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ABSTRACT

Recently, major AI providers such as Google and OpenAI have introduced
Finetuning-as-a-Service (FaaS), which allows users to customize Large Language
Models (LLMs) using their own data. However, this service is vulnerable to safety
degradation when user data includes harmful prompts, a threat known as harmful
finetuning attacks. Prior works attempt to mitigate this issue by first constructing
safety-aligned model and then finetuning the model on user data. However, we ob-
serve that the safety-aligned weights provide weak initialization for downstream
task learning, leading to suboptimal safety-alignment and downstream task per-
formance. To address this, we propose a Refusal-Teacher (Ref-Teacher)-guided
finetuning framework. Instead of finetuning a safety-aligned model on user data,
our approach directly finetunes the base model under the guidance of a safety-
aligned Ref-Teacher, which filters harmful prompts from user data and distills
safety-alignment knowledge into the base model. Extensive experiments demon-
strate that our Ref-Teacher-guided finetuning strategy effectively minimizes harm-
ful outputs and enhances finetuning accuracy for user-specific tasks, offering a
practical solution for secure and reliable deployment of LLMs in FaaS.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Touvron et al. (2023); Jiang et al. (2023);
Team et al. (2024); Team (2024); Hurst et al. (2024); Guo et al. (2025); Research et al. (2025)) have
achieved remarkable performance across a wide range of natural language processing tasks. LLMs
are typically pretrained on massive and diverse corpora, resulting in strong generalization ability and
broad applicability across domains. To further facilitate LLMs for individual and domain-specific
purposes, major AI service providers such as Google and OpenAI offer not only access to pretrained
LLMs but also Finetuning-as-a-Service (FaaS). This service enables users to upload custom datasets
and adapt LLMs to more specific tasks and domains depending on their unique requirements.

However, FaaS must prevent the malicious use of LLMs through safety-alignment, even when users
attempt to jailbreak the models via customization. These types of attacks, which inject harmful
prompts into user data for finetuning, are called harmful finetuning attacks. Several studies (Qi et al.
(2023); Lermen et al. (2023); Rosati et al. (2024); Huang et al. (2024b;c;d); Li et al. (2025); Huang
et al. (2025)) have shown that finetuning on user data containing harmful content compromises
the safety-alignment, despite the LLMs being safety-aligned before finetuning. This vulnerability
highlights the need to preserve safety while achieving high performance on user tasks in FaaS.

To mitigate these risks, prior works typically adopt a two-stage pipeline. In the first stage, referred
to as the alignment stage, pretrained LLMs are trained on safety-alignment data to avoid generating
harmful responses. In the second stage, referred to as the finetuning stage, the safety-aligned models
are finetuned on user data for user-specific downstream tasks. Within this pipeline, some methods
find robust model weights against harmful finetuning attacks during the alignment stage (Huang
et al. (2024c;d); Liu et al. (2024); Rosati et al. (2024)), while others preserve safety-aligned weights
during the finetuning stage (Mukhoti et al. (2023); Huang et al. (2024b); Li et al. (2024a; 2025)).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, we observe that the two-stage pipeline adopted in prior works is suboptimal. Safety-
aligned models provide weak weight initialization for learning downstream tasks, resulting in limited
task performance and compromised safety. A more effective alternative is to directly finetune the
base model on both user data and safety-alignment data during finetuning stage, thereby enhancing
downstream task performance while preserving safety. Nevertheless, this base model finetuning
strategy suffers from gradient conflicts between the two objectives, safety and user task, which
destabilize training and are further exacerbated when user data contains harmful prompts.

Building on these observations, we propose a novel Refusal-Teacher (Ref-Teacher)-guided fine-
tuning framework (Fig. 1), which directly finetunes the base model on both user data and safety-
alignment data under the guidance of a Ref-Teacher. In our framework, the Ref-Teacher serves two
complementary roles. First, it performs Alignment Distillation by generating soft refusal labels that
provide richer supervision and yield smoother loss surfaces, thereby mitigating gradient conflicts.
Second, it performs Data Filtering by removing harmful prompts from user data based on its refusal
feature, ensuring robust conflict mitigation against harmful finetuning attacks. Through these two
roles, our framework effectively alleviates gradient conflicts, which in turn enables improved safety
and downstream task performance even under harmful finetuning attacks.

Our extensive experiments demonstrate the effectiveness of the Ref-Teacher-guided finetuning
framework in enhancing both user-specific task performance and safety-alignment. Across a wide
range of evaluations, our method consistently achieves the highest finetuning accuracy and the low-
est harmful scores compared to all baselines. Consequently, our framework overcomes the limita-
tions of prior two-stage pipelines and offers a practical solution for secure and reliable FaaS.

Our Contributions.
• We demonstrate that safety-aligned LLMs provide weak initialization for downstream learning,

resulting in suboptimal task performance and compromised safety, whereas directly finetuning the
base model on safety-alignment data and user data improves both safety and task performance.

• However, this base model finetuning strategy suffers from gradient conflicts between safety and
user task objectives, which are further exacerbated when user data includes harmful prompts.
To overcome this, we propose the Refusal-Teacher(Ref-Teacher)-guided finetuning framework,
which mitigates such conflicts through (i) alignment distillation and (ii) data filtering.

• Extensive experiments demonstrate that our framework achieves strong performance on user-
specific downstream tasks while consistently preserving safety across diverse settings.

2 RELATED WORKS

Safety in Large Language Models. Large Language Models (LLMs) can respond to diverse queries
but are vulnerable to harmful prompts (Ji et al. (2023); Zou et al. (2023)), which can elicit unsafe
outputs such as weapon-making instructions. To mitigate these risks, safety-aligned LLMs (Team
(2024); Llama Team (2024); Team et al. (2024)) have been developed, trained via Supervised Fine-
Tuning (Bianchi et al. (2023)) or Reinforcement Learning with Human Feedback (Ouyang et al.
(2022); Rafailov et al. (2023)) on datasets that pair harmful prompts with refusal responses, en-
abling them to reject unsafe requests. Nevertheless, they remain vulnerable to advanced jailbreaking
techniques (Chao et al. (2023); Liu et al. (2023); Zou et al. (2023); Li et al. (2024b)). Training-free
defenses leverage LLMs’ ability to assess harmfulness (Wang et al. (2024); Zhang et al. (2024)),
or exploit internal differences when processing harmful versus harmless inputs (Xie et al. (2024);
Hu et al. (2024); Hung et al. (2024)). In contrast, training-based methods enhance robustness by
finetuning LLMs through adversarial training. Some approaches adjust the balance of harmful and
harmless prompts (Bianchi et al. (2023)), while others generate adversarial samples via latent-space
perturbations (Sheshadri et al. (2024a;b); Xhonneux et al. (2024); Zou et al. (2024); Yu et al. (2024)).

Other methods train separate safe and unsafe models and apply safe decoding strategies Banerjee
et al. (2025); Du et al. (2024); Xu et al. (2024); Zhao et al. (2024). Recently, the concept of a refusal
feature, which encodes the refusal behavior of safety-aligned LLMs, is introduced, leveraging it in
both adversarial attacks Arditi et al. (2024) and defense Yu et al. (2024). Building on the insight
of the refusal feature, we further analyze the refusal feature and demonstrate its effectiveness in
classifying prompts as harmful or harmless. Based on the capability of refusal feature, we propose
a novel finetuning strategy for safe LLM finetuning.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Defending Harmful Finetuning Attacks. Harmful finetuning attacks are a subclass of jailbreak-
ing techniques in which harmful input-output pairs are injected into the finetuning data, leading
the model to generate unsafe outputs. The risks associated with harmful content in finetuning data
have been highlighted in several studies (Lermen et al. (2023); Qi et al. (2023); Zhan et al. (2023);
Hsu et al. (2024); He et al. (2024); Poppi et al. (2024); Betley et al. (2025); Hsiung et al. (2025);
Xiao et al. (2025)). This makes preserving safety-alignment against harmful finetuning attacks in-
creasingly critical, especially as AI providers begin offering FaaS. To address this issue, prior works
proposed solutions targeting the alignment stage, the finetuning stage, or the post-finetuning stage.
First, alignment-stage solutions aim to obtain robust safety-aligned LLM weights against harm-
ful finetuning attacks, typically through regularization techniques based on expected perturbations
(Huang et al. (2024c;d); Liu et al. (2024); Rosati et al. (2024); Tamirisa et al. (2024)). Second,
finetuning-stage solutions preserve safety during finetuning on user data by freezing safety-critical
parameters (Li et al. (2024a); Wei (2024); Li et al. (2025)) or incorporating safety regularization
(Mukhoti et al. (2023); Huang et al. (2024b); Qi (2024); Yang et al. (2025)), often with additional
safety-alignment data as guidance. Lastly, post-finetuning-stage solutions analyze differences be-
tween safety-aligned and finetuned models, and then edit model weights to compensate for safety
degradation (Huang et al. (2024a); Hsu et al. (2024); Yi et al. (2025)).

