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AV-Master: Dual-Path Comprehensive Perception Makes Better

Audio-Visual Question Answering
Jiayu Zhang, Qilang Ye, Shuo Ye, Xun Lin, Zihan Song, Zitong Yu, Senior Member, IEEE

Abstract—Audio-Visual Question Answering (AVQA) requires
models to effectively utilize both visual and auditory modalities to
answer complex and diverse questions about audio-visual scenes.
However, existing methods lack sufficient flexibility and dynamic
adaptability in temporal sampling and modality preference
awareness, making it difficult to focus on key information based
on the question. This limits their reasoning capability in complex
scenarios. To address these challenges, we propose a novel
framework named AV-Master. It enhances the model’s ability
to extract key information from complex audio-visual scenes
with substantial redundant content by dynamically modeling both
temporal and modality dimensions. In the temporal dimension,
we introduce a dynamic adaptive focus sampling mechanism
that progressively focuses on audio-visual segments most relevant
to the question, effectively mitigating redundancy and segment
fragmentation in traditional sampling methods. In the modality
dimension, we propose a preference-aware strategy that models
each modality’s contribution independently, enabling selective
activation of critical features. Furthermore, we introduce a
dual-path contrastive loss to reinforce consistency and comple-
mentarity across temporal and modality dimensions, guiding
the model to learn question-specific cross-modal collaborative
representations. Experiments on four large-scale benchmarks
show that AV-Master significantly outperforms existing methods,
especially in complex reasoning tasks.

Index Terms—Audio-visual question answering, multimodal
fusion, collaborative learning.

I. INTRODUCTION

Humans perceive the world through various modalities, such
as vision, hearing, and touch. Inspired by such multisensory
experiences, researchers have increasingly focused on a range
of multimodal understanding tasks [1], [2], [3]. Among these
tasks, Audio-Visual Question Answering (AVQA) [4], [5], [6]
is a practical task with broad application prospects. AVQA
utilizes both visual and auditory modalities and requires the
model to discover the associations between them to an-
swer various questions. This process involves dynamically
understanding audio-visual segments and addressing question-
specific modality preferences, significantly increasing the com-
plexity of the task.

For AVQA, we argue it is essential to focus on the fol-
lowing: (i) How can the model identify the most relevant
visual and audio segments of the video related to the given
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Fig. 1. Illustration of the AVQA task and the comparison of our method
with previous work. Our method employs dynamic adaptive focus sampling
to capture key audio-visual segments and predicts modal preferences through
global preference activation to enhance the model, ultimately generating the
correct answer.

question? (ii) How can the model extract cues from the most
relevant modality information related to the given question?
For (i), most current models employ discrete [7], [5] or
continuous [6] sampling methods. Although these methods
have achieved promising results, they still have notable limita-
tions. The former compromises the inherent temporal cues in
audio-visual segments, resulting in hallucinations during fine-
grained understanding. The latter partially alleviates this issue
but introduces significant redundancy, which hinders further
enhancement of model performance. For (ii), most mainstream
methods are not specifically designed to differentiate between
various input modalities but instead treat them merely as
supplementary information. A small number of researchers [8]
have recognized these challenges and opted to design fusion
weights for features from different modalities during the
multimodal interaction process, thereby biasing the model
towards a particular modality. However, this method overlooks
the challenges in learning significant differences among fine-
grained features and requires the model to reinterpret modality
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preferences in complex multimodal semantics, without explic-
itly enhancing the learning process, thus providing limited
guidance for improving the model’s performance.

To solve these issues, we propose AV-Master, which can find
the important fine-grained areas related to the current question
within complex dynamic audio-visual scenes, and generate the
optimal answer by integrating global preference information.
As shown in Fig. 1, unlike previous work [5], [6], AV-Master
employs dynamic adaptive focus sampling to extract the fine-
grained focus features from the audio-visual segments relevant
to the current questioning scenario. The focus sampling com-
bines the advantages of discrete (e.g., uniform [7], top-k [5])
and continuous (e.g., gaussian, gaussian-experts [6]) sam-
pling methods, allowing the model to capture all continuous
time steps while significantly reducing redundant information
obtained from sampling. Furthermore, we propose a global
preference activation strategy focused on model modality pref-
erences. This strategy determines the preference distribution
of the model in different modalities through independent per-
ception and improves the decision-making capabilities of the
model. Compared to using dynamic weights at the multimodal
fusion stage, our enhancement strategy focuses on the global
information in the initial features. This avoids biases caused
by decoding from complex multimodal features, while also
complementing the fine-grained information obtained through
temporal dynamic perception, achieving comprehensive audio-
visual understanding. Our contributions are summarized as
follows:

• We propose a dual-path audio-visual learning model
named AV-Master that enhances the understanding of
audio-visual scenes by perceiving fine-grained details
and global modality preferences related to questions,
achieving cross-modal mapping from audio-visual signals
to textual answers.

• We introduce a dynamic adaptive focus sampling method
that progressively performs adaptive learning from the in-
put audio-visual segments during the encoding, enabling
precise capture of the focal areas within a large number
of redundant segments.

• Extensive evaluation on four benchmark AVQA datasets
demonstrates that our proposed AV-Master is superior and
achieves new state-of-the-art performance compared to
existing AVQA methods.

The remainder of this paper is organized as follows. In
Section II, we review the related work relevant to the research
direction of this study. Section III provides a detailed descrip-
tion of the architecture of the proposed model. Section IV
presents experimental results that validate the effectiveness of
our proposed methods. Finally, in Section V, we conclude by
summarizing the main contributions of this paper.

II. RELATED WORK

A. Audio-Visual Scene Understanding

In recent years, audio-visual scene understanding has
emerged as a significant research area, garnering ever-
increasing attention from the academic community. The core
idea of this field originates from the human instinct to perceive

the world through the synergy of multiple senses. Specifically,
visual and auditory information are not only complementary
but also often inseparable in understanding complex, dynamic
environments. These two modalities are tightly linked through
semantic consistency (e.g., the image of a dog matching
the sound of its bark) and spatio-temporal correlation (a
sound synchronizing with and emanating from its visual
source). This interplay provides the key elements for achieving
a sophisticated understanding of scenes that surpasses the
capabilities of single-modality perception. Building on this
foundation, researchers have explored numerous specific sub-
tasks such as sound source localization [9], [10], [11], action
recognition [12], [13], event detection [14], [15], [16], video
parsing [17], [18], [19], audio-visual source separation [20],
[21], etc. These tasks aim to fully leverage the interaction
and fusion of audio and visual information to overcome the
limitations of unimodal perception, thereby enhancing the fine-
grained understanding of dynamic audio-visual scenes.

Within this broad research landscape, our work focuses
on the more advanced cognitive task of audio-visual ques-
tion answering. We achieve precise scene understanding and
reasoning based on multimodal information by specifically
emphasizing the temporal dynamic perception of audio-visual
segments and employing a global preference activation strat-
egy to dynamically capture the dependency of different ques-
tions on specific modalities.

