) (THM. 5.6) O( 1

(nK)1/3
)? [18]§ Ω(1) (THM. 4.1)

SEG-FF Õ( 1
nK2 ) (THM. F.5) – N/A Ω(1) (THM. 4.1)

SEG-FFA Õ( 1
nK4 ) (THM. 5.5) – Õ( 1

K1/3 ) (THM. 5.4) –
† [17, 20] show upper bounds for SEG-US, but they require increasing batch sizes as well as other assumptions (see Appendix B.1).
‡ [25] shows that independent-sample SEG-US converges for stepsizes αt, βt decaying at different rates, but gives no conv. rate.
§ Unfortunately, the proof of this convergence bound in this recent AISTATS 2024 paper seems to be incorrect: see Appendix B.4.

by constructing an explicit counterexample (Theorem 4.1). This shows that shuffling alone
cannot fix the divergence issue of SEG-US.

• We next investigate the underlying cause for the nonconvergence of SEG-US, SEG-RR, and
SEG-FF. In particular, we identify that either they fail to match the update equation of the
reference method EG beyond first-order Taylor expansion terms, or attempting to match both
the first- and second-order Taylor expansion terms results in divergence (Proposition 5.2).

• By adopting a simple technique of anchoring on top of flip-flop shuffling, we devise our
algorithm SEG-FFA, whose epoch-wise update deterministically matches EG up to second-
order Taylor expansion terms (Proposition 5.3). We prove that SEG-FFA enjoys improved
convergence guarantees, as anticipated by our design principle. Most importantly, we show
that SEG-FFA achieves a convergence rate of Õ(1/K1/3) when f is convex-concave, where
K denotes the number of epochs. This is in stark contrast to other baseline algorithms that
diverge under this setting (see the last column of Table 1).

• Moreover, we show that when f is strongly-convex-strongly-concave, SEG-FFA achieves
a convergence rate of Õ(1/nK4) (Theorem 5.5). In addition, by proving Ω(1/nK3)
lower bounds for the convergence rates of SGDA-RR and SEG-RR under the same
setting (Theorem 5.6), we show that SEG-FFA has a provable advantage over these baseline
algorithms.

2 Related Works

Extragradient and EG+ Extragradient (EG) method [29] is a widely used minimax optimization
method, well-known for resolving the nonconvergence issue of GDA on convex-concave problems.
In this paper, we also consider EG+ [17], which is a generalization of EG. The update rule of EG+ is
defined, for stepsizes {η1,k}k≥0 and {η2,k}k≥0, as{

uk ← xk − η1,k∇x f(x
k,yk)

vk ← yk + η1,k∇y f(x
k,yk)

,

{
xk+1 ← xk − η2,k∇x f(u

k,vk)

yk+1 ← yk + η2,k∇y f(u
k,vk)

. (2)

The first step is called the extrapolation step, and the second step is called the update step. If f is
convex-concave, Diakonikolas et al. [17] show that EG+ reaches an optimum when η1,k ≥ η2,k. In
particular, when η1,k = η2,k, we recover the standard EG by Korpelevich [29].
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Stochastic Variants of Extragradient In (2), if the stochastic estimators of ∇x f and ∇y f are
used instead of the gradients themselves, we get the standard SEG. If an estimator chosen is used for
both the extrapolation and the update steps, we get the same-sample SEG, which we focus on in this
paper; see Appendix A for the pseudocode.

While EG improves upon GDA, unfortunately, SEG has not been able to show a clear advantage over
SGDA. On one hand, analyses of SEG on strongly-convex-strongly-concave problems have shown
some success; see, e.g., [18, 20]. Yet, on the other hand, for general unconstrained convex-concave
problems, to the best of our knowledge, the existing stochastic variants of EG and their analyses
face several limitations.23 Assumptions commonly imposed in the existing literature include: (i)
the domain is bounded, either explicitly or implicitly [27, 36], (ii) one must increase the batch size
to achieve convergence [9, 17, 20],4 and (iii) each component fi is convex-concave [20, 36], and
(iv) the components have uniformly bounded gradient variance [9, 17, 42]. For further details, see
Appendix B.1 and Table 2 therein. Notably, Hsieh et al. [25] prove convergence of the independent-
sample SEG without these four restrictions, but the result lacks an explicit convergence rate.

Our proposed SEG-FFA overcomes all the aforementioned limitations, and reaches an optimum with
an explicit rate in unconstrained convex-concave problems, under relatively mild conditions. The
readers may also refer to [7] for a comprehensive overview on this topic.

Meanwhile, under the finite-sum setting, variance reduction schemes have also been considered,
achieving some promising results [2, 10]. Yet, although theoretically appealing, variance reduction is
less widely used in practice due to their curiously inferior performance in training neural networks [16].
On top of this practical issue, variance reduction techniques share the aforementioned limitation (ii),
as accessing full gradients can be viewed as increasing the batch size. In contrast, our main goal in
this paper is to study how a carefully chosen sampling scheme, with minimal modifications to the
algorithm, can improve the convergence of SEG without the need for increased batch size; therefore,
we believe that our work is not directly comparable to variance reduction-based EG.

Taylor Expansion Matching and Convergence Guarantees It has been repeatedly reported that
the convergence of an optimization method is deeply related to the degree to which the Taylor
expansion (with respect to the step size) of its update equation matches with that of an already known
convergent method. For example, Mokhtari et al. [38] observed that the advantage of EG over GDA
comes from the Taylor expansion of update equations of EG matching that of the proximal point (PP)
method [34] up to second-order terms, whereas GDA matches PP only up to first-order terms.

The advantages of the shuffling scheme over the with-replacement sampling can be explained in a
similar way. One key property of shuffling-based methods is that, while the individual estimators are
biased as they are dependent to other estimators within the same epoch, the overall stochastic error
across the epoch decreases dramatically compared to using n independent unbiased estimators. For
instance, in SGD with RR [1] and in SGDA with RR [15], the overall progress made within each
epoch exactly matches their deterministic counterparts up to the first-order, leaving an error as small
as O(η2), where η is the stepsize. Rajput et al. [46] observed that, when each component functions
are convex quadratics, then using flip-flop on SGD can reduce the error further to O(η3), resulting in
an even faster convergence. As we further elaborate in Section 5, the motivation behind our design
principle of SEG-FFA is also based on this line of observations.

3 Notations and Problem Settings

Let [n] ⊂ Z denote the set {1, . . . , n}. The set of all permutations on [n] will be denoted by Sn. For
the finite-sum minimax problem (1), we denote the saddle gradient operators by

F ( · ) :=
[
∇x f( · )
−∇y f( · )

]
, Fi( · ) :=

[
∇x fi( · )
−∇y fi( · )

]
, i ∈ [n].

2Most of these results are carried out assuming access to a stochastic oracle of f , which indeed subsumes the
finite-sum setting as a special case. However, it seems unlikely that these limitations of the existing studies will
be easily resolved by simply narrowing the focus down to the finite-sum setting; see Appendix B.3.

3Recently, Emmanouilidis et al. [18] claimed the convergence of SEG-RR in the convex-concave setting.
Unfortunately, however, there seems to be a flaw in their proof. We defer a discussion on this to Appendix B.4.

4In fact, for the methods studied in [17, 20] it is possible to show that increasing the batch size is strictly
necessary and unavoidable for convergence; see Appendix H.2.
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The derivative of an operator will be denoted with a prefix D. For example, the derivative of F is
denoted by DF . Often a single vector will be used to denote the minimization and the maximization
variable at once. For instance, for z ∈ Rd1+d2 which is a concatenation of x ∈ Rd1 and y ∈ Rd2 ,
we simply write Fz to denote F (x,y).

It is well known that, if f is µ-strongly convex on x and µ-strongly concave on y for some µ > 0
(respectively, µ = 0), then its saddle gradient F is µ-strongly monotone (respectively, monotone), in
the following sense. For a proof of this standard fact, see, e.g., [22].
Assumption 3.1 (Monotonicity & Strong Monotonicity). For µ > 0, we say that an operator F is
µ-strongly monotone if, for any z,w ∈ Rd1+d2 , it holds that

⟨Fz − Fw, z −w⟩ ≥ µ ∥z −w∥2 . (3)

If (3) holds for µ = 0, then we say that F is monotone.

Thus, from now on, we will use the term strongly monotone (respectively, monotone) problems rather
than strongly-convex-strongly-concave (respectively, convex-concave) problems. Notice that we only
assume that the full saddle gradient F is (strongly) monotone, not the individual Fi’s.

In addition, we remark that our convergence analysis under the monotonicity of F , Theorem 5.4, in
fact requires only a relaxed version of monotonicity, known as star-monotonicity. This condition
imposes the inequality (3) with µ = 0, but only when w = z∗, where z∗ is a point such that
Fz∗ = 0. This relaxation allows for a certain degree of nonconvex-nonconcavity in f . For a more
detailed discussion on the star-monotonicity condition, see Appendix G.1.

Other three underlying assumptions we make on the problem (1) can be listed as follows.
Assumption 3.2 (Existence of an Optimal Solution). An optimal solution of the problem (1), which
is a point we denote by z∗ = (x∗,y∗) that satisfies

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗)

for any x ∈ Rd1 and y ∈ Rd2 , exists in Rd1+d2 .

Because the problem is unconstrained and f is convex-concave, a point z∗ is an optimum if and
only if Fz∗ = 0. For strongly monotone problems, Assumption 3.2 is not explicitly required,
as it is guaranteed a priori [5, Proposition 22.11]. For monotone problems, we explicitly impose
Assumption 3.2 in order to exclude pathological problems such as f(x, y) = x− y.
Assumption 3.3 (Smoothness). Each fi is L-smooth, and each Fi is M -smooth. That is, for any
z,w ∈ Rd1+d2 ,

(i) ∥Fiz − Fiw∥ ≤ L ∥z −w∥,

(ii) ∥DFiz −DFiw∥ ≤M ∥z −w∥.

It is worth mentioning that the gradient operator Fi arising from a quadratic function fi is M -
smooth with M = 0. Notice also that, by the finite-sum structure F = 1

n

∑n
i=1 Fi, it is clear that

Assumption 3.3 implies f being L-smooth and F being M -smooth.

The L-smoothness assumption on the objective functions is standard in the optimization literature,
while the M -smoothness assumption on the saddle gradients may look less standard. This smoothness
assumption on the saddle gradient, in other words the Lipschitz Hessian condition, for analyzing SEG-
FFA stems from the analysis of the flip-flop sampling scheme [46]. In particular, this is needed for
bounding the high-order error terms between the (deterministic) EG and SEG-FFA in Section 5.1.
The existing analysis of flip-flop sampling [46] is limited to quadratic functions that trivially have
0-Lipschitz Hessians (M = 0), so our analysis is a step forward.
Assumption 3.4 (Component Variance). There exist constants ρ ≥ 0 and σ ≥ 0 such that

1

n

n∑
i=1

∥Fiz − Fz∥2 ≤ (ρ ∥Fz∥+ σ)2 ∀z. (4)

For strongly monotone problems, Assumption 3.4 is not explicitly required, because it can be obtained
as a consequence of the preceding assumptions: see Lemma C.9. Nevertheless, for convenience, we
will keep the notations ρ and σ as in (4) for the strongly monotone setting as well.
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In many existing works on stochastic optimization methods for minimax problems, Assumption 3.4
with ρ = 0 is imposed. This uniform bound on the variance simplifies the convergence analyses, but
it is also fairly restrictive especially in the unconstrained settings. Already for bilinear finite-sum
minimax problems f(x,y) = 1

n

∑n
i=1 x

⊤Biy, one can easily check that setting ρ = 0 forces the
matrices Bi to be exactly equal to each other. For machine learning applications, it has been also
reported that the assumption with ρ = 0 often fails to hold [7]. Therefore, allowing the variance to
grow with the gradient Fz makes the assumption much more realistic.

The Lipschitz Hessian condition and the component variance assumption for monotone problems
may still look rather strong. We leave the study on how one can relax such assumptions to prove
upper bounds for convergence rates as an interesting future direction. On the other hand, while our
lower bound results in Theorems 4.1 and 5.6 are derived under those strong assumptions, they still
serve as lower bound results also for larger function classes that do not have those assumptions. In
other words, the value of those results are not limited because of those assumptions being imposed.

4 Shuffling Alone Is Not Enough

Under the settings we have discussed, we study the SEG with shuffling-based sampling schemes.
First we describe the precise methods of our consideration, namely the SEG-RR and SEG-FF.

For k ≥ 0, in the beginning of an epoch, a random permutation τk is sampled from a uniform
distribution over Sn. Then, for n iterations, we use each of the component functions once, in the
order determined by τk. That is, for i = 0, 1, . . . , n− 1 we do

wk
i ← zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 ← zk

i − βkFτk(i+1)w
k
i ,

(5)

for some stepsizes αk and βk. In case of SEG-RR, the epoch is completed here, and we set
zk+1
0 ← zk

n as the initial point for the next epoch.

In case of SEG-FF, we additionally perform n more iterations in the epoch, as proposed in Rajput
et al. [46]. In these additional iterations, the component functions are each used once more, but in the
reverse order. That is, for i = n, n+ 1, . . . , 2n− 1, we do

wk
i ← zk

i − αkFτk(2n−i)z
k
i ,

zk
i+1 ← zk

i − βkFτk(2n−i)w
k
i .

(6)

Then we set zk+1
0 ← zk

2n as the initial point for the next epoch. The full pseudocode of these methods
can be found in Appendix A.

When F is strongly monotone, it is possible to show that both SEG-RR and SEG-FF indeed provide
speed-up over SEG-US. The well-known rate of SEG-US under strong monotonicity of F is Θ(1/T),
where T is the total number of iterations [6, 20]. Translating this rate to our shuffling-based setting,
where there are Θ(n) iterations per epoch, this rate amounts to Θ(1/nK). Recently, Emmanouilidis
et al. [18] have shown that SEG-RR, under the same setting as ours, attains a convergence rate of
Õ(1/nK2), on par with the rate of SGDA-RR [15]. In Appendix F, we also show that SEG-FF attains
a similar rate of convergence.

However, it turns out that the benefit of shuffling does not extend further beyond the strongly monotone
setting. In fact, when F is merely monotone, then in the worst case, SEG-RR and SEG-FF suffers
from nonconvergence, just as in the case of SEG-US.

Theorem 4.1. For n = 2, there exists a minimax problem with f(x, y) = 1
2

∑2
i=1 fi(x, y) having a

monotone F , consisting of L-smooth quadratic fi’s satisfying Assumption 3.4 with (ρ, σ) = (1, 0),
such that SEG-US, SEG-RR and SEG-FF diverge in expectation for any positive stepsizes.

We provide the explicit counterexample and the proof of divergence in Appendix H.1. Note that
Theorem 4.1 and its proof in Appendix H.1 imply that mint=0,...,T E[∥Fzt∥2] = Ω(1) for SEG-US
and mink=0,...,K E[

∥∥Fzk
0

∥∥2] = Ω(1) for SEG-RR and SEG-FF, as summarized in Table 1.
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5 SEG-FFA: SEG with Flip-Flop Anchoring

In this section, we investigate the underlying cause for nonconvergence of SEG-RR and SEG-FF
from the perspective of how accurately they match the convergent EG or PP methods in terms of the
Taylor expansions of updates. We then propose adding a simple anchoring step at the end of each
epoch of SEG-FF. It turns out that adding the anchoring step, which is a step of taking a convex
combination of an iterate with a previously computed iterate, reduces the stochastic noise and leads
to a method with improved convergence properties.

5.1 Design Principle: Second-Order Matching

As observed by [38], the key feature of EG behind its superior convergence properties compared to
GDA is its update rule closely resembling PP, while the “error” of GDA as an approximation of PP is
so large that it hinders convergence. The difference between the updates of EG and PP, in the Taylor
expansion, is as small as O(η3) per iteration, where η is the stepsize. On the other hand, GDA and
PP show a difference of O(η2), and this greater “error” explains why GDA diverges while EG and
PP converge. Of course, EG and PP are not the only two algorithms that converge in the monotone
setting; let us recall the update rule of EG+ method [17], and Taylor-expand it as the following:

z+ := z − η2F (z − η1Fz)

= z − η2Fz + η1η2DF (z)Fz +O(η21η2).
(7)

EG+ is known to converge for unconstrained monotone problems if η1 ≥ η2. When η1 = η2, it
recovers EG and matches PP up to second-order terms.

Based on these observations, we now state our key principle for designing a convergent version of
SEG: second-order matching. We would like to choose proper stepsizes, sampling scheme, and
anchoring scheme so that our without-replacement SEG can deterministically match the update
equation of a convergent algorithm (EG/PP or EG+) up to the O(η2) terms (i.e., second-order terms
in the Taylor expansion), thereby satisfying a small O(η3) approximation error. We show that (a) this
second-order matching can be achieved with flip-flop anchoring, but not solely by permutation-based
sampling such as RR and flip-flop (without anchoring), and (b) second-order matching indeed grants
convergence for monotone problems. In particular, we demonstrate that

1. SEG-RR suffers a poor approximation error of O(η2) as an approximation of EG/EG+.

2. SEG-FF can match EG+ up to second-order terms, but it results in a choice of stepsizes
(η2 = 2η1) that make EG+ diverge (Proposition 5.2).

3. SEG-FFA, the method we propose, matches EG up to second-order terms to get an error of
O(η3) (Proposition 5.3), achieving convergence in monotone problems (Theorem 5.4).

To this end, let us consider a general form of SEG that incorporates any arbitrary sampling scheme.
More precisely, in the k-th “epoch” consisted of N iterations, the components are chosen in the order
of T k

0 ,T
k
1 , · · · ,T k

N−1, where T k
i ∈ {F1, . . . ,Fn} for each i. For our purpose, we assume that N is

some multiple of n (e.g., N = n for SEG-RR, N = 2n for SEG-FF). Then, given α and β we
perform SEG updates, for i = 0, 1, . . . , N − 1,

wk
i ← zk

i − αT k
i z

k
i ,

zk
i+1 ← zk

i − βT k
i w

k
i .

(8)

5.1.1 Necessity of Flip-Flop Sampling

The general method in (8) that sets the initial point for the next epoch as zk+1
0 ← zk

N satisfies the
following property.

Proposition 5.1. Suppose that Assumption 3.3 holds. For some ϵkN = o
(
(α+ β)2

)
, it holds that

zk+1
0 = zk

0 − β

N−1∑
j=0

T k
j z

k
0 + αβ

N−1∑
j=0

DT k
j (z

k
0 )T

k
j z

k
0 + β2

∑
i<j

DT k
j (z

k
0 )T

k
i z

k
0 + ϵkN . (9)
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See Appendix D.1 for the proof. To make (7) and (9) match up to the second-order, both the equations

η2
n

n∑
j=1

Fiz
k
0 = β

N−1∑
j=0

T k
j z

k
0 and (10)

η1η2
n2

( n∑
j=1

DFj(z
k
0 )Fjz

k
0 +

∑
i ̸=j

DFj(z
k
0 )Fiz

k
0

)
= αβ

N−1∑
j=0

DT k
j (z

k
0 )T

k
j z

k
0 + β2

∑
i<j

DT k
j (z

k
0 )T

k
i z

k
0

(11)

must hold. Clearly, without-replacement sampling will make (10) hold. However, it is easy to
check that random reshuffling falls short of making (11) hold. This is because, if RR is used, then
T k
0 ,T

k
1 , . . . ,T

k
n−1 is nothing but a reordering of F1, . . . ,Fn into Fτ(1), . . . ,Fτ(n), so the RHS of

(11) can only contain terms DFτ(j)(z
k
0 )Fτ(i)z

k
0 with i ≤ j. This observation motivates the use of

flip-flop sampling, because choosing T k
i = T k

2n−1−i lets all the required terms DFj(z
k
0 )Fiz

k
0 to

appear in the RHS of (11).

5.1.2 Designing SEG-FFA

Flip-flop does resolve the aforesaid issue, but still another complication remains for plain SEG-FF.
Proposition 5.2. Suppose we use flip-flop sampling (without anchoring). In order to make (10) and
(11) hold, we must choose β = η1/n and α = β/2. However, this leads to η2 = 2η1, which is the set
of parameters that fails to make EG+ converge.

For the proof, see Appendix D.2. This shows that a modification is necessary to develop a stochastic
method that achieves second-order matching to convergent EG/EG+ methods.

We thus propose to add an anchoring step:

zk+1
0 ← 1

2

(
zk
N + zk

0

)
, (12)

after finishing the N updates (8), instead of zk+1
0 ← zk

N . This is our Stochastic ExtraGradient
with Flip-Flop Anchoring (SEG-FFA) method, named after the design of combining the flip-flop
sampling scheme and the anchoring step. We note that this idea of taking a convex combination
has originally appeared in the Krasnosel’skiı̆-Mann iteration [30, 33], and also under the name of
Lookahead methods [12, 43]. This slightly differs from the more widely used Halpern iteration [23]
based anchoring (cf. [54]), which would have used the initial point z0

0 instead of zk
0 in (12).

This anchoring step changes (9) accordingly, and essentially amounts to dividing the right-hand sides
of (10) and (11) each by 2 (see Appendix D for the detailed derivations). We show that choosing
α = β/2 in fact leads to the second-order matching to EG, i.e., EG+ with η1 = η2.
Proposition 5.3. Suppose that Assumptions 3.3 and 3.4 hold. Then, for βk = η and αk = βk/2,
SEG-FFA becomes an approximation of EG with error at most O(η3). In other words, we achieve∥∥zk

0 − ηnF (zk
0 − ηnFzk

0 )− zk+1
0

∥∥ = O(η3).

In other words, adding the anchoring step allows us to get a method that well approximates the
convergent EG with an error as small as O(η3). For a more in-depth discussion, see Appendix E.

5.2 Convergence Analysis of SEG-FFA

As a result of the second-order matching, we obtain SEG-FFA, a stochastic method that has an error
of O(η3) as an approximation of EG. Achieving this order of magnitude for the approximation error
turns out to be the key to the exact convergence to an optimum under the monotone setting.
Theorem 5.4. Suppose that F is (star-)monotone, Assumptions 3.2, 3.3, and 3.4 hold, and we are
running SEG-FFA. Then, for any K ≥ 1, by choosing the stepsizes sufficiently small and decaying
as βk = O(1/k1/3 log k) and αk = βk/2, the iterates generated by SEG-FFA achieves the bound

min
k=0,1,...,K

E
∥∥Fzk

0

∥∥2 = O
(
(logK)2

K1/3

)
.

8



For the full statement of the theorem and its proof, see Appendix G. We note that, although
Theorem 5.4, and also Theorem 5.5 below, are stated specifically for SEG-FFA, our analyses
show that both theorems can be applied to any method that achieves the second-order matching in
terms of Proposition 5.3.

The reduced error also shows a gain in the rate of convergence under the strongly monotone setting.
This aligns with the intuition that error hinders convergence, hence having a smaller error is beneficial.
Theorem 5.5. Suppose that F is µ-strongly monotone with µ > 0 and Assumption 3.3 holds. Then,
there exists a choice of η > 0 such that, when SEG-FFA is run for K epochs with constant stepsizes
βk = η and αk = η/2, for some constant ω independent of η, the iterates generated by SEG-FFA
achieves the bound

E
∥∥zK

0 − z∗∥∥2 ≤ exp

(
−1

2
µωnK

)∥∥z0
0 − z∗∥∥2 +O((log(n1/4K)

)4
nK4

)
.

Theorem 5.5 actually stems from a unified analysis that encompasses all the shuffling-based SEG
methods introduced in this paper, including SEG-RR and SEG-FF. See Appendix F for the details.

Notice the exponent 4 of the number of epochs K in the convergence rate, which is twice as large as
the exponent 2 of SGDA-RR and SEG-RR. In fact, this gain in the rate of convergence turns out to
be fundamental. As we show in the following theorem, the theoretical lower bounds of convergence
for SGDA-RR and SEG-RR with constant stepsize are both Ω(1/nK3). This exhibits that there is a
provable gap between those methods and SEG-FFA, which attains Õ(1/nK4).
Theorem 5.6. Suppose n ≥ 2. For both SGDA-RR with constant stepsize αk = α > 0 and
SEG-RR with constant stepsize αk = α > 0, βk = β > 0, there exists a µ-strongly monotone
minimax problem f(z) = 1

n

∑n
i=1 fi(z) with µ > 0 such that regardless of stepsizes, we have

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

Lσ2

µ3nK3

)
if K > L/µ.