Beyond these methods, recent works have examined how feature-space similarity. Hsiung et al.
(2025) shows that safety guardrails weaken when downstream data representations overlap with
safety-alignment data, while Xiao et al. (2025) reveals that benign prompt styles applied to harmful
inputs can bypass safety mechanisms. Both findings relate to our refusal-feature-similarity–based
filtering, which also addresses feature-level similarity between harmful and benign data.

In contrast to prior works following two-stage pipeline, we propose a Refusal-Teacher (Ref-
Teacher)-guided finetuning framework, which directly finetunes the base model under the guidance
of the Ref-Teacher, achieving better performance in both safety and downstream tasks.

3 PROBLEM SETTING

Scenario. In Finetuning-as-a-Service (FaaS), AI providers pursue two primary objectives: (i)
achieving high user-specific task performance and (ii) preserving the safety-alignment of customized
LLMs. To address these goals, we consider two distinct phases: the alignment stage (service prepa-
ration) and the finetuning stage (service provision). In the alignment stage, service providers are
assumed to have access to a dataset of 5,000 harmful prompts and 5,000 harmless prompts, where
each harmful prompt is paired with a refusal response. In the finetuning stage, users submit custom
datasets to the provider for LLM customization. Importantly, providers have neither prior knowledge
of whether user data contains harmful prompts nor its distribution during the alignment stage.

Threat Models. We assume that user data contains p% harmful prompts with harmful responses,
while the remaining (1 − p)% consists of harmless prompts sampled from the same dataset. When
p = 0, the dataset includes only harmless prompts. Importantly, users do not inform which prompts
are harmful or harmless, thereby exposing LLMs to the risk of safety degradation during finetuning.
At the same time, LLMs are expected to achieve strong performance on user-specific downstream
tasks while preserving their safety-alignment, making the problem particularly challenging.

4 MOTIVATION: SAFETY-ALIGNED WEIGHTS ARE NOT ENOUGH.

Prior works on defending against harmful finetuning attacks have adopted a two-stage pipeline:
first performing safety-alignment on an LLM, and then finetuning the safety-aligned model on user
data. However, we find this paradigm suboptimal. After an LLM is safety-aligned, its weights are
biased toward safety objectives, weakening initialization for downstream task learning compared to
the base model. As a result, finetuning a safety-aligned model solely on user data yields limited
task performance and degraded safety-alignment. In contrast, we observe that directly finetuning
the base model on both user data and safety-alignment data is more effective. This strategy
leverages the well-known fact that base models provide strong initialization for downstream tasks.

To validate this claim, we evaluate the transferability of safety-aligned models and base model by
comparing two finetuning strategies via Harmful Score (HS) and Finetuning Accuracy (FA) after
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Table 1: Performance comparison of various safety-aligned LLMs and base model finetuning under
varying ratios p of harmful prompts in user data. SA denotes safety-alignment and FT denotes
finetuning. Numbers in (·) indicate the amount of data used for safety-alignment or finetuning.

Methods Harmful Score (↓) Finetune Accuracy (↑)

p = 0 p = 0.1 p = 0.3 p = 0.5 p = 0 p = 0.1 p = 0.3 p = 0.5

SA (1,000) → FT (1,000) 4.9 48.1 78.2 79.8 42.8 43.4 40.2 42.7
SA (5,000) → FT (1,000) 3.3 22.8 61.7 71.1 41.3 41.9 39.4 39.7
SA (10,000) → FT (1,000) 2.2 16.2 57.3 71.3 41.1 39.9 39.1 37.1

Repnoise (Rosati et al. (2024)) 2.7 29.9 67.0 75.7 37.4 37.0 36.3 36.0
Vaccine (Huang et al. (2024d)) 1.3 5.4 35.0 57.5 22.9 23.2 21.7 20.3
Booster (Huang et al. (2024c)) 2.3 5.9 65.1 75.0 44.5 44.0 44.4 43.5

Base → SA (1,000) + FT (1,000) 0.9 2.0 4.3 15.7 47.6 47.9 45.6 45.0

Table 2: Gradient conflicts in two finetuning frameworks, measured by the cosine similarity between
gradients from each objective during 300 finetuning steps. SA denotes safety alignment and FT
denotes finetuning. Numbers in (·) indicate data size. Freq represents the frequency of conflicts,
while Avg represents average cosine similarity. p denotes the ratio of harmful prompts in user data.

Methods p = 0 p = 0.1 p = 0.3 p = 0.5

Freq (%) Avg Freq (%) Avg Freq (%) Avg Freq (%) Avg

SA (1,000) → FT (1,000) 3.37 0.574 3.54 0.551 3.54 0.531 3.45 0.525
SA (5,000) → FT (1,000) 4.27 0.540 3.86 0.525 4.71 0.500 4.30 0.487
SA (10,000) → FT (1,000) 3.29 0.549 3.93 0.524 4.03 0.501 4.13 0.525

Base → SA (1,000) + FT (1,000) 35.09 0.110 36.80 0.099 40.80 0.073 46.03 0.039

finetuning (see Section 6 for metric details): (i) finetuning safety-aligned models solely on user
data, and (ii) directly finetuning the base model on both user data and safety-alignment data. As
shown in Table 1, stronger safety-aligned models preserve safety more effectively but exhibit weaker
downstream task performance. In contrast, directly finetuning the base model achieves both robust
safety-alignment and strong downstream task performance. In this strategy, safety-alignment data
compensates the safety degradation caused by harmful finetuning attacks, while the base model’s
strong initialization supports effective downstream task learning. Remarkably, even this simple
strategy achieves performance comparable to existing baselines in both safety and downstream task.

Limitations. However, directly finetuning the base model on both user data and safety-alignment
data introduces gradient conflicts, as the model must simultaneously optimize two distinct objec-
tives. Gradient conflict is defined as opposing update directions between gradients from different
objectives, typically indicated by negative cosine similarity (Yu et al. (2020); Chen et al. (2020)).
To quantify these conflicts, we measure cosine similarities between gradients from user data and
safety-alignment data for each parameter, and record the cumulative frequency of negative simi-
larities along with the average cosine similarity over 300 training steps (see Appendix A.3 for this
choice). As shown in Table 2, when a safety-aligned model is finetuned only on user data, fewer
than 5% of gradients conflict during training. In contrast, when the base model is finetuned on both
user and safety-alignment data, more than 35% of gradients conflict, and the presence of harmful
prompts in user data further exacerbates this issue. These gradient conflicts destabilize training.

Motivated by this observation, we propose a Refusal-Teacher (Ref-Teacher)-based finetuning
framework, which alleviates gradient conflicts through alignment distillation and data filtering,
thereby stabilizing training and enhancing robustness against harmful finetuning attacks.

5 METHOD: REFUSAL-TEACHER-GUIDED FINETUNING FRAMEWORK

We propose the Refusal-Teacher (Ref-Teacher)-guided finetuning framework, which directly
finetunes the base model on both safety-alignment data and user data under the guidance of a Ref-
Teacher via alignment distillation and data filtering. Unlike prior works that adopts the alignment
stage, our approach introduces a teacher preparation stage to train the Ref-Teacher, followed by a
finetuning stage where the unaligned base model is trained with Ref-Teacher guidance. An overview
of our finetuning framework and a comparison with prior works are illustrated in Fig. 1.
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Figure 1: Overview comparison of finetuning frameworks. (a) The base model is first trained on
safety-alignment data and then finetuned on user data, which often results in safety degradation and
limited downstream task performance. (b) Ref-Teacher is trained on safety-alignment data utilizing
refusal feature, and then the base model is directly finetuned on both user data and safety-alignment
data under the guidance of Ref-Teacher via data filtering and alignment distillation.

5.1 TEACHER PREPARATION STAGE

The goal of the teacher preparation stage is to train a safety-aligned teacher model for alignment
distillation and data filtering during finetuning stage. To this end, we leverage the refusal feature
during safety-alignment to train the model to accurately distinguish harmful from harmless prompts.

The refusal feature (Arditi et al. (2024)) is a one-dimensional representation that encodes safety
behavior, namely refusing harmful prompts while generating helpful responses for harmless ones.
Formally, it is defined as the mean difference between feature representations of harmful and harm-
less prompts at a specific layer l of the LLM. Let xs and xus denote safe and unsafe prompts,
respectively, and let f l(·) denote the features of the last input token extracted from layer l. The
refusal feature Rl is computed as Rl = 1

Nus

∑Nus

i=1 f l(xus
i ) − 1

Ns

∑Ns

i=1 f
l(xs

i ) where Nus and Ns

denote the number of unsafe and safe prompts, respectively. Consequently, the refusal feature ex-
hibit high cosine similarity with harmful prompt features and low similarity with harmless prompt
features, enabling harmful and harmless prompts classification via a cosine similarity threshold.