B. Audio-Visual Question Answering

The audio-visual question answering (AVQA) aims at
achieving fine-grained comprehension and reasoning of com-
plex audio-visual scenes. This task involves a comprehensive
analysis of audio, visual, and their fused information, allowing
the model to provide accurate answers to different questions.
Existing research focuses mainly on unimodal audio question
answering (AQA) and visual question answering (VQA), but a
single modality is insufficient to fully capture the rich semantic
information contained in natural videos. To this end, recent
works [5], [8], [6] have begun exploring the field of AVQA.
Among these works, Li et al. constructed declarative sentence
prompts based on question templates to help the temporal
awareness module better identify key segments relevant to the
question, and designed a novel spatial awareness module to
facilitate efficient fusion of visual tokens. Zhao et al. aligned
audio-visual cues across spatial and temporal dimensions
through contrastive learning, and adaptively assigned fusion
weights to the visual and audio modalities according to the
question. Kim et al. proposed the QA-TIGER framework,
which adaptively focuses on both continuous and discon-
tinuous frames according to the question, explicitly injects
question information, and applies progressive optimization.

However, existing works only adopt simple audio-visual
segment selection methods, which introduce a large amount of
redundant information, making it difficult for the subsequent
decoder to extract key clues from the coarse-grained multi-
modal features. Moreover, they overlook the fact that different
questions may have varying demands on visual and audio
modalities. As a result, the models often fail to dynamically
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(a) Temporal Dynamic Perception Path

(b) Global Preference Activation Path
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Fig. 2. Overview of AV-Master. We utilize three separate pre-trained encoders to extract features from video, audio, and question inputs. The encoded features
are then fed into the temporal dynamic perception path and the global preference activation path, respectively. Finally, the model predicts the correct answer
based on the outputs of these two paths.

leverage the relevant dominant modality for different questions
and instead perform a coarse multimodal fusion, which, to
some extent, undermines the overall performance of the model.
In contrast, our work enables fine-grained key audio-visual
learning through dynamic adaptive sampling based on the
question, and enhances the model from a global perspective
by leveraging modality preference, ultimately leading to more
accurate answers.

III. METHODOLOGY

In this section, we will introduce our proposed AV-Master in
detail. Specifically, we first introduce the feature information
used and the feature extraction settings in Section III-A. Sub-
sequently, in Section III-B and Section III-C, we respectively
explain the proposed temporal dynamic perception path and
global preference activation path. Finally, in Section III-D,
we describe in detail the learning objectives involved in the
training phase, which include the dual-path prediction loss
and the dual-path contrastive loss. The overall architecture
is shown in Fig. 2, and the specific implementation flow of
the temporal dynamic perception path proposed in Fig. 2 is
illustrated in Fig. 3.

A. Input Representation

(a) Visual representation: For a given video, we split it
into T non-overlapping 1s segments, each with paired audio
and visual elements. Each visual segment is processed by a
pre-trained vision-language model CLIP [22]. In this process,
a special token is added at the beginning of each segment
and is used as the visual feature. The visual features can be
represented as Fv =

{
F1

v ,F2
v , · · · ,FT

v

}
∈ RT×D, where D

denotes the feature dimension.
(b) Audio representation: For each audio segment, we

follow previous works [5], [4], [6] that use the pre-trained

VGGish model [23] to extract audio features. The audio
features can be represented as Fa =

{
F1

a ,F2
a , · · · ,FT

a

}
∈ RT×D. The parameters of the CLIP and VGGish models
are frozen during training.

(c) Question representation: For the input question, we use
the CLIP text encoder to obtain word-level features Fw

t ={
F2

t ,F3
t , · · · ,FL

t

}
∈ RL×D, and extract the sentence-level

feature Fs
t ∈ R1×D by taking the embedding of the first token.

L denotes the number of question tokens.

B. Temporal Dynamic Perception Path

To extract key information from complex initial audio-visual
features, we propose a temporal dynamic perception path,
which consists of two modules: an audio-visual focus capture
module and an audio-visual key fusion module. The former
focuses more on the relationships within each modality, aiming
to discover key hidden clues in the current modality, while
the latter concentrates on establishing connections between
different modalities. Additionally, the inputs to the perception
path are the outputs from the previous feature encoding stage,
including visual features Fv , audio features Fa, word-level
features Fw

t , and sentence-level features Fs
t .

(a) Audio-visual focus capture: As shown in Fig. 3 (a), to
achieve fine-grained perception, the visual features Fv and the
audio features Fa are fed into the audio-visual focus capture
module for dynamic adaptive focus sampling at each time
step from time 0 to time n, where n = T − 1. During the
perception process, we utilize predefined templates (Acls and
Vcls) to focus on the audio-visual features at each moment,
thereby extracting global effective information from the com-
plex initial features. Moreover, we introduce learnable biases
to highlight key regions with significant variations between
different moments for improving sampling accuracy. Over
time, the predefined templates progressively extract the critical
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Fig. 3. The pipeline of (a) audio-visual focus capture and (c) audio-visual key fusion in the temporal dynamic perception path, where (b) represents the
specific implementation process of focus sampling in (a) audio-visual focus capture. SAB and CAB represent the self-attention block and the cross-attention
block, respectively. represent the input predefined CLS tokens (serve as audio-visual templates), represent the audio-visual features at a certain
time step, and is a learned bias.

information hidden at different moments throughout the entire
audio-visual segment. Finally, we take the templates from the
n-th time step as the output and obtain the fine-grained focus
features F̃v and F̃a.

(b) Dynamic adaptive focus sampling: For a specific time
step k , the detailed focus sampling process is shown in
Fig. 3 (b). First, the k-th time step visual feature Fk

v and audio
feature Fk

a together with the (k − 1)-th time step template
Ak−1

cls and Vk−1
cls serve as inputs for the entire sampling

process. Features Fk
v and Fk

a are repeated to match the
length of their corresponding templates and then added to
the templates. The resulting sums are fed into a self-attention
block (SAB) for attention enhancement. These enhanced fea-
tures are then added to a learnable bias and go through the
above operation once more. Afterward, these features, along
with the repeated feature, are passed into a cross-attention
block (CAB) for modality interaction. Finally, we can obtain
the updated templates Ak

cls and Vk
cls for the current time step.

This process is formulated as follows:

F̃v =
(
Vk
cls|k = T − 1

)
Vk
cls = FocusSampling

(
Fk

v ,Vk−1
cls | bias

), (1)

where k ∈ [0, T − 1] and T represents the total number of
video 1s segments. The focus sampling is formulated as:

Vk−1
tp1 = Fk

v + Vk−1
cls

Vk−1
tp2 = SAB

(
SAB

(
Vk−1
tp1

)
+ bias

)
+ bias

Vk
cls = CAB

(
Vk−1
tp2 ,Fk

v

) , (2)

where Vk−1
tp2 serves as query and Fk

v serves as key, value

in CAB. For the k-th time step audio feature Fk
a , the same

applies following the above Eqs. (1-2).