Proof. The full statement and the proof are presented in Appendix H.3.

6 Experiments

We consider randomly generated quadratic problems of the form

min
x∈Rdx

max
y∈Rdy

1

n

n∑
i=1

[
x
y

]⊤[
Ai Bi

B⊤
i −Ci

][
x
y

]
− t⊤i

[
x
y

]
. (13)

In particular, we sample the random components so that the full objective is either monotone or
strongly monotone, respectively, while each of the components may be nonmonotone. For the exact
descriptions on how we constructed the problems, see Appendix I.1.

Monotone Case We ran the experiment on 5 random instances of (13) with the stepsizes scheduled
as ηk = η0/(1+k/10)0.34 where η0 = min{0.01, 1

L} for SEG-FFA, and αk = βk = ηk for SEG-US,
SEG-RR, and SEG-FF. The exponent 0.34 is to ensure a sufficient decay rate required by
Theorem 5.4, and the convergence of SEG-FFA under such a stepsize scheduling is validated in
Remark G.5. The value of η0 is, however, a heuristically determined small number. The results of
the geometric mean over the 5 runs are plotted in Figure 1. As expected by our theory, SEG-FFA
successfully shows convergence, while all of SEG-FF, SEG-RR, and SEG-US diverge in the
long run.

Strongly monotone case Along with the variants of SEG, we also compare the performances of
SGDA-RR and SGDA-US. We ran the experiment on 5 random instances of (13) with stepsizes
ηk = 0.001, and the results are plotted in Figure 1. Additional results obtained from using other
stepsizes can be found in Appendix I.4. We again observe an agreement between the empirical results
and our theory; SEG-FFA eventually finds the point with the smallest gradient norm among the
methods that are considered.

Further additional experiments and ablation studies we have conducted can be found in Appendix I.
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Figure 1: Experimental results on the (left) monotone and (right) strongly monotone examples,
comparing the variants of SEG. For a fair comparison, we take the number of passes over the full
dataset as the abscissae. In other words, we plot ∥Fz

t/2
0 ∥2

/∥Fz0
0∥

2 for SEG-FFA and SEG-FF, as
they pass through the whole dataset twice every epoch, and ∥Fzt

0∥
2
/∥Fz0

0∥
2 for the other methods, as

they pass once every epoch.

7 Conclusion

We proposed SEG-FFA, a new stochastic variant of EG that uses flip-flop sampling and anchoring.
While being a minimal modification from the vanilla SEG, SEG-FFA attains the crucial “second-
order matching” property to the deterministic EG, leading to a two-fold improved convergence. On
one hand, SEG-FFA reaches an optimum in the monotone setting, unlike many baseline methods
such as SEG-US, SEG-RR, and SEG-FF that diverge. Moreover, in the strongly monotone setting,
SEG-FFA shows a faster convergence with a provable gap from the other methods.

An interesting future direction would be to extend our work to more general nonconvex-nonconcave
problems, further exploring the potentials of the second-order matching technique. It would also be
appealing to further study whether it is possible to devise a new method that achieves second-order
(or higher) matching without the anchoring step, potentially enhancing our understanding of the
effectiveness of the matching technique.
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A Pseudocode of the Algorithms

We present the pseudocode of the algorithms we consider in this paper in Algorithms 2, 3 and 4, with
the pseudocode of the with-replacement stochastic methods in Algorithm 1.

Algorithm 1 SEG-US / SGDA-US

Input: The number of components n; stepsize sequences {αt}t≥0 and {βt}t≥0

Initialize: z0 ∈ Rd1+d2

for t = 0, 1, . . . do
sample i(t) uniformly from {1, . . . , n}
if SGDA-US then
zt+1 ← zt − αtFi(t)zt

else if SEG-US then
wt ← zt − αtFi(t)zt
zt+1 ← zt − βtFi(t)wt

end if
end for

Algorithm 2 SEG-RR / SGDA-RR

Input: The number of components n; stepsize sequences {αk}k≥0 and {βk}k≥0

Initialize: z0
0 ∈ Rd1+d2

for k = 0, 1, . . . do
sample τk uniformly from Sn
for i = 0 to n− 1 do

if SGDA-RR then
zk
i+1 ← zk

i − αkFτk(i+1)z
k
i

else if SEG-RR then
wk

i ← zk
i − αkFτk(i+1)z

k
i

zk
i+1 ← zk

i − βkFτk(i+1)w
k
i

end if
end for
zk+1
0 ← zk

n
end for

Algorithm 3 SEG-FF

Input: The number of components n; stepsize sequences {αk}k≥0 and {βk}k≥0

Initialize: z0
0 ∈ Rd1+d2

for k = 0, 1, . . . do
sample τk uniformly from Sn
for i = 0 to n− 1 do
wk

i ← zk
i − αkFτk(i+1)z

k
i

zk
i+1 ← zk

i − βkFτk(i+1)w
k
i

end for
for i = n to 2n− 1 do

wk
i ← zk

i − αkFτk(2n−i)z
k
i

zk
i+1 ← zk

i − βkFτk(2n−i)w
k
i

end for
zk+1
0 ← zk

2n
end for
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Algorithm 4 SEG-FFA

Input: The number of components n; stepsize sequences {ηk}k≥0

Initialize: z0
0 ∈ Rd1+d2

for k = 0, 1, . . . do
sample τk uniformly from Sn
for i = 0 to n− 1 do
wk

i ← zk
i −

ηk

2 Fτk(i+1)z
k
i

zk
i+1 ← zk

i − ηkFτk(i+1)w
k
i

end for
for i = n to 2n− 1 do
wk

i ← zk
i −

ηk

2 Fτk(2n−i)z
k
i

zk
i+1 ← zk

i − ηkFτk(2n−i)w
k
i

end for
zk+1
0 ← zk

0+zk
2n

2
end for

B Further Details and Discussions on the Related Works

B.1 A Summary of the Limitations of the Existing Works in the Monotone Setting

In Table 2, we have summarized the settings considered in each of the previous works on stochastic
variants of EG discussed in Section 2, and compare them with our settings. Please note that we focus
on the monotone F setting in the table. Entries that are worth further discussions are marked, with
the corresponding explanations below.

Table 2: Comparison of the underlying settings between ours and the existing works.
same

sample?
required

batch size
bounded
domain?

uniform
gradient variance?

monotone
components?

Ours ✓ constantly 1 ✗ ✗ ✗
Cai et al. [9]* N/A increasing ✗ ✓ ✗

Choudhury et al. [14]* N/A increasing ✗ ✗ ✗
Diakonikolas et al. [17] ✗ increasing‡ ✗ ✓ ✗

Gorbunov et al. [20] ✓ increasing‡ ✗ ✗ (star-)✓†

✗ increasing‡ ✗ ✓ ✗

Hsieh et al. [25]§ ✗ constant ✗ ✗ ✗
Juditsky et al. [27] ✗ constant ✓ ✓ ✗

Mishchenko et al. [36] ✓ constant ✓¶ ✗¶ ✓
Pethick et al. [42] ✗ constant ✗ ✓ ✗

(*) The methods proposed in these works are not stochastic variants of EG in a strict sense. The
method introduced by Cai et al. [9] is rather a hybrid of EG and the Halpern iteration [23], while
the method by Choudhury et al. [14] is a stochastic version of the so-called optimistic gradient
method [44]. Hence, determining whether these methods fall into the category of same-sample
methods or not is unnecessary. Nonetheless, as these works focus on solving a similar problem to
ours, we include them as references.

(†) Under the assumptions that Gorbunov et al. [20] make in their paper, one can show that each of
the components must necessarily be (star-)monotone when the full F is (star-)monotone. For further
explanations on why this is the case, see the following Appendix B.2.

(‡) Yet, to be precise, what Gorbunov et al. [20] have shown in the monotone case is that SEG-US
can find an optimal solution if we increase the batch size each iteration. If the batch size is fixed as a
constant, then they were only able to show that the iterates will be bounded in the (star-)monotone
setting. In particular, they did not provide a guarantee that the iterates will be necessarily convergent.

In fact, as we demonstrate with an explicit counterexample in Appendix H.2, if we do not increase
the batch size each iteration, then it is possible to show that SEG-US in the worst case will never
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converge to an optimal point. This nonconvergence result in fact holds for any SEG-US whose
extrapolation and update stepsizes differ by a constant factor. Hence, it not only applies to [20], but
also to [17].

(§) Hsieh et al. [25] show that independent-sample SEG-US converges for stepsizes αt, βt decaying
at certain different rates, but gives no convergence rates.

(¶) Mishchenko et al. [36] assume a uniformly bounded gradient variance in the strongly monotone
case. In the monotone case, the bound they derived depends on the supremum of the gradient variance
over the domain that is under consideration. Hence, in the monotone case, either the domain has to
be (implicitly) bounded, or the uniform gradient variance assumption should be imposed.

B.2 On the Assumptions Made by Gorbunov et al. [20]

We would like to first clarify that in [20], the requirement to increase the batch size is utilized only in
the monotone setting: see, e.g., Corollary E.4 therein.

Gorbunov et al. [20] use a generalized notion of µ-strong monotonicity, namely the µ-quasi strong
monotonicity, which requires the operator F to satisfy

⟨Fz, z − z∗⟩ ≥ µ ∥z − z∗∥2 . (14)

In the notion of µ-quasi strong monotonicity they also allow µ ≤ 0. In particular, if (14) holds
with µ = 0, then F is called a star-monotone operator. In Appendix G.1 we further discuss on
star-monotone operators.

Meanwhile, let us further elaborate on why in the (star-)monotone setting, the assumptions made by
the authors of [20] lead to each component being star-monotone. In their work the authors require, as
equation (10) therein, that

1

n

∑
i:µi≥0

µi +
4

n

∑
i:µi<0

µi ≥ 0. (15)

Observe that this amounts to

µ :=
1

n

n∑
i=1

µi ≥ −
3

n

∑
i:µi<0

µi =
3

n

∑
i:µi<0

|µi| . (16)

However, if any of µi is strictly negative, then the rightmost sum in (16) becomes strictly positive,
hence cannot be less than or equal to µ if µ = 0. Therefore, the only possible case is when the
rightmost sum is an empty sum. In other words, (15) can hold with µ = 0 only when µi ≥ 0 for all i,
so that each Fi is star-monotone. We would like to remind the readers that our analyses, on the other
hand, do not have any restrictions on the individual components.

B.3 Finite Sum Structure vs. General Stochastic Setting

The works mentioned in Section 2 usually assume that we have access to a stochastic oracle that
returns a stochastic estimator of F . Indeed, having a finite sum structure is a special case of having a
stochastic oracle, as each Fi can be seen as an estimator of F . One might then ask whether assuming
the finite sum structure can help the works mentioned in Section 2 overcome the mentioned limitations.
We strongly believe that this is not the case. Recall Theorem 4.1, where we have constructed an
explicit counterexample that SEG-US, SEG-RR, and SEG-FF all diverge. Because the set of
problems with a finite sum structure is a subset of the set of problems with a stochastic oracle, the
(counter-)example in Theorem 4.1 also works as an example that displays the nonconvergence of
SEG-US, SEG-RR, and SEG-FF in the general stochastic setting. That is, a variant of SEG that
only modifies the stepsizes and/or the sampling scheme into a without-replacement based one will
suffer from nonconvergence, due to the counterexample in Theorem 4.1. It is also true that there are
some methods that cannot exactly be classified as one of SEG-US, SEG-RR, or SEG-FF, but this
counterexample demonstrates that, unless explicitly proven otherwise, there is not a good reason to
believe that the existing convergence analyses will be easily extended beyond the assumptions they
are each based on.
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B.4 On the Claimed Convergence of SEG-RR in the Monotone Setting by Emmanouilidis
et al. [18]

Recently, a paper focusing on the study of SEG-RR [18] has been published. As we have briefly
introduced in Table 1 with a discussion in Section 4, the authors have established a convergence rate
Õ(1/nK2) of SEG-RR in the strongly monotone setting, using an independent analysis of ours.

On the other hand, the authors of [18] furthermore claim that SEG-RR is capable of finding an
optimum in the monotone setting, which is seemingly contradictory to our analyses. We assert that
this is not the case, as their proof, at least in their AISTATS 2024 version, seems to have a flaw.

In establishing equation (85) in [18], the authors claim that the inequality

1

K

K∑
k=0

1

Gk
E
[
∥F (zk

0 )∥
]
≥ E

∥∥∥∥∥F
(

1

K

K∑
k=0

1

Gk
zk
0

)∥∥∥∥∥
2


holds by Jensen’s inequality, where G ≥ 6 is a fixed constant. However, Jensen’s inequality cannot
be applied here, because not only ∥F (·)∥2 is possibly nonconvex, but also the weights multiplied
to the iterates, namely 1/KGk, do not sum up to 1. Hence, the “averaged” iterate is not in the form
of a convex combination. So, even if ∥F (·)∥2 was convex, if we were to properly apply Jensen’s
inequality, at least the averaged iterate should be multiplied by 1∑K

k=0 1/Gk instead of 1
K . Yet then,

the sum
∑K

k=0
1
Gk ≤ G

G−1 is bounded above by a constant independent of K, and the right hand side
of the equation right above (85) in [18] shall no longer be divided by K. Therefore, their claimed
convergence is unobtainable.

We would also like to remark that the linear decay rate of 1/Gk can make the series∑∞
k=0

1
Gk E[∥F (zk

0 )∥2] convergent even when E[∥F (zk
0 )∥2] grows exponentially as k → ∞, as

long as its rate of exponential growth is less than G. In particular, once their (85) is corrected, there
is no contradiction with our divergence result in Theorem 4.1.

C Useful Lemmata

Lemma C.1 (Polarization identity). For any two vectors a and b, it holds that

2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2

= ∥a+ b∥2 − ∥a∥2 − ∥b∥2 .

Proof. The identities are immediate from ∥a± b∥2 = ∥a∥2 ± 2 ⟨a, b⟩+ ∥b∥2.

Lemma C.2 (Weighted AM-GM inequality). For any γ > 0 and two vectors a and b in Rd,

2 |⟨a, b⟩| ≤ γ ∥a∥2 + 1

γ
∥b∥2 .

Proof. Notice that

2 |⟨a, b⟩| ≤ 2 (|a1b1|+ · · ·+ |adbd|)

≤
(
γa21 +

b21
γ

)
+ · · ·+

(
γa2d +

b2d
γ

)
= γ ∥a∥2 + 1

γ
∥b∥2 .

Lemma C.3 (Young’s inequality). For any γ > 0 and two vectors a and b,

∥a+ b∥2 ≤ (1 + γ) ∥a∥2 +
(
1 +

1

γ

)
∥b∥2 . (17)

In particular, as a special case where γ = 1, it holds that

∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 . (18)

Proof. The left hand side of (17) is ∥a∥2 +2 ⟨a, b⟩+ ∥b∥2. Applying Lemma C.2 then suffices.
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Lemma C.4. For any two vectors a and b, it holds that

∥a− b∥2 ≥ 1

2
∥a∥2 − ∥b∥2 .

Proof. From (18) it follows that

∥a∥2 = ∥(a− b) + b∥2 ≤ 2 ∥a− b∥2 + 2 ∥b∥2 .

Simply rearranging the terms gives us the result.

Lemma C.5 (Generalized Young’s inequality). For any nonnegative scalars p1, . . . , pn such that
p1 + · · ·+ pn = 1 and vectors a1, . . . ,an, it holds that

∥p1a1 + · · ·+ pnan∥2 ≤ p1 ∥a1∥2 + · · ·+ pn ∥an∥2 .

In particular, setting p1 = · · · = pn = 1
n and multiplying both sides by n2 yields

∥a1 + · · ·+ an∥2 ≤ n
(
∥a1∥2 + · · ·+ ∥an∥2

)
.

Proof. We use induction on n. If n = 1 then p1 = 1, so there is nothing to show. For the inductive
step, suppose that the statement holds for some n ≥ 1. Say we are given nonnegative scalars
p1, . . . , pn+1 such that p1 + · · ·+ pn+1 = 1, and vectors a1, . . . ,an+1. For the moment, suppose
that pn+1 < 1. Applying Lemma C.3 with γ = pn+1

1−pn+1
and using the induction hypothesis, we get

∥p1a1 + · · ·+ pnan + pn+1an+1∥2

≤ 1

1− pn+1
∥p1a1 + · · ·+ pnan∥2 +

1

pn+1
∥pn+1an+1∥2

= (1− pn+1)

∥∥∥∥ p1
1− pn+1

a1 + · · ·+
pn

1− pn+1
an

∥∥∥∥2 + pn+1 ∥an+1∥2

≤ p1 ∥a1∥2 + · · ·+ pn ∥an∥2 + pn+1 ∥an+1∥2

where in last line we used that p1 + · · · + pn = 1 − pn+1. Now, if pn+1 = 1, then we must have
p1 = · · · = pn = 0, so the claimed inequality holds in this case also. This completes the proof.

Lemma C.6. Suppose that F is M -smooth. Then for any z and w it holds that

∥Fw − Fz −DF (z)(w − z)∥ ≤ M

2
∥w − z∥2 .

Proof. The proof closely follows the arguments used for Lemma 1.2.4 in [40], by replacing the
gradients therein by saddle gradients. The fundamental theorem of calculus with the M -smoothness
of F gives us

∥Fw − Fz −DF (z)(w − z)∥ =
∥∥∥∥∫ 1

0

DF (z + t(w − z)) dt (w − z)−DF (z)(w − z)

∥∥∥∥
≤ ∥w − z∥

∫ 1

0

∥DF (z + t(w − z))−DF (z)∥ dt

≤ ∥w − z∥
∫ 1

0

Mt ∥w − z∥ dt

=
M

2
∥w − z∥2 .

Lemma C.7. Let F be a µ-strongly monotone operator. Let z∗ be a point such that Fz∗ = 0, and
let η > 0. Then, for any point z in the domain of F and w := z − ηFz, it holds that

⟨Fw,w − z∗⟩ ≥ µ

2
∥z − z∗∥2 − η2µ ∥Fz∥2 .
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Proof. By the µ-strong monotonicity of F and Lemma C.4 it holds that

⟨Fw,w − z∗⟩ ≥ µ ∥w − z∗∥2

= µ ∥z − ηFz − z∗∥2

≥ µ

2
∥z − z∗∥2 − µ ∥ηFz∥2

so we are done.

The following lemma generalizes Lemma 3.2 in [21] shown for monotone F to µ-strongly
monotone F with µ > 0.
Lemma C.8. Let F be a µ-strongly monotone L-Lipschitz operator, and let z be any point in the
domain of F . Then for any 0 < η < 1

L
√
2

, it holds that

∥F (z − ηF (z − ηFz))∥2 ≤
(
1− 2ηµ

5

)
∥Fz∥2 .

Proof. For convenience, let us define w := z − ηFz and z+ := z − ηF (z − ηFz) = z − ηFw.
Because F is µ-strongly monotone, we have

µ
∥∥z+ − z

∥∥2 ≤ 〈Fz+ − Fz, z+ − z
〉

= η
〈
Fz − Fz+,Fw

〉
.

(19)

Also from the µ-strong monotonicity of F we get

µ
∥∥w − z+

∥∥2 ≤ 〈Fw − Fz+,w − z+
〉

= η
〈
Fw − Fz+,Fw − Fz

〉
.

(20)

Meanwhile, from the L-Lipschitzness of F we have∥∥Fw − Fz+
∥∥2 ≤ η2L2 ∥Fw − Fz∥2 . (21)

Summing up the inequalities (19), (20), (21) with weights 2/η, 1/2η, and 3/2 respectively, we obtain

µ

η

(
2
∥∥z+ − z

∥∥2 + 1

2

∥∥w − z+
∥∥2)+

3

2

∥∥Fw − Fz+
∥∥2

≤ 2
〈
Fz − Fz+,Fw

〉
+

1

2

〈
Fw − Fz+,Fw − Fz

〉
+

3η2L2

2
∥Fw − Fz∥2 .

From this inequality, we can exactly follow the arguments used in the proof of Lemma D.4 in [21] to
derive that

µ

η

(
2
∥∥z+ − z

∥∥2 + 1

2

∥∥w − z+
∥∥2)+

∥∥Fz+
∥∥2 ≤ ∥Fz∥2 . (22)

Meanwhile, Young’s inequality (Lemma C.3) tells us that

η2 ∥Fz∥2 = ∥w − z∥2 ≤
(
1 +

1

4

)∥∥w − z+
∥∥2 + (1 + 4)

∥∥z+ − z
∥∥2 .

Using this to lower bound the left hand side of (22), we get that

2ηµ

5
∥Fz∥2 +

∥∥Fz+
∥∥2 ≤ ∥Fz∥2 .

It remains to simply rearrange the terms.

Lemma C.9. Suppose that Fi is L-Lipschitz for all i = 1, . . . , n, and that F := 1
n

∑n
i=1 Fi is

µ-strongly monotone with µ > 0. Define κ := L/µ and σ2
∗ := 1

n

∑n
i=1 ∥Fiz

∗∥2. Then, for any
z ∈ Rd1+d2 it holds that

1

n

n∑
i=1

∥Fiz − Fz∥2 ≤
(√

3(1 + κ2) ∥Fz∥+
√
3σ∗

)2
.
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Proof. For any z,w ∈ Rd1+d2 , as Assumption 3.1 holds with µ > 0, by Cauchy-Schwarz inequality

µ ∥z −w∥2 ≤ ⟨Fz − Fw, z −w⟩ ≤ ∥Fz − Fw∥ ∥z −w∥ ,

and as a consequence, ∥z −w∥ ≤ 1/µ ∥Fz − Fw∥. Thus, for any i ∈ [n], it holds that

∥Fiz − Fz∥2 ≤ 3 ∥Fiz − Fiz
∗∥2 + 3 ∥Fz − Fz∗∥2 + 3 ∥Fiz

∗ − Fz∗∥2

≤ 3L2 ∥z − z∗∥2 + 3 ∥Fz − Fz∗∥2 + 3 ∥Fiz
∗∥2

≤ 3

(
L2

µ2
+ 1

)
∥Fz − Fz∗∥2 + 3 ∥Fiz

∗∥2

= 3(1 + κ2) ∥Fz∥2 + 3 ∥Fiz
∗∥2 .

Summing this inequality over i = 1, . . . , n and then dividing by n leads to

1

n

n∑
i=1

∥Fiz − Fz∥2 ≤ 3(1 + κ2) ∥Fz∥2 + 3

n

n∑
i=1

∥Fiz
∗∥2

= 3(1 + κ2) ∥Fz∥2 + 3σ2
∗.

The conclusion follows from the basic inequality a2+b2 ≤ (a+b)2 which holds for any a, b ≥ 0.

Lemma C.10 (Nonexpansiveness of the EG operator). Let F be a monotone L-Lipschitz operator,
and z∗ be a point such that Fz∗ = 0. Then, for any point z in the domain of F and η > 0,

∥z − ηF (z − ηFz)− z∗∥2 ≤ ∥z − z∗∥2 − η2(1− η2L2) ∥Fz∥2 .

Proof. This classical result dates back to the original paper on EG by Korpelevich [29]. Here, for
completeness, we replicate the proof using our notations.

Expanding the left hand side of the inequality stated, we obtain

∥z − ηF (z − ηFz)− z∗∥2 = ∥z − z∗∥2 − 2 ⟨ηF (z − ηFz), z − z∗⟩+ ∥ηF (z − ηFz)∥2

= ∥z − z∗∥2 − 2η ⟨F (z − ηFz), z − ηFz − z∗⟩
− 2η2 ⟨F (z − ηFz),Fz⟩+ η2 ∥F (z − ηFz)∥2 .

(23)
For the first inner product term, we have

−2η ⟨F (z − ηFz), z − ηFz − z∗⟩ ≤ 0

because F is monotone. For the second inner product term, we use the polarization identity
(Lemma C.1) and the L-Lipschitzness of F to get

−2 ⟨F (z − ηFz),Fz⟩ = ∥F (z − ηFz)− Fz∥2 − ∥F (z − ηFz)∥2 − ∥Fz∥2

≤ L2 ∥−ηFz∥2 − ∥F (z − ηFz)∥2 − ∥Fz∥2

= −(1− η2L2) ∥Fz∥2 − ∥F (z − ηFz)∥2 .

Applying these two bounds on (23) completes the proof.