Leveraging this property, we develop the Ref-Teacher, a safety-aligned LLM that (i) generates soft
refusal labels for alignment distillation and (ii) more effectively distinguishes harmful from harmless
prompts using its refusal feature for data filtering. To achieve two objectives, we train the model
with a safety-alignment loss, a supervised loss on safety-alignment data where harmful prompts are
paired with refusal responses and harmless prompts with helpful outputs. This loss encourages the
model to refuse harmful requests while producing appropriate responses to harmless ones, thereby
enforcing distinct behaviors across different prompt types.

To further enhance discrimination, we introduce a regularization term that enforces clearer sep-
aration between harmful and harmless prompt features based on the refusal feature. Specifically,
this term encourages the cosine similarity between a refusal feature and harmful prompt features
to approach 1, while pushing the similarity with harmless prompt features toward −1. To prevent
corruption of internal representations, we control its strength using a hyperparameter λ. The final
objective for teacher preparation stage is consist of the safety-alignment loss and this regularization:

Lteacher =
1

N

N∑
i=1

[
ℓ(xs

i , y
s
i ) + ℓ(xus

i , yri ) + λ
{
∥1 + CS(f ℓ(xs

i ), R
ℓ)∥2 + ∥1− CS(f ℓ(xus

i ), Rℓ)∥2
}]

(1)
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Algorithm 1 Training Process of the Ref-Teacher Model
Require: Unsafe data xus, Safe data xs, Cycle number C, LoRA

weight W , Regularization strength λ, Learning rate η
Ensure: Trained LoRA weight W , Refusal Feature Rl

Initialize Unsafe prompt set Sus ← []
Initialize Safe prompt set Ss ← []
Initialize Refusal feature Rl ← None
Initialize Counter c← 0
while not converged do

Sample B examples each of xus and xs

Append xus to Sus

Append xs to Ss

c← c+B
if c ≥ C then

Update Rl ← 1
|Sus|

∑
x∈Sus

f l(x) − 1
|Ss|

∑
x∈Ss

f l(x)

Reset Unsafe prompt set Sus ← []
Reset Safe prompt set Ss ← []
c← 0

end if
if Rl is None then

λ← 0
end if
Compute Lteacher from Eq. 1
Update W ←W − η · ∇Lteacher

end while
return W and Rl

where ℓ(·, ·) denotes the cross-
entropy loss, CS(·, ·) represents co-
sine similarity, ys and yr are the
harmless and refusal responses, re-
spectively, and N is the number of
training samples. As a result, the Ref-
Teacher can generate appropriate re-
fusal responses for harmful prompts
while reliably distinguishing harmful
from harmless inputs using its refusal
feature.

In addition, we assume a setting
where a pre-aligned model is unavail-
able, making it impossible to extract
the refusal feature in advance. To ad-
dress this, we dynamically update the
refusal feature during training at fixed
intervals (cycles) based on its defini-
tion. For each training step, harm-
ful and harmless prompts are accu-
mulated into sets Sus and Ss, and
the refusal feature is updated for ev-
ery cycle. Before the first update, we
set λ = 0 to disable regularization,
as the refusal feature is not yet reli-
able. This dynamic update strategy
removes the need for a separate alignment stage, enabling the model to compute refusal feature and
learn discriminative representations within a single training process. The complete algorithm for the
teacher preparation stage is provided in Alg. 1.

5.2 FINETUNING STAGE

In the finetuning stage, the Ref-Teacher is frozen and serves as a teacher for two complementary
purposes: (i) providing alignment distillation and (ii) filtering harmful prompts from user data. This
approach enables the base model to effectively learn user-specific tasks while maintaining strong
safety-alignment by mitigating gradient conflicts that arise during finetuning.

Alignment Distillation. Knowledge distillation is a widely used technique for mitigating gradient
conflicts in multi-objective learning. Prior works (Hinton et al. (2015); Furlanello et al. (2018);
Müller et al. (2019); Yuan et al. (2020)) show that soft labels from a teacher provide richer supervi-
sion and yield smoother loss surfaces than hard labels. Following this principle, we adopt alignment
distillation to guide the base model when learning both user-specific tasks and safety-alignment.
Specifically, the Ref-Teacher generates soft refusal labels, and the base model is trained with (i) a
supervised loss on user data and (ii) a KL-divergence loss on safety-alignment data to align its pre-
dictions with the Ref-Teacher’s soft labels. This distillation stabilizes training by reducing gradient
conflicts, resulting in safe and appropriate responses for both harmful and user-specific inputs.

To ensure the reliability of these soft refusal labels, we reuse the safety-alignment data from the
teacher preparation stage. Since the Ref-Teacher has already been trained on this data, it can generate
accurate refusal responses. Moreover, as shown in Table 1, only a small subset of this data is needed
to be reused, removing the need for additional alignment data for finetuning stage.

Data Filtering. While alignment distillation mitigates gradient conflicts between safety and user-
specific task objectives, it alone cannot prevent these conflicts from being exacerbated by harmful
finetuning attacks. To address this, we adopt data filtering as a complementary solution. In our
framework, the Ref-Teacher filters harmful prompts from user data by leveraging its refusal feature
to distinguish harmful from harmless inputs. Specifically, harmful data are identified by measuring
the cosine similarity between the refusal feature Rl and the feature f l(xi) of each input prompt.
If the similarity exceeds a predefined threshold τ , the prompt is classified as harmful, otherwise as
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harmless. This filtering mechanism is formulated as a binary filtering indicator ωi:

ωi =

{
0, if CS(Rl, f l(xi)) > τ

1, otherwise
. (2)

In Eq. 2, prompts classified as harmful are excluded from the supervised finetuning loss by setting
ωi = 0, since misclassifying harmful prompts as harmless could exacerbate gradient conflicts and
destabilize training. To improve recall in harmful prompt classification, we set the threshold rela-
tively high, ensuring that the Ref-Teacher is less likely to misclassify harmful prompts as harmless
(even at the cost of discarding some harmless ones). Consequently, all data predicted to be harmful
are discarded, ensuring finetuning is performed only on harmless prompts. This strategy preserves
safety and stabilizes training by preventing even small amounts of harmful data.

Overall Objective. Our Ref-Teacher-guided finetuning strategy incorporates the dual-teacher mech-
anism, combining supervised finetuning on user data with alignment distillation on safety-alignment
data. The overall loss function for finetuning stage is defined as:

Lft =
1

Nuser

Nuser∑
i=1

ωi ∗ ℓ(xi, yi) + αT 2 ∗ 1

Nalign

Nalign∑
i=1

KL(pTt,i || pTs,i), (3)

where ℓ(xi, yi) is the cross-entropy loss on user data (xi, yi) weighted by ωi. The second term is the
alignment distillation loss on safety-alignment data, where KL denotes KL-divergence between the
teacher (Ref-Teacher) distribution pTt,i and the student (base model) distribution pTs,i at temperature

T . The softened distribution is pTi = exp(zi/T )∑V
j=1 exp(zj/T )

where z denotes the model logits and V is the

vocabulary size. The hyperparameter α controls the relative weight of the distillation term.

6 EXPERIMENT

We evaluate the effectiveness of our finetuning framework on safety-alignment and user-specific
task performance under various settings. We varied the ratio of harmful prompts, the size of user
data, the type of harmless prompts (GSM8K (Cobbe et al. (2021)), SST2 (Socher et al. (2013)),
AGNEWS (Zhang et al. (2015)), AlpacaEval (Li et al. (2023))), and the base model (Llama3-8B
(Llama Team (2024)), Gemma2-9B (Team et al. (2024)), Qwen2-7B (Team (2024))). Unless noted
otherwise, we used Llama3-8B, 0.1 poison ratio, 1, 000 user data, and GSM8K as harmless data.

Datasets. For teacher preparation stage, we used N = 5, 000 harmful prompts with refusal re-
sponses from BeaverTails (Ji et al. (2023)), and N = 5, 000 harmless prompts with helpful responses
from Alpaca (Taori et al. (2023)). For finetuning stage, user data was constructed by mixing harmful
and harmless samples with a specific poison ratio. The alignment data size Nalign was set equal to
the user data size Nuser. All harmful prompts in experiments were sourced from BeaverTails, but
distinct subsets were used for the teacher preparation, finetuning, and evaluation to avoid overlap.