(c) Audio-visual key fusion: After obtaining the fine-grained
audio-visual focal featuresF̃a and F̃v , we feed them into
the audio-visual key fusion module, where multimodal fusion
is performed under the guidance of the word-level question
feature Fw

t to provide a refined semantic anchor for the
subsequent decoding. The detailed audio-visual key fusion
process is shown in Fig. 3 (c), F̃a and F̃v are transformed by
linear layers and then added to the multimodal feature Fc. Sub-
sequently, each of these is fed into an SAB for enhancement,
followed by a pooling operation, and then concatenated with
Fc along the feature dimension. Finally, the result is passed
through a linear layer and max sampling to obtain the final
fused feature Ffu. Where, Fc is formed by concatenating the
visual feature Fa, audio feature Fv , and question feature Fw

t

along the sequence length. The fusion process is formulated
as follows:

Fc = SAB (Concat (Fa,Fv,Fw
t ))

Ol
a = Pooling

(
SAB

(
Linear

(
F̃a

)
+ Fc

))
Ol

v = Pooling
(
SAB

(
Linear

(
F̃v

)
+ Fc

))
Ffu = Max (Linear (Concat (Oa,Ov,Fc)))

, (3)

where the Pooling (·) performs summation along the se-
quence dimension, while the Max (·) takes the maximum
value along the feature dimension. The fused feature Ffu ∈
R1×D and O represents the intermediate outputs.

C. Global Preference Activation Path

Considering the potential mismatch between audio-visual
segments and the possibility that the current question may be
more biased toward a specific modality or scene in audio-
visual question answering, we propose a global preference
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activation path. The preference activation path is designed
to independently perceive and decouple auditory and visual
inputs, activating the global contextual information within
them. It serves to complement the fine-grained features from
the temporal dynamic perception path, providing the model
with an additional auxiliary perspective to achieve a more
comprehensive understanding of the audio-visual scene.

As shown in Fig 2 (b), the visual feature Fv and the word-
level question feature Fw

t are first fed into a cross-attention
block. Meanwhile, the Fv is also separately enhanced via a
self-attention block. The outputs are then summed and passed
through a multi-layer perceptron (MLP) to obtain the visual
preference feature Fp

v . Similarly, the audio feature Fa goes
through the same procedure to obtain the audio preference
feature Fp

a . The calculation process is as follows:

Og
v = SAB (Fv) + CAB (Fv + Fw

t )

Fp
v = MLP (Og

v)

Og
a = SAB (Fa) + CAB (Fa + Fw

t )

Fp
a = MLP (Og

a)

(4)

where visual feature Fv or audio feature Fa serves as query
and Fw

t serves as key, value in CAB. The activated prefer-
ence features Fp

v and Fp
a ∈ RT×D.

D. Optimization and Answer Prediction

During training, the fused feature Ffu and the sentence-
level question feature Fs

t are jointly fed into the multimodal
decoder to generate the answer prediction distribution, which
is then used together with the ground-truth labels to compute
the answer loss (denoted as Lqa). In the preference acti-
vation path, features Fp

v and Fp
a are separately input into

two independent audio/visual decoders, which also generate
prediction distributions under the guidance of Fs

t , resulting
in two preference losses (denoted as Lp

v and Lp
a). Moreover,

a contrastive loss (denoted as Lc) is applied between the
dynamic perception and preference activation paths, aiming to
enhance the stability of the dual-path paradigm and improve
the model’s discriminative ability by leveraging hard negative
samples. During inference, we sum all the predicted distribu-
tions from the model and use the argmax function to obtain
the final answer.

(a) Dual-path prediction loss: For the answer loss Lqa, we
follow the standard training procedure for the AVQA. The
goal of the model is to minimize the negative log-likelihood
of the probabilities over multiple answer choices generated
by the multimodal decoder. For the preference losses Lp

v and
Lp
a, we also adopt a similar computation method to calculate

them based on the probability distributions generated by the
two audio/visual decoders. The formula for the above loss
calculation can be represented as:

Lqa = −
C∑

ans=1

yans log (Pans|Ffu, θl)

Lp
v,Lp

a = −
C∑

pef=1

ypef log (Ppef |Fp
v ,Fp

a , θg)

(5)

TABLE I
DETAILED DESCRIPTION OF AVQA, MUSIC-AVQA, MUSIC-AVQA-R,

AND MUSIC-AVQA-V2.0 DATASETS.

Dataset # Videos # Train QA # Valid QA # Test QA
AVQA 57,015 40,425 - 16,910
MUSIC-AVQA 9,288 31,904 4,568 9,129
MUSIC-AVQA-R 9,288 - - 211,572
MUSIC-AVQA-v2.0 10,492 37,408 5,346 10,819

where C is the total number of answer choices and θ is the set
of learnable parameters of the decoders. Both the multimodal
decoder and the audio/visual decoders include transformer
blocks and linear layers.

(b) Dual-path contrastive loss: For the contrastive loss Lc,
we enhance the stability of the dual-path architecture and
improve the accuracy of joint prediction by increasing the
similarity between the positive sample feature Ffu from the
dynamic perception path and F j

g from the preference activation
path, j ∈ {v, a}. Meanwhile, we compare the feature Ffu

from the positive sample with the feature F j
g from the negative

sample and reduce their similarity to enhance the model’s
ability to distinguish positive samples. The contrastive Lc is
expressed as follows:

p
j(i)
1 = exp

(
cos

(
Ffu,F

j(i)

g

)
/T

)
p
(i)
1 = p

v(i)
1 + p

a(i)
1

Lc = − 1

N

N∑
i=1

log

[
p
(i)
1∑neg

k ̸=i p
(k)
1 + p

(i)
1

] (6)

where neg is the number of negative pairs and cos (·, ·) is
the cosine function used to compute similarity. F represents
the operation of averaging the feature F along the sequence
length dimension, T denotes the temperature. The overall loss
is the weighted sum of the above losses:

L = λqaLqa + λp
vLp

v + λp
aLp

a + λcLc (7)

where λqa, λp
v , λp

a, and λc are hyperparameters used to trade-
off each loss functions.

IV. EXPERIMENTS

A. Experimental Setting

(a) Dataset and evaluation metric: In this paper, we validate
our proposal on four datasets: MUSIC-AVQA [7], MUSIC-
AVQA-R [24], MUSIC-AVQA-v2.0 [25], and AVQA [26]. The
details are summarized in Table I. Consistent with previous
work, the ablation and analysis experiments are conducted on
the MUSIC-AVQA dataset by default.

MUSIC-AVQA [7] is a large-scale AVQA dataset focused
on multimodal understanding and reasoning in music per-
formance scenarios. It contains 45,601 question-answer pairs
distributed across 9,288 videos, with a total duration of over
150 hours. The videos are primarily collected from YouTube
and cover 22 types of musical instruments (such as guitar,
cello, marimba, etc.). Annotations are manually created by
human annotators. The question-answer pairs are divided into
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TABLE II
EXPERIMENTAL RESULTS ON THE MUSIC-AVQA TEST SET. THE BEST AND SECOND BEST PERFORMANCE OF EACH TASK ARE HIGHLIGHTED IN BOLD

AND UNDERLINE RESPECTIVELY. FOR A FAIR COMPARISON, WE REPORT THE PERFORMANCE OF THE VERSION USING THE SAME AUDIO ENCODER AS
OUR METHOD, DENOTED AS †. COMPARISONS WITH OTHER VERSIONS ARE PRESENTED IN SUBSEQUENT EXPERIMENTS.