Lemma C.11. Let {ak}k≥0, {bk}k≥0, {ck}k≥0, and {dk}k≥0 be sequences of nonnegative numbers
satisfying the recurrence relation

bk ≤ (1 + ak)dk − dk+1 + ck ∀k ≥ 0.

Then for any k ≥ 0 it holds that

dk+1 +

k∑
j=0

bj ≤

 k∏
j=0

(1 + aj)

d0 +

k∑
j=0

cj

 .
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Proof. Because ak ≥ 0, it suffices to show that
k∑

j=0

(bj − cj)

k∏
i=j+1

(1 + ai) ≤ −dk+1 + d0

k∏
j=0

(1 + aj), (24)

as this implies
k∑

j=0

bj ≤
k∑

j=0

bj

k∏
i=j+1

(1 + ai)

≤

 k∑
j=0

cj

k∏
i=j+1

(1 + ai)

− dk+1 + d0

k∏
j=0

(1 + aj)

≤ −dk+1 +

d0 +

k∑
j=0

ck

 k∏
j=0

(1 + aj).

So, we show that (24) holds, by induction on k. For the base case k = 0, the recurrence relation tells
us that

b0 − c0 ≤ (1 + a0)d0 − d1
which is exactly (24) when k = 0. Now suppose that (24) holds for some k ≥ 0. Using the induction
hypothesis and the recurrence relation we get

k+1∑
j=0

(bj − cj)

k+1∏
i=j+1

(1 + ai) = bk+1 − ck+1 + (1 + ak+1)

 k∑
j=0

(bj − cj)

k∏
i=j+1

(1 + ai)


≤ bk+1 − ck+1 − (1 + ak+1)dk+1 + d0

k+1∏
j=0

(1 + aj)

≤ −dk+2 + d0

k+1∏
j=0

(1 + aj).

This shows that (24) holds also for k + 1, and we are done.

The subsequent lemma is technical, but it can be derived from elementary calculus.
Lemma C.12. For any K ≥ 1,

K+2∑
k=2

1

k2/3(log k)2
≥ (K + 3)1/3

(log(K + 3))2
.

Proof. Consider the function h(x) := 1
x2/3(log x)2

over the interval [2,K + 3]. As

h′(x) = − 2

x5/3(log x)3
− 2

3x5/3(log x)2
< 0,

h is decreasing. Hence, an upper Riemann sum becomes an upper bound for the integral, so we have
K+2∑
k=2

1

k2/3(log k)2
≥
∫ K+3

2

1

x2/3(log x)2
dx. (25)

Now consider a function g : [1,∞)→ R, defined as

g(y) :=

∫ y+3

2

1

x2/3(log x)2
dx− (y + 3)1/3

(log(y + 3))2
.

Differentiating, we get

g′(y) =
2

(y + 3)2/3(log(y + 3))3
+

2

3(y + 3)2/3(log(y + 3))2
> 0
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whenever y ≥ 1. That is, g is increasing on y ≥ 1. We then show that g(1) ≥ 0. To this end, let us
begin with observing that

h′′(x) =
6

x8/3(log x)4
+

14

3x8/3(log x)3
+

10

9x8/3(log x)2
> 0,

from which we get that h is convex. In particular, it holds that∫ 3

2

h(x) dx ≥
∫ 3

2

h′
(
5

2

)(
x− 5

2

)
+ h

(
5

2

)
dx = h

(
5

2

)
,

and similarly,
∫ 4

3
h(x) dx ≥ h(7/2). Thus we indeed have

g(1) =

∫ 4

2

h(x) dx− 41/3

(log 4)2

≥ 1

(5/2)2/3(log(5/2))2
+

1

(7/2)2/3(log(7/2))2
− 41/3

(log 4)2
≥ 0.

Recalling that g is increasing, we have g(K) ≥ g(1) ≥ 0 for all K ≥ 1. This, with (25), implies that

K+2∑
k=2

1

k2/3(log k)2
≥
∫ K+3

2

1

x2/3(log x)2
dx ≥ (K + 3)1/3

(log(K + 3))2

holds whenever K ≥ 1, which is exactly the claimed.

D Missing Proofs for Section 5

D.1 Unravelling the Recurrence of the Generalized SEG in (8) and (12)

In Section 5.1, we considered the method where, in a single epoch (hence omitting all superscripts
that are used to denote the epoch number for convenience), the iterates are generated following the
recurrence

wi = zi − αTizi
zi+1 = zi − βTiwi

(26)

for i = 0, 1, . . . , N − 1, where each Ti are sampled from the set {F1, . . . ,Fn}, and an additional
anchoring step

z♯ :=
zN + θz0
1 + θ

(27)

is performed so that z♯ is used as the initial point of the next epoch. Notice that (27) is a generalized
anchoring step that incorporates all the settings we are considering, as the versions of SEG where
anchoring is not used correspond to taking θ = 0, and the anchoring step (12) that is used in SEG-
FFA corresponds to taking θ = 1. In this section we would like to prove the following statement
regarding this update rule.
Proposition D.1 (Proposition 5.1). It holds that

z♯ = z0−
β

1 + θ

N−1∑
j=0

Tjz0+
αβ

1 + θ

N−1∑
j=0

DTj(z0)Tjz0+
β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0+
ϵN
1 + θ

(28)
for some ϵN = o

(
(α+ β)2

)
.

Proof. Equation (28) immediately follows from Proposition D.2, with (30) giving us the precise
definition of ϵN . To show that ϵN = o

(
(α+ β)2

)
, we begin with noting that both ∥zj − z0∥ and

∥wj − z0∥ are of O(α+ β), because both zj and wj are obtained from z0 by performing at most
j updates following (26). Thus, the first term in the right hand side of (30) is of O(β(α+ β)2) by
Lemma C.6, and the remaining terms are of O((α + β)3) by the L-smoothness of the operators
F1, . . . ,Fn.
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Proposition D.2. For any i = 0, 1, . . . , N , it holds that

zi = z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi (29)

where we denote

ϵi :=− β

i−1∑
j=0

(
Tjwj − Tjz0 −DTj(z0)(wj − z0)

)

+ αβ

i−1∑
j=0

DTj(z0)(Tjzj − Tjz0) + β2
i−1∑
j=0

DTj(z0)

j−1∑
k=0

(Tkwk − Tkz0).

(30)

Proof. We use induction on i. There is nothing to show for the base case i = 0. Now, suppose that
(29) and (30) hold for some i < N , and write

zi+1 = zi − βTiwi

= zi − βTiz0 − βDTi(z0)(wi − z0)− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
.

Here, notice that by the update rule we have

wi = zi − αTizi

= z0 − β

i−1∑
j=0

Tjwj − αTizi.

Using this identity and the induction hypothesis we get

zi+1 = z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi

− βTiz0 − βDTi(z0)

−β i−1∑
j=0

Tjwj − αTizi


− β

(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi

− βTiz0 + β2DTi(z0)

i−1∑
j=0

Tjz0 + β2DTi(z0)

i−1∑
j=0

(Tjwj − Tjz0)

+ αβDTi(z0)(Tizi − Tiz0) + αβDTi(z0)Tiz0

− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i∑
j=0

Tjz0 + αβ

i∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i

DTj(z0)Tkz0 + ϵi

+ β2DTi(z0)

i−1∑
j=0

(Tjwj − Tjz0) + αβDTi(z0)(Tizi − Tiz0)

− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i∑
j=0

Tjz0 + αβ

i∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i

DTj(z0)Tkz0 + ϵi+1

which asserts that (29) also holds for i+ 1.
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D.2 Insufficiency of Only Using Flip-Flop Sampling

Here we prove the following.
Proposition D.3 (Proposition 5.2). Suppose we use flip-flop sampling only. In order to make (10)
and (11) hold, we must choose β = η1/n and α = β/2. However, this leads to η2 = 2η1, which is the
set of parameters that fails to make EG+ converge.

Proof. Suppose that we have already established the upcoming Lemma D.4. Then, we can see by
setting θ = 0 in the result of Lemma D.4 that for (11) to hold, the following system of equations
should be satisfied: 

η1η2 = 2n2β2,

η1η2 = n2(2αβ + β2),

η2 = 2nβ.

Solving this system of equations, we get η1 = nβ, η2 = 2nβ, and α = β/2.

For the latter part of the statement on the divergence of EG+ with η2 = 2η1, consider the (1 + 1)-
dimensional bilinear problem

min
x

max
y

xy

whose unique optimum is z∗ = (0, 0). A simple computation shows that

Fz =

[
0 1
−1 0

]
z.

Consequently, for any η > 0, the update rule of EG+ with η1 = η and η2 = 2η amounts to

z+ = z − 2ηF (z − ηFz) =

[
1− 2η2 −2η

2η 1− 2η2

]
z.

It follows that ∥∥z+ − z∗∥∥2 =

∥∥∥∥[1− 2η2 −2η
2η 1− 2η2

] [
x
y

]∥∥∥∥2
=
(
(1− 2η2)x− 2ηy

)2
+
(
2ηx+ (1− 2η2)y

)2
= (1 + 4η4)(x2 + y2)

= (1 + 4η4) ∥z − z∗∥2 .

Therefore, the distance from the optimal solution strictly increases every iterate.

It remains to actually prove Lemma D.4.
Lemma D.4. When flip-flop sampling is used with the generalized anchoring step (27), it holds that

αβ

1 + θ

N−1∑
j=0

DTj(z0)Tjz0 +
β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0

=
2αβ + β2

1 + θ

n∑
j=1

DFj(z0)Fjz0 +
2β2

1 + θ

∑
i ̸=j

DFj(z0)Fiz0.

Proof. As we are using flip-flop sampling, we have N = 2n, and it is clear that

N−1∑
j=0

DTj(z0)Tjz0 = 2

n∑
j=1

DFj(z0)Fjz0.

For the second term, as Ti = T2n−1−i, we have∑
0≤i<j≤2n−1

DTj(z0)Tiz0 =
∑

0≤i<j≤n−1

DTj(z0)Tiz0 +
∑

n≤i<j≤2n−1

DTj(z0)Tiz0
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+

n−1∑
i=0

2n−2−i∑
j=n

DTj(z0)Tiz0 +

n−1∑
i=0

2n−1∑
j=2n−i

DTj(z0)Tiz0

+

n−1∑
i=0

DT2n−1−i(z0)Tiz0

=
∑

0≤i<j≤n−1

DTj(z0)Tiz0 +
∑

0≤j<i≤n−1

DTj(z0)Tiz0

+

n−1∑
i=0

n−1∑
j=i+1

DTj(z0)Tiz0 +

n−1∑
i=0

i−1∑
j=0

DTj(z0)Tiz0

+

n−1∑
i=0

DTi(z0)Tiz0

= 2
∑

0≤i<j≤n−1

DTj(z0)Tiz0 + 2
∑

0≤j<i≤n−1

DTj(z0)Tiz0

+
n−1∑
i=0

DTi(z0)Tiz0.

The claimed identity can be obtained by taking the weighted sum of the two results.

E Within-Epoch Error Analysis for Upper Bounds

All the upper bounds for SEG-RR, SEG-FF, and SEG-FFA in this paper are established by following
the two steps below.

The first step is to decompose the cumulative updates made within an epoch by using the method into
a sum of an exact EG update and a within-epoch error term, which we denote by rk. In particular,
we show that the error term rk occurring from any of SEG-RR, SEG-FF, and SEG-FFA can be
expressed in a specific unified form (described in Theorem E.1). This will be the main focus of this
section.

The second step is establishing a convergence rate that can be applied to any method whose update
can be decomposed into a sum of an exact EG update and an error term that is of the specific unified
form mentioned above. By doing so, the convergence rates of SEG-RR, SEG-FF, and SEG-FFA
will automatically follow as special cases of the general convergence result. This step will be dealt in
Appendices F and G.

To this end, for any of SEG-RR, SEG-FF, and SEG-FFA, let us decompose the cumulative updates
made within an epoch into a sum of an exact EG update and a within-epoch error term rk, as

zk+1
0 = zk

0 − ηknF (zk
0 − ηknFzk

0 ) + rk.

The quality of the method will depend on how small the “noise” term rk is, as the noise will in
general hinder the convergence. As mentioned above, it turns out that, regardless of the method that
is in use, the noise term can be bounded in a unified format, as follows.

Theorem E.1. Suppose that Assumptions 3.3 and 3.4 hold. Then, for each of SEG-RR, SEG-FF,
and SEG-FFA, there exists a choice of stepsizes that makes the following hold: for an exponent a
that depends on the method, there exist constants C1, D1, V1, C2, D2, and V2, all independent of ηk
and n, such that the error term rk satisfies a deterministic bound∥∥rk∥∥ ≤ ηakn

aC1
∥∥Fzk

0

∥∥+ ηakn
aD1

∥∥Fzk
0

∥∥2 + ηakn
aV1 (31)

and a bound that holds on expectation

E
[
∥r∥2

∣∣∣zk
0

]
≤ η2ak n2aC2

∥∥Fzk
0

∥∥2 + η2ak n2aD2
∥∥Fzk

0

∥∥4 + η2ak n2a−1V2. (32)

Furthermore, the exponent is a = 2 for SEG-RR and SEG-FF, and a = 3 for SEG-FFA.
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In other words, SEG-FFA has an error that is an order of magnitude smaller than other methods.
Thus, it is now intuitively clear that SEG-FFA should have an advantage in the convergence. The
proof of Theorem E.1 is quite long and technical, so we defer it to Appendix E.2.

Within the remaining of this section only, although it is an abuse of notation, for convenience we will
write Fi to denote the saddle gradient of the component function chosen in the ith iteration. More
precisely, for indices i = 0, 1, . . . , n− 1 we denote Fτ(i+1) by Fi. Similarly, in cases of considering
SEG-FF or SEG-FFA, for i ≥ n we denote Fτ(2n−i) by Fi. Also, we omit the superscripts and
subscripts denoting the epoch number k unless strictly necessary, as all the iterates that we consider
will be from the same epoch.

Let us reformulate the update rule (8) into

wi = zi − ξηFizi,

zi+1 = zi − ηFiwi.
(33)

Note that ξ = 1/2 for SEG-FFA, and ξ = 1 for SEG-RR and SEG-FF.

E.1 Auxiliary Lemmata

For j = 1, . . . , 2n we define

gj :=

j−1∑
i=0

Fiz0, (34)

δj := ∥gj − jFz0∥ , (35)

Σj :=

j∑
i=1

δi, (36)

Ψj :=

j∑
i=1

δ2i . (37)

We set Σ0 = Ψ0 = 0, as they are empty sums. Notice that δj is a random variable that depends on
the permutation τ .

Meanwhile, by triangle inequality it is immediate that

∥gj∥ ≤ j ∥Fz0∥+ δj ,

and by Young’s inequality it holds that

∥gj∥2 ≤ 2j2 ∥Fz0∥2 + 2δ2j .

Lemma E.2. For any index i ≥ 1, it holds that

∥zi − z0∥ ≤ η (1 + ξηL) ∥gi∥

+ η2L
(
2ξ + 2ξηL+ ξ2η2L2

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ ,
(38)

∥wi − z0∥ ≤ ξη ∥gi+1∥+ ξη
(
(1− ξ−1) + 2ηL+ ξη2L2

)
∥gi∥

+ η(1 + ξηL)
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ .

(39)

Proof. By the fundamental theorem of calculus for line integrals and the update rule (33), we have

wi = zi − ξηFizi
= zi − ξηFiz0 − ξη(Fizi − Fiz0)

= zi − ξηFiz0 − ξη

∫ 1

0

DFi(z0 + t(zi − z0)) dt (zi − z0)
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and similarly
zi+1 = zi − ηFiwi

= zi − ηFiz0 − η(Fiwi − Fiz0)

= zi − ηFiz0 − η

∫ 1

0

DFi(z0 + t(wi − z0)) dt (wi − z0).

Hence, by defining

Ai :=

∫ 1

0

DFi(z0 + t(zi − z0)) dt

Bi :=

∫ 1

0

DFi(z0 + t(wi − z0)) dt

(40)

the update rule can be rewritten using these quantities as
wi = zi − ξηFiz0 − ξηAi(zi − z0), (41)

zi+1 = zi − ηFiz0 − ηBi(wi − z0). (42)
Subtracting z0 from both sides of (41) we get

wi − z0 = zi − z0 − ξηFiz0 − ξηAi(zi − z0)

= (I − ξηAi) (zi − z0)− ξηFiz0,
(43)

and plugging this into (42) gives us
zi+1 − z0 = zi − z0 − ηFiz0 − ηBi(wi − z0)

= zi − z0 − ηFiz0 − ηBi ((I − ξηAi) (zi − z0)− ξηFiz0)

=
(
I − ηBi + ξη2BiAi

)
(zi − z0)− η (I − ξηBi)Fiz0.

(44)

For convenience let us define
Ci := I − ηBi + ξη2BiAi,

Pi,ℓ := CiCi−1 . . .Cℓ+2Cℓ+1

and Pi,i := I as it denotes an empty product. Observe that for any j we have

∥Cj∥ =
∥∥I − ηBi + ξη2BiAi

∥∥ ≤ 1 + ηL+ ξη2L2. (45)
Also note that for any ℓ it holds that

(I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ)

= (I − ξηBℓ+1)−
(
I − ηBℓ+1 + ξη2Bℓ+1Aℓ+1

)
(I − ξηBℓ)

= ξη(Bℓ+1 +Bℓ)− ξη2Bℓ+1(Aℓ+1 +Bℓ) + ξ2η3Bℓ+1Aℓ+1Bℓ

and hence
∥(I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ)∥ ≤ 2ξηL+ 2ξη2L2 + ξ2η3L3. (46)

Unravelling the recurrence relation (44) we get
zi+1 − z0 = Ci(zi − z0)− η (I − ξηBi)Fiz0

= Ci

(
Ci−1(zi−1 − z0)− η (I − ξηBi−1)Fi−1z0

)
− η (I − ξηBi)Fiz0

= Pi,i−2(zi−1 − z0)− η

i∑
ℓ=i−1

Pi,ℓ (I − ξηBℓ)Fℓz0

= Pi,i−2

(
Ci−2(zi−2 − z0)− η (I − ξηBi−2)Fi−2z0

)
− η

i∑
ℓ=i−1

Pi,ℓ (I − ξηBℓ)Fℓz0

= Pi,i−3(zi−2 − z0)− η

i∑
ℓ=i−2

Pi,ℓ (I − ξηBℓ)Fℓz0

...

= Pi,−1(z0 − z0)− η

i∑
ℓ=0

Pi,ℓ (I − ξηBℓ)Fℓz0
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and therefore

zi − z0 = −η
i−1∑
ℓ=0

Pi−1,ℓ (I − ξηBℓ)Fℓz0. (47)

In order to compute the bound for ∥zi − z0∥, we use summation by parts to get

1

η
(z0 − zi) =

i−1∑
ℓ=0

Pi−1,ℓ (I − ξηBℓ)Fℓz0

= Pi−1,i−1 (I − ξηBi−1)

i−1∑
ℓ=0

Fℓz0

−
i−2∑
ℓ=0

(Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ))

ℓ∑
j=0

Fℓz0

= (I − ξηBi−1) gi −
i−2∑
ℓ=0

(Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)) gℓ+1.

Here, observe that

Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)

= Ci−1Ci−2 . . .Cℓ+2 ((I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ))

so by using (45) and (46) we obtain

∥Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)∥

≤
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) (
1 + ηL+ ξη2L2

)i−ℓ−2
.

Therefore, we conclude that

∥zi − z0∥ ≤ η (1 + ξηL) ∥gi∥+η2L
(
2ξ + 2ξηL+ ξ2η2L2

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ .

Meanwhile, substituting (47) back to (43) gives us

wi − z0 = −ξηFiz0 − η

i−1∑
ℓ=0

(I − ξηAi)Pi−1,ℓ (I − ξηBℓ)Fℓz0. (48)

For ℓ < i let us define

Ri,ℓ := ξ−1 (I − ξηAi)Pi−1,ℓ (I − ξηBℓ)

= ξ−1 (I − ξηAi)Ci−1Ci−2 . . .Cℓ+2Cℓ+1 (I − ξηBℓ)

and for convenience Ri,i := I so that (48) can be rewritten as

1

ξη
(z0 −wi) =

i∑
ℓ=0

Ri,ℓFℓz0. (49)

Applying summation by parts on the above, we obtain

1

ξη
(z0 −wi) = Ri,i

i∑
ℓ=0

Fℓz0 −
i−1∑
ℓ=0

(Ri,ℓ+1 −Ri,ℓ)

ℓ∑
j=0

Fjz0

= gi+1 −
i−1∑
ℓ=0

(Ri,ℓ+1 −Ri,ℓ)gℓ+1

and as a consequence we get

1

ξη
∥wi − z0∥ ≤ ∥gi+1∥+

i−1∑
ℓ=0

∥Ri,ℓ+1 −Ri,ℓ∥ ∥gℓ+1∥ . (50)

31



It remains to bound ∥Ri,ℓ+1 −Ri,ℓ∥. For the special case where ℓ = i − 1, a direct computation
leads to

Ri,i −Ri,i−1 = I − ξ−1 (I − ξηAi) (I − ξηBi−1)

= (1− ξ−1)I + ηAi + ηBi−1 − ξη2AiBi−1

and thus we have
∥Ri,i −Ri,i−1∥ ≤ (1− ξ−1) + 2ηL+ ξη2L2. (51)

For the other cases; that is, when ℓ < i− 1, we have

Ri,ℓ+1 −Ri,ℓ = ξ−1 (I − ξηAi)Ci−1Ci−2 . . .Cℓ+2 ((I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ))

so by using (45) and (46) we get the bound

∥Ri,ℓ+1 −Ri,ℓ∥ ≤ ξ−1(1 + ξηL)
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) (
1 + ηL+ ξη2L2

)i−ℓ−2
. (52)

Applying (51) and (52) on (50) gives the bound for ∥wi − z0∥.

Proposition E.3. Suppose that SEG-FFA is used, η < 1
nL , and let ν := 1 + 1

2n . Then for any
i = 1, . . . , 2n− 1 we have the bounds

∥zi − z0∥ ≤
(
ηνi+

ην2e2i(i− 1)

2n

)
∥Fz0∥+ ηνδi + η2Lν2e2Σi−1,

∥wi − z0∥ ≤
η

2

(
1 + 2ν2i+

ν3e2i(i− 1)

n

)
∥Fz0∥+

η

2
δi+1 +

η(2ν2 − 1)

2
δi + η2Lν3e2Σi−1,

∥wi − z0∥2 ≤
(
3η2(i+ 1)2

2
+

3η2(2ν2 − 1)2i2

2
+

η2ν6e4i(i− 1)2(2i− 1)

n2

)
∥Fz0∥2

+
3η2

2
δ2i+1 +

3η2(2ν2 − 1)2

2
δ2i +

6η2ν6e4(i− 1)

n2
Ψi−1.

Proof. Using elementary calculus one can show that x 7→ (1 + 1
x + 1

2x2 )
x increases on x > 0 and is

bounded above by e. Hence for all 0 ≤ ℓ < i ≤ 2n we have(
1 + ηL+

η2L2

2

)i−ℓ−2

≤
(
1 +

1

n
+

1

2n2

)2n

≤ e2.

Applying the definitions (35) and (36) on (38) and then substituting ξ = 1/2 we get

∥zi − z0∥ ≤ η

(
1 +

ηL

2

)
∥gi∥+ η2L

(
1 +

ηL

2

)2 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

≤ ην (i ∥Fz0∥+ δi) + η2Lν2
i−2∑
ℓ=0

e2 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ ην (i ∥Fz0∥+ δi) +
ην2e2i(i− 1)

2n
∥Fz0∥+ η2Lν2e2Σi−1.

Similarly, from (39) we get

∥wi − z0∥ ≤
η

2
∥gi+1∥+

η

2

(
1 + 2ηL+

η2L2

2

)
∥gi∥

+ η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

≤ η

2
((i+ 1) ∥Fz0∥+ δi+1) +

η

2

(
1 +

2

n
+

1

2n2

)
(i ∥Fz0∥+ δi)

+ η2Lν3
i−2∑
ℓ=0

e2 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ η

2
(1 + 2iν2) ∥Fz0∥+

ην3e2i(i− 1)

2n
∥Fz0∥+

η

2
δi+1 +

η(2ν2 − 1)

2
δi + η2Lν3e2Σi−1.
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Finally, applying generalized Young’s inequality on (39) we get

∥wi − z0∥2 ≤
3η2

4
∥gi+1∥2 +

3η2

4

(
1 + 2ηL+

η2L2

2

)2

∥gi∥2

+ 3

(
η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

)2

.