Metrics. We evaluate both safety-alignment and task performance using two metrics: Harmful
Score (HS) and Finetuning Accuracy (FA), following prior works (Huang et al. (2024a;b;c;d; 2025);
Liu et al. (2025)). HS is the proportion of harmful responses among 1, 000 outputs generated from
BeaverTails test set, classified by the pretrained moderation model Beaver-Dam-7B (Ji et al. (2023)).
FA is measured by downstream benchmarks for GSM8K, SST2, AGNEWS, and AlpacaEval, using
1, 000, 872, 1, 000, and 122 samples, respectively. AlpacaEval was assessed by GPT-4o (Hurst et al.
(2024)), following standard practices. Both HS and FA were evaluated after finetuning stage.

Baselines. We compare our framework against both alignment and finetuning-stage solutions. SFT
is the standard supervised learning, aligning on harmful prompt-refusal pairs and then finetuning on
user data. Among alignment-stage methods, RepNoise (Rosati et al. (2024)) removes harmful rep-
resentations, Vaccine (Huang et al. (2024d)) enforces embedding invariance via perturbations, and
Booster (Huang et al. (2024c)) simulates harmful finetuning to regularize harmful loss. All are fol-
lowed by finetuning the aligned model on user data. For finetuning-stage solutions, applied to SFT-
aligned models, LDIFS (Mukhoti et al. (2023)) constrains concept forgetting, while Lisa (Huang
et al. (2024b)) alternates optimization between alignment and user data with a regularization term.
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Table 3: Performance under varying harmful prompts ratios p in user data. Lower harmful scores
(↓) and higher finetuning accuracy (↑) indicate better performance. Results are averaged over seeds
30, 42, and 50. Finetuning accuracy is not reported for p = 1.0 since harmless data is unavailable.

Methods Harmful Score (↓) Finetune Accuracy (↑)

p = 0 p = 0.1 p = 0.3 p = 0.5 p = 1.0 p = 0 p = 0.1 p = 0.3 p = 0.5 p = 1.0

SFT 2.2±0.1 16.2±0.4 57.3±0.6 71.3±0.6 76.7±0.4 41.1±0.0 39.9±0.6 39.1±0.2 37.1±0.6 -
Repnoise (Rosati et al. (2024)) 2.7±0.4 29.9±0.6 67.0±5.1 75.7±3.1 79.7±0.6 37.4±0.3 37.0±1.2 36.3±0.7 36.0±1.4 -
Vaccine (Huang et al. (2024d)) 1.3±0.2 5.4±0.7 35.0±0.3 57.5±0.4 81.3±0.1 22.9±0.5 23.2±1.0 21.7±0.3 20.3±0.4 -
Booster (Huang et al. (2024c)) 2.3±0.1 5.9±0.2 65.1±0.3 75.0±0.6 79.0±0.4 44.5±0.5 44.0±0.9 44.4±0.6 43.5±0.6 -
LDIFS (Mukhoti et al. (2023)) 1.0±0.2 4.1±0.7 7.1±0.2 14.7±0.3 24.0±0.4 18.0±0.9 16.7±0.8 15.5±0.1 15.4±0.6 -
Lisa (Huang et al. (2024b)) 1.4±0.2 5.3±0.1 25.9±1.5 49.2±0.7 67.3±1.0 38.3±0.7 38.9±0.9 37.8±0.9 36.2±0.5 -

Ref-Teacher (Ours) 0.9±0.3 1.0±0.5 0.6±0.1 0.9±0.3 1.3±0.2 48.8±0.5 49.0±0.5 45.5±0.9 44.8±0.5 -

Table 4: Performance comparison across varying amounts of user data. n denotes the user data size.

Methods Harmful Score (↓) Finetune Accuracy (↑)

n=1000 n=1500 n=2000 n=2500 Average n=1000 n=1500 n=2000 n=2500 Average

SFT 16.7 39.4 55.8 63.9 44.0 40.6 42.9 44.5 45.3 43.3
Repnoise (Rosati et al. (2024)) 30.4 50.4 61.7 72.9 53.9 38.4 40.5 43.6 43.5 41.5
Vaccine (Huang et al. (2024d)) 4.8 19.8 34.1 45.0 25.9 24.4 28.5 31.3 33.9 29.5
Booster (Huang et al. (2024c)) 5.9 19.4 48.2 62.6 34.0 43.4 45.3 48.4 48.5 46.4
LDIFS (Mukhoti et al. (2023)) 4.0 5.7 4.7 6.0 5.1 17.0 16.7 17.7 18.4 17.5
Lisa (Huang et al. (2024b)) 5.3 8.2 10.4 12.8 9.2 38.3 37.8 40.3 42.7 39.8

Ref-Teacher (Ours) 0.5 0.9 0.9 1.0 0.8 49.0 50.1 52.1 51.8 50.8

6.1 EXPERIMENT RESULTS

Robustness under Varying Harmful Prompt Ratio. We evaluate our framework using HS and FA
under varying ratios of harmful prompts p in user data, ranging from fully clean data (p = 0) to
entirely harmful data (p = 1.0). Table 3 shows that our method consistently achieves the lowest HS
and the highest FA across all values of p, outperforming all baselines. This effectiveness and robust-
ness stems from directly finetuning the base model while mitigating gradient conflicts under harmful
finetuning attacks through alignment distillation and data filtering with the Ref-Teacher. Moreover,
alignment-stage baselines such as RepNoise (Rosati et al. (2024)), Vaccine (Huang et al. (2024d)),
and Booster (Huang et al. (2024c)) degrade under high harmful ratios (p ≥ 0.3), while finetuning-
stage solutions such as LDIFS (Mukhoti et al. (2023)), Lisa (Huang et al. (2024b)), and our approach
remain robust, maintaining lower HS. Among these, our Ref-Teacher-guided finetuning framework
achieves the best performance in both safety-alignment and user-specific downstream tasks.

Scalability with Varying Amounts of User Data. We evaluate scalability of our framework by
measuring HS and FA as the number of user data samples increases from 1,000 to 2,500. As shown
in Table 4, our Ref-Teacher–guided finetuning strategy consistently achieves the best performance
across all settings. For a fixed poison ratio, our method maintains low HS even as the absolute num-
ber of harmful prompts grows with data size, demonstrating strong robustness in safety-alignment.
At the same time, FA improves as more user data become available for user-specific tasks. These
results validate the scalability and adaptability of our approach across varying data scales.

Generalization across Diverse Finetuning Datasets. In our default setting, GSM8K serves as the
user-specific downstream task. To evaluate generalization across datasets, we replaced the harmless
portion of user data with SST2, AGNEWS, and AlpacaEval samples, and measured HS and FA for
our method and baselines. As shown in Table 5, our approach consistently yields the lowest HS and
highest FA across all datasets. These results demonstrate the strong generalization of our framework,
preserving both safety-alignment and task performance across diverse downstream tasks.

Adaptability across Model Architectures. We assess adaptability to diverse model architectures
by training the Ref-Teacher on Gemma2-9B and Qwen2-7B, and finetuning each corresponding base
model on safety-alignment and user data. To obtain the refusal feature, we select the optimal safety
layer for harmfulness classification, which differs by architecture (Details are in Appendix B.1). Ta-
ble 6 shows that our method consistently reduces harmfulness while improving user-specific down-
stream performance across model architectures. These results demonstrate that our approach gener-
alizes across diverse LLM backbones rather than being restricted to a single architecture.
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Table 5: Performance comparison across different downstream tasks.

Methods GSM8K SST2 AGNEWS AlpacaEval Average

HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 16.7 40.6 33.5 93.4 28.2 82.8 23.7 32.7 20.4 49.9
Repnoise (Rosati et al. (2024)) 30.4 38.4 63.0 93.4 58.6 84.6 45.4 29.3 39.5 49.1
Vaccine (Huang et al. (2024d)) 4.8 24.4 35.8 90.0 29.5 83.2 55.8 14.4 25.2 42.4
Booster (Huang et al. (2024c)) 5.9 43.4 9.2 93.6 5.3 85.3 29.4 34.0 10.0 51.3
LDIFS (Mukhoti et al. (2023)) 4.0 17.0 14.6 90.5 12.5 71.2 5.7 33.7 7.4 42.5
Lisa (Huang et al. (2024b)) 5.3 38.3 21.4 93.4 14.9 84.5 10.1 29.6 10.3 49.2

Ref-Teacher (Ours) 0.5 49.0 1.3 94.5 1.2 86.1 2.4 34.6 1.1 52.8

Table 6: Performance comparison across different model architectures. Our Ref-Teacher-guided
finetuning strategy shows strong adaptability across Llama3-8B, Gemma2-9B, and Qwen2-7B.