Methods Audio QA Visual QA Audio-Visual QA Avg
Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg

MCAN [CVPR’19] 77.50 55.24 69.25 71.56 70.93 71.24 80.40 64.91 54.48 57.22 47.57 61.58 65.49
PSAC [AAAI’19] 75.64 66.06 72.09 68.64 69.79 69.22 77.59 63.42 55.02 61.17 59.47 63.52 66.54
HME [CVPR’19] 74.76 63.56 70.61 67.97 69.46 68.76 80.30 63.19 53.18 62.69 59.83 64.05 66.45
AVSD [CVPR’19] 72.41 61.90 68.52 67.39 74.19 70.83 81.61 63.89 58.79 61.52 61.41 65.49 67.44
HCRN [CVPR’20] 68.59 50.92 62.05 64.39 61.81 63.08 54.47 53.38 41.53 52.11 47.69 50.26 55.73
Pano-AVQA [ICCV’21] 74.36 64.56 70.73 69.39 75.65 72.56 81.21 64.91 59.33 64.22 63.23 66.64 68.93
ST-AVQA [CVPR’22] 78.18 67.05 74.06 71.56 76.38 74.00 81.81 70.80 64.51 66.01 63.23 69.54 71.52
LAVISH [CVPR’23] 82.09 65.56 75.97 78.98 81.43 80.22 81.71 75.51 66.13 63.77 67.96 71.26 74.46
QAGL [TCSVT’24] 82.99 71.04 78.58 80.12 77.88 78.89 82.29 72.73 62.83 63.40 64.36 69.43 73.58
TSPM [ACMMM’24] 84.07 64.65 76.91 82.29 84.90 83.61 82.19 76.21 71.85 65.76 71.17 73.51 76.79
APL [AAAI’24] 82.40 70.71 78.09 76.52 82.74 79.69 82.99 73.29 66.68 64.76 65.95 70.96 74.53
PSOT† [AAAI’25] – – 78.22 – – 80.07 – – – – – 72.61 75.29
AVAF-Net [AAAI’25] 83.09 69.70 78.15 80.20 84.49 82.37 84.51 75.05 68.37 61.94 70.07 72.12 75.90
SHMamba [TASLP’25] 82.30 63.64 75.42 78.53 81.31 79.93 82.89 72.65 67.93 61.31 68.37 70.64 74.12
CoQo† [IJCV’25] – – 78.90 – – 83.70 – – – – – 73.92 77.40
QA-TIGER [CVPR’25] 84.86 67.85 78.58 83.96 86.29 85.14 83.10 78.58 72.50 63.94 69.59 73.74 77.62
AV-Master (Ours) 87.02 67.85 79.95 86.55 86.61 86.58 83.60 79.13 72.39 64.21 70.80 74.22 78.51

three modality scenarios (audio, visual, and audio-visual), en-
compassing nine question types (such as existential, location,
counting, etc.) and 33 question templates. The answer set in-
cludes 42 different answers. The questions require fine-grained
scene understanding and spatiotemporal reasoning of both
audio and visual content, for example: “Is a certain instrument
present?” or “Where is the source of the sound located?”. The
MUSIC-AVQA dataset emphasizes the interaction between
audio and visual modalities in music performance scenes.
Compared to other video question answering datasets (such
as general video datasets), it places a stronger focus on audio-
visual correlation.

MUSIC-AVQA-R [24] is an extended version of the
MUSIC-AVQA, designed to evaluate the robustness of AVQA
models and to address the issues of limited question ex-
pression variety and potential biases in the original dataset.
It is constructed by rephrasing and splitting the questions
in the MUSIC-AVQA test set. Specifically, researchers used
AI tools to rephrase the 9,129 questions in the test set 25
times, generating semantically equivalent but more diverse
expressions. Then, three annotators independently voted to
retain most of the questions. As a result, the number of test
questions expanded from 9,129 to 211,572, and the vocabulary
size increased from 93 to 465. All questions are divided into
two subsets: frequent (head) and rare (tail), classified based on
the frequency of answer occurrences. Compared to MUSIC-
AVQA, MUSIC-AVQA-R enhances question diversity and is
better suited for testing AVQA models under conditions of
diverse questions and imbalanced answer distributions.

MUSIC-AVQA-v2.0 [25] is an improved version of the
MUSIC-AVQA, aimed at addressing the data bias issues in
the original dataset and constructing a more balanced and
challenging dataset. Researchers manually collected 1,230 new
instrument performance videos (sourced from YouTube) and
created 8,100 new question-answer pairs to supplement the
original MUSIC-AVQA dataset. They ensured a more even

answer distribution across each question category and sub-
category, especially for binary questions, where the answers
are nearly evenly distributed to avoid significant bias. Some
of the videos were horizontally flipped to generate symmet-
ric question-answer pairs, enhancing data diversity. MUSIC-
AVQA-v2.0 resolves the answer bias problems present in the
MUSIC-AVQA dataset, making it a more reliable benchmark
suitable for testing model performance in unbiased AVQA
tasks.

To evaluate the performance of AV-Master in scenarios
beyond musical performance, we additionally introduce the
AVQA dataset. AVQA [26] is a large-scale benchmark specif-
ically designed for audio-visual question answering in real-
world settings. The dataset contains 57,015 real-life videos
and 57,335 question-answer pairs, with a total duration of
over 158 hours. The videos are sourced from the VGG-
Sound dataset [27] and cover 165 categories of daily activities
and natural sounds. The questions are manually designed to
ensure reliance on both modalities for reasoning, involving
various types of relations such as existence, location, temporal,
causal, and intentional. With its large scale, diversity, and high-
quality human annotations, the dataset has become a widely
used benchmark for evaluating multimodal fusion methods in
complex real-world scenarios.

(b) Implementation details: For a fair comparison, we follow
previous work [6] and adopt a similar setup: videos are
uniformly sampled at a rate of 1 frame per second. Audio
representations are extracted using the pre-trained VGGish
model [23], while visual inputs and corresponding questions
are encoded through the CLIP-ViT-L/14 model [22]. All
extracted features are projected into a 512-dimensional space
via a linear transformation. The predefined templates, Acls

and Vcls, are both composed of a set of learnable embeddings,
each with a length of 8 and randomly initialized. The model
is optimized using Adam [28] and starts with a learning rate
of 1e-4, which is reduced by a factor of 0.1 every 8 epochs.
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TABLE III
EXPERIMENTAL RESULTS ON THE MUSIC-AVQA-R TEST SET, WITH H AND T REPRESENTING PERFORMANCE ON HEAD (FREQUENT) AND TAIL (RARE)

ANSWER CATEGORIES, RESPECTIVELY. ALL RESULTS ARE OBTAINED FROM OFFICIAL REPORTS OR REPRODUCED FROM OTHER WORKS.