Using generalized Young’s inequality once more on the last term gives us

3

(
η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

)2

≤ 3

(
ην3e2

n

i−2∑
ℓ=0

∥gℓ+1∥

)2

≤ 3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2 .

Plugging this back yields

∥wi − z0∥2 ≤
3η2

4
∥gi+1∥2 +

3η2

4

(
1 + 2ηL+

η2L2

2

)2

∥gi∥2 +
3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2

≤ 3η2

4

(
2(i+ 1)2 ∥Fz0∥2 + 2δ2i+1

)
+

3η2

4

(
2ν2 − 1

)2 (
2i2 ∥Fz0∥2 + 2δ2i

)
+

3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

(
2(ℓ+ 1)2 ∥Fz0∥2 + 2δ2ℓ+1

)
≤ 3η2

2

(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

3η2

2

(
2ν2 − 1

)2 (
i2 ∥Fz0∥2 + δ2i

)
+

η2ν6e4i(i− 1)2(2i− 1)

n2
∥Fz0∥2 +

6η2ν6e4(i− 1)

n2
Ψi−1.

Now the claimed inequalities can be obtained simply by rearranging the terms appropriately.

Proposition E.4. Suppose that either SEG-RR or SEG-FF is used with α = β = η < 1
nL , and let

ν̃ := 1 + 1
n . Then for any i = 1, . . . , 2n− 1 we have the bounds

∥zi − z0∥ ≤
(
ην̃i+

16ην̃2i(i− 1)

n

)
∥Fz0∥+ ην̃δi + 32η2Lν̃2Σi−1,

∥wi − z0∥ ≤ η

(
1 + iν̃2 +

16ν̃3i(i− 1)

n

)
∥Fz0∥+ ηδi+1 + η(ν̃2 − 1)δi + 32η2Lν̃3Σi−1,

∥wi − z0∥2 ≤

(
6η2(i+ 1)2 +

6η2 (1 + ν̃)
2
i2

n2
+

1024η2ν̃6i(i− 1)2(2i− 1)

n2

)
∥Fz0∥2

+ 6η2δ2i+1 +
6η2 (1 + ν̃)

2

n2
δ2i +

6144η2ν̃6(i− 1)

n2
Ψi−1.

Proof. One can verify that x 7→ (1 + 4
3x )

x increases on x ≥ 3 and is bounded above by e4/3 < 4.
With noting that (1 + 1

1 + 1
12 )

1 = 3 < 4, (1 + 1
2 + 1

22 )
2 = 49

16 < 4, and 1 + 1
x + 1

x2 ≤ 1 + 4
3x

whenever x ≥ 3, we see that for all 0 ≤ ℓ < i ≤ 2n it holds that

(
1 + ηL+ η2L2

)i−ℓ−2 ≤
(
1 +

1

n
+

1

n2

)2n

≤ 42 = 16.

Also, we have

2 + 2ηL+ η2L2 ≤ 2 +
2

n
+

1

n2
= 1 + ν̃2 ≤ 2ν̃2.
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Applying the definitions (35) and (36) on (38) and then substituting ξ = 1 we get

∥zi − z0∥ ≤ η (1 + ηL) ∥gi∥+ η2L
(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥

≤ ην̃ (i ∥Fz0∥+ δi) + 2η2Lν̃2
i−2∑
ℓ=0

16 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ ην̃ (i ∥Fz0∥+ δi) +
16ην̃2i(i− 1)

n
∥Fz0∥+ 32η2Lν̃2Σi−1.

Similarly, from (39) we get

∥wi − z0∥ ≤ η ∥gi+1∥+ η2L (2 + ηL) ∥gi∥

+ η2L(1 + ηL)
(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥ .

≤ η ((i+ 1) ∥Fz0∥+ δi+1) +
η

n

(
2 +

1

n

)
(i ∥Fz0∥+ δi)

+ η2Lν̃
(
2ν̃2
) i−2∑
ℓ=0

16 (ℓ ∥Fz0∥+ δℓ) .

≤ η(1 + iν̃2) ∥Fz0∥+
16ην̃3i(i− 1)

n
∥Fz0∥+ ηδi+1 + η(ν̃2 − 1)δi + 32η2Lν̃3Σi−1.

Finally, applying Young’s inequality on (39) we get

∥wi − z0∥2 ≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥

+ 3

(
η2L(1 + ηL)

(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥

)2

≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥+ 3

(
2ην̃3

n

i−2∑
ℓ=0

16 ∥gℓ+1∥

)2

.

Using Young’s inequality once more on the last term gives us

3

(
32ην̃3

n

i−2∑
ℓ=0

∥gℓ+1∥

)2

≤ 3072η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2 .

Plugging this back yields

∥wi − z0∥2 ≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥+

3072η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2

≤ 6η2
(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

6η2 (2 + ηL)
2

n2

(
i2 ∥Fz0∥2 + δ2i

)
+

6144η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

(
(ℓ+ 1)2 ∥Fz0∥2 + δ2ℓ+1

)
≤ 6η2

(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

6η2 (1 + ν̃)
2

n2

(
i2 ∥Fz0∥2 + δ2i

)
+

1024η2ν̃6i(i− 1)2(2i− 1)

n2
∥Fz0∥2 +

6144η2ν̃6(i− 1)

n2
Ψi−1.

Now the claimed inequalities can be obtained simply by rearranging the terms appropriately.

Let us now derive the upper bounds for the quantities related to δj and Σj , defined in (35) and (36)
respectively, using the upper bound of the variance of saddle gradients (4).
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Lemma E.5. For any j = 1, . . . , 2n, it deterministically holds that

δj ≤ n(ρ ∥Fz0∥+ σ). (53)

Proof. For any set of indices J ⊂ {0, . . . , n− 1}, by Assumption 3.4 it holds that∑
i∈J
∥Fiz0 − Fz0∥2 ≤

n−1∑
i=0

∥Fiz0 − Fz0∥2 ≤ n(ρ ∥Fz0∥+ σ)2.

Hence, for any j = 1, . . . , n we have

∥gj − jFz0∥2 =

∥∥∥∥∥
j−1∑
i=0

Fiz0 − jFz0

∥∥∥∥∥
2

≤ j

j−1∑
i=0

∥Fiz0 − Fz0∥2

≤ jn(ρ ∥Fz0∥+ σ)2

≤ n2(ρ ∥Fz0∥+ σ)2,

and for any j = n+ 1, . . . , 2n we have

∥gj − jFz0∥2 =

∥∥∥∥∥
n−1∑
i=0

Fiz0 +

j−1∑
i=n

Fiz0 − jFz0

∥∥∥∥∥
2

=

∥∥∥∥∥
j−1∑
i=n

Fiz0 − (j − n)Fz0

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2

≤ (j − n)

j−1∑
i=0

∥Fiz0 − Fz0∥2

≤ n2(ρ ∥Fz0∥+ σ)2.

(54)

Therefore, in any case we have

∥gj − jFz0∥2 ≤ n2(ρ ∥Fz0∥+ σ)2.

Taking square roots on both sides gives us the desired bound.

Lemma E.6. For any j = 1, . . . , 2n, it holds that

Eτ [δ
2
j ] ≤

n(ρ ∥Fz0∥+ σ)2

2
, (55)

Proof. If n = 1 then the left hand side is always 0, so there is nothing to show. So, we may assume
that n ≥ 2. Then, for any j = 1, . . . , n, using Lemma 1 in [35] we obtain

Eτ

∥∥∥∥1j gj − Fz0

∥∥∥∥2 ≤ n− j

j(n− 1)
(ρ ∥Fz0∥+ σ)2.

Multiplying both sides by j2 and applying AM-GM inequality leads to

Eτ ∥gj − jFz0∥2 ≤
j(n− j)

n− 1
(ρ ∥Fz0∥+ σ)2 ≤ n2

4(n− 1)
(ρ ∥Fz0∥+ σ)2 ≤ n

2
(ρ ∥Fz0∥+ σ)2.

Meanwhile, for j = n+ 1, . . . , 2n, following the first few steps in (54) we get

∥gj − jFz0∥2 =

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2
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Here, once more applying Lemma 1 of [35], we get

Eτ ∥gj − jFz0∥2 = Eτ

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2

= (j − n)2 Eτ

∥∥∥∥∥∥ 1

j − n

n−1∑
i=2n−j

Fiz0 − Fz0

∥∥∥∥∥∥
2

≤ (j − n)2 · n− (j − n)

(j − n)(n− 1)
(ρ ∥Fz0∥+ σ)2

≤ (j − n)(2n− j)

n− 1
(ρ ∥Fz0∥+ σ)2.

Using AM-GM inequality on the last line gives us

Eτ ∥gj − jFz0∥2 ≤
(j − n)(2n− j)

n− 1
(ρ ∥Fz0∥+σ)2 ≤ n2

4(n− 1)
(ρ ∥Fz0∥+σ)2 ≤ n

2
(ρ ∥Fz0∥+σ)2.

Thus, for any case, we have (55).

Lemma E.7. For any k, ℓ ∈ {0, 1, . . . , 2n}, it holds that

Eτ [ΣkΣℓ] ≤
kℓn(ρ ∥Fz0∥+ σ)2

2
. (56)

Proof. Expanding the product ΣkΣℓ and writing in terms of δ, we get

ΣkΣℓ =

(
k∑

i=1

δi

) ℓ∑
j=1

δj

 =

k∑
i=1

ℓ∑
j=1

δiδj

≤
k∑

i=1

ℓ∑
j=1

δ2i + δ2j
2

where the last line follows from the AM-GM inequality. Taking the expectation with respect to τ and
using the bound from Lemma E.6, we obtain

Eτ [ΣkΣℓ] ≤
1

2

k∑
i=1

ℓ∑
j=1

(
Eτ [δ

2
i ] + Eτ [δ

2
j ]
)

≤ 1

2

k∑
i=1

ℓ∑
j=1

(
n(ρ ∥Fz0∥+ σ)2

2
+

n(ρ ∥Fz0∥+ σ)2

2

)

=
kℓn(ρ ∥Fz0∥+ σ)2

2

which is exactly the claimed.

Lemma E.8. For any k, ℓ ∈ {0, 1, . . . , 2n}, it holds that

Eτ

( k∑
i=1

Σi

) ℓ∑
j=1

Σj

 ≤ k(k + 1)ℓ(ℓ+ 1)n(ρ ∥Fz0∥+ σ)2

8
. (57)
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Proof. Expanding the product in the left hand side of (57) and applying (56), we get

Eτ

( k∑
i=1

Σi

) ℓ∑
j=1

Σj

 = Eτ

 k∑
i=1

ℓ∑
j=1

ΣiΣj

 =

k∑
i=1

ℓ∑
j=1

Eτ [ΣiΣj ]

≤
k∑

i=1

ℓ∑
j=1

ijn(ρ ∥Fz0∥+ σ)2

2

≤ k(k + 1)ℓ(ℓ+ 1)n(ρ ∥Fz0∥+ σ)2

8
.

E.2 Upper Bounds of the Within-Epoch Errors

The full proof of Theorem E.1 is quite long and technical, so we divide it into several parts. First we
show that (31) and (32) holds with a = 3 when SEG-FFA is in use. Then we show that Theorem E.1
also holds for SEG-FF in Appendix E.2.3, and for SEG-RR in Appendix E.2.4.

Throughout the remaining of this section, we always assume that the variance of the saddle gradients
satisfies (4).

E.2.1 Proof of Equation (31) for SEG-FFA

In this section we prove the following.
Theorem E.9. Say we use SEG-FFA. Then, as long as the stepsize used in an epoch satisfies η < 1

nL ,
it holds that

∥r∥ ≤ η3n3C1A ∥Fz0∥+ η3n3D1A ∥Fz0∥2 + η3n3V1A (58)
for constants

C1A := L2

(
1

2

(
1 +

2e2

3

)
+

6 + e2

3
+ 15ρ

)
, (59)

D1A := M

(
83

4
+

24e4

5
+ ρ2

(
243

16
+ 27e4

))
, (60)

V1A := Mσ2

(
243

16
+ 27e4

)
+ 15L2σ. (61)

We first list the intermediate results. The actual proof of Theorem E.9 is in page 43, at the end of this
section.
Proposition E.10. For using SEG-FFA, the within-epoch update z♯ as given by (12) satisfies

z♯ = z0 − nηF (z0 − nηFz0) + r

where we denote

r := nηF (z0 − nηFz0)− nηFz0 + n2η2DF (z0)Fz0 (62a)

− η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)
(62b)

+
η2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) (62c)

+
η2

2

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0). (62d)

Proof. Setting α = η/2, β = η, and θ = 1 in (28), we get

z♯ = z0 −
η

2

2n−1∑
j=0

Fjz0 +
η2

4

2n−1∑
j=0

DFj(z0)Fjz0 +
η2

2

∑
0≤k<j≤2n−1

DFj(z0)Fkz0 +
1

2
ϵ2n (63)
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where ϵ2n is defined as in (30). Recall that Fi = F2n−1−i for all i = 0, 1, . . . , 2n− 1, and moreover,∑n−1
i=0 Fi =

∑2n−1
i=n Fi = nF . Thus, the first sum in the above is equal to 2nFz0, and the second

sum is equal to 2
∑n−1

j=0 DFj(z0)Fjz0. For the last sum, observe that∑
0≤k<j≤2n−1

DFj(z0)Fkz0 =
∑

0≤k<j≤n−1

DFj(z0)Fkz0 +
∑

n≤k<j≤2n−1

DFj(z0)Fkz0

+
∑

0≤k≤n−1
n≤j≤2n−1

DFj(z0)Fkz0

=
∑

0≤k<j≤n−1

DFj(z0)Fkz0 +
∑

n−1≥k>j≥0

DFj(z0)Fkz0

+
∑

0≤k≤n−1
n−1≥j≥0

DFj(z0)Fkz0

= 2
∑
k ̸=j

DFj(z0)Fkz0 +

n−1∑
j=0

DFj(z0)Fjz0.

Hence, (63) is equivalent to

z♯ = z0 − nηFz0 +
η2

2

n−1∑
j=0

DFj(z0)Fjz0 +
η2

2

∑
0≤k<j≤2n−1

DFj(z0)Fkz0 +
1

2
ϵ2n

= z0 − nηFz0 + η2
n−1∑
j=0

DFj(z0)Fjz0 + η2
∑
k ̸=j

DFj(z0)Fkz0 +
1

2
ϵ2n

= z0 − nηFz0 + η2

n−1∑
j=0

DFj(z0)

n−1∑
j=0

Fjz0

+
1

2
ϵ2n

= z0 − nηFz0 + n2η2DF (z0)Fz0 +
1

2
ϵ2n.

Observing that the terms (62b), (62c), and (62d) add up to 1
2ϵ2n completes the proof.

Proposition E.11. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then the noise term satisfies the
bound

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5

)

+
3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj


+

η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1.

Proof. We bound each line in equation (62). For (62a), we use Lemma C.6 to get∥∥nηF (z0 − nηFz0)− nηFz0 + n2η2DF (z0)Fz0
∥∥ ≤ nηM

2
∥−nηFz0∥2

=
n3η3M

2
∥Fz0∥2 .
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In bounding the remaining three lines we repeatedly use the bounds obtained in Proposition E.3. We
will also use the following bounds, which follows from (33), (35), and Young’s inequality:

∥w0 − z0∥ =
η

2
∥g1∥ ≤

η

2
∥Fz0∥+

η

2
δ1,

∥w0 − z0∥2 =
η2

4
∥g1∥2 ≤

η2

2
∥Fz0∥2 +

η2

2
δ21 .

For (62b), observe that Lemma C.6 gives us

∥Fjwj − Fjz0 −DFj(z0)(wj − z0)∥ ≤
M

2
∥wj − z0∥2 .

Thus, by using the bound obtained in Proposition E.3, we get∥∥∥∥∥∥−η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)∥∥∥∥∥∥
≤ η

2

2n−1∑
j=0

∥Fjwj − Fjz0 −DFj(z0)(wj − z0)∥

≤ ηM

4

2n−1∑
j=0

∥wj − z0∥2

≤ ηM

4

2n−1∑
j=1

(
3η2(j + 1)2

2
+

3η2(2ν2 − 1)2j2

2
+

η2ν6e4j(j − 1)2(2j − 1)

n2

)
∥Fz0∥2

+
ηM

4

2n−1∑
j=1

(
3η2

2
δ2j+1 +

3η2(2ν2 − 1)2

2
δ2j +

6η2ν6e4(j − 1)

n2
Ψj−1

)
+

ηM

4
∥w0 − z0∥2

=
ηM

4

(
η2n(1 + 2n)(1 + 4n)− 3η2

2
+

η2(2ν2 − 1)2n(2n− 1)(4n− 1)

2

+
η2ν6e4(n− 1)(2n− 1)(32n2 − 42n+ 11)

5n

)
∥Fz0∥2

+
3η3M

8
(Ψ2n − δ21) +

3η3M(2ν2 − 1)2

8
Ψ2n−1 +

3η3Mν6e4

2n2

2n−1∑
j=1

(j − 1)Ψj−1

+
ηM

4

(
η2

2
∥Fz0∥2 +

η2

2
δ21

)
≤ η3n3M

(
ν2 + (2ν2 − 1)2 +

16νe4

5

)
∥Fz0∥2

+
3η3M

8
Ψ2n +

3η3M(2ν2 − 1)2

8
Ψ2n−1 +

3η3Mν6e4

2n2

2n−2∑
j=1

jΨj

≤ η3n3M

(
4ν4 +

16νe4

5

)
∥Fz0∥2 +

3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj


where along the derivation we used the inequality

ν5(n− 1)(2n− 1)(32n2 − 42n+ 11) ≤ 64n4

which holds for all n ≥ 1. From now on, we will keep on using similar techniques to reduce the
exponents of ν, without explicitly stating the inequalities used, but recovering the inequalities that
are used should be clear from context.
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For (62c), we use L-smoothness of Fj , and also the fact that it implies ∥DFj(z0)∥ ≤ L, to get

∥∥∥∥∥∥η
2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0)

∥∥∥∥∥∥
≤ η2

4

2n−1∑
j=0

∥DFj(z0)∥ ∥Fjzj − Fjz0∥

≤ η2L2

4

2n−1∑
j=0

∥zj − z0∥

≤ η2L2

4

2n−1∑
j=1

((
ηνj +

ην2e2j(j − 1)

2n

)
∥Fz0∥+ ηνδj + η2Lν2e2Σj−1

)

=
η2L2

4

(
ηνn(2n− 1) +

2ην2e2(n− 1)(2n− 1)

3

)
∥Fz0∥

+
η3L2ν

4
Σ2n−1 +

η4L3ν2e2

4

2n−1∑
j=1

Σj−1

≤ η3n2L2

2

(
1 +

2e2

3

)
∥Fz0∥+

η3L2ν

4
Σ2n−1 +

η4L3ν2e2

4

2n−2∑
j=1

Σj .

By the same logic, each summand in (62d) with j > 0 can be bounded as

∥∥∥∥∥DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥
≤ ∥DFj(z0)∥

j−1∑
k=0

∥Fkwk − Fkz0∥

≤ L2

j−1∑
k=0

∥wk − z0∥

≤ L2
(η
2
∥Fz0∥+

η

2
δ1

)
+ L2

j−1∑
k=1

η

2

(
1 + 2ν2k +

ν3e2k(k − 1)

n

)
∥Fz0∥

+ L2

j−1∑
k=1

(
η

2
δk+1 +

η(2ν2 − 1)

2
δk + η2Lν3e2Σk−1

)
=

ηL2

2
(∥Fz0∥+ δ1) +

ηL2

2

(
j − 1 + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
ηL2

2
(Σj − δ1) +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1

=
ηL2

2

(
j + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
ηL2

2
Σj +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1,
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and when j = 0 the sum with respect to k becomes an empty sum. Thus, (62d) in total satisfies the
bound∥∥∥∥∥∥η

2

2

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥∥
≤ η2

2

2n−1∑
j=0

∥∥∥∥∥DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥
≤ η3L2

4

2n−1∑
j=1

(
j + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
η2

2

2n−1∑
j=1

(
ηL2

2
Σj +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1

)

=
η3L2

4

(
n(2n− 1) +

4ν2n(n− 1)(2n− 1)

3
+

ν3e2(n− 1)(2n− 1)(2n− 3)

3

)
∥Fz0∥

+
η3L2

4

2n−1∑
j=1

Σj +
η3L2(2ν2 − 1)

4

2n−1∑
j=1

Σj−1 +
η4L3ν3e2

2

2n−1∑
j=1

j−1∑
k=1

Σk−1

≤ η3L2

2

(
n2 +

4n3

3
+

2e2n3

3

)
∥Fz0∥

+
η3L2

4

2n−1∑
j=1

Σj +
η3L2(2ν2 − 1)

4

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

2n−1∑
j=k+1

Σk−1

≤ η3n3L2

(
4ν + e2

3

)
∥Fz0∥

+
η3L2

4
Σ2n−1 +

η3L2ν2

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1.

Simply collecting all the inequalities and rearranging the terms leads to the claimed bound.

Before we proceed, let us write

X1 :=
3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj

 , (64)

X2 :=
η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1

(65)

so that the bound on ∥r∥ obtained in Proposition E.11 can be written as

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5

)
+X1 +X2.

(66)
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Theorem E.12. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then the noise term deterministically
satisfies the bound

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3
+ 10νρ

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5
+ ρ2

(
3ν4 + 8ν3e4

))
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)
+ 10νη3n3L2σ.

Proof. From (36), (37), and Lemma E.5, it holds that

Σj =

j∑
i=1

δi ≤ jn(ρ ∥Fz0∥+ σ), (67)

Ψj =

j∑
i=1

δ2i ≤ jn2(ρ ∥Fz0∥+ σ)2. (68)

Plugging the bound for Ψj into (64) we get

X1 ≤
3η3M

8

2n3(ρ ∥Fz0∥+ σ)2 + (2ν2 − 1)2(2n− 1)n2(ρ ∥Fz0∥+ σ)2 + 4ν6e4
2n−2∑
j=1

j2(ρ ∥Fz0∥+ σ)2


=

3η3M

8

((
2n3 + (2ν2 − 1)2(2n− 1)n2

)
+

4ν6e4

3
(n− 1)(2n− 1)(4n− 3)

)
(ρ ∥Fz0∥+ σ)2

≤ 3η3M

8

(
4ν4n3 +

32ν3e4n3

3

)
(ρ ∥Fz0∥+ σ)2

=
η3n3M(ρ ∥Fz0∥+ σ)2

2

(
3ν4 + 8ν3e4

)
.

By Young’s inequality, it holds that

(ρ ∥Fz0∥+ σ)2

2
≤ ρ2 ∥Fz0∥2 + σ2,

from which we get

X1 ≤ η3n3Mρ2 ∥Fz0∥2
(
3ν4 + 8ν3e4

)
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)
. (69)

Meanwhile, plugging the bound for Σj into (65) we get

X2 ≤
η3L2(ν + 1)

4
(2n− 1)n(ρ ∥Fz0∥+ σ) +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

jn(ρ ∥Fz0∥+ σ)

+
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)(k − 1)n(ρ ∥Fz0∥+ σ)

=
η3L2(ν + 1)

4
(2n− 1)n(ρ ∥Fz0∥+ σ) +

η3L2ν2(1 + ηLe2)

2
(n− 1)(2n− 1)n(ρ ∥Fz0∥+ σ)

+
η4L3ν3e2

6

(
−3 + 11n− 12n2 + 4n3

)
n(ρ ∥Fz0∥+ σ)

≤ η3L2(ρ ∥Fz0∥+ σ)

(
n2 + (1 + ηLe2)n3 +

2ηLe2

3
n4

)
≤ η3n3L2(ρ ∥Fz0∥+ σ)

(
1

n
+ 1 +

e2

n
+

2e2

3

)
where in the last line we used that η < 1

nL . Because the inequality

1

n
+ 1 +

e2

n
+

2e2

3
≤ 10ν
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holds for all n ≥ 1, continuing from above we obtain

X2 ≤ 10νη3n3L2(ρ ∥Fz0∥+ σ)

≤ 10νη3n3L2ρ ∥Fz0∥+ 10νη3n3L2σ.
(70)

Rearranging (66) with applying the bounds (69) and (70) gives us the claimed result.