Methods
Llama3-8B Gemma2-9B Qwen2-7B Average

HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 16.7 40.6 26.4 59.5 37.9 66.8 27.0 55.6
Repnoise (Rosati et al. (2024)) 30.4 38.4 26.2 57.1 25.4 63.7 27.3 53.1
Vaccine (Huang et al. (2024d)) 4.8 24.4 18.0 52.5 10.2 63.6 11.0 46.8
Booster (Huang et al. (2024c)) 5.9 43.4 2.3 58.4 4.9 70.0 4.4 57.3
LDIFS (Mukhoti et al. (2023)) 4.0 17.0 3.1 36.0 10.7 64.1 5.9 39.0
Lisa (Huang et al. (2024b)) 5.3 38.3 6.2 54.5 4.4 61.6 5.3 51.5

Ref-Teacher (Ours) 0.5 49.0 1.3 63.6 0.6 69.7 0.8 60.8

Table 7: Classification accu-
racy (%) during finetuning.
Datasets Harmful Harmless Total

GSM8K 100.00 97.70 97.93
SST2 99.91 95.30 95.76
AGNEWS 99.91 99.86 99.87
AlpacaEval 99.90 77.04 79.33

Table 8: F1 Scores (%) of Ref-Teacher, guardrail models, and lin-
ear classifier across various jailbreaking attacks.

Datasets BeaverTails JailbreakBench Toxic-chat GCG AutoDAN-turbo

Linear Classifier 83.5 69.8 75.7 52.4 48.4
LLaMAGuard3-8B 64.1 88.7 57.0 89.7 9.3
OpenAI Moderation 67.8 74.7 44.4 81.0 52.2
Ref-Teacher (τ = 0) 93.4 79.8 87.0 92.9 82.1

Table 9: Ablation study on safety
and task performance.

AD Filtering HS ↓ FA ↑

X X 2.0 47.9
O X 2.2 46.2
X O 0.6 46.5
O O 0.5 49.0

Table 10: Ablation study on gradient conflicts.

AD Filtering p = 0 p=0.1 p=0.3 p=0.5

Freq (%) Avg Freq (%) Avg Freq (%) Avg Freq (%) Avg

X X 35.09 0.110 36.80 0.099 40.80 0.073 46.03 0.039
O X 32.26 0.131 34.02 0.117 37.78 0.090 42.55 0.055
X O 36.11 0.102 36.51 0.097 37.80 0.087 39.91 0.073
O O 30.02 0.140 29.60 0.143 28.93 0.145 28.29 0.149

6.2 ANALYSIS

Classification Performance of Ref-Teacher. We evaluate Ref-Teacher’s ability to classify harm-
ful and harmless prompts during finetuning on GSM8K, SST2, AGNEWS, and AlpacaEval, achiev-
ing near-perfect accuracy on harmful prompts and consistently high accuracy on harmless ones
(Table 7). For generalization, we test on JailbreakBench harmless prompts combined with harmful
prompts from BeaverTails, JailbreakBench, Toxic-chat, GCG, and AutoDAN-turbo. Ref-Teacher,
trained only on BeaverTails (harmful) and Alpaca (harmless), is compared against LLaMAGuard3-
8B (Llama Team (2024)), OpenAI Moderation, and a linear classifier trained on LLaMA3-8B fea-
tures using the same data. As shown in Table 8, the classifier performs well on in-distribution but
degrades on unseen jailbreaks, whereas Ref-Teacher consistently outperforms all baselines, achiev-
ing high F1 scores even on advanced attacks (GCG, AutoDAN-turbo). These results demonstrate
the accuracy and generalization of refusal-based classification for reliable harmful data filtering.

Ablation Study on Safety and Task Performance. We assess the impact of alignment distillation
(AD) and data filtering (Filtering) on safety and task performance by removing each component. As
shown in Table 9, AD alone improves neither safety nor finetuning accuracy, indicating that it cannot
stabilize optimization when harmful prompts remain in user data. In contrast, Filtering alone reduces
harmfulness but lowers finetuning accuracy due to reduced user data, which increases overfitting
risk. These results highlight their complementary roles: AD stabilizes optimization but requires
filtered data, whereas Filtering reduces harmfulness but risks overfitting without distillation. Their
combination synergistically achieves strong task performance while preserving safety alignment.
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Table 11: Computational Overhead across Baselines.

Methods
Alignment Stage Finetuning Stage Sum

GPUTime (s) GPUMemory (GB) GPUTime (s) GPUMemory (GB) GPUTime (s) GPUMemory (GB)

SFT 0.91 7.84 1.59 9.31 2.50 17.15
Repnoise (Rosati et al. (2024)) 4.27 15.27 1.59 9.31 5.86 24.58
Vaccine (Huang et al. (2024d)) 1.79 7.84 1.59 9.31 3.38 17.15
Booster (Huang et al. (2024c)) 3.92 9.39 1.59 9.31 5.51 18.70
LDIFS (Mukhoti et al. (2023)) 0.91 7.84 1.95 16.51 2.86 24.35
Lisa (Huang et al. (2024b)) 0.91 7.84 1.59 9.02 2.50 16.86

Ref-Teacher (Ours) 1.76 11.29 1.84 12.01 3.60 23.30

Ablation Study on Gradient Conflicts. We evaluate the contributions of alignment distillation
(AD) and data filtering (Filtering) on gradient conflicts by removing each component and varying
the harmful ratio p. Table 10 shows that AD alone reduces conflicted parameters on clean data
but loses effectiveness as p increases, while Filtering alone stabilizes the frequency of conflicts but
does not sufficiently mitigate it. Consequently, AD and Filtering complement each other in our
framework, mitigating gradient conflicts effectively under harmful finetuning attacks.

Computational Overhead. To quantify the computational overhead introduced by the Teacher
Preparation Stage, we measured both GPUTime and GPUMemory for the alignment stage and the
finetuning stage separately. All measurements were performed on four RTX 3090 GPUs, and Ta-
ble X reports the per-GPU GPUTime (average per-step runtime) and GPUMemory (average per-step
memory usage). As shown in Table 11, while Ref-Teacher does incur additional cost relative to SFT,
the increase is moderate compared to other baselines. Specifically, compared to SFT, Ref-Teacher
uses 44.0% more GPUTime and 35.9% more GPUMemory, yet achieves a 93.8% reduction in harm-
ful score and a 22.8% increase in finetuning accuracy. These results indicate that the computational
overhead is modest and well-justified given the substantial safety and utility improvements.

7 CONCLUSION

In this work, we address a key limitation of current two-stage Finetuning-as-a-Service (FaaS) prac-
tices, where providers first safety-align an LLM and then finetune the safety-aligned model on user
data. We observe that safety-aligned models offer weak initialization for downstream task learn-
ing, leading to suboptimal task performance and degraded safety when finetuning the safety-aligned
model on user data. To overcome this, we introduce the Refusal-Teacher (Ref-Teacher)-guided fine-
tuning framework, which directly finetunes the unaligned base model on both safety-alignment data
and user data under the guidance of a safety-aligned Ref-Teacher via alignment distillation and data
filtering. Extensive experiments demonstrate that our framework consistently achieves the lowest
harmful scores and the highest finetuning accuracy across diverse settings, outperforming baselines.
Overall, our approach offers a practical and effective solution for FaaS, ensuring strong user-specific
task performance while preserving safety-alignment against harmful finetuning attacks.

REFERENCES

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
Neel Nanda. Refusal in language models is mediated by a single direction. arXiv preprint
arXiv:2406.11717, 2024.

Somnath Banerjee, Sayan Layek, Soham Tripathy, Shanu Kumar, Animesh Mukherjee, and Rima
Hazra. Safeinfer: Context adaptive decoding time safety alignment for large language models.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 27188–27196,
2025.

Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martı́n Soto, Nathan
Labenz, and Owain Evans. Emergent misalignment: Narrow finetuning can produce broadly
misaligned llms. arXiv preprint arXiv:2502.17424, 2025.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Röttger, Dan Jurafsky, Tatsunori
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APPENDIX

A EXPERIMENT DETAILS

A.1 TRAINING SETUP

In the teacher preparation stage, we train the Refusal-Teacher (Ref-Teacher) model for 20 epochs
using batches of size 10, consisting of 5 harmful and 5 harmless prompts, with a learning rate of
5e−4. During the finetuning stage, we train the base model with Ref-Teacher for 20 epochs using
20 batches (10 harmful data and 10 harmless data), with a learning rate of 1e−5. For the AlpacaEval
dataset (Li et al. (2023)), due to its small size, we train the base model for 100 epochs using 700
prompts. In both stages, we apply LoRA (Hu et al. (2022)) with a rank of 32, targeting the query, key,
and value components of the attention modules. Also, we use the AdamW optimizer (Loshchilov &
Hutter (2017)) with a weight decay of 0.1 and a constant learning rate schedule. All experiments are
conducted on four RTX3090 GPUs.