Methods

Audio QA Visual QA Audio-Visual QA

AvgCount Comp Count Local Exist Count Local Comp Temp

H T H T H T H T H T H T H T H T H T

HCAttn [NeurIPS’16] 61.67 41.63 59.09 47.14 56.52 9.20 67.01 53.16 66.57 61.13 59.53 12.48 37.05 42.48 48.81 60.12 33.82 39.26 51.90
MCAN [CVPR’19] 75.02 60.16 58.89 50.09 64.58 26.69 66.48 62.25 51.29 67.29 64.76 25.28 46.11 61.61 50.57 52.40 34.64 58.05 57.27
PSAC [AAAI’19] 53.01 56.68 57.41 48.12 49.55 26.43 72.96 60.69 50.56 55.54 56.70 19.58 41.98 52.30 38.13 58.92 26.68 46.24 50.45
HME [CVPR’19] 62.60 53.95 54.97 58.29 50.95 16.46 73.25 58.60 65.74 66.49 63.18 17.18 33.79 46.03 53.20 69.57 33.95 41.57 53.66
AVSD [CVPR’19] 54.00 47.84 60.61 47.79 60.34 10.07 74.78 61.43 66.28 61.98 46.21 8.06 33.00 40.35 51.98 66.00 40.14 41.52 52.33
FCNLSTM [TASLP’20] 66.23 36.48 64.78 51.24 61.75 5.31 54.86 51.06 64.76 78.52 62.69 7.23 46.66 57.30 43.13 71.67 37.02 30.78 54.12
HCRN [CVPR’20] 55.53 53.31 47.17 32.44 41.87 23.55 39.40 51.27 41.81 65.45 54.58 19.57 36.62 42.72 33.33 36.87 40.47 44.13 43.92
Pano-AVQA [ICCV’21] 50.57 43.45 50.78 44.93 47.28 15.50 67.19 65.51 52.37 22.04 52.21 21.52 44.35 61.69 45.61 40.49 35.00 49.33 47.40
ST-AVQA [CVPR’22] 56.40 41.48 62.28 57.59 59.86 12.94 63.31 54.00 73.35 77.26 48.31 8.41 35.35 40.49 53.30 62.44 40.25 38.15 52.80
LAVISH [CVPR’23] 61.73 43.99 65.06 60.38 65.53 11.13 70.21 64.73 77.83 79.46 49.88 14.87 41.76 41.20 59.26 65.10 41.84 46.26 57.63
TSPM [ACMMM’24] 81.65 71.80 67.66 49.56 78.29 47.56 80.58 73.18 69.15 82.79 77.09 38.64 42.24 57.37 52.07 68.86 39.23 49.36 66.30
QA-TIGER [CVPR’25] 82.67 75.82 71.75 43.11 81.30 54.59 84.76 75.59 72.84 78.56 76.70 33.55 48.22 64.65 37.55 80.47 36.85 62.96 67.99
AV-Master (Ours) 84.90 72.61 70.67 49.22 83.48 57.40 87.39 79.33 75.55 78.41 80.18 35.28 55.39 77.41 47.76 70.80 46.49 69.99 71.19

TABLE IV
EXPERIMENTAL RESULTS ON THE MUSIC-AVQA-V2.0 FOR (A) BIAS

AND (B) BALANCED TEST SETS.

Test Training Methods A-QA V-QA AV-QA Avg

(a) Bias

Bias

ST-AVQA 76.86 77.70 69.59 73.07
LAVISH 76.73 80.96 70.80 74.59
QA-TIGER 79.13 84.83 72.37 76.93
AV-Master 79.31 86.54 74.12 78.39

Balance

ST-AVQA 76.18 77.20 67.96 71.92
LAVISH 75.56 80.83 69.27 73.51
LAST 77.10 82.99 70.86 75.24
LAST-Att 77.29 83.47 71.05 75.45
QA-TIGER 77.07 85.93 71.20 76.57
AV-Master 79.25 86.87 71.52 77.03

Test Training Methods A-QA V-QA AV-QA Avg

(b) Balance

Bias

ST-AVQA 73.34 76.82 64.51 69.40
LAVISH 73.14 79.70 65.01 70.39
QA-TIGER 77.57 84.84 67.43 73.91
AV-Master 78.22 86.42 69.11 75.37

Balance

ST-AVQA 75.50 77.67 66.32 71.02
LAVISH 76.15 81.32 68.28 73.18
LAST 78.08 83.29 69.72 74.85
LAST-Att 78.56 84.07 70.30 75.44
QA-TIGER 79.90 86.95 70.22 76.43
AV-Master 80.84 87.37 70.29 76.75

The batch size is set to 32, and the model is trained for 30
epochs. Our proposed model is trained on NVIDIA GeForce
RTX 4090 and implemented in PyTorch.

B. Quantitative Results
(a) Compared methods: To evaluate the effectiveness and

superiority of our model, we compare AV-Master with existing
state-of-the-art AVQA methods across multiple datasets. These
methods include: QA-TIGER [6], CoQo [29], SHMamba [30],
AVAF-Net [8], PSOT [31], SaSR-Net [32], PSTP-Net [4],
TSPM [5], APL [33], LAST [25], MCD [34], QAGL [35],
LAVISH [36], ST-AVQA [7], Pano-AVQA [37], ACRTrans-
former [38], HGA [39], HCRN [40], FCNLSTM [41], LAD-
Net [42], AVSD [43], HME [44], PSAC [45], MCAN [46] and
HCAttn [47].

TABLE V
EXPERIMENTAL RESULTS ON THE TEST SET OF AVQA DATASET.

Methods Ensemble Total Accuracy (%)
HME HAVF 85.0
PSAC HAVF 87.4

LADNet HAVF 84.1
ACRTransformer HAVF 87.8

HGA HAVF 87.7
HCRN HAVF 89.0

SaSR-Net – 89.9
PSTP-Net – 90.2

TSPM – 90.8
MCD – 90.8

AV-Master (Ours) – 91.4

TABLE VI
COMPARISON WITH PRETRAINING-BASED METHODS. Z-S INDICATES

WHETHER THE ZERO-SHOT SETTING IS USED AND PT REPRESENTS THE
AMOUNT OF DATA USED FOR MODEL PRE-TRAINING.