Proof of Theorem E.9. As n ≥ 1, we notice that 1/n ≤ 1 and ν ≤ 3/2 where ν = 1 + 1
2n following

the notation of Theorem E.12. Then the bound (58) is immediate from Theorem E.12.

E.2.2 Proof of Equation (32) for SEG-FFA

In this section, we prove the following.
Theorem E.13. Say we use SEG-FFA. Then, as long as the stepsize used in an epoch satisfies
η < 1

nL , it holds that

E
[
∥r∥2

∣∣∣ z0] ≤ η6n6C2A ∥Fz0∥2 + η6n6D2A ∥Fz0∥4 + η6n5V2A (71)

for constants

C2A := 4L4

((
1

2

(
1 +

2e2

3

)
+

6 + e2

3

)2

+ 36ρ2e4

)
, (72)

D2A := 4M2

((
83

4
+

24e4

5

)2

+ ρ4
(
243

16
+ 27e4

)2
)
, (73)

V2A := 4M2σ4

(
243

16
+ 27e4

)2

+ 144e4L4σ2. (74)

Proof. The bound is then immediate from the following Theorem E.14, as n ≥ 1 implies 1/n ≤ 1
and ν ≤ 3/2 for ν defined in the statement of Theorem E.14.

Theorem E.14. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then, in expectation, the noise term
satisfies the bound

E
[
∥r∥2

∣∣∣ z0] ≤ 4η6n6L4 ∥Fz0∥2
((

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)2

+
36ρ2e4

n

)

+ 4η6n6M2 ∥Fz0∥4
((

1

2
+ 4ν4 +

16νe4

5

)2

+
ρ4
(
3ν4 + 8ν3e4

)2
n

)
+ 4η6n5M2σ4

(
3ν4 + 8ν3e4

)2
+ 144e4η6n5L4σ2.

Proof. Notice that, when conditioned on z0, the only source of randomness included in Ψj is the
random permutation τ selected for the epoch. Hence, we can use Lemma E.6 to get

E [Ψj | z0] = E

[
j∑

i=1

δ2i

∣∣∣∣∣ z0
]
=

j∑
i=1

E
[
δ2i
∣∣ z0] ≤ jn(ρ ∥Fz0∥+ σ)2

2
.

Applying Young’s inequality on (66) we get

∥r∥2 ≤ 4η6n6L4 ∥Fz0∥2
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)2

+ 4η6n6M2 ∥Fz0∥4
(
1

2
+ 4ν4 +

16νe4

5

)2

+ 4X2
1 + 4X2

2 .

(75)

When conditioned on z0, the first two lines are not random quantities. Thus, it suffices to derive the
bounds for E

[
X2

i

∣∣ z0], i = 1, 2.
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Recall that the bound (69) on X1 holds deterministically. Hence, it holds that

E
[
X2

1

∣∣ z0] ≤ E
[
X1

(
η3n3Mρ2 ∥Fz0∥2

(
3ν4 + 8ν3e4

)
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)) ∣∣∣ z0]
= η3n3M

(
3ν4 + 8ν3e4

) (
ρ2 ∥Fz0∥2 + σ2

)
E [X1 | z0] .

Now, to compute E [X1 | z0], we apply the linearity of expectation on (64) to get

E [X1 | z0]

=
3η3M

8

E [Ψ2n | z0] + (2ν2 − 1)2 E [Ψ2n−1 | z0] +
4ν6e4

n2

2n−2∑
j=1

j E [Ψj | z0]


≤ 3η3M

8

n2(ρ ∥Fz0∥+ σ)2 +
(2ν2 − 1)2(2n− 1)n(ρ ∥Fz0∥+ σ)2

2
+

4ν6e4

n2

2n−2∑
j=1

j2n(ρ ∥Fz0∥+ σ)2

2


=

3η3M

8

(
2n2 + (2ν2 − 1)2(2n2 − n)

2
+

2ν6e4(n− 1)(2n− 1)(4n− 3)

3n

)
(ρ ∥Fz0∥+ σ)2

≤ 3η3M

8

(
2ν4n2 +

16ν3e4n2

3

)
(ρ ∥Fz0∥+ σ)2

=
η3n2M(ρ ∥Fz0∥+ σ)2

4

(
3ν4 + 8ν3e4

)
.

Young’s inequality gives us the bound

(ρ ∥Fz0∥+ σ)2

2
≤ ρ2 ∥Fz0∥2 + σ2 (76)

which, with the inequality derived above, leads to

E [X1 | z0] ≤
η3n2M

2

(
3ν4 + 8ν3e4

) (
ρ2 ∥Fz0∥2 + σ2

)
.

As a consequence, with using Young’s inequality once again, we obtain

E
[
X2

1

∣∣ z0] ≤ η6n5M2

2

(
3ν4 + 8ν3e4

)2 (
ρ2 ∥Fz0∥2 + σ2

)2
≤ η6n5M2

(
3ν4 + 8ν3e4

)2 (
ρ4 ∥Fz0∥4 + σ4

)
.

(77)

To get the bound of E
[
X2

2

∣∣ z0], we begin by using

ηLν2(2n− k − 1) ≤
(
1 +

1

2n

)2
2n− k − 1

n

= − k

4n3
− k

n2
− k

n
− 1

4n3
− 1

2n2
+

1

n
+ 2 ≤ 2,

which holds for all 1 ≤ k ≤ 2n− 2, to (65) to obtain

X2 ≤
η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η3L2ν3e2

2

2n−2∑
k=1

2n− k − 1

n
Σk−1

≤ η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj + η3L2νe2
2n−2∑
k=1

Σk−1

≤ η3L2(ν + 1)

4
Σ2n−1 +

(
η3L2ν2(1 + ηLe2)

2
+ η3L2νe2

) 2n−2∑
j=1

Σj

≤ η3L2(ν + 1)

4
Σ2n−1 + 3η3L2e2

2n−2∑
j=1

Σj .
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Then we directly square both sides and expand them to get

X2
2 ≤

η3L2(ν + 1)

4
Σ2n−1 + 3η3L2e2

2n−2∑
j=1

Σj

2

=
η6L4(ν + 1)2

16
Σ2

2n−1 + 9η6L4e4

2n−2∑
j=1

Σj

2

+
3η6L4e2(ν + 1)

2

2n−2∑
j=1

Σ2n−1Σj .

Here, using Lemma E.7 and Lemma E.8 on the right hand side leads to

E
[
X2

2

∣∣ z0] ≤ η6L4(ν + 1)2n(2n− 1)2(ρ ∥Fz0∥+ σ)2

32
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+
3η6L4e2(ν + 1)

2

2n−2∑
j=1

jn(2n− 1)(ρ ∥Fz0∥+ σ)2

2

≤ η6L4(ν + 1)2n(2n− 1)2(ρ ∥Fz0∥+ σ)2

32
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+
3η6L4e2(ν + 1)n(n− 1)(2n− 1)2(ρ ∥Fz0∥+ σ)2

4

≤ η6L4n3(ρ ∥Fz0∥+ σ)2

2
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+ 6η6L4e2n3(n− 1)(ρ ∥Fz0∥+ σ)2

= η6L4

(
n3

2
+

9e4n(2n− 2)2(2n− 1)2

8
+ 6e2n3(n− 1)

)
(ρ ∥Fz0∥+ σ)2

≤ 18e4η6L4n5(ρ ∥Fz0∥+ σ)2.

As a consequence, with using (76) once again, we obtain

E
[
X2

2

∣∣ z0] ≤ 36e4η6L4n5
(
ρ2 ∥Fz0∥2 + σ2

)
. (78)

Taking the conditional expectation on (75), applying the bounds (77) and (78), and then rearranging
the terms leads to the claimed inequality.

E.2.3 Upper Bounds of the Within-Epoch Errors for SEG-FF

Theorem E.15. Say we use SEG-FF with α = β = η/2. Then, as long as the stepsize used in an
epoch satisfies η < 1

nL , it holds that

∥r∥ ≤ η2n2C1F ∥Fz0∥+ η2n2D1F ∥Fz0∥2 + η2n2V1F

E
[
∥r∥2

∣∣∣ z0] ≤ η4n4C2F ∥Fz0∥2 + η4n4D2F ∥Fz0∥4 + η4n3V2F

for constants C1F, D1F, V1F, C2F, D2F, and V2F to be determined later in (81) and (82).

Proof. As we have discussed in Section 5.1, we already know that aiming to achieve O(η3) error
without anchoring is futile. Instead, we show that error of magnitude O(η2) is possible with the
chosen stepsizes.

By Proposition D.2 and Lemma D.4 we have For any i = 0, 1, . . . , N , it holds that

z2n = z0 −
η

2

2n−1∑
j=0

Tjz0 +
η2

4

2n−1∑
j=0

DTj(z0)Tjz0 +
η2

4

∑
0≤k<j≤2n−1

DTj(z0)Tkz0 + ϵ2n

= z0 − η

n−1∑
j=0

Fjz0 +
3η2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i ̸=j

DFj(z0)Fiz0 + ϵ2n

= z0 − ηnFz0 + η2n2DF (z0)Fz0 −
η2

4

n∑
j=1

DFj(z0)Fjz0 −
η2

2

∑
i ̸=j

DFj(z0)Fiz0 + ϵ2n
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where we denote

ϵ2n :=− η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)

+
η2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) +
η2

4

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0).

(79)

Comparing z2n to a point that would have been the result of a deterministic EG update with
stepsize ηn we get

z2n − (z0 − ηnF (z0 − ηnFz0)) = ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵ2n

− η2

4

n∑
j=1

DFj(z0)Fjz0 −
η2

2

∑
i ̸=j

DFj(z0)Fiz0.

Let us define

r̃ := ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵ2n. (80)

Noticing the resemblence between (62) and the equations in (79) and (80), we can repeat the
same reasoning used for Theorem E.9 and Theorem E.13, but with replacing the bounds given by
Proposition E.3 to those in Proposition E.4 (and plugging in η/2 in place of η in the statement of
Proposition E.4) to conclude that

∥r̃∥ ≤ η3n3C̃1A ∥Fz0∥+ η3n3D̃1A ∥Fz0∥2 + η3n3Ṽ1A

E
[
∥r̃∥2

∣∣∣ z0] ≤ η6n6C̃2A ∥Fz0∥2 + η6n6D̃2A ∥Fz0∥4 + η6n5Ṽ2A

for some constants C̃1A, D̃1A, Ṽ1A, C̃2A, D̃2A, and Ṽ2A. Meanwhile, we also have∥∥∥∥∥∥η
2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i̸=j

DFj(z0)Fiz0

∥∥∥∥∥∥
=

∥∥∥∥∥∥η
2n2

2
DF (z0)Fz0 −

η2

4

n∑
j=1

DFj(z0)Fjz0

∥∥∥∥∥∥
≤ η2n2

2
∥DF (z0)∥ ∥Fz0∥+

η2

4

n∑
j=1

∥DFj(z0)∥ ∥Fjz0∥

≤ η2n2

2
L ∥Fz0∥+

η2

4

n∑
j=1

L (∥Fjz0 − Fz0∥+ ∥Fz0∥)

≤ η2(n2 + n)L

2
∥Fz0∥+

η2L

4

n∑
j=1

∥Fjz0 − Fz0∥

≤ η2n2L ∥Fz0∥+
η2L

4

 n∑
j=1

∥Fjz0 − Fz0∥2
1/2 n∑

j=1

1

1/2

= η2n2L ∥Fz0∥+
η2nL

4
(ρ ∥Fz0∥+ σ)

where in the second to the last line we used the Cauchy-Schwarz inequality. Therefore, as η ≤ 1/nL,
we conclude that

∥z2n − (z0 − ηnF (z0 − ηnFz0))∥ ≤ η2n2C1F ∥Fz0∥+ η2n2D1F ∥Fz0∥2 + η2n2V1F

for constants

C1F = L+
ρL

4
+

C̃1A

L
, D1F =

D̃1A

L
, V1F =

σL

4
+

Ṽ1A

L
. (81)
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Moreover, using Young’s inequality, we see that∥∥∥∥∥∥η
2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i ̸=j

DFj(z0)Fiz0

∥∥∥∥∥∥
2

≤ 3η4n4L2 ∥Fz0∥2 +
3η4n2L2

16
ρ2 ∥Fz0∥2 +

3η4n2L2

16
σ2,

so we also conclude that

E
[
∥z2n − (z0 − ηnF (z0 − ηnFz0))∥2

∣∣∣ z0] ≤ η4n4C2F ∥Fz0∥2+η4n4D2F ∥Fz0∥4+η4n3V2F

holds for constants

C2F = 6L2 +
3ρ2L2

8
+

2C̃2A

L2
, D2F =

2D̃1A

L2
, V2F =

3σ2L2

8
+

2Ṽ1A

L2
. (82)

E.2.4 Upper Bounds of the Within-Epoch Errors for SEG-RR

Theorem E.16. Say we use SEG-RR with α = β = η. Then, as long as the stepsize used in an
epoch satisfies η < 1

nL , it holds that

∥r∥ ≤ η2n2C1R ∥Fz0∥+ η2n2D1R ∥Fz0∥2 + η2n2V1R

E
[
∥r∥2

∣∣∣ z0] ≤ η4n4C2R ∥Fz0∥2 + η4n4D2R ∥Fz0∥4 + η4n3V2R

for constants C1R, D1R, V1R, C2R, D2R, and V2R to be determined later in (86) and (87).

Proof. As we have discussed in Section 5.1, we already know that aiming to achieve O(η3) error
with only using random reshuffling is futile. Instead, we show that error of magnitude O(η2) is
possible with the chosen stepsizes.

By Proposition D.2 and Lemma D.4 we have For any i = 0, 1, . . . , N , it holds that

zn = z0 − η

n−1∑
j=0

Fjz0 + η2
n−1∑
j=0

DFj(z0)Fjz0 + η2
∑

0≤k<j≤n−1

DFj(z0)Fkz0 + ϵn

= z0 − ηnFz0 + η2n2DF (z0)Fz0 − η2
∑

0≤j<k≤n−1

DFj(z0)Fkz0 + ϵn

where we denote

ϵn :=− η

n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)

+ η2
n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) + η2
n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0).

(83)

Comparing zn to a point that would have been the result of a deterministic EG update with stepsize ηn
we get

zn − (z0 − ηnF (z0 − ηnFz0)) = ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵn

− η2
∑

0≤j<k≤n−1

DFj(z0)Fkz0.

Let us define
ř := ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵn. (84)

Comparing the sums (62b)–(62d) to (83), we can repeat the same reasoning used for Theorem E.9
and Theorem E.13, but with replacing the bounds given by Proposition E.3 to those in Proposition E.4,
to conclude that

∥ř∥ ≤ η3n3Č1A ∥Fz0∥+ η3n3Ď1A ∥Fz0∥2 + η3n3V̌1A

E
[
∥ř∥2

∣∣∣ z0] ≤ η6n6Č2A ∥Fz0∥2 + η6n6Ď2A ∥Fz0∥4 + η6n5V̌2A
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for some constants Č1A, Ď1A, V̌1A, Č2A, Ď2A, and V̌2A. Meanwhile, we also have

∑
0≤j<k≤n−1

DFj(z0)Fkz0 =

n−1∑
j=0

DFj(z0)(nFz0 − gj+1)

=

n−1∑
j=0

(n− j − 1)DFj(z0)Fz0 −
n−1∑
j=0

DFj(z0)(gj+1 − (j + 1)Fz0)

which leads to∥∥∥∥∥∥
∑

0≤j<k≤n−1

DFj(z0)Fkz0

∥∥∥∥∥∥ ≤
n−1∑
j=0

(n− j − 1)L ∥Fz0∥+ L

n−1∑
j=0

δj+1

≤ n2L

2
∥Fz0∥+ L

n−1∑
j=0

δj+1.

(85)

Therefore, from η ≤ 1/nL and Lemma E.5, on one hand we obtain

∥zn − (z0 − ηnF (z0 − ηnFz0))∥ ≤ η2n2C1R ∥Fz0∥+ η2n2D1R ∥Fz0∥2 + η2n2V1R

for constants

C1R =
L

2
+ ρL+

Č1A

L
, D1R =

Ď1A

L
, V1R = σL+

V̌1A

L
. (86)

On the other hand, applying Young’s inequality on (85) we get∥∥∥∥∥∥
∑

0≤j<k≤n−1

DFj(z0)Fkz0

∥∥∥∥∥∥
2

≤ n4L2 ∥Fz0∥2 + 2L2

n−1∑
j=0

δj+1

2

≤ n4L2 ∥Fz0∥2 + 2nL2
n∑

j=1

δ2j .

Taking the expectation conditioned on z0 and applying Lemma E.6, we conclude that

E
[
∥z2n − (z0 − ηnF (z0 − ηnFz0))∥2

∣∣∣ z0] ≤ η4n4C2R ∥Fz0∥2+η4n4D2R ∥Fz0∥4+η4n3V2R

holds for constants

C2R = 2L2 + 4ρ2L2 +
2Č2A

L2
, D2R =

2Ď2A

L2
, V2R = 4σ2L2 +

2V̌2A

L2
. (87)

F Convergence Bounds in the Strongly Monotone Setting

In this section, we focus only on the iterates {zk
0}k≥0. So, we omit the subscript 0 unless necessary,

and simply write zk instead of zk
0 .

F.1 Unified Analysis of the Upper Bounds for Shuffling-Based SEG Methods

When F is µ-strongly monotone with µ > 0, all of SEG-RR, SEG-FF, and SEG-FFA do not
diverge. In fact, it is possible to establish the following unified analysis of the methods.

Theorem F.1 (Theorem F.5, simplified). Suppose that F is µ-strongly monotone with µ > 0,
Assumption 3.3 holds, and an optimization method whose within-epoch error satisfies (31) and (32)
for some constant a > 0 is run for K epochs. Then, for a sufficiently small constant ω that does not
depend on K, we achieve the bound

E
∥∥zK − z∗∥∥2 ≤ exp

(
−1

2
µωnK

)∥∥z0 − z∗∥∥2 + Õ( 1

nK2a−2

)
.
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The goal of this section is to prove this theorem, whose precise statement is in Theorem F.5. As
the polynomial decay will dominate the exponential decay for large enough K, the bound we get is
essentially Õ (1/nK2a−2). Recall that for SEG-FF and SEG-RR we have a = 2 (by Theorems E.15
and E.16) which leads to an upper bound of Õ(1/nK2), whereas for SEG-FFA we have a = 3 (by
Theorems E.9 and E.13) which gives an upper bound of Õ(1/nK4).

As also mentioned in the beginning of Appendix E, for any of SEG-RR, SEG-FF, and SEG-FFA,
we can decompose the update across the epoch into a deterministic EG update plus a noise. In this
section, letting wk

† := zk − ηknFzk, we define F̂ k by the relation ηknF̂
k = ηknFwk

† + rk so that

zk+1 = zk − ηknF̂
k. (88)

Proposition F.2. Let F be µ-strongly monotone with µ > 0. Then, for any ηk > 0, it holds that

η2kn
2

(
1− 3

2
µηkn−

(
1 +

1

2
µηkn

)
η2kn

2L2

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηkn

)∥∥zk − z∗∥∥2 − ∥∥zk+1 − z∗∥∥2 + 2 + µηkn

µηkn

∥∥rk∥∥2 . (89)

Proof. From (88), using Lemma C.7 we get∥∥zk+1 − z∗∥∥2 =
∥∥zk − z∗∥∥2 − 2

〈
ηknF̂

k, zk − z∗
〉
+
∥∥∥ηknF̂ k

∥∥∥2
=
∥∥zk − z∗∥∥2 − 2ηkn

〈
Fwk

† ,w
k
† − z∗〉− 2η2kn

2
〈
Fwk

† ,Fzk
〉

− 2
〈
rk, zk − z∗〉+ ∥∥∥ηknF̂ k

∥∥∥2
≤
∥∥zk − z∗∥∥2 − µηkn

∥∥zk − z∗∥∥2 − 2η2kn
2
〈
Fwk

† ,Fzk
〉

− 2
〈
rk, zk − z∗〉+ ∥∥∥ηknF̂ k

∥∥∥2 + 2µη3kn
3
∥∥Fzk

∥∥2 .
Meanwhile, using the polarization identity (Lemma C.1) and the L-smoothness of F we get

−2
〈
Fwk

† ,Fzk
〉
=
∥∥Fwk

† − Fzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
≤ L2

∥∥wk
† − zk

∥∥2 − ∥∥Fwk
†
∥∥2 − ∥∥Fzk

∥∥2
≤ −(1− η2kn

2L2)
∥∥Fzk

∥∥2 − ∥∥Fwk
†
∥∥2 .

Combining the two inequalities and using the definition of F̂ we obtain∥∥zk+1 − z∗∥∥2 ≤ (1− µηkn)
∥∥zk − z∗∥∥2 − η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 − η2kn

2
∥∥Fwk

†
∥∥2

− 2
〈
rk, zk − z∗〉+ ∥∥ηknFwk

† + rk
∥∥2 + 2µη3kn

3
∥∥Fzk

∥∥2
≤ (1− µηkn)

∥∥zk − z∗∥∥2 − η2kn
2(1− 2µηkn− η2kn

2L2)
∥∥Fzk

∥∥2
− 2

〈
rk, zk − z∗〉+ 2

〈
rk, ηknFwk

†
〉
+
∥∥rk∥∥2

≤ (1− µηkn)
∥∥zk − z∗∥∥2 − η2kn

2(1− 2µηkn− η2kn
2L2)

∥∥Fzk
∥∥2

− 2
〈
rk, zk − ηknFwk

† − z∗〉+ ∥∥rk∥∥2 .
Let us consider the inner product term in the last line above. By Lemma C.2 and the nonexpansiveness
of the EG update (Lemma C.10), for any γk > 0 we have

−2
〈
rk, zk − ηknFwk

† − z∗〉 ≤ 1

γk

∥∥rk∥∥2 + γk
∥∥zk − ηknFwk

† − z∗∥∥2
≤ 1

γk

∥∥rk∥∥2 + γk
∥∥zk − z∗∥∥2 − γkη

2
kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 .
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Plugging this back we get

η2kn
2(1 + γk − 2µηkn− (1 + γk)η

2
kn

2L2)
∥∥Fzk

∥∥2
≤ (1 + γk − µηkn)

∥∥zk − z∗∥∥2 − ∥∥zk+1 − z∗∥∥2 + (1 + 1

γk

)∥∥rk∥∥2 . (90)

Choosing γk = µηkn
2 completes the proof.

Proposition F.3. Let F be a µ-strongly monotone and L-Lipschitz operator. Then, whenever
ηk ≤ 1

nL
√
2

, it holds that ∥∥Fzk+1
∥∥ ≤ (1− µnηk

5

)∥∥Fzk
∥∥+ L

∥∥rk∥∥ .
Proof. Let zk+1

† := zk − ηknF (zk − ηknFzk), so that we have
∥∥∥zk+1 − zk+1

†

∥∥∥ =
∥∥rk∥∥. Then,

the L-smoothness of F and Lemma C.8 implies∥∥Fzk+1
∥∥ ≤ ∥∥∥Fzk+1 − Fzk+1

†

∥∥∥+ ∥∥∥Fzk+1
†

∥∥∥
≤ L

∥∥∥zk+1 − zk+1
†

∥∥∥+ ∥∥∥Fzk+1
†

∥∥∥
≤ L

∥∥rk∥∥+ (1− 2µηkn

5

)1/2 ∥∥Fzk
∥∥

≤ L
∥∥rk∥∥+ (1− µηkn

5

)∥∥Fzk
∥∥

where in the last line we apply a simple inequality 1− 2x ≤ (1− x)2 which holds for all x ∈ R.

Lemma F.4. Suppose that (31) holds. Say we use a constant stepsize ηk = η, where η satisfies
η ≤ 1

nL
√
2

and

ηa−1na−1 ≤ 1

10
min

{
1

L2
,

µ

L(C1 +D1(∥Fz0∥+ V1/µL))

}
. (91)

Then for any k = 0, 1, . . . , the following two inequalities both hold:∥∥Fzk+1
∥∥ ≤ (1− µηn

10

)∥∥Fzk
∥∥+ ηanaLV1, (92)∥∥Fzk

∥∥ ≤ ∥∥Fz0
∥∥+ V1

µL
. (93)

Proof. For the case k = 0, the inequality (93) clearly holds. For the remaining cases, we use strong
induction on k. More precisely, assuming that (93) holds for all 0, 1, . . . , k, we will show that (92)
holds, and from that the inequality ∥∥Fzk+1

∥∥ ≤ ∥∥Fz0
∥∥+ V1

µL
(94)

follows. To this end, let us begin from noting that Proposition F.3, (31), and the induction hypothesis
(93) implies∥∥Fzk+1

∥∥ ≤ (1− µηn

5

)∥∥Fzk
∥∥+ ηanaL

(
C1
∥∥Fzk

∥∥+D1
∥∥Fzk

∥∥2 + V1

)
≤
(
1− µηn

5
+ ηanaLC1 + ηanaLD1

(∥∥Fz0
∥∥+ V1

µL

))∥∥Fzk
∥∥+ ηanaLV1.