A.2 HYPERPARAMETERS FOR OUR METHOD

Our proposed framework introduces several additional hyperparameters. First, in teacher prepara-
tion stage, we set the regularization strength for training Ref-Teacher model to λ = 0.1. Refusal
features are extracted from specific layer in LLMs: l = 12 for LLAMA3-8B, l = 11 for Gemma2-
9B, l = 18 for Qwen2-7B. The refusal features are updated periodically every C = 6 cycles,
with each update performed using 30 harmful and 30 harmless prompts. During finetuning stage,
for harmful and harmless classification using the Ref-Teacher model, we use a threshold of 0.9 to
maximize the recall of harmful prompts. For alignment distillation, we set the distillation strength
α = 0.1 and use a the temperature T = 1. Ablation studies to identify the optimal values for these
hyperparameters are presented in Sec. B. All the other hyperparameters for the baseline methods
follow the settings specified in their respective original papers (Mukhoti et al. (2023); Huang et al.
(2024c;d;b); Rosati et al. (2024)).

A.3 MEASURING GRADIENT CONFLICTS

We showed that directly finetuning the base model on both user data and safety-alignment data in-
troduces gradient conflicts, which we measured using negative cosine similarities between gradients
from the two datasets. Specifically, we reported the average frequency of negative cosine similarities
and the average cosine similarity values accumulated over the first 300 training steps. We focus on
this range because, after 300 steps, even when training on the same dataset, the signal-to-noise ratio
(SNR) decreases sharply, making noise more dominant and causing negative cosine similarities to
occur more frequently. Figure A2 reports the measured SNR when finetuning a safety-aligned model
on user data, showing that SNR drops to very low values beyond 300 steps. Although gradients from
the same dataset are theoretically expected to exhibit very few negative cosine similarities, we ob-
served that their frequency increases after 300 steps under this finetuning setup. For this reason, we
present negative cosine similarity statistics only up to 300 steps, as shown in Tables 2 and 10.

B EXPERIMENTS FOR FINDING OPTIMAL HYPERPARAMETERS

B.1 LAYER SELECTION FOR REFUSAL FEATURE EXTRACTION

The refusal feature reflects the model’s ability to distinguish between harmful and harmless prompts
and to generate refusal responses only for harmful inputs. Therefore, it is most effective to extract
the refusal feature from a layer that maximizes the distinction between harmful and harmless prompt
representations. Based on a prior work (Li et al. (2024a)) suggesting that such layers are typically
located in the middle layers of LLMs, we identify the optimal layer by evaluating classification accu-
racy and the norm difference between the average features of harmful and harmless prompts across
8 different layers. As shown in Table A1, both the classification accuracy and norm differences vary
across layers. For each layer, the classification threshold is optimized to maximize classification
performance. As a result, we used l = 11 for the Gemma2-9B (Team et al. (2024)) and l = 18
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(a) p = 0 (b) p = 0.1

(c) p = 0.3 (d) p = 0.5

Figure A2: Signal-to-noise ratio (SNR) measured when finetuning a safety-aligned model solely on
user data. SNR values consistently drop after 300 training steps across varying harmful ratios p,
making noise dominant and increasing the frequency of negative cosine similarities between gradi-
ents.

Table A1: Classification accuracy and feature L1-norm differences across layers for identifying the
optimal layer index used to extract refusal features in Gemma2-9B-it and Qwen2-7B-Instruct. The
selected layer used in our experiments is highlighted in bold. For each layer, features are extracted
from the last input token, and classification thresholds are optimized.

(a) Gemma2-9B-it

Layer idx Threshold Harmful Acc (%) Harmless Acc (%) Acc (%) Harmful Avg Harmless Avg Diff

7 0.0055 76.6 93.4 85.0 0.0239 -0.0090 0.0329
8 0.0225 69.8 93.8 81.8 0.0374 0.0080 0.0294
9 0.0510 89.6 96.6 93.1 0.0878 0.0303 0.0575
10 0.0530 93.8 95.0 94.4 0.0949 0.0363 0.0586
11 0.0245 96.2 98.6 97.4 0.0844 -0.0020 0.0864
12 0.0555 91.4 96.4 93.9 0.1133 0.0319 0.0814
13 0.0570 90.8 92.8 91.8 0.1285 0.0346 0.0939
14 0.184 86.6 91.2 88.9 0.2629 0.1524 0.0111

(b) Qwen2-7B-Instruct

Layer idx Threshold Harmful Acc (%) Harmless Acc (%) Acc (%) Harmful Avg Harmless Avg Diff

13 0.046 96.4 98.6 97.5 0.1814 0.0153 0.1661
14 0.118 97.2 97.8 97.5 0.2622 0.0875 0.1747
15 0.060 98.0 98.2 98.1 0.2297 0.0265 0.2032
16 0.145 96.2 99.2 97.7 0.3003 0.1093 0.1910
17 0.164 98.6 97.8 98.2 0.3709 0.1326 0.2383
18 0.195 98.6 99.8 99.2 0.4166 0.1551 0.2615
19 0.163 97.4 99.6 98.5 0.3555 0.1262 0.2293
20 0.055 95.0 99.4 97.2 0.2458 0.0211 0.2247

for the Qwen2-7B (Team (2024) in all of our experiments. For Llama3-8B, we adopted l = 12,
following a prior work (Arditi et al. (2024)). Additionally, we used the feature corresponding to the
last input token, as it encodes the entire sentence due to the language model’s causal structure and
attention masking.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A2: Effect of cycle (C) on
the Ref-Teacher performance.

Cycle Nus = Ns HS (↓) FA (↑)

6 30 0.5 49.0
20 100 1.1 47.8
100 500 1.1 47.7
200 1000 1.2 46.8

Table A3: Varying λ.

λ HS (↓) FA (↑)

0.05 0.7 48.4
0.1 0.5 49.0
0.3 1.0 48.3
0.5 1.0 48.3
1.0 1.6 47.7

Table A4: Varying Threshold.

Threshold HS (↓) FA (↑)

0 0.9 47.8
0.3 0.6 46.2
0.5 1.4 47.2
0.7 1.0 47.1
0.9 0.5 49.0

B.2 EFFECT OF CYCLE LENGTH ON REFUSAL FEATURE UPDATES

During the teacher preparation stage, the cycle determines both the interval and the number of sam-
ples used to update the refusal feature, which serves as important reference for distinguishing be-
tween features of harmful and harmless prompts in our Ref-Teacher model. A short cycle updates
the refusal feature more frequently but with fewer samples, which can lead to unstable training due
to variance of refusal features. In contrast, a long cycle uses more samples for each update but, due
to its infrequent updates, may overfit to suboptimal refusal feature. Table A2 presents the harmful
score (HS) and finetuning accuracy (FA) across different cycle lengths and the corresponding num-
ber of samples used for updating the standard refusal feature. The results show that frequent updates
with a short cycle help the Ref-Teacher model more effectively separate harmful from harmless
prompts and generate appropriate refusal responses to harmful inputs.

B.3 EFFECT OF REGULARIZATION STRENGTH (λ) ON REF-TEACHER MODEL TRAINING

The λ value in Eq. 1 of main manuscript controls the strength of the regularization term that encour-
ages distinct separation between the features of harmful and harmless prompts in the Ref-Teacher
model during the teacher preparation stage. An overly strong regularization term may disrupt the
internal representations of the Ref-Teacher model, while a weak regularization term may reduce
the Ref-Teacher model’s ability to distinguish between harmful and harmless prompts based on its
refusal feature. Therefore, selecting an appropriate λ value is critical for effective training of the
Ref-Teacher model and subsequent finetuning. Table A3 presents the finetuning performance using
Ref-Teacher models trained with different λ values. The results show that a λ value of 0.1 achieves
the lowest harmful score (HS) and the highest finetuning accuracy (FA), indicating its effectiveness
as an optimal hyperparameter choice.

B.4 EFFECT OF THRESHOLD VALUES ON FINETUNING

The threshold τ in Eq. 2 is a key hyperparameter used as a standard to classify harmful prompts by
measuring the similarity between input prompt features and the refusal feature in the Ref-Teacher
model during the finetuning stage. We predicted prompts with similarity above the threshold as
harmful, while those below the threshold are classified as harmless. Therefore, a threshold that is
too low may misclassify harmful prompts as harmless, thereby introducing safety risks by allowing
harmful prompts to be included in finetuning. Conversely, a threshold that is too high may incor-
rectly filter out harmless prompts misclassified as harmful, leading to reduced finetuning accuracy.
As shown in Table A4, we evaluate the impact of varying threshold values. The results indicate
that a threshold of 0.9 yields the lowest harmful score and the highest finetuning accuracy. This
optimal performance is attributed to the near-perfect alignment of harmful prompt features with the
refusal feature, resulting in the similarity values close to 1, in the Ref-Teacher model, as illustrated
in Table 7 of the main manuscript.