Methods V-Enc. A-Enc. Z-S PT Params ACC

OneLLM CLIPL CLIPL ✓ 1008.5M 7B 47.6

ChatBridge ViTG BEAT ✓ 130.0M 13B 43.0

CAT lmageBind Imagebind ✓ 3.1M 7B 48.6

CAT+ lmageBind Imagebind ✓ 0.2M 7B 50.1

VideoLLaMa EVACLIPG Imagebind ✓ 2.8M 7B 36.6

AVLLM CLIPL CLAP ✓ 1.6M 13B 45.2

AVicuna CLIPL CLAP ✓ 1.1M 7B 49.6

CAD ViT PANNs ✕ 100.0M - - 78.3

VAST EVACLIPG BEATs ✕ 42.0M 1.3B 80.7

VALOR CLIPL AST ✕ 33.5M 593M 78.9

AV-Master CLIPL VGGish ✕ N/A 61M 78.5

(b) MUSIC-AVQA: As shown in Table II, AV-Master
achieves an overall accuracy of 78.51%, outperforming all
existing models, including the state-of-the-art method QA-
TIGER (77.62%). Notably, our model demonstrates strong
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TABLE VII
ABLATION ON THE DIFFERENT COMPONENTS OF AV-MASTER.

# Methods Average Accuracy (%)
A-QA V-QA AV-QA Avg

1 w/o. ALL 73.37 79.23 69.82 72.94
2 w/o. AVFC 79.83 85.55 74.04 78.11
3 w/o. DPCL 78.83 85.71 73.78 77.84
4 w/o. GPAP 77.90 85.05 73.10 77.12
5 w/o. TDPP 78.77 83.73 72.94 76.83
6 AV-Master 79.95 86.58 74.22 78.51

TABLE VIII
ABLATION STUDY OF DIFFERENT LOSS FUNCTIONS IN AV-MASTER

TRAINING.

# Lqa Lc Lp
a Lp

v
Average Accuracy (%)

A-QA V-QA AV-QA Avg
1 ✓ 77.84 84.31 71.11 75.80
2 ✓ ✓ 78.15 84.43 70.76 75.69
3 ✓ ✓ ✓ 79.83 82.74 72.49 76.50
4 ✓ ✓ ✓ 78.83 86.33 72.63 77.36
5 ✓ ✓ ✓ 78.83 85.71 73.78 77.84
6 ✓ ✓ ✓ ✓ 79.95 86.58 74.22 78.51

performance on complex reasoning tasks such as count-
ing, significantly outperforming the second-best method (i.e.,
A-Counting: 87.02% vs. 84.86%, V-Counting: 86.55% vs.
83.96%, AV-Counting: 79.13% vs. 78.58%).

(c) MUSIC-AVQA-R: As shown in Table III, compared to the
MUSIC-AVQA dataset, AV-Master demonstrates more signifi-
cant improvements (+3.20%) on the MUSIC-AVQA-R dataset,
achieving an overall accuracy of 71.19% and setting a new
state-of-the-art performance. The notable performance gain
can be attributed to AV-Master’s dual-path learning paradigm,
which provides the model with powerful generalization capa-
bilities.

(d) MUSIC-AVQA-v2.0: As shown in Table IV, AV-Master
outperforms existing models across all types. Notably, when
trained on the biased dataset, AV-Master still achieves sig-
nificant improvements over the second-best method on both
the balanced and biased test sets. These results highlight the
robustness and adaptability of AV-Master in handling various
training environments, demonstrating its strong generalization
capability even under distributional bias.

(e) AVQA: To further validate the generalization capability
of our model in real-world scenarios, we conducted exper-
iments on the AVQA dataset. As shown in Tab. V, AV-
Master achieved an overall accuracy of 91.4%, surpassing
all previous methods both with and without the HAVF [26]
module. These results strongly demonstrate that AV-Master
maintains its exceptional performance in complex, real-world
audio-visual question answering tasks. It is worth noting that
although the performance improvement of AV-Master on the
AVQA dataset may seem limited compared to its performance
on the MUSIC-AVQA series of datasets, this is primarily due
to the shorter duration and simpler audio-visual content of the
AVQA dataset.

(f) Comparison with pretraining-based methods: In this

TABLE IX
IMPACT OF LENGTHS OF AUDIO-VISUAL TEMPLATES.

# Lengths Average Accuracy (%)
A-QA V-QA AV-QA Avg

1 16 80.51 85.96 74.04 78.34
2 12 80.26 85.88 74.08 78.30
3 8 79.95 86.58 74.22 78.51
4 4 80.63 85.22 73.92 78.10
5 2 80.38 85.84 73.98 78.26

TABLE X
IMPACT OF WEIGHT SHARING STRATEGIES. A-S AND B-S REPRESENT

ATTENTION BLOCK WEIGHT SHARING AND LEARNED BIAS WEIGHT
SHARING, RESPECTIVELY.

# A-S B-S Average Accuracy (%)
A-QA V-QA AV-QA Avg

1 79.70 85.80 73.92 78.09
2 ✓ 79.95 86.58 74.22 78.51
3 ✓ 80.26 85.88 73.59 78.03
4 ✓ ✓ 80.07 86.29 73.88 78.27

work, our approach focuses on designing efficient AVQA
expert models that achieve competitive performance under
limited training data and hardware conditions by developing
powerful modules. This is also the mainstream direction in
current AVQA research [6], [29], [32]. Additionally, there
are some methods [48], [49], [50] that rely on large-scale
pretraining, which attempt to apply large language models
to audio-visual scenarios to handle downstream AVQA tasks.
However, pretraining-based AVQA methods require substan-
tial computational resources and multimodal data, and their
generalization ability in specific audio-visual scenarios falls
short of expectations. We present relevant experiments to
compare AV-Master with pretraining-based models, includ-
ing OneLLM [51], Chatbridge [52], CAT [53], CAT+ [54],
VideoLLaMa [55], AVLLM [56], AVicuna [57], VideoL-
LaMa2 [48], CAD [58], VAST [49] and VALOR [50].

As shown in Table VI, AV-Master achieves competitive per-
formance (78.5% accuracy) compared to various pretraining-
based models, despite having significantly fewer parame-
ters (61M) and not relying on large-scale pretraining. In
contrast, methods such as CAT+ and AVicuna, which are
based on large language models, achieve notably lower per-
formance (50.1% and 49.6% accuracy) under zero-shot condi-
tions. Although these approaches leverage abundant resources
and powerful backbone models, they often exhibit weaker gen-
eralization capabilities in domain-specific audio-visual tasks.
Other pretraining-based models achieve impressive perfor-
mance (80.7% accuracy) after fine-tuning on the MUSIC-
AVQA dataset. However, our method achieves comparable
results using significantly less training data, fewer trainable
parameters, and a more lightweight audio-visual feature en-
coder. This highlights the practicality of AV-Master and its
suitability for resource-constrained audio-visual scenarios.
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Fig. 4. The ablation study on the lengths of visual and audio segments and
comparison with QA-TIGER.

TABLE XI
DIFFERENT VISUAL AND AUDIO FEATURE EXTRACTORS.