(95)

Here, from the choice of the stepsize (91), we have

ηanaLC1 + ηanaLD1

(∥∥Fz0
∥∥+ V1

µL

)
≤ µηn

10
.
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Hence, from (95) we get ∥∥Fzk+1
∥∥ ≤ (1− µηn

10

)∥∥Fzk
∥∥+ ηanaLV1.

which is exactly (92). Now, considering that we are assuming (93) holds for all 0, 1, . . . , k, we must
also have (92) for all 0, 1, . . . , k. Thus we can unravel the recurrence to get∥∥Fzk+1

∥∥ ≤ (1− µηn

10

)∥∥Fzk
∥∥+ ηanaLV1

≤
(
1− µηn

10

)2 ∥∥Fzk−1
∥∥+ (1− µηn

10

)
ηanaLV1 + ηanaLV1

≤ . . .

≤
(
1− µηn

10

)k+1 ∥∥Fz0
∥∥+ ηanaLV1

k∑
j=0

(
1− µηn

10

)j
≤
∥∥Fz0

∥∥+ ηanaLV1

1−
(
1− µηn

10

)
=
∥∥Fz0

∥∥+ 10ηa−1na−1LV1

µ
.

(96)

As (91) also implies 10ηa−1na−1L ≤ 1/L, we obtain (94), as claimed. This completes the proof.

Theorem F.5 (Theorem F.1). Suppose that F is µ-strongly monotone with µ > 0, Assumption 3.3
holds, and an optimization method whose within-epoch error satisfies (31) and (32) for some constant
a > 0 is run for K epochs. Let us define a constant

Φ := C2 +D2

(∥∥Fz0
∥∥+ V1

µL

)2

.

Say we use a constant stepsize ηk = η, where η is chosen as

η = min

{
2

5nL
, (97a)

1

n(10L2)1/(a−1)
, (97b)

µ1/(a−1)

n(10L(C1 +D1(∥Fz0∥+ V1/µL)))1/(a−1)
, (97c)

1

(12Φ/µ)1/(2a−3)n
, (97d)

4(a− 1) log(n1/(2a−2)K)

µnK

}
. (97e)

Then for ω denoting the minimum among (97a)–(97d), it holds that

E
∥∥zK − z∗∥∥2 ≤ exp

(
−1

2
µωnK

)∥∥z0 − z∗∥∥2 +O((log(n1/(2a−2)K)
)2a−2

nK2a−2

)
. (98)

As a reminder, for SEG-FF and SEG-RR we have a = 2, and for SEG-FFA we have a = 3.

Proof. Notice that (97b) and (97c) together implies (91), and that ηk = η ≤ 2
5nL ≤

1
nL

√
2
< 1

nL .
So, we can utilize (32) and Lemma F.4 to get

E
[
∥r∥2

∣∣∣ zk
]
≤ η2an2aC2

∥∥Fzk
∥∥2 + η2an2aD2

∥∥Fzk
∥∥4 + η2an2a−1V2

≤ η2an2aC2
∥∥Fzk

∥∥2 + η2an2aD2

(∥∥Fz0
∥∥+ V1

µL

)2 ∥∥Fzk
∥∥2 + η2an2a−1V2

= η2an2aΦ
∥∥Fzk

∥∥2 + η2an2a−1V2.
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Taking the conditional expectation on (89) and applying the bound just derived, we obtain

η2n2

(
1− 3

2
µηn−

(
1 +

1

2
µηn

)
η2n2L2

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηn

)∥∥zk − z∗∥∥2 − E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
+

2 + µηn

µ

(
η2a−1n2a−1Φ

∥∥Fzk
∥∥2 + η2a−1n2a−2V2

)
.

A simple rearrangement of the terms leads to

η2n2

(
1− 3

2
µηn−

(
1 +

1

2
µηn

)
η2n2L2 − 2 + µηn

µ
· η2a−3n2a−3Φ

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηn

)∥∥zk − z∗∥∥2 − E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
+

2 + µηn

µ
· η2a−1n2a−2V2.

(99)

Notice that by assuming (97a) and (97d), it holds that
3

2
µηn+

(
1 +

1

2
µηn

)
η2n2L2 +

2 + µηn

µ
· η2a−3n2a−3Φ

≤ 3

2
· 2
5
+

(
1 +

1

2
· 2
5

)(
2

5

)2

+
12Φ

5µ
· µ

12Φ
=

124

125
,

so we can guarantee that the left hand side of (99) is nonnegative. It then follows that

E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
≤
(
1− 1

2
µηn

)∥∥zk − z∗∥∥2 + 2 + µηn

µ
· η2a−1n2a−2V2.

Applying the law of total expectation, from the above we obtain

E
∥∥zk+1 − z∗∥∥2 ≤ (1− 1

2
µηn

)
E
∥∥zk − z∗∥∥2 + 2 + µηn

µ
· η2a−1n2a−2V2.

We can now unravel this recurrence over k = 0, 1, . . . ,K − 1 as done in (96) to get

E
∥∥zK − z∗∥∥2 ≤ (1− 1

2
µηn

)
E
∥∥zK−1 − z∗∥∥2 + 2 + µηn

µ
· η2a−1n2a−2V2

≤ . . .

≤
(
1− 1

2
µηn

)K ∥∥z0 − z∗∥∥2 + 2 + µηn

µ
· η2a−1n2a−2V2

K−1∑
j=0

(
1− 1

2
µηn

)j

≤
(
1− 1

2
µηn

)K ∥∥z0 − z∗∥∥2 + 4 + 2µηn

µ2ηn
· η2a−1n2a−2V2

≤ exp

(
−1

2
µηnK

)∥∥z0 − z∗∥∥2 + 24

5µ2
· η2a−2n2a−3V2

where in the last line we used the basic inequality 1 + x ≤ ex which holds for all x ∈ R. With the
choice of the stepsize (97e), we arrive at

E
∥∥zK − z∗∥∥2 ≤ exp

(
−1

2
µηnK

)∥∥z0 − z∗∥∥2+24 · (4a− 4)2a−2V2

5µ2a
·
(
log(n1/(2a−2)K)

)2a−2

nK2a−2
.

(100)

Now, recall that η is chosen to be the smallest one among (97a)–(97e). Notice that the options
(97a)–(97d) are independent with respect to K, and (97e) is the only one that depends on K. Let us
consider these two cases separately.

(i) η is chosen to be the minimum among (97a)–(97d).

This is the case where we have η = ω. Notice that the constant ω that does not depend on K.
The inequality (100) then takes the form

E
∥∥zK − z∗∥∥2 ≤ exp

(
−µωnK

2

)∥∥z0 − z∗∥∥2 +O((log(n1/(2a−2)K)
)2a−2

nK2a−2

)
.
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(ii) η is chosen to be (97e), that is, η = 4(a−1) log(n1/(2a−2)K)
µnK .

In this case, the exponential factor of the first term in the right hand side of (100) reduces to

exp

(
−1

2
µηnK

)
=

1

nK2a−2
.

Thus, the second term in (100) dominates the first term, and in total (100) becomes

E
∥∥zK − z∗∥∥2 = O

((
log(n1/(2a−2)K)

)2a−2

nK2a−2

)
.

Therefore, in both cases we have

E
∥∥zK − z∗∥∥2 ≤ exp

(
−1

2
µωnK

)∥∥z0 − z∗∥∥2 +O((log(n1/(2a−2)K)
)2a−2

nK2a−2

)
which is exactly (98). This completes the proof.

Remark F.6. To compare the convergence rate of SEG-FFA in the strongly monotone setting with
that of SEG-RR by Emmanouilidis et al. [18] more in depth, let us make an estimation on the size of
ω appearing in Theorem F.5 when a = 3.

To this end, we need estimates on the constants C1A, D1A, V1A, C2A, and D2A. From their definitions
in (59)–(61), (72), and (73) we have C1A ≍ L2, D1A ≍ M , V1A ≍ M + L2, C2A ≍ L4, and
D2A ≍ M2. In general, there is not a direct relation between L and M . For example, recall that
if all components are quadratic, then M = 0. Meanwhile, Gorbunov et al. [21] has argued that M
can be much larger than L in certain cases, by providing an example where M ≍ L3/2. For our
purposes, however, let us allow M to be even as large as M ≍ L2, so that the situation is simplified
into C1A ≍ D1A ≍ V1A ≍ L2 and C2A ≍ D2A ≍ L4.

Then, we get the estimate of (97c),

µ1/2

n(10L(C1A +D1A(∥Fz0∥+ V1A/µL)))1/2
≍ µ

nL2
.

Meanwhile, as for the constant Φ it holds that

Φ = C2A +D2A

(∥∥Fz0
∥∥+ V1A

µL

)2

≍ L6

µ2
,

for (97d) we have
1

(12Φ/µ)1/3n
≍ µ

nL2
.

As (97a) while (97b) are both Θ(1/nL) and µ ≤ L, we essentially have ω ≍ µ/nL2. Or equivalently,
for some b = Θ(1), the convergence rate (98) reads

E
∥∥zK − z∗∥∥2 ≤ exp

(
−bµ2K

L2

)∥∥z0 − z∗∥∥2 +O((log(n1/4K)
)4

nK4

)
. (101)

On the other hand, Theorem 2.1 of [18] states that, for some b′ = Θ(1), SEG-RR exhibits a rate of

E
∥∥zK − z∗∥∥2 ≤ exp

(
−b′µ2K

L2

)∥∥z0 − z∗∥∥2 +O((log(n1/2K)
)2

nK2

)
. (102)

Comparing (101) with (102), the exponents in the exponentially decaying term are of the same order
of −µ2K

L2 , so SEG-FFA having a faster polynomially decaying term Õ(1/nK4) enjoys an improved
convergence rate.
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G Convergence Rate of SEG-FFA in the Monotone Setting

G.1 Star-monotonicity

Notice that we only used Assumptions 3.3 and 3.4 in deriving the results in Appendices D and E, and
in particular, the monotonicity assumption on F was not necessary. Moreover, among the lemmata
listed in Appendix C, Lemma C.10 is the only one that possibly uses the (non-strongly) monotone
assumption, but that lemma is not used in this section.

In fact, as it turns out in Appendix G.2, in the convergence analysis of SEG-FFA, we need not fully
exploit the inequality (3) provided by the monotonicity assumption. Rather, all the results on the
performance of SEG-FFA can be established with only assuming the following condition (which has
been also briefly mentioned in Appendix B.2).
Assumption G.1 (Star-monotonicity). Given an operator F with a point z∗ ∈ Rd1+d2 such that
Fz∗ = 0, we say that F is star-monotone if, for any z ∈ Rd1+d2 , it holds that

⟨Fz, z − z∗⟩ ≥ 0. (103)

Monotone and strongly-monotone operators are clearly star-monotone, as they satisfy (3). On the other
hand, there exist operators that are star-monotone but not monotone: see, e.g., [31, Appendix A.6].

Recall that when F is monotone, Assumption 3.2 is equivalent to assuming the existence of a point
z∗ that satisfies Fz∗ = 0. Hence, after simply replacing the optimality condition in Assumption 3.2
with Fz∗ = 0, our convergence analyses not only will show that our SEG-FFA finds an optimum
on monotone problems, but also that it can be also used to find stationary points in “star-monotone”
problems, allowing the objective function f to be nonconvex-nonconcave.

Star-monotonicity is also known as the variational stability condition [25], and has much been studied
in the literature. For further details on star-monotonicity, we refer to [25, 31] and the references
therein.

G.2 Convergence Analysis of SEG-FFA in the (Star-)Monotone Setting

Let us in particular consider SEG-FFA. As in the previous section, we focus only on the iterates
{zk

0}k≥0, so again, we omit the subscript 0 unless necessary, and simply write zk instead of zk
0 .

Decompose the update across the epoch into a deterministic EG update plus a noise, as

wk
† := zk − ηknFzk,

zk+1 = zk − ηknF̂
k.

(104)

for F̂ k defined by the equation
ηknF̂

k = ηknFwk
† + rk. (105)

Lemma G.2. Let F be a (star-)monotone operator with a point z∗ that satisfies Fz∗ = 0, and
suppose that Assumption 3.3 holds. Then for any ηk > 0 and γk > 0, it holds that

0 ≤
∥∥zk − z∗∥∥2 − 1

1 + γk

∥∥zk+1 − z∗∥∥2 − η2kn
2(1− η2kn

2L2)
∥∥Fzk

∥∥2 + 1

γk

∥∥rk∥∥2 . (106)

Proof. By (104) and (105) we get∥∥zk+1 − z∗∥∥2 =
∥∥∥zk − ηknF̂

k − z∗
∥∥∥2

=
∥∥zk − z∗∥∥2 − 2

〈
ηknF̂

k, zk − z∗
〉
+
∥∥∥ηknF̂ k

∥∥∥2
=
∥∥zk − z∗∥∥2 − 2

〈
ηknFwk

† ,w
k
† − z∗〉− 2

〈
ηknFwk

† , z
k −wk

†
〉
− 2

〈
rk, zk − z∗〉

+
∥∥ηknFwk

†
∥∥2 + 2

〈
rk, ηknFwk

†
〉
+
∥∥rk∥∥2

=
∥∥zk − z∗∥∥2 − 2ηkn

〈
Fwk

† ,w
k
† − z∗〉− 2

〈
ηknFwk

† , ηknFzk
〉

+
∥∥ηknFwk

†
∥∥2 − 2

〈
rk, zk − ηknFwk

† − z∗〉+ ∥∥rk∥∥2
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=
∥∥zk − z∗∥∥2 − 2ηkn

〈
Fwk

† ,w
k
† − z∗〉− 2η2kn

2
〈
Fwk

† ,Fzk
〉

+ η2kn
2
∥∥Fwk

†
∥∥2 − 2

〈
rk, zk+1 − z∗〉− ∥∥rk∥∥2 .

We now bound the inner products. On one hand, by the polarization identity (Lemma C.1) and the
L-smoothness of f , we have

−2
〈
Fwk

† ,Fzk
〉
=
∥∥Fwk

† − Fzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
≤ L2

∥∥−ηknFzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
= −(1− η2kn

2L2)
∥∥Fzk

∥∥2 − ∥∥Fwk
†
∥∥2 .

On the other hand, by the weighted AM-GM inequality (Lemma C.2), for any number ak ∈ (0, 1) it
holds that

−2
〈
rk, zk+1 − z∗〉 ≤ 1

ak

∥∥rk∥∥2 + ak
∥∥zk+1 − z∗∥∥2 .

Using these two bounds, we get∥∥zk+1 − z∗∥∥2 ≤ ∥∥zk − z∗∥∥2 − 2ηkn
〈
Fwk

† ,w
k
† − z∗〉− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2

− η2kn
2
∥∥Fwk

†
∥∥2 + η2kn

2
∥∥Fwk

†
∥∥2 + ak

∥∥zk+1 − z∗∥∥2 + ( 1

ak
− 1

)∥∥rk∥∥2 .
Choosing ak = γk

1+γk
and rearranging the terms, we obtain

2ηkn
〈
Fwk

† ,w
k
† − z∗〉 ≤ ∥∥zk − z∗∥∥2 − 1

1 + γk

∥∥zk+1 − z∗∥∥2
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 + 1

γk

∥∥rk∥∥2 . (107)

The left hand side of (107) is nonnegative by the star-monotonicity of F (103), and the claimed
inequality follows.

Now we show that choosing the appropriate stepsizes leads to
∥∥Fzk

∥∥ being bounded uniformly
over k.

Proposition G.3. Let F be a (star-)monotone operator with a point z∗ that satisfies Fz∗ = 0,
and suppose that Assumptions 3.3 and 3.4 hold. Say we are using SEG-FFA, or any optimization
method whose within-epoch error satisfies (58) and (71). Let the sequence of stepsizes {ηk}k≥0 be
nonincreasing, with

S :=

∞∑
k=0

η3kn
3L3 <∞. (108)

Suppose that initial stepsize η0 is chosen sufficiently small so that

η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1 (109)

for constants C1A, D1A, and V1A defined in (59)–(61). Then for all k ≥ 0,∥∥Fzk
∥∥2 ≤ eSL2

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
. (110)

Proof. We use induction on k, to establish a stronger inequality∥∥zk − z∗∥∥2 ≤ eS
(∥∥z0 − z∗∥∥2 + 6SV 2

1A
L6

)
. (111)

To see that (111) indeed implies (110), notice that by the L-smoothness of f it holds that∥∥Fzk
∥∥2 =

∥∥Fzk − Fz∗∥∥2 ≤ L2
∥∥zk − z∗∥∥2 .
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For the case when k = 0, as S > 0, it is clear that (111) holds. Now suppose that (111) holds for
some k ≥ 0. Applying Young’s inequality on (31) leads to∥∥rk∥∥2 ≤ 3η6kn

6
(
C2

1A

∥∥Fzk
∥∥2 +D2

1A

∥∥Fzk
∥∥4 + V 2

1A

)
.

Applying this bound on
∥∥rk∥∥2 on (106), we obtain

η2kn
2

(
1− η2kn

2L2 −
3η4kn

4C2
1A

γk
−

3η4kn
4D2

1A
γk

∥∥Fzk
∥∥2)∥∥Fzk

∥∥2
≤
∥∥zk − z∗∥∥2 − 1

1 + γk

∥∥zk+1 − z∗∥∥2 + 3η6kn
6V 2

1A
γk

.

(112)

Choose γk = η3kn
3L3. Notice that (109) implies η0nL ≤ 1, henceforth ηk ≤ η0 ≤ 1/nL. This, with

the induction hypothesis (110), implies

η2kn
2L2 +

3η4kn
4C2

1A
γk

+
3η4kn

4D2
1A

γk

∥∥Fzk
∥∥2

= η2kn
2L2 +

3ηknC
2
1A

L3
+

3ηknD
2
1A

L3

∥∥Fzk
∥∥2

≤ η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L3

∥∥Fzk
∥∥2

≤ η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L3
· eSL2

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1.

That is, the left hand side of (112) becomes nonnegative. Then it is immediate from (112) that∥∥zk+1 − z∗∥∥2 ≤ (1 + γk)
∥∥zk − z∗∥∥2 + 3η6kn

6 (1 + γk)V
2

1A
γk

≤
(
1 + η3kn

3L3
) ∥∥zk − z∗∥∥2 + 6η3kn

3V 2
1A

L3
.

Using Lemma C.11 to unravel this recurrence relation, we obtain

∥∥zk+1 − z∗∥∥2 ≤
 k∏

j=0

(
1 + η3jn

3L3
)∥∥z0 − z∗∥∥2 + k∑

j=0

6η3jn
3V 2

1A

L3


≤ e

∑k
j=0 η3

jn
3L3

∥∥z0 − z∗∥∥2 + 6V 2
1A

L6

k∑
j=0

η3jn
3L3


≤ eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
which shows that (111) also holds when k is replaced by k + 1. This completes the proof.

Theorem G.4 (Formal version of Theorem 5.4). Let F be a (star-)monotone operator with a point
z∗ that satisfies Fz∗ = 0, and suppose that Assumptions 3.3 and 3.4 hold. Say that we are using
SEG-FFA, or any optimization method whose within-epoch error satisfies (58) and (71), with
βk = ηk = η0

3√2 log 2
(k+2)1/3 log(k+2)

and αk = βk/2 for k = 0, 1, . . . , where, for S :=
∑∞

k=0 η
3
kn

3L3, the
initial stepsize η0 is chosen so that

η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1 (113)

for constants C1A, D1A, and V1A defined in (59)–(61), and there exists a positive constant λ > 0 such
that

η20n
2L2 +

η0nC2A

L3
+

η0nD2A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1− λ (114)
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for constants C2A, D2A, and V2A defined in (72)–(74). Then for any K ≥ 1, it holds that

min
k=0,1,...,K

E
∥∥Fzk

∥∥2 ≤ (log(K + 3))2

(K + 3)1/3
·

(∥∥z0 − z∗
∥∥2 + 3V2A

nL6

λe−3/2( 3
√
2 log 2)2

η20n
2

)
. (115)

Proof. As the sequence of stepsizes {ηk}k≥0 is nonincreasing and (113) asserts that η0 ≤ 1/nL, we
can use the bounds established in Theorem E.9 and Theorem E.13. Also, the premises required for
Proposition G.3 are also satisfied, so the bound (110) holds.

Setting γk = η3kn
3L3 in (106) and then taking the conditional expectation given zk, with using (71)

and (114), we obtain

0 ≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 + 1

γk
E
[∥∥rk∥∥2 ∣∣∣ zk

]
≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 + 1

L3

(
η3kn

3C2A
∥∥Fzk

∥∥2 + η3kn
3D2A

∥∥Fzk
∥∥4 + η3kn

2V2A

)
≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2

(
1− η2kn

2L2 − ηknC2A

L3
− ηknD2A

L3

∥∥Fzk
∥∥2)∥∥Fzk

∥∥2 + η3kn
2V2A

L3

≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− λη2kn

2
∥∥Fzk

∥∥2 + η3kn
2V2A

L3
.

By the law of total expectation, and that γk = η3kn
3L3 < 1, from the above we get

(1 + γk)λη
2
kn

2 E
∥∥Fzk

∥∥2 ≤ (1 + γk)E
∥∥zk − z∗∥∥2 − E

∥∥zk+1 − z∗∥∥2 + (1 + γk)η
3
kn

2V2A

L3

≤ (1 + γk)E
∥∥zk − z∗∥∥2 − E

∥∥zk+1 − z∗∥∥2 + 2η3kn
2V2A

L3
.

This recurrence can be unraveled using Lemma C.11, giving us

E
∥∥zK+1 − z∗∥∥2 + K∑

k=0

(1 + γk)λη
2
jn

2 E
∥∥Fzk

∥∥2
≤

(
K∏

k=0

(1 + γk)

)(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)
.

(116)

For the left hand side of (116), we have

E
∥∥zK+1 − z∗∥∥2 + K∑

k=0

(1 + γk)λη
2
kn

2 E
∥∥Fzk

∥∥2 ≥ λ

K∑
k=0

η2kn
2 E
∥∥Fzk

∥∥2
≥ λ min

k=0,1,...,K
E
∥∥Fzk

∥∥2 K∑
k=0

η2kn
2.

(117)

From Lemma C.12, we know that whenever K ≥ 1,

K∑
k=0

η2kn
2 = η20n

2(
3
√
2 log 2)2

K∑
k=0

1

(k + 2)2/3(log(k + 2))2

≥ η20n
2(

3
√
2 log 2)2 · (K + 3)1/3

(log(K + 3))2
.
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Meanwhile, as x 7→ 2(log 2)3

(x+2)(log(x+2))3 is a decreasing function, we have

∞∑
k=0

2(log 2)3

(k + 2)(log(k + 2))3
≤ 1 +

2(log 2)3

3(log 3)3
+

∫ ∞

1

2(log 2)3

(x+ 2)(log(x+ 2))3
dx

≤ 1 +
2(log 2)3

3(log 3)3
+

(log 2)3

(log 3)2
≤ 3

2

and thus

S =

∞∑
k=0

η3kn
3L3 = η30n

3L3
∞∑
k=0

2(log 2)3

(k + 2)(log(k + 2))3
≤ 3

2
η30n

3L3 ≤ 3

2
.

Thus, for the right hand side of (116), it holds that(
K∏

k=0

(1 + γk)

)(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)
≤ e

∑K
k=0 γk

(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)

≤ eS
(∥∥z0 − z∗∥∥2 + 2SV2A

nL6

)
≤ e3/2

(∥∥z0 − z∗∥∥2 + 3V2A

nL6

)
.

(118)
Therefore, from (116) we get

λη20n
2(

3
√
2 log 2)2 · (K + 3)1/3

(log(K + 3))2
· min
k=0,1,...,K

E
∥∥Fzk

∥∥2 ≤ e3/2
(∥∥z0 − z∗∥∥2 + 3V2A

nL6

)
.