B.5 EFFECT OF ALIGNMENT DISTILLATION HYPERPARAMETERS

Knowledge distillation typically involves two key hyperparameters: temperature T , which controls
the softness of the teacher predictions, and the distillation weight α, which balances the influence
of the distillation loss. To evaluate their impact, we measure both the harmful score and finetun-
ing accuracy across various values of T and α. As shown in Table A5, higher values of T lead
to increased harmful scores, likely due to the student model not closely following the Ref-Teacher
model’s predictions. In contrast, higher values of α reduce the harmful score but also lower the fine-
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Table A5: Impact of temperature (T ) and distillation weight (α) on Harmful Score (HS) and Fine-
tuning Accuracy (FA). The best-performing setting (T = 1.0, α = 0.1) is highlighted in bold.

Temperature T α HS (↓) FA (↑)

1.0 0.1 0.5 49.0
1.0 0.3 1.3 45.3
1.0 0.5 1.2 47.9
1.0 1.0 1.2 44.6
1.0 5.0 0.9 40.5

2.0 0.1 0.9 45.6
2.0 0.3 0.7 44.2
2.0 0.5 1.0 43.4
2.0 1.0 0.5 42.8
2.0 5.0 0.6 26.1

5.0 0.1 12.8 46.7
5.0 0.3 3.4 46.5
5.0 0.5 3.1 45.2
5.0 1.0 2.2 44.2
5.0 5.0 2.4 33.7

Table A6: Impact of data filtering on baseline. HS denotes Harmful Score (lower is better), and FA
denotes Finetuning Accuracy (higher is better).

Methods
No Filtering LLaMAGuard Ref-Teacher

HS FA HS FA HS FA

SFT 16.7 40.6 6.6 40.4 1.7 43.3
RepNoise (Rosati et al. (2024)) 30.4 38.4 13.2 37.2 2.5 36.7
Vaccine (Huang et al. (2024d)) 4.8 24.4 1.9 22.7 1.3 22.4
Booster (Huang et al. (2024c)) 5.9 43.4 3.2 43.7 0.9 44.2
LDIFS (Mukhoti et al. (2023)) 4.0 17.0 2.6 17.4 1.1 16.1
Lisa (Huang et al. (2024b)) 5.3 38.3 2.0 37.6 1.3 38.5

Ref-Teacher (Ours) 2.2 46.2 0.5 49.0 0.5 49.0

tuning accuracy, as excessive emphasis on the alignment loss weakens user-specific downstream task
performance. Among these hyperparameter values, T = 1 and α = 0.1 yield the best overall per-
formance. This setting allows the student model to closely follow the well-aligned refusal responses
of the Ref-Teacher model, while keeping the alignment loss moderate to preserve downstream task
performance.

C ADDITIONAL EXPERIMENTS

C.1 COMPARISON TO BASELINES WITH GUARDRAIL-BASED FILTERING.

Our proposed finetuning framework incorporates a data filtering process guided by the Ref-Teacher
model, which is a fundamental defense against harmful finetuning attacks but has not yet been ex-
plored in the Finetuning-as-a-Service (FaaS) setting. To ensure that the superiority of our frame-
work does not arise merely from data filtering, we additionally apply two filtering strategies,
LLaMAGuard3-8B Llama Team (2024) and Ref-Teacher, to all baseline methods. Specifically, each
baseline finetunes a safety-aligned model on user data filtered by (1) LLaMAGuard3-8B, which re-
moves 5.7% of prompts, or (2) our Ref-Teacher filter, which removes 12.2% of promptswhen 100
harmful prompts are included among 1,000 user prompts. As shown in Table A6, both filtering
methods reduces harmful scores across all baselines. Nevertheless, our framework consistently out-
performs these improvements without relying on any external guardrail. This result is consistent
with Table A10, where data filtering with Ref-Teacher achieves comparable safety gains but still
falls short of the full effectiveness of our method.

C.2 GENERALIZATION UNDER CROSS-DATASET FINETUNING

We conduct a cross-dataset evaluation to further assess generalization in the finetuning stage. Specif-
ically, both the Ref-Teacher model and the safety-aligned models are trained on BeaverTails (Ji
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Table A7: Cross-Dataset Evaluation (BeaverTails (Ji et al. (2023)) → JailbreakBench (Chao et al.
(2024))). HS denotes Harmful Score (lower is better), and FA denotes Finetuning Accuracy (higher
is better).

Aligned Model HS (In-Domain) ↓ FA (In-Domain) ↑ HS (Out-Domain) ↓ FA (Out-Domain) ↑

SFT 16.7 40.6 93.0 40.6
RepNoise (Rosati et al. (2024)) 30.4 38.4 90.0 35.7
Vaccine (Huang et al. (2024d)) 4.8 24.4 15.0 23.6
Booster (Huang et al. (2024c)) 5.9 43.4 4.0 43.4
LDIFS (Mukhoti et al. (2023)) 4.0 17.0 81.0 17.0
Lisa (Huang et al. (2024b)) 5.3 38.3 9.0 35.7

Ref-Teacher (Ours) 0.5 49.0 2.0 46.6

Table A8: Performance on Llama3-8B-Instruct (Llama Team (2024)) under the pre-aligned LLM
setting. Ref-Teacher* uses the raw instruct model as the Ref-Teacher without additional training,
while Ref-Teacher denotes the model trained under our framework.

Method HS (↓) FA (↑)

SFT 64.0 66.0
LDIFS (Mukhoti et al. (2023)) 15.9 66.8
SafeInstruct (Bianchi et al. (2023)) 26.9 66.4
Lisa (Huang et al. (2024b)) 28.1 60.6
Antidote (Huang et al. (2024a)) 17.4 59.3

Ref-Teacher* 13.9 65.8
Ref-Teacher 5.4 66.5

et al. (2023)), and finetuning is then performed on JailbreakBench (Chao et al. (2024)). As shown
in Table A7, several baselines suffer substantial performance degradation under this harmful data
distribution shift, particularly in terms of harmfulness. In contrast, our Ref-Teacher-guided frame-
work consistently achieves the lowest harmful scores and the highest finetuning accuracy in both
in-domain and out-of-domain settings, demonstrating strong generalization across datasets.

C.3 DISCUSSION OF THE PRE-ALIGNED LLM SETTING AND REF-TEACHER ADAPTATION

In practice, many safety-aligned LLMs are already available, such as Llama3-8B-
Instruct Llama Team (2024), Gemma2-9B-it Team et al. (2024), and Qwen2-7B-Instruct Team
(2024). However, following prior studies Huang et al. (2024b;d;a;c), we assume that such
pre-aligned models are unavailable and begin from a base LLM. This assumption ensures a fair
comparison with alignment-stage methods.

This setting is also realistic for new FaaS providers that have not yet established a safety-aligned
model. These organizations must decide how to construct one that remains robust against harmful
finetuning. They can either (1) adopt an alignment-stage approach or (2) perform standard su-
pervised safety-alignment followed by a finetuning-stage defense. In this context, our framework
introduces a specialized safety-aligned model that reliably identifies harmful prompts and provides
alignment distillation.

In contrast, assuming a pre-aligned LLM simplifies our framework: the Ref-Teacher can be trained
without updating the refusal feature or even be replaced by an existing safety-aligned model. Thus,
while our main experiments target the more challenging scenario, our framework can be naturally
extended to settings with pre-aligned models.

Moreover, pre-aligned LLMs are also not immune to safety degradation when directly finetuned
on user data. Preventing this degradation again requires jointly finetuning on safety and user data,
which also creates the gradient conflict. Therefore, a conflict-mitigation framework such as ours is
needed even when starting from instruct models.

Therefore, to verify this, we evaluate all methods on Llama3-8B-Instruct. Since alignment-stage
baselines cannot be applied, we compare only finetuning- and post-finetuning-stage methods. As
shown in Table A8, our framework that adopting a pre-aligned LLM as Ref-Teacher achieves the
lowest harmfulness score while preserving strong functional accuracy. Moreover, training the in-
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Table A9: Performance comparison across different jailbreak attacks during finetuning. The GCG
attack (Zou et al. (2023)) is generated using 100 samples from the BeaverTails dataset (Ji et al.
(2023)), and the AutoDAN attack (Liu et al. (2023)) is generated using 520 samples from the Ad-
vBench dataset (Zou et al. (2023)). The results demonstrate the strong safety alignment and gener-
alization capability of our Ref-Teacher-guided finetuning strategy, which consistently outperforms
all baselines.