Visual
Encoder

Audio
Encoder Methods Average Accuracy (%)

A-QA V-QA AV-QA Avg

Resnet-18 VGGish ST-AVQA 74.06 74.00 69.54 71.52
AV-Master 78.21 79.23 70.25 74.04

CLIPB VGGish PSTP-Net 70.91 77.26 72.57 73.52
AV-Master 78.40 82.25 72.82 76.31

CLIPL

VGGish
TSPM 76.91 83.61 73.51 76.79

QA-TIGER 78.58 85.14 73.74 77.62
AV-Master 79.95 86.58 74.22 78.51

CLAP PSOT 79.08 87.12 74.07 78.42
AV-Master 80.63 87.78 74.92 79.34

Internvideo2 Internvideo2 CoQo 79.27 87.90 75.80 79.60
AV-Master 81.50 88.32 75.86 80.15

C. Ablation Studies

(a) Ablation study on main components: To explore the
effectiveness of each component, we removed them individ-
ually and re-evaluated performance. As shown in Tab. VII,
removing different components leads to varying degrees of
performance degradation for AV-Master. Specifically, when the
TDPP (Temporal Dynamic Perception Path) is removed, the
performance drops to 76.83%; removing the GPAP (Global
Preference Activation Path) results in a drop to 77.12%;
removing the DPCL (Dual-path Contrastive Loss) lowers
performance to 77.84%, and removing the AVFC (Audio-
Visual Focus Capture) decreases it to 78.11%. When all com-
ponents are removed simultaneously, the performance drops
significantly from 78.51% to 72.94%. These results show
that each component in AV-Master contributes to performance
improvement, and the best results are achieved only when all
components are present.

(b) Impact of template lengths: We explored the impact of
the lengths of predefined templates Acls and Vcls on model
performance. As shown in Tab. IX, the average accuracy of the
model reaches its highest when the template length is set to 8.
If the template length is too short, important information may
be missed during sampling, leading to reduced performance.
Conversely, if the template length is too long, redundant
information may be introduced, which can impair the model’s
performance.

(c) Impact of weight sharing strategies: We also explored
the impact of different weight-sharing strategies in focus
sampling. As shown in Tab. X, the model achieves the best
overall performance when attention blocks share weights while
biases remain unshared — this configuration is also adopted as
our default setting. Interestingly, when only biases are shared,
the model attains the lowest overall accuracy but achieves

Fig. 5. The ablation study on input modalities and comparison with other
popular models (AVTS and QA-TIGER).

the highest accuracy on the A-QA task. This suggests that
bias sharing may benefit certain subtasks while potentially
hindering overall model performance.

(d) Ablation study on loss functions: To analyze the contri-
bution of each loss function, we conducted an ablation study
with the results presented in the Tab. VIII. This study system-
atically evaluates the model’s performance by incrementally
adding different loss components. The baseline model, trained
only with the answer loss Lqa, achieves an average accuracy
of 75.80%. Consecutively adding the contrastive loss Lc

and the preference losses Lp
a and Lp

v provides progressive
gains. The final model, which integrates all four loss func-
tions, achieves the highest average accuracy of 78.51%. This
demonstrates that each loss component plays a vital role, and
their combined effect is crucial for optimizing the model’s
overall performance. It is worth noting that, as can be seen
from the results in the third, fourth, and fifth rows of the
table, visual preference training provides the most significant
overall improvement to the model compared to other training
objectives (aside from basic Lqa). This also indicates that in
the vast majority of scenarios, the model relies more heavily
on visual information for question answering.

(e) Impact of different feature extractors: The results in
Table XI demonstrate that different visual encoders have a sig-
nificant impact on the performance of AV-Master. When using
ResNet-18 [59] as the visual encoder, AV-Master achieves an
average accuracy of 74.04%, showing a considerable improve-
ment compared to ST-AVQA (71.52%) with the same visual
encoder. When a more powerful visual encoder, CLIPB [22], is
adopted, the average accuracy of AV-Master further increases
to 76.31%, surpassing PSTP-Net (73.52%). Moreover, when
using CLIPL [22] and Internvideo2 [60] as visual encoders,
AV-Master achieved the best results across all subtasks (A-
QA, V-QA, AV-QA), significantly outperforming comparable
methods. In summary, as the visual encoder was progressively
upgraded from ResNet-18 to Internvideo2, the performance of
AV-Master on all tasks steadily improved.

Furthermore, the choice of audio encoders also plays a
crucial role. When fixing the visual encoder to CLIPL, switch-
ing from VGGish [23] to a more advanced audio encoder
like CLAP [61] boosts the average accuracy from 78.51% to
79.34%, outperforming its competitor PSOT (78.42%). This
trend continues with the most powerful backbones; using
Internvideo2 for both visual and audio encoding, AV-Master
achieves the highest overall average accuracy of 80.15%, again
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TABLE XII
DIFFERENT MODALITY PREFERENCE ENHANCEMENTS.

# Methods Average Accuracy (%)
A-QA V-QA AV-QA Avg

1 w/o. APE 79.21 86.50 73.31 77.85
2 w/o. VPE 79.83 84.02 73.51 77.41
3 w/o. AVPE 77.65 85.59 72.98 77.15
4 AV-Master 79.95 86.58 74.22 78.51
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Fig. 6. Visualization of the audio-visual focus capturing process, including
the accuracy at different time steps and the overall trend curve.

surpassing the competing method CoQo (79.60%). These
results collectively demonstrate that the performance of AV-
Master is consistently enhanced by leveraging stronger feature
extractors for both the visual and audio modalities, underscor-
ing the importance of high-quality unimodal representations
for complex audio-visual reasoning tasks.

(f) Impact of different audio-visual segment lengths: To
investigate the effect of audio-visual segment lengths on
model performance and the overall robustness of AV-Master
in scenarios with limited audio-visual input, we conducted an
ablation study on the segment length. As shown in Fig. 4,
when the amount of audio–visual input decreases, the overall
performance of all models shows a downward trend, indicat-
ing that more complete audio-visual information can provide
richer cues and is beneficial for improving model performance.
Meanwhile, compared with QA-TIGER, AV-Master maintains
a relatively stable performance decline when facing reduced
audio-visual content, suggesting that it is capable of extracting
and integrating key features from limited audio-visual informa-
tion. This can be attributed to the proposed audio–visual focus
capture module, which progressively refines coarse-grained
audio–visual features into fine-grained cues. In addition, the
involvement of the preference activation strategy and the
dual-path model architecture further strengthen the model’s
robustness. Note that when the segment length is 48, AV-
Master’s performance shows a slight drop. This may reflect
the model reaching near saturation during the middle-to-late
period or being less sensitive to redundant tail segments.

(g) Ablation study on input modalities: To investigate the
contribution of different input modalities and to verify the
stability of the AVQA model, we conduct an ablation study
using two input settings: without visual modal (A+Q) and
without audio modal (V+Q). As shown in Fig. 5, all models
demonstrate improved performance when the visual modal-
ity is present. Specifically, AV-Master achieves the highest
average accuracy across both input settings, reaching 69.8%

TABLE XIII
DIFFERENT ENHANCEMENT METHOD.