Simply rearranging the terms gives us the desired inequality.

Remark G.5. While η0 should be chosen so that both (113) and (114) hold, in practice, there is a way
to circumvent this complication. Notice that in deriving the upper bound (118) of the right hand side
of (116), it suffices to have ηk ≤ η0

3√2 log 2
(k+2)1/3 log(k+2)

, and the lower bound (117) of the left hand side
holds for any ηk ≥ 0. In other words, if we have had chosen ηk = Θ(1/(k+1)q) for q > 1

3 so that
S =

∑∞
k=0 η

3
kn

3L3 <∞, as long as η0 satisfies (113) and (114), we would still have obtained the
inequality

min
k=0,1,...,K

E
∥∥Fzk

∥∥2 ≤ eS

λn2
∑K

k=0 η
2
k

(∥∥z0 − z∗∥∥2 + 2SV2A

nL6

)
. (119)

In particular, if we additionally assume that q < 1
2 then

K∑
k=0

η2k ≍
K∑

k=1

1

k2q
≍ K1−2q,

so from (119) we would have obtained the convergence rate

min
k=0,1,...,K

E
∥∥Fzk

∥∥2 = O
(

1

K1−2q

)
. (120)

We now claim that, if one accepts a slight sacrifice of the convergence rate from Õ(1/K1/3) to
O (1/K1−2q) for 1/3 < q < 1/2, one can simply choose the stepsizes as ηk = η00/(k+1)q for a
sufficiently small η00. To see why this is the case, let us fix η0 to be a number that satisfies the
inequalities (113) and (114). Then, because η00/(k+1)q = o

(
1

(k+2)1/3 log(k+2)

)
, there will exist a

nonnegative integer k0 such that ηk ≤ η0
3√2 log 2

(k+2)1/3 log(k+2)
for all k ≥ k0. So, by ignoring the first k0

terms if necessary—that is, considering as if the k0th iteration is the 0th iteration—it follows from
the discussions made above in obtaining (120) that we get the rate of convergence O (1/K1−2q).

This discussion also justifies the choice of stepsizes ηk = Θ(1/(1+k/10)0.34) used in the experiments
for the monotone setting.
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H Proof of Lower Bounds

H.1 Proof of the Divergence of SEG-US, SEG-RR and SEG-FF

We prove the divergence of SEG-US, SEG-RR and SEG-FF in each proposition below, using the
same worst-case problem for n = 2. These constitute the proof of Theorem 4.1.
Proposition H.1 (Part of Theorem 4.1). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfying

Assumption 3.4 with (ρ, σ) = (1, 0) such that SEG-US diverges in expectation for any choice of
stepsizes {αt}t≥0 and {βt}t≥0. That is, for all t ≥ 0,

E
[
∥zt+1∥2

]
> E

[
∥zt∥2

]
, E

[
∥Fzt+1∥2

]
> E

[
∥Fzt∥2

]
.

Proof. We consider the case of

f1(x, y) = −
L

4
x2 +

L

2
xy − L

4
y2,

f2(x, y) =
L

4
x2 +

L

2
xy +

L

4
y2,

which result in a bilinear (and hence convex-concave) objective function

f(x, y) =
1

2

2∑
i=1

fi(x, y) =
L

2
xy. (121)

One can quickly check from the definitions of the component functions f1 and f2 that the
corresponding saddle gradient operators are given as

F1z =

[
−L/2 L/2
−L/2 L/2

]
︸ ︷︷ ︸

:=A1

z, F2z =

[
L/2 L/2
−L/2 −L/2

]
︸ ︷︷ ︸

:=A2

z, Fz =

[
0 L/2
−L/2 0

]
z

where z = (x, y) ∈ R2. From the fact that ∥Ai∥ ≤ L for all i’s, we can confirm that fi’s are indeed
L-smooth. As for Assumption 3.4, we can verify that

1

2

2∑
i=1

∥Fiz − Fz∥2 =
L2

4
∥z∥2 = ∥Fz∥2 ,

thus proving that our example f indeed satisfies Assumption 3.4 with (ρ, σ) = (1, 0).

We now proceed to show that for this particular worst-case example f , SEG-US diverges in
expectation. For t ≥ 0, the (t+ 1)-th iteration of SEG-US starts at zt, and the algorithm uniformly
chooses an index i(t) from [n]. The algorithm then makes an update

wt = zt − αtFi(t)zt,

zt+1 = zt − βtFi(t)wt.

In our worst-case example f , the updates can be compactly written as

zt+1 = (I − βtAi(t) + αtβtA
2
i(t))zt.

Since we have n = 2, the update can be summarized as

zt+1 =

{
(I − βtA1 + αtβtA

2
1)zt with probability 1/2,

(I − βtA2 + αtβtA
2
2)zt with probability 1/2.

By the definition of A1 and A2 and using A2
1 = A2

2 = 0, we can verify that

N1 := I − βtA1 + αtβtA
2
1 =

[
1 + βtL

2 −βtL
2

βtL
2 1− βtL

2

]
,

N2 := I − βtA2 + αtβtA
2
2 =

[
1− βtL

2 −βtL
2

βtL
2 1 + βtL

2

]
.
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From this, we notice that the expectation of ∥zt+1∥2 conditional on zt reads

E
[
∥zt+1∥2

∣∣∣ zt] = z⊤
t

(
N⊤

1 N1 +N⊤
2 N2

2

)
zt.

Working out the calculations, we can check that

N⊤
1 N1 +N⊤

2 N2

2
=

[
1 +

β2
tL

2

2 0

0 1 +
β2
tL

2

2

]
,

thus resulting in

E
[
∥zt+1∥2

∣∣∣ zt] = (1 + β2
tL

2

2

)
∥zt∥2 .

Since this holds for all t ≥ 0, SEG-US diverges in expectation, for any positive stepsizes {αt}t≥0

and {βt}t≥0. The statement on ∥Fzt∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.

Proposition H.2 (Part of Theorem 4.1). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfying

Assumption 3.4 with (ρ, σ) = (1, 0) such that SEG-RR diverges in expectation for any choice of
stepsizes {αk}k≥0 and {βk}k≥0. That is, for any k ≥ 0,

E
[∥∥zk+1

0

∥∥2] > E
[∥∥zk

0

∥∥2] , E
[∥∥Fzk+1

0

∥∥2] > E
[∥∥Fzk

0

∥∥2] .
Proof. The proof uses the same example as Proposition H.1, outlined in (121). We show that for this
particular worst-case example f , SEG-RR diverges in expectation. For k ≥ 0, the (k + 1)-th epoch
of SEG-RR starts at zk

0 , and the algorithm randomly chooses a permutation τk : [n] → [n]. The
algorithm then goes through a series of updates

wk
i = zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βkFτk(i+1)w
k
i ,

for i = 0, . . . , n− 1. In our worst-case example f , the updates can be compactly written as

zk
i+1 = (I − βkAτk(i+1) + αkβkA

2
τk(i+1))z

k
i .

Since we have n = 2 and there are only two possible permutations, the updates over an epoch can be
summarized as

zk+1
0 = zk

n =

{
(I − βkA1 + αkβkA

2
1)(I − βkA2 + αkβkA

2
2)z

k
0 with probability 1/2,

(I − βkA2 + αkβkA
2
2)(I − βkA1 + αkβkA

2
1)z

k
0 with probability 1/2.

By the definition of A1 and A2 and using A2
1 = A2

2 = 0, we can verify that

M1 := (I − βkA1 + αkβkA
2
1)(I − βkA2 + αkβkA

2
2)=

[
1− β2

kL
2

2 −βkL− β2
kL

2

2

βkL− β2
kL

2

2 1− β2
kL

2

2

]
, (122)

M2 := (I − βkA2 + αkβkA
2
2)(I − βkA1 + αkβkA

2
1)=

[
1− β2

kL
2

2 −βkL+
β2
kL

2

2

βkL+
β2
kL

2

2 1− β2
kL

2

2

]
. (123)

From this, we notice that the expectation of
∥∥zk+1

0

∥∥2 conditional on zk
0 reads

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
= (zk

0 )
⊤
(
M⊤

1 M1 +M⊤
2 M2

2

)
zk
0 .

Working out the calculations, we can check that

M⊤
1 M1 +M⊤

2 M2

2
=

[
1 +

β4
kL

4

2 0

0 1 +
β4
kL

4

2

]
,

thus resulting in

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
=

(
1 +

β4
kL

4

2

)∥∥zk
0

∥∥2 .
Since this holds for all k ≥ 0, SEG-RR diverges in expectation, for any positive stepsizes {αk}k≥0

and {βk}k≥0. The statement on
∥∥Fzk

0

∥∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.
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Proposition H.3 (Part of Theorem 4.1). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfying

Assumption 3.4 with (ρ, σ) = (1, 0) such that SEG-FF diverges in expectation for any positive
stepsizes {αk}k≥0 and {βk}k≥0. That is, for any k ≥ 0,

E
[∥∥zk+1

0

∥∥2] > E
[∥∥zk

0

∥∥2] , E
[∥∥Fzk+1

0

∥∥2] > E
[∥∥Fzk

0

∥∥2] .
Proof. The proof uses the same example as Proposition H.1, outlined in (121). We prove that
SEG-FF also diverges for this f . For k ≥ 0, the (k + 1)-th epoch of SEG-FF starts at zk

0 , and the
algorithm randomly chooses a permutation τk : [n]→ [n], as in the case of SEG-RR. The algorithm
then goes through a series of updates for i = 0, . . . , n− 1:

wk
i = zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βkFτk(i+1)w
k
i ,

which are the same as SEG-RR; but then, it performs another series of n updates, in the reverse
order. For i = n, . . . , 2n− 1,

wk
i = zk

i − αkFτk(2n−i)z
k
i ,

zk
i+1 = zk

i − βkFτk(2n−i)w
k
i .

Using the definition of M1 and M2 from (122) and (123), one can verify that the 2n = 4 updates
over an epoch of SEG-FF can be summarized as

zk+1
0 = zk

2n =

{
M2M1z

k
0 with probability 1/2,

M1M2z
k
0 with probability 1/2.

From this, we notice that the expectation of
∥∥zk+1

0

∥∥2 conditional on zk
0 reads

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
= (zk

0 )
⊤
(
M⊤

1 M⊤
2 M2M1 +M⊤

2 M⊤
1 M1M2

2

)
zk
0 .

Working out the calculations, we can check that

M⊤
1 M⊤

2 M2M1 +M⊤
2 M⊤

1 M1M2

2
=

[
1 + 2β6

kL
6 0

0 1 + 2β6
kL

6

]
,

thus resulting in
E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
=
(
1 + 2β6

kL
6
) ∥∥zk

0

∥∥2 .
Since this holds for all k ≥ 0, SEG-FF diverges in expectation, for any positive stepsizes {αk}k≥0

and {βk}k≥0. The statement on
∥∥Fzk

0

∥∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.

H.2 Proof of Limited Convergence of SEG-US in Monotone Cases

In [17, 20], the authors study the same-sample and independent-sample versions of SEG-US, with
step sizes αt and βt satisfying a constant ratio: βt = γαt for γ ∈ (0, 1]. While the authors show
convergence in the monotone F case, there is one important limitation shared by the existing analyses.
In order to achieve mint=0,...,T E[∥Fzt∥2] ≤ ϵ2 for an arbitrarily chosen ϵ, the algorithms must
repeat the same query to the stochastic gradient oracle b = O( 1

ϵ2 ) times at every iteration to reduce
the gradient variance from σ2 to σ2

b . In other words, the convergence bounds for SEG-US in the
monotone case have an additive term O(σ2) that cannot be reduced to zero by proper choices of
stepsizes. Below, we prove that such a σ2 term is in fact inevitable for any choices of stepsizes, if the
ratio γ is fixed constant. This indicates that SEG-US considered in the existing results can never
converge all the way to the optimum if b = 1 is maintained throughout training. In contrast, our
SEG-FFA shows convergence in the monotone case even when b = 1.

Theorem H.4. For n = 2, there exists a convex-concave minimax problem f(x, y) = 1
2

∑2
i=1 fi(x, y)

having a monotone F , consisting of L-smooth quadratic fi’s satisfying Assumption 3.4 with (ρ, σ) =
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(0, σ) such that SEG-US with any positive stepsizes {αt}t≥0 and {βt}t≥0 satisfying βt = γαt for
γ > 0 cannot converge beyond a certain fixed constant Ω(σ2). More concretely, for any t ≥ 0,

E
[
∥Fzt∥2

]
≥ min

{
∥Fz0∥2 ,

γσ2

2

}
regardless of the stepsizes. This holds for both same-sample and independent-sample SEG-US.

Proof. We consider the case of
f1(x, y) = Lxy + νx− νy,

f2(x, y) = Lxy − νx+ νy,

which results in a bilinear (and hence convex-concave) objective function

f(x, y) =
1

2

2∑
i=1

fi(x, y) = Lxy.

One can quickly check from the definitions of the component functions f1 and f2 that the
corresponding saddle gradient operators are given as

F1z =

[
0 L
−L 0

]
︸ ︷︷ ︸

:=A

z + ν1, F2z = Az − ν1, Fz = Az,

where z = (x, y) ∈ R2. From the fact that ∥A∥ ≤ L, we can confirm that fi’s are indeed L-smooth.
As for Assumption 3.4, we can verify that

1

2

2∑
i=1

∥Fiz − Fz∥2 =
1

2

2∑
i=1

2ν2 = 2ν2.

Therefore, by choosing ν2 = σ2

2 , our example f indeed satisfies Assumption 3.4 with (ρ, σ) = (0, σ).

The proof is outlined as follows. For the example constructed above, we will calculate the E[∥zt+1∥2]
and show that the expectation is identical for both same-sample and independent sample versions
of SEG-US. We will then show that the update on the expected squared distance to equilibrium
E[∥zt+1∥2] for given zt can only belong to two categories: either ∥zt∥2 ≤ E[∥zt+1∥2] (expected
squared distance increases) or ∥zt∥2 ≥ E[∥zt+1∥2] ≥ γσ2

2L (expected squared distance shrinks but is
bounded from below by a constant). Since the two cases hold for any t ≥ 0 and any choices of αt and
βt = γαt, we show that the “convergence” can happen only up to a neighborhood of equilibrium.

At iteration t, SEG-US samples component indices i(t), j(t) ∈ {1, 2} for its extrapolation step and
update step, respectively. In the independent-sample version i(t) and j(t) are independently sampled
from Unif({1, 2}), and in the same-sample version i(t) is sampled uniformly at random and j(t) is
set to be equal to i(t). With the indices sampled as above, SEG-US then makes an update

wt = zt − αtFi(t)zt,

zt+1 = zt − βtFj(t)wt.

In our worst-case example f , the updates can be written as
wt = zt − αtAzt − si(t)αtν1

= (I − αtA)zt − si(t)αtν1

zt+1 = zt − βtAwt − sj(t)βtν1

= (I − βtA+ αtβtA
2)zt + si(t)αtβtνA1− sj(t)βtν1,

where we defined s1 = +1 and s2 = −1 for simplicity of notation.

We now calculate the expected value of ∥zt+1∥2.

∥zt+1∥2 =
∥∥(I − βtA+ αtβtA

2)zt
∥∥2 + α2

tβ
2
t ν

2 ∥A1∥2 + β2
t ν

2 ∥1∥2

+ 2si(t)αtβtν⟨(I − βtA+ αtβtA
2)zt,A1⟩ − 2sj(t)βtν⟨(I − βtA+ αtβtA

2)zt,1⟩
− 2si(t)sj(t)αtβ

2
t ν

2⟨A1,1⟩.
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For the independent-sample case, since si(t) and sj(t) are independent mean-zero random variables,

Ei(t),j(t)[∥zt+1∥2] =
∥∥(I − βtA+ αtβtA

2)zt
∥∥2 + α2

tβ
2
t ν

2 ∥A1∥2 + β2
t ν

2 ∥1∥2 . (124)
In the same-sample case, si(t) = sj(t) is a mean-zero random variable, so

Ei(t)[∥zt+1∥2] =
∥∥(I − βtA+ αtβtA

2)zt
∥∥2 + α2

tβ
2
t ν

2 ∥A1∥2 + β2
t ν

2 ∥1∥2 − 2αtβ
2
t ν

2⟨A1,1⟩,
but once we realize that ⟨A1,1⟩ = 0, the expectation becomes identical to (124); hence, the rest of
the analysis is the same for the two versions.

We now expand and arrange the RHS of (124). It is easy to check that

(I − βtA+ αtβtA
2)zt =

[
1− αtβtL

2 −βtL
βtL 1− αtβtL

2

] [
xt

yt

]
=

[
(1− αtβtL

2)xt − βtLyt
βtLxt + (1− αtβtL

2)yt

]
and hence ∥∥(I − βtA+ αtβtA

2)zt
∥∥2 =

(
(1− αtβtL

2)2 + β2
tL

2
)
∥zt∥2

=
(
1− 2αtβtL

2 + β2
tL

2(1 + α2
tL

2)
)
∥zt∥2 .

From this, we get

E[∥zt+1∥2] = ∥zt∥2 −
(
2αtβtL

2 − β2
tL

2(1 + α2
tL

2)
)
∥zt∥2 + 2α2

tβ
2
tL

2ν2 + 2β2
t ν

2

= ∥zt∥2 −
(
2αtβtL

2 − β2
tL

2(1 + α2
tL

2)
)
∥zt∥2 + β2

t σ
2(1 + α2

tL
2),

where we used the choice ν2 = σ2

2 as above.

The rest of the proof proceeds as follows: we show that, regardless of t ≥ 0 and the choices of αt

and βt = γαt, the expected value of ∥zt+1∥2 given zt can be categorized into only two cases:

1. ∥zt∥2 ≤ E[∥zt+1∥2]. That is, the iterate moves away from the equilibrium in expectation.

2. ∥zt∥2 ≥ E[∥zt+1∥2] ≥ γσ2

2L2 . That is, the expected squared distance shrinks but is lower
bounded by a certain constant independent of the stepsizes.

Showing this immediately finishes the proof, because there is no way that any E[∥zt∥2] can get
smaller than min{∥z0∥2 , γσ2

2L2 }, and ∥Fz∥ = L ∥z∥ for our example f .

The remaining proof is simple, by noticing that ∥zt∥2 ≤ E[∥zt+1∥2] is equivalent to(
2αtβtL

2 − β2
tL

2(1 + α2
tL

2)
)
∥zt∥2 ≤ β2

t σ
2(1 + α2

tL
2). (125)

Hence, if αt, βt, and zt satisfies (125), we belong to the first category. Otherwise, we are in the
second category, for which we need to additionally show E[∥zt+1∥2] ≥ γσ2

2L2 . When the inequality
(125) is satisfied with the opposite sign, we must have 2αtβtL

2 − β2
tL

2(1 + α2
tL

2) > 0 and

∥zt∥2 ≥
β2
t σ

2(1 + α2
tL

2)

2αtβtL2 − β2
tL

2(1 + α2
tL

2)
.

Also, notice that
2αtβtL

2 − β2
tL

2(1 + α2
tL

2) = 1−
(
(1− αtβtL

2)2 + β2
tL

2
)
< 1.

Using 2αtβtL
2 − β2

tL
2(1 + α2

tL
2) ∈ (0, 1) and substituting the lower bound on ∥zt∥2 into the

update equation, we find that

E[∥zt+1∥2] = ∥zt∥2 −
(
2αtβtL

2 − β2
tL

2(1 + α2
tL

2)
)
∥zt∥2 + β2

t σ
2(1 + α2

tL
2)

≥ β2
t σ

2(1 + α2
tL

2)

2αtβtL2 − β2
tL

2(1 + α2
tL

2)
=

1

L2
(

2αt

βtσ2(1+α2
tL

2)
− 1
)

Lastly, substituting βt = γαt into the RHS gives

E[∥zt+1∥2] ≥
1

L2
(

2
γσ2(1+α2

tL
2)
− 1
) ≥ γσ2

2L2
.

This finishes the proof.
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Remark H.5. We remark that, while Theorem H.4 successfully shows that SEG-US as studied in
[17, 20] cannot converge to an optimal point unless the batch size is increased every iteration, it does
not contradict the (almost sure) convergence result of independent-sample SEG by Hsieh et al. [25].
Indeed, in [25], the stepsizes {αt}t≥0 and {βt}t≥0 are chosen so that they decay to 0 with a different
rate and hence the corresponding ratio γ approaches 0, while Theorem H.4 considers the case where
αt and βt differ by a constant factor γ.

H.3 Proof of SGDA-RR and SEG-RR Lower Bounds

Theorem H.6. Suppose n ≥ 2 and L, µ > 0 satisfies L/µ ≥ 2. There exists a µ-strongly-convex-
strongly-concave minimax problem f(z) = 1

n

∑n
i=1 fi(z) consisting of L-smooth quadratic fi’s

satisfying Assumption 3.4 with (ρ, σ) = (0, σ) and initialization z0
0 such that SEG-RR with any

constant stepsize αk = α > 0, βk = β > 0 satisfies

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

Lσ2

µ3nK3

)
if K > L/µ.

where z∗ is the unique equilibrium point of f . For a similar choice of problem f (this time with
(ρ, σ) = (1, σ)), SGDA-RR with any constant stepsize αk = α > 0 satisfies

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

σ2

µ2n2K2 + Lσ2

µ3nK3

)
if K > L/µ.

Remark H.7. In Theorem H.6, we adopt techniques from the existing lower bounds for SGD-RR
to prove lower bounds for the minimax algorithms SGDA-RR and SEG-RR. In the literature,
there are two types of lower bounds for SGD-RR when K ≳ L/µ: namely, Ω( 1

n2K2 + 1
nK3 )

bounds for strongly convex quadratic functions [49, 50] and Ω( 1
nK2 ) bounds for strongly convex

non-quadratic functions [11, 45, 56]. Upper bounds that match the lower bounds in n and K are
also known, indicating that SGD-RR is one of the rare examples of minimization algorithms whose
tight convergence rates for quadratic vs. non-quadratic functions differ, within the narrow scope
of strongly convex and smooth functions. While it is tempting to aim for a tighter Ω( 1

nK2 ) lower
bound for our algorithms of interest, we note that the existing Ω( 1

nK2 ) bounds for SGD-RR are
proven for piecewise-quadratic functions whose Hessian is discontinuous. Since the discontinuous
Hessian violates our Assumption 3.3, we instead adhere to the quadratic case to prove lower bounds
Ω( 1

nK3 ) for both SGDA-RR and SEG-RR (when K ≥ L/µ). These bounds may not be the tightest
possible (since they are restricted to quadratics), but they still suffice to demonstrate that SEG-FFA
is provably superior to both SGDA-RR and SEG-RR.

H.3.1 Existing Lower Bound for SGD-RR

For the proof of lower bounds for SGDA-RR and SEG-RR, we utilize the results and techniques
from the lower bounds proven for SGD-RR; thus, it would be profitable to summarize the existing
result.

In case of SGD-RR, it is known from Theorem 2 of Safran and Shamir [50] that there exists a
minimization problem g(x) such that SGD-RR satisfies a lower bound of Ω( 1

n2K2 + 1
nK3 ) for

large enough values of K. We rewrite the theorem in a version in accordance with our notation and
assumptions:
Theorem H.8 (Theorem 2 of Safran and Shamir [50]). For any n ≥ 2 and L, µ > 0 satisfying
L/µ ≥ 2, there exists a µ-strongly convex minimization problem g(x) = 1

n

∑n
i=1 gi(x) consisting of

L-smooth quadratic gi’s satisfying Assumption 3.4 with (ρ, σ) = (1, σ) such that SGD-RR using
any constant stepsize αk = α > 0 satisfies

E
[∥∥xK

0 − x∗∥∥2] = Ω

(
σ2

LµnK
·min

{
1,

L

µnK
+

L2

µ2K2

})
.

The statement is equivalent to saying that for SGD-RR with constant stepsize α > 0, the bound
Ω( σ2

LµnK ) holds for K ≲ L/µ and Ω( σ2

µ2n2K2 + Lσ2

µ3nK3 ) for K ≳ L/µ.
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The function g = 1
n

∑n
i=1 gi used in the theorem is defined by the following component functions:

gi(x) = gi(x1, x2, x3) :=
µ

2
x2
1 +

L

2
x2
2 +

{
σ
2x2 +

L
2 x

2
3 +

σ
2x3 i ≤ n

2 ,

−σ
2x2 − σ

2x3 i > n
2 ,

(126)

thus making the objective function

g(x1, x2, x3) :=
µ

2
x2
1 +

L

2
x2
2 +

L

4
x2
3.