Methods BeaverTails (Ji et al. (2023)) GCG (Zou et al. (2023)) AutoDAN (Liu et al. (2023)) Average

HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 16.7 40.6 36.0 40.6 69.6 40.6 40.8 40.6
Repnoise (Rosati et al. (2024)) 30.4 38.4 46.0 38.4 68.5 38.4 48.3 38.4
Vaccine (Huang et al. (2024d)) 4.8 24.4 16.0 24.4 18.3 24.4 10.4 24.4
Booster (Huang et al. (2024c)) 5.9 43.4 10.0 43.4 37.1 43.4 17.7 43.4
LDIFS (Mukhoti et al. (2023)) 4.0 17.0 4.0 17.0 61.9 17.0 23.3 17.0
Lisa (Huang et al. (2024b)) 5.3 38.3 52.0 38.3 41.5 38.3 32.9 38.3

Ref-Teacher (Ours) 0.5 49.0 6.0 49.0 0.9 49.0 2.5 49.0

Table A10: Effects of applying Ref-Teacher-guided finetuning to alignment-stage solutions.

Methods HS ↓ FA ↑

SFT 16.7 40.6
SFT+Ref-Teacher 1.1 42.1

Repnoise (Rosati et al. (2024)) 30.4 38.4
Repnoise+Ref-Teacher 1.4 39.2

Vaccine (Huang et al. (2024d)) 4.8 24.4
Vaccine+Ref-Teacher 2.2 22.0

Booster (Huang et al. (2024c)) 5.9 43.4
Booster+Ref-Teacher 1.9 43.8

struct model as a Ref-Teacher further enhances safety. These results confirm that our approach re-
mains effective not only for base models but also for pre-aligned models, offering additional safety
benefits.

C.4 ROBUSTNESS AGAINST ADVANCED JAILBREAKING ATTACK

When jailbreaking LLMs, advanced techniques such as GCG (Greedy Coordinate Gradient)1 (Zou
et al. (2023)) and AutoDAN (Automatically generating DAN-series-like jailbreak prompts)2 (Liu
et al. (2023)) can be used to induce harmful responses beyond simply prompting with harmful
queries. These methods demonstrated a high attack success rate in eliciting harmful responses,
even from safety-aligned models, compared to direct harmful prompts. To evaluate the robust-
ness of our Ref-Teacher-guided finetuning strategy against such advanced jailbreaking attacks, we
measure harmful score under both GCG and AutoDAN attacks, targeting Llama3-8B-Instruct in a
black-box setting. While all methods show increased harmful scores under these advanced attacks,
Table A9 demonstrates that our Ref-Teacher-guided finetuning method is more robust than baseline
approaches. Notably, although the LDIFS method achieves a low harmful score under the GCG at-
tack, it suffers from poor finetuning accuracy and exhibits a high harmful score under the AutoDAN
attack, supporting its impracticality. In contrast, our method maintains both a low harmful score and
high finetuning accuracy under both GCG and AutoDAN attacks, demonstrating its effectiveness in
providing reliable protection against increasingly sophisticated jailbreak attempts.

C.5 REINFORCING ALIGNMENT-STAGE SOLUTIONS WITH REF-TEACHER-GUIDED
FINETUNING STRATEGY.

To identify whether our Ref-Teacher-guided finetuning strategy can further enhance the safety and
user-specific task performance of safety-aligned models from alignment-stage techniques, we apply
our method to these aligned models during finetuning stage and measure both the harmful score

1https://github.com/GraySwanAI/nanoGCG
2https://github.com/SheltonLiu-N/AutoDAN
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Figure A3: Box plot of cosine similarity distributions for harmful and harmless prompts in the
base model, aligned model, and Ref-Teacher (Ours). Prompts were sampled from the BeaverTails
(harmful, n=500) and Alpaca (harmless, n=500) datasets, representing diverse general prompts. The
sampled prompts visualized here were excluded from the Ref-Teacher training set. This visualiza-
tion highlights that safety-alignment introduces the capability to distinguish harmful from harmless
prompts.

Table A11: Accuracy of classifying prompts using refusal features. Prompts with cosine similarity
above the threshold are classified as harmful, while those below are classified as harmless.

Model Threshold Harmful Acc Harmless Acc Total Acc
Llama3-8B 0.34 86.0% 78.8% 82.4%

Llama3-8B-Instruct 0.06 95.2% 93.6% 94.4%
Llama3-8B-Ref-Teacher 0.97 99.8% 99.8% 99.8%

Gemma2-9B -0.037 87.8% 61.2% 74.5%
Gemma2-9B-Instruct 0.035 90.4% 70.4% 80.4%

Gemma2-9B-Ref-Teacher 0.97 99.8% 99.6% 99.7%
Qwen2-7B 0.15 97.6% 88.8% 93.2%

Qwen2-7B-Instruct 0.24 93.2% 97.2% 95.2%
Qwen2-7B-Ref-Teacher 0.9 99.8% 99.6% 99.7%

(HS) and finetuning accuracy (FA). As shown in Table A10, our approach significantly reduces the
harmful score while maintaining comparable finetuning accuracy in most cases. The reinforced
safety-alignment demonstrates that Ref-Teacher-based data filtering and alignment distillation can
complement the alignment-stage solutions. However, the performance of this setting remains infe-
rior to our finetuning framework, highlighting the importance of directly finetuning the base model
under Ref-Teacher guidance.

D SAFETY ALIGNMENT ENDOWS MODELS WITH REFUSAL-BASED
HARMFULNESS DETECTION

Safety-aligned LLMs tend to exhibit distinct response behaviors as input prompts vary in harmful-
ness, and this tendency is reflected in their refusal feature, which can serve as a signal for harm-
fulness classification. While base models can sometimes provide a weak discriminative signal, we
observe that this property is more pronounced and reliable in safety aligned models.

To validate this hypothesis, we measure the cosine similarity between the feature of each input
prompt and a refusal feature in both base and safety-aligned models, and then assess whether harm-
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Figure A4: Box plot of cosine similarity distributions for harmful and harmless prompts, evaluated
on the base model, aligned model, and Ref-Teacher (Ours). Harmful prompts were sampled from
the BeaverTails dataset (n = 500), while harmless prompts were sampled from GSM8K, SST2,
and AGNEWS (n = 500), which are domain-specific downstream task datasets used during the
finetuning stage.

Table A12: Classification accuracy using refusal features. Prompts with cosine similarity above
the threshold are identified as harmful, and those below as harmless.Thresholds are optimized to
maximize total classification accuracy.

Datasets Model Threshold Harmful Acc Harmless Acc Total Acc

GSM8K
Llama3-8B -0.017 95.6% 99.8% 97.7%

Llama3-8B-Instruct 0.035 98.2% 99.6% 98.9%
Llama3-8B-Ref-Teacher 0.965 99.8% 99.2% 99.5%

SST2
Llama3-8B 0.190 22.6% 100.0% 61.3%

Llama3-8B-Instruct 0.095 89.6% 100.0% 94.8%
Llama3-8B-Ref-Teacher -0.920 100.0% 100.0% 100.0%

AGNEWS
Llama3-8B 0.032 86.0% 100.0% 93.0%

Llama3-8B-Instruct 0.010 99.8% 100.0% 99.9%
Llama3-8B-Ref-Teacher -0.990 100.0% 100.0% 100.0%

ful and harmless prompts can be separated on the refusal feature. Figure A3 shows the result-
ing distributions for BeaverTails (harmful) (Ji et al. (2023)) and Alpaca (harmless) (Taori et al.
(2023)). Safety-aligned models yield more clearly separated similarity distributions, enabling more
reliable discrimination, whereas base models exhibit substantial overlap, though not complete indis-
tinguishability. Numerical results in Table A11 confirm this trend, safety-aligned models achieve
higher classification accuracy than the base models for both harmful and harmless prompts.

We further extend the analysis to GSM8K (Cobbe et al. (2021)), SST2 (Socher et al. (2013)), and
AGNEWS (Zhang et al. (2015)), which are used during finetuning. Following the same setup as
in Fig. A3 and Table A11, we use BeaverTails as harmful data and GSM8K, SST2, and AGNEWS
as harmless data with LLaMA3-8B (Llama Team (2024)). Figure A4 reports cosine similarity dis-
tributions and Table A12 reports accuracy using the optimal threshold per dataset. Since these
downstream datasets are domain-specific and differ from BeaverTails in distribution, the base model
shows some separability. Nevertheless, safety-aligned models consistently produce clearer sepa-
ration and higher accuracy, and Ref-Teacher yields the most distinct separation and the strongest
classification performance.
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E LIMITATION

Our Ref-Teacher-guided finetuning framework relies on the Ref-Teacher model, which is trained
using the refusal feature. Consequently, its safety-alignment could be compromised if adversarial
attacks are designed to disrupt or manipulate the refusal feature. In such cases, the customized model
finetuned under the guidance of a compromised Ref-Teacher may also inherit weakened safety-
alignment.

F LLM USAGE

Large Language Models (ChatGPT-5) were used only for improving grammar and clarity in writing.
They did not contribute to research ideation, experimental design, or analysis.
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