# Methods Average Accuracy (%)
A-QA V-QA AV-QA Avg

1 W-ADD 78.71 81.79 71.86 75.70
2 MUL 79.70 85.30 73.70 77.84
3 ADD 79.95 86.58 74.22 78.51
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Fig. 7. The effects of four trade-off parameters on the MUSIC-AVQA dataset
including λqa, λp

a, λp
v and λc.
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Fig. 8. The attention visualization for video-question (upper) and audio-
question (lower), with attention intensity indicated by the color scale on the
right.

with A+Q and 76.9% with V+Q. Compared to the baseline
model (QA-TIGER), AV-Master shows consistent improve-
ments across all sub-tasks (A-QA, V-QA, AV-QA), suggesting
its superior ability to extract and fuse relevant features from
the input. Notably, the performance gap between A+Q and
V+Q settings is larger for QA-TIGER and AV-Master than for
AVST, indicating that advanced models are more effective at
leveraging visual cues. These results highlight the dominant
role of the visual modality in multimodal question answering,
while also confirming the robustness of AV-Master under
varying modality conditions. The results for QA-TIGER in
(f) and (g) were reproduced using the official code.

(h) Ablation study on modality preference enhancement: To
further investigate the effectiveness of our proposed modality
preference enhancement strategy and to identify which modal-
ity has the greatest impact on overall model performance, we
conduct an ablation study by selectively disabling different
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AV-Master: Drum

VideoLLaMA2: The first instrument that comes in 

is the accordion

QA-TIGER: Accordion

User: What is the first instrument that comes in?

Qwen3-Max: Yes, the tuba is playing longer than 

the trumpet throughout the video.

QA-TIGER: Yes

User: Is the tuba playing longer than the trumpet?

AV-Master: No

(a) 

(b) AV-Master: Yes

QA-TIGER: No

Qwen3-Max: The first sound in the video is coming from the guitar, 

played by the man on the left. Therefore, it is not coming from the 

accordion on the right

 User: Is the first sound coming from the right instrument?

AV-Master: Left

QA-TIGER: RightQA-TIGER: Right

Qwen3-Max: The last sounding instrument in the video is the 

accordion, played by the man on the right

User: Where is the last sounding instrument?

(d) 

Type: [Temporal]

Type: [Location]

Type: [Temporal]Type: [Temporal]

Type: [Comparative]
QA-TIGER: TwoQA-TIGER: Two

VideoLLaMA2: There were two types of musical 

instruments played in the video

VideoLLaMA2: There were two types of musical 

instruments played in the video
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Fig. 9. Qualitative demonstration of our proposed AV-Master and comparison with MLLM (VideoLLaMa2-7B and Qwen3-Max) and AVQA expert model (QA-
TIGER). Correct parts are highlighted in green while incorrect parts are highlighted in red.

components during the inference stage. As shown in Table XII,
removing the audio-visual preference enhancement (AVPE)
leads to the most significant performance drop, reducing the
average accuracy to 77.15%, which highlights the importance
of jointly modeling audio-visual scenarios. Additionally, dis-
abling visual preference enhancement (VPE) results in lower
V-QA accuracy (84.02% vs. 86.58%) and overall average
accuracy (77.41%), indicating that visual preference plays a
critical role in AVQA. Similarly, removing the audio pref-
erence enhancement (APE) leads to degraded performance
on A-QA and AV-QA, showing the necessity of modeling
audio preference. Overall, the full model achieves the best
performance across all metrics, confirming the complementary
benefits of modality-specific preference enhancement and their
joint contribution to robust AVQA performance.

(i) Impact of different enhancement methods: To explore
the impact of different preference distribution fusion meth-
ods on model performance, we conduct a comparative study
using three representative methods: (1) W-ADD, which first
computes a weighted ratio based on the initial overall scores
of the visual and auditory preference distributions before
performing a weighted summation; (2) MUL, which applies
element-wise multiplication between modality preferences;
and (3) ADD, a simple summation of the two distributions.
As shown in Table XIII, the ADD strategy achieves the best
overall performance, with an average accuracy of 78.51%,
outperforming both MUL (77.84%) and W-ADD (75.70%).
This result suggests that a direct and unweighted summation
of visual and auditory preference distributions can better
preserve cross-modal complementary information and prevent
overfitting to any single modality. Interestingly, although the
W-ADD method introduces an adaptive weighting mechanism,
its performance lags behind due to potential imbalances intro-
duced by dynamic scaling. When viewed together with the
previous ablation results in Table XII, it is evident that both

the design of modality-specific preference enhancements and
the fusion mechanism of these preferences play a crucial role
in optimizing overall AVQA performance.

(j) Impact of different trade-off hyperparameters: As shown
in Fig. 7, we investigate the impact of four trade-off hyper-
parameters λqa, λp

a, λp
v and λc, which are used to balance

different loss functions. To assess the importance of each
loss function in AV-Master, we vary one hyperparameter at
a time while keeping the others fixed at a default value of
1.0. The experimental results show that increasing λqa from
0.4 to 1.0 significantly improves accuracy. However, when the
value increases beyond a certain threshold (e.g., 1.6), accuracy
declines slightly, suggesting that overemphasizing a single
objective may diminish the contributions of others. Similar
patterns are observed for λp

a, λp
v and λc, underscoring the

independent yet equally important roles of each objective in
the AV-Master. Based on these findings, we set all trade-off
parameters to a default value of 1.0 to ensure a balanced
contribution from each loss component. This configuration
achieves optimal overall performance.

D. Qualitative Analysis

(a) Focus effects at different time steps: As shown in Fig. 6,
we present the variation in accuracy over time during the
audio-visual focus capture process. The blue dots in the figure
represent the original accuracy data at different moments,
while the red curve indicates the overall trend. Although the
original data exhibits some fluctuations, the trend line shows
that the accuracy remains relatively stable during the first 40
steps. However, starting at step 45, the accuracy begins to rise
significantly, reaching its peak at step 60. This suggests that
the audio-visual focusing mechanism becomes more effective
in the later stages, and the model progressively improves its
ability to extract and fuse relevant information during the
focusing process.
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(b) Attention visualization of different modalities: As shown
in Fig. 8, we illustrate which parts of the text the visual
and audio modalities attend to within the global preference
activation path. For the input question “Where is the loudest
instrument?”, the visual modality primarily attends to the word
“instrument” while paying minimal attention to the audio-
related word “loudest.” In contrast, the audio modality places
significant focus on “loudest.” These results indicate that AV-
Master can effectively distinguish between visual and auditory
cues and accurately align them with the corresponding textual
elements, which further demonstrates AV-Master’s capability
in cross-modal understanding.

(c) Qualitative results comparison of different models: Fig. 9
presents a qualitative comparison among our proposed AV-
Master, MLLM (VideoLLaMA2 [48] and Qwen3-Max [62]),
and another AVQA expert model (QA-TIGER [6]) across
four distinct audio-visual scenarios. In each case, AV-Master
exhibits a superior ability to comprehend audio-visual content
and provides accurate answers that align closely with both
visual and auditory cues. In contrast, the other models fail to
achieve such consistency. For example, in the first scenario (a),
both VideoLLaMA2 and QA-TIGER incorrectly identify the
instrument as an “accordion”, whereas AV-Master correctly
identifies it as a “drum”, owing to its accurate interpretation
of the audio signal. Similarly, in the other scenarios (c-d),
AV-