One can notice that the linear terms in gi (126) change signs depending on i ≤ n
2 or not, and handling

these sign flips is the key to the proof of the lower bound.

H.3.2 Proof of Lower Bound for SGDA-RR

For the SGDA-RR lower bound, we consider the following minimax optimization problem:

f(x, y) =
1

n

n∑
i=1

fi(x, y), where x ∈ R3, y ∈ R,

fi(x, y) = gi(x)−
µ

2
y2,

(127)

where gi’s are from (126). We need to first check if the problem instance satisfies the assumptions
listed in the theorem statement. Since f(x, y) = g(x)− µ

2 y
2 and g is a µ-strongly convex function,

f is µ-strongly-convex-strongly-concave as claimed. Also, it is easy to check from the definition of
gi that each component fi(x, y) is L-smooth quadratic.

Lastly, to verify Assumption 3.4, we first define s1, . . . , sn as si = 1 for i ≤ n
2 and si = 0 for i > n

2 .
Using this notation, The function gi can be compactly written as the following:

gi(x1, x2, x3) =
µ

2
x2
1 +

L

2
x2
2 +

σ

2
(2si − 1)x2 +

L

2
six

2
3 +

σ

2
(2si − 1)x3.

Therefore, the saddle gradient operators Fi of fi and F of f evaluate to

Fiz :=

[
∇gi(x)
µy

]
=

 µx1

Lx2 +
σ
2 (2si − 1)

Lsix3 +
σ
2 (2si − 1)
µy

 , Fz =

µx1

Lx2
L
2 x3

µy

 ,

which in turn yields

∥Fiz − Fz∥2 =
σ2

4
+

(
L

2
x3 +

σ

2

)2

≤
(
L

2
|x3|+ σ

)2

≤ (∥Fz∥+ σ)
2

for all i = 1, . . . , n. This confirms that the function f = 1
n

∑
i fi satisfies Assumption 3.4 with

(ρ, σ) = (1, σ).

If we run SGDA-RR on this problem, the updates on x done by SGDA-RR is exactly identical
to what SGD-RR would perform for the minimization problem g(x) = 1

n

∑
i gi(x) with the

same choices of random permutations. Therefore, after K epochs of SGDA-RR, it follows from
Theorem H.8 that

E
[∥∥zK

0 − z∗∥∥2] ≥ E
[∥∥xK

0 − x∗∥∥2] = Ω

(
σ2

LµnK
·min

{
1,

L

µnK
+

L2

µ2K2

})
,

which is in fact a tighter lower bound for SGDA-RR than what is stated in Theorem H.6. This
finishes the proof.

H.3.3 Proof of Lower Bound for SEG-RR

In this subsection, we prove the lower bound for SEG-RR. We will first define a new problem
instance f to be used here, and verify that the assumptions in the theorem statement are indeed
satisfied by this new f . We will then spell out the update equation of SEG-RR for this example,
which will serve as a basis for the case analysis that follows: we will divide the choices of stepsizes
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α, β > 0 to four regimes and prove a lower bound for each of them. Combining the regimes will
result in the desired lower bound.

For SEG-RR, we use a slightly different problem from (127). This time, we consider

f(x, y) =
1

n

n∑
i=1

fi(x, y), where x ∈ R2, y ∈ R,

fi(x, y) =
L

2
x2
1 +

L

4
x2
2 + σ(2si − 1)x2 −

µ

2
y2,

(128)

where si = 1 for i ≤ n
2 and si = 0 for i > n

2 , as defined above.

We first check if the problem (128) satisfies the assumptions in the theorem statement. Since

f(x, y) =
L

2
x2
1 +

L

4
x2
2 −

µ

2
y2

and L/2 ≥ µ by assumption, f is µ-strongly-convex-strongly-concave. Also, it is straightforward to
see that each fi is an L-smooth quadratic function. It is left to check Assumption 3.4. The saddle
gradient operators Fi of fi and F of f evaluate to

Fiz =

 Lx1
L
2 x2 + σ(2si − 1)

µy

 , Fz =

Lx1
L
2 x2

µy

 ,

which in turn yields
∥Fiz − Fz∥2 = σ2,

for all i = 1, . . . , n. This confirms that the function f = 1
n

∑
i fi satisfies Assumption 3.4 with

(ρ, σ) = (0, σ), as required by the theorem.

For k ≥ 0, the (k + 1)-th epoch of SEG-RR starts at zk
0 = (xk

0 , y
k
0 ) and the algorithm chooses a

random permutation τk. The algorithm then goes through a series of updates

wk
i = zk

i − αFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βFτk(i+1)w
k
i ,

for i = 0, . . . , n− 1. For our example f (128), it can be checked that a single iteration by SEG-RR
reads

zk
i+1 =

xk
i+1,1

xk
i+1,2

yki+1

 =

 (1− βL+ αβL2)xk
i,1

(1− βL
2 + αβL2

4 )xk
i,2 − βσ(1− αL

2 )(2sτk(i+1) − 1)
(1− βµ+ αβµ2)yki

 .

Aggregating the SEG-RR updates over an entire epoch (i = 0, . . . , n− 1) results in

xk+1
0,1 = (1− βL+ αβL2)nxk

0,1,

xk+1
0,2 =

(
1− βL

2
+

αβL2

4

)n

xk
0,2 − βσ

(
1− αL

2

) n∑
i=1

(2sτk(i) − 1)

(
1− βL

2
+

αβL2

4

)n−i

︸ ︷︷ ︸
=:Φ

,

yk+1
0 = (1− βµ+ αβµ2)nyk0 .

We will now square both sides of these equations above and take expectations over τk. In doing so,
there is a useful identity:

E[Φ] =
n∑

i=1

E[2sτk(i) − 1]

(
1− βL

2
+

αβL2

4

)n−i

= 0.

Also, it is worth mentioning that τk is independent of zk
0 = (xk

0,1, x
k
0,2, y

k
0 ). Using these facts, we

can arrange the terms to obtain

(xk+1
0,1 )2 = (1− βL+ αβL2)2n(xk

0,1)
2, (129)

E[(xk+1
0,2 )2] =

(
1− βL

2
+

αβL2

4

)2n

E[(xk
0,2)

2] + β2σ2

(
1− αL

2

)2

E[Φ2], (130)

(yk+1
0 )2 = (1− βµ+ αβµ2)2n(yk0 )

2. (131)
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Based on these three per-epoch update equations above, we now divide the choices of SEG-RR
stepsizes α, β > 0 into the following four cases and handle them separately:

1. α > 1
L , in which case we show that SEG-RR makes (xk+1

0,1 )2 > (xk
0,1)

2 hold
deterministically, so that if we initialize at x0

0,1 = σ√
Lµ

then we have

E
[∥∥zK

0

∥∥2] ≥ (xK
0,1)

2 > (x0
0,1)

2 =
σ2

Lµ
.

2. α ≤ 1
L and β ≤ 1

µnK , in which case we show that SEG-RR initialized at y00 = σ√
Lµ

suffers

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

Lµ

)
,

3. α ≤ 1
L and 1

µnK < β < 1
nL , in which case we show that SEG-RR initialized at x0

0,2 = 0

suffers

E
[∥∥zK

0

∥∥2] = Ω

(
Lσ2

µ3nK3

)
,

4. α ≤ 1
L , β > 1

µnK , and β ≥ 1
nL in which case we show that SEG-RR initialized at x0

0,2 = 0

suffers

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

LµnK

)
.

Notice that the third case 1
µnK < β < 1

nL only makes sense when K > L/µ; otherwise, the third
case just disappears. Hence, for the “large epoch” regime where K > L/µ, the third case achieves
the minimum error possible, so it holds that

E
[∥∥zK

0

∥∥2] = Ω

(
Lσ2

µ3nK3

)
.

For the “small epoch” regime (K ≤ L/µ), the third case does not exist and the fourth case achieves
the minimum, so

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

LµnK

)
.

Combining the two cases yields the desired lower bound in the theorem statement. It now remains to
carry out the case analysis.

Case 1: α > 1
L . For this case, we use (129) to prove divergence. Notice from α > 1

L that

1− βL+ αβL2 = 1 + βL(αL− 1) > 1,

regardless of β > 0. Hence, from (129), we get

E
[∥∥zK

0

∥∥2] ≥ (xK
0,1)

2 > (x0
0,1)

2.

If we initialize at x0
0,1 = σ√

Lµ
, then this proves

E
[∥∥zK

0

∥∥2] ≥ σ2

Lµ
.

Case 2: α ≤ 1
L and β ≤ 1

µnK . For this case, we employ (131) to show that the “contraction rate”
is too small to make enough “progress.” Notice from our stepsizes that

1− βµ+ αβµ2 ≥ 1− βµ ≥ 1− 1

nK
≥ 0.

Applying this inequality to (131), we have

(yk+1
0 )2 ≥

(
1− 1

nK

)2n

(yk0 )
2,

67



which in turn means that the progress over K epoch is bounded from below by

(yK0 )2 ≥
(
1− 1

nK

)2nK

(y00)
2 ≥ (y00)

2

16
,

where we used our assumption that n ≥ 2 and K ≥ 1. Hence, if our initialization was given as
y00 = σ√

Lµ
, then this proves

E
[∥∥zK

0

∥∥2] ≥ (yK0 )2 ≥ (y00)
2

16
= Ω

(
σ2

Lµ

)
.

Case 3: α ≤ 1
L and 1

µnK < β < 1
nL . For stepsizes in this interval, we use (130) to derive the

desired bound. Here, it is important to characterize a lower bound on the quantity

E[Φ2] := E

( n∑
i=1

(2sτk(i) − 1)

(
1− βL

2
+

αβL2

4

)n−i
)2
 .

To this end, we can use a lemma from Safran and Shamir [49], stated below:
Lemma H.9 (Lemma 1 of Safran and Shamir [49]). Let π1, . . . , πn (for even n) be a random
permutation of (1, 1, . . . , 1,−1,−1, . . . ,−1) where both 1 and −1 appear exactly n/2 times. Then
there is a numerical constant c > 0 such that for any ν > 0,

E

( n∑
i=1

πi(1− ν)n−i

)2
 ≥ c ·min

{
1 +

1

ν
, n3ν2

}
.

One can notice that Lemma H.9 is directly applicable to E[Φ2], with ν ← βL
2 −

αβL2

4 . Since

ν =
βL

2
− αβL2

4
≤ βL

2
≤ 1

2n
,

we have n3ν2 ≤ 1
8ν , thereby

min

{
1 +

1

ν
, n3ν2

}
≥ min

{
1

ν
, n3ν2

}
= n3ν2.

Therefore, Lemma H.9 gives

E[Φ2] ≥ cn3

(
βL

2
− αβL2

4

)2

=
cβ2n3L2

4

(
1− αL

2

)2

≥ cβ2n3L2

16
, (132)

where the last inequality used α ≤ 1
L . Applying (132) to (130) and also using (1− αL

2 )2 ≥ 1
4 ,

E[(xk+1
0,2 )2] ≥

(
1− βL

2
+

αβL2

4

)2n

E[(xk
0,2)

2] +
cβ4n3L2σ2

64
.

Unrolling the inequality for k = 0, . . . ,K − 1 gives

E
[
(xK

0,2)
2
]
≥
(
1− βL

2
+

αβL2

4

)2nK

(x0
0,2)

2 +
cβ4n3L2σ2

64

K−1∑
j=0

(
1− βL

2
+

αβL2

4

)2nj

=

(
1− βL

2
+

αβL2

4

)2nK

(x0
0,2)

2 +
cβ4n3L2σ2

64
·
1−

(
1− βL

2 + αβL2

4

)2nK
1−

(
1− βL

2 + αβL2

4

)2n .

Now note that our initialization x0
0,2 can be set to zero, which eliminates the need to think about the

first term in the RHS. It is now left to bound the second term. First, by the stepsize range α ≤ 1
L ,

β > 1
µnK and our assumption L/µ ≥ 2, we have(

1− βL

2
+

αβL2

4

)2nK

≤
(
1− βL

4

)2nK

≤
(
1− L

4µnK

)2nK

≤ e−
L
2µ ≤ e−1.
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Next, by Bernoulli’s inequality(
1− βL

2
+

αβL2

4

)2n

≥
(
1− βL

2

)2n

≥ 1− βnL > 0.

Plugging in the two inequalities to above, we obtain

E
[
(xK

0,2)
2
]
≥ cβ4n3L2σ2

64
·
1−

(
1− βL

2 + αβL2

4

)2nK
1−

(
1− βL

2 + αβL2

4

)2n
≥ cβ4n3L2σ2

64
· 1− e−1

1− (1− βnL)
= c′β3n2Lσ2

for a numerical constant c′ > 0. Plugging in the lower bound β > 1
µnK yields

E
[∥∥zK

0

∥∥2] ≥ E
[
(xK

0,2)
2
]
= Ω

(
Lσ2

µ3nK3

)
.

Case 4: α ≤ 1
L , β > 1

µnK , and β ≥ 1
nL . We again use (130). By noticing that the initialization

x0
0,2 = 0, we can unroll (130) for k = 0, . . . ,K − 1 to get

E
[
(xK

0,2)
2
]
≥ β2σ2

4
E[Φ2]

K−1∑
j=0

(
1− βL

2
+

αβL2

4

)2nj

≥ β2σ2

4
E[Φ2], (133)

where the last inequality holds regardless of β because each summand with j ≥ 1 is nonnegative. We
then invoke Lemma H.9 to lower bound E[Φ2], again with ν ← βL

2 −
αβL2

4 . Since

ν =
βL

2
− αβL2

4
≥ βL

4
≥ 1

4n
,

we have n3ν2 ≥ 1
64ν , thereby

min

{
1 +

1

ν
, n3ν2

}
≥ min

{
1

ν
, n3ν2

}
≥ 1

64ν
.

Therefore, Lemma H.9 gives

E[Φ2] ≥ c

64ν
=

c

32βL
· 1

1− αL
2

≥ c

32βL
. (134)

Combining (134) with (133) gives

E
[
(xK

0,2)
2
]
≥ cβσ2

128L
= Ω

(
σ2

LµnK

)
,

where the last step used β > 1
µnK . This finishes the case analysis, hence the proof of Theorem H.6.

I Additional Experiments

To evaluate our algorithm SEG-FFA as well as other baseline algorithms, we conduct numerical
experiments on monotone and strongly monotone problems. Specifically, as we have mentioned in
Section 6, we consider random quadratic problems of the form

min
x∈Rdx

max
y∈Rdy

1

n

n∑
i=1

[
x
y

]⊤[
Ai Bi

B⊤
i −Ci

] [
x
y

]
− t⊤i

[
x
y

]
.

We choose dx = dy = 20 and n = 40 for all the experiments. Numerical computations are done
using NumPy [24] and SciPy [52], and the plots are drawn using Matplotlib [26].
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I.1 Problem Constructions for Experiments in Section 6

For an experiment for the monotone case, the random components are sampled as follows. We choose
Bi so that each element is an i.i.d. sample from a uniform distribution over the interval [0, 1], and
ti so that each element is an i.i.d. sample from a standard normal distribution. We chose Ai to be
diagonal matrices in the following procedure: for each j = 1, . . . , 20 we randomly chose a subset Ij
of n

2 = 20 indices from [n] = {1, . . . , 40}, and set the (j, j)-entry of Ai to be

(Ai)j,j =

{
2 if i ∈ Ij
−2 otherwise

.

We repeat the exact same procedure for Ci as well. Notice that
∑n

i=1 Ai =
∑n

i=1 Ci = 0 by design.
Hence, each of the component functions will be a nonconvex-nonconcave quadratic function in
general, but the objective function itself becomes a convex-concave function.

For the experiment in the strongly monotone case, we sample Bi and ti in the same way as in the
monotone case, but we use different choices of Ai and Ci to ensure the objective function to be
strongly-convex-strongly-concave. In particular, for each i = 1, . . . , n, we sample Ai by computing
Ai = QiDiQ

⊤
i , where Di is a random diagonal matrix whose diagonal entries are i.i.d. samples

from a uniform distribution over the interval [ 12 , 1], and Qi is a random orthogonal matrix obtained
by computing a QR decomposition of a 20× 20 random matrix whose elements are i.i.d. samples
from a standard normal distribution. We sample Ci by the exact same method.

I.2 Monotone Case & Ablation Study on the Anchoring Step

In Section 6, we compared the empirical performance of various SEGs, namely SEG-FFA, SEG-FF,
SEG-RR, and SEG-US. Here, as an ablation study on the anchoring technique, we additionally
compare SEG-RRA and SEG-USA, which are each SEG-RR and SEG-US with an additional
anchoring step, respectively. For these two methods, we take the anchoring step after every n
iterations. We ran those methods on the same 5 random instances used in Section 6. For both SEG-
RRA and SEG-USA, we ran the method with two different stepsize choices, namely αk = βk = ηk
(inspired by the stepsize used in deterministic EG) and αk = βk/2 = ηk/2 (the stepsize used for
SEG-FFA) where we again set ηk = η0/(1+k/10)0.34 with η0 = min{0.01, 1

L}.
The results are plotted in Figure 2. As SEG-RRA and SEG-USA are designed to take one pass per

epoch, for those methods, we compute the ratio ∥Fzt
0∥2

∥Fz0
0∥2

where t denotes the number of passes, and

plot the geometric mean over the 5 runs.

From the performance of SEG-RRA with αk = βk and the two variants of SEG-USA, it is possible
to observe that adding the anchoring step does improve the performance of the method up to a
certain level, but it alone does not fully resolve the nonconvergence issue. On the other hand, quite
interestingly, SEG-RRA with αk = βk/2 shows a hint of convergence. While its performance is
slightly worse compared to SEG-FFA, it is nonetheless still notable as it is the only other method
from SEG-FFA that seems to be capable of converging to an optimum.

We conjecture that this intriguing performance of SEG-RRA with αk = βk/2 is because it achieves
an “expected” second order matching to the (deterministic) EG. Indeed, following the notations of
Proposition D.1, one can deduce from Proposition D.1 that using SEG-RRA with α = β/2 will result
in an epoch-level update of

z♯ = z0 −
β

2

n−1∑
j=0

Tjz0 +
β2

4

n−1∑
j=0

DTj(z0)Tjz0 +
β2

2

∑
0≤i<j≤n−1

DTj(z0)Tiz0 +
ϵn
2

(135)

with ϵn = o
(
β2
)
. Here, notice that (T0,T1, . . . ,Tn−1) = (Fτ(1),Fτ(2), . . . ,Fτ(n)) for some

randomly chosen permutation τ ∈ Sn. Now, observe that for any two distinct i, j ∈ [n], there are
exactly n!

2 permutations in Sn such that i comes before j in the sequence τ(1), τ(2), . . . , τ(n), and
also exactly n!

2 permutations such that j comes before i. Thus, in taking the expectation over the
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Figure 2: Experimental results in the monotone example, comparing the performance of SEG-RRA
and SEG-USA with the results displayed in Figure 1. Because SEG-FFA and SEG-FF use two
passes per epoch, for those two methods, we plot ∥Fz

t/2
0 ∥2

/∥Fz0
0∥

2.

randomness of choosing the permutation τ , we get

Eτ

 ∑
0≤i<j≤n−1

DTj(z0)Tiz0

 = Eτ

 ∑
1≤i<j≤n

DFτ(j)(z0)Fτ(i)z0


=

1

n!

∑
τ∈Sn

∑
1≤i<j≤n

DFτ(j)(z0)Fτ(i)z0

=
1

2

∑
i̸=j

DFj(z0)Fiz0,

where in getting the third line we have used the previously made observation that for any fixed i and
j with i ̸= j, the term DFj(z0)Fiz0 appears exactly n!

2 times in the sum on the second line. Hence,
taking the expectation with respect to the random permutation on (135) we get

Eτ

[
z♯
]
= z0 −

nβ

2
Fz0 +

β2

4

n∑
j=1

DFj(z0)Fjz0 +
β2

4

∑
i ̸=j

DFj(z0)Fiz0 +
1

2
Eτ [ϵn]

= z0 −
nβ

2
Fz0 +

β2

4

n∑
j=1

n∑
i=1

DFj(z0)Fiz0 +
1

2
Eτ [ϵn]

= z0 −
nβ

2
Fz0 +

n2β2

4
DF (z0)Fz0 +

1

2
Eτ [ϵn] .

Comparing this to (7) when η1 = η2 = nβ/2, we indeed see that the update rule of SEG-RRA with
α = β/2 achieves a second-order matching on expectation to the (deterministic) EG update with
stepsize nβ/2.

We also conjecture that the relatively worse performance of SEG-RRA with α = β/2 compared
to SEG-FFA is because the error over an epoch is O(η3) only on expectation, and thus the actual
error occurring in each epoch can be larger than O(η3). Unfortunately, our convergence analysis
on SEG-FFA relies on the error over an epoch being O(η3) deterministically (cf. Proposition 5.3),
hence cannot be directly applied to SEG-RRA with α = β/2. We leave the search for a theoretical
explanation on this alluring performance of SEG-RRA with α = β/2 as a stimulating direction for
future work.

I.3 Monotone Case: Comparison with Hsieh et al. [25]

Let us also compare the performance of SEG-FFA with the independent-sample double stepsize SEG
(DSEG) by Hsieh et al. [25]. Writing in terms of the finite-sum structure, the update rule of DSEG
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Figure 3: Experimental results in the monotone example, comparing SEG-FFA and the methods
proposed by Hsieh et al. [25]. By the same reason as in Figure 2, we plot ∥Fz
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can be written as

wk ← zk − η1,kFi(1,k)z
k

zk+1 ← zk − η2,kFi(2,k)w
k

where i(1, k) and i(2, k) are random indices that are independently drawn from [n] for each k. The
stepsizes are chosen in the form of η1,k = Θ(1/kr1) and η2,k = Θ(1/kr2), where setting r1 ≤ r2 is
the key point of DSEG. Two choices of the exponent pair (r1, r2) proposed in [25] are (1/3, 2/3) for
general monotone problems and (0, 1) exclusively for the case when F is affine.

We again use the same component functions as in the previous experiment. The setup for running
SEG-FFA are kept the same. For DSEG, we use the default choices suggested by Hsieh et al. [25],
namely η1,k = γ0/(k+19)r1 and η2,k = η0/(k+19)r2 , where (γ0, η0) = (1, 0.1) for the bilinear case
with (r1, r2) = (0, 1) and (γ0, η0) = (0.1, 0.05) for the general case with (r1, r2) = (1/3, 2/3).

The results are displayed in Figure 3, where the details on how the plots are drawn are the same as
Figure 2. Here we can clearly see that SEG-FFA outperforms both versions of DSEG.

I.4 Strongly Monotone Case Again, with Various Stepsizes

We also ran the experiment on strongly monotone problems described in Section 6, but with changing
the stepsizes. We tested six different values of ηk; we have tested with ηk = a × 10b where
a ∈ {1, 2, 5} and b ∈ {−4,−3}. Notice that the case ηk = 10−3 is exactly the experiment conducted
in Section 6.

The results are plotted in Figure 4. The overall details are the same as described in Section 6, as the
only difference is the stepsize choice. We can observe that, while the initial speed of convergence
may not be the fastest depending on the stepsize, SEG-FFA is always the method that eventually
finds the point with the smallest gradient. In other words, as predicted by our theoretical analyses, the
supremacy of SEG-FFA is in general not affected by the choice of the stepsize, as long as the chosen
stepsize is reasonably small.

72



0 2000 4000 6000 8000 10000
number of passes (t)

10 11

10 9

10 7

10 5

10 3

10 1

Fz
t 0

2

Fz
0 0

2
 o

r 
Fz

t/2 0
2

Fz
0 0

2
SEG-FFA

SEG-FF

SEG-RR

SEG-US

SGDA-RR

SGDA-US

(a) ηk = 0.0001
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(b) ηk = 0.0002
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(c) ηk = 0.0005
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(d) ηk = 0.001
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(e) ηk = 0.002
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Figure 4: Experimental results on the strongly monotone problems with different stepsizes. Notice
that Figure 4d is exactly the plot that is included in Section 6. The only difference between the
experiments conducted is the choice of the stepsize.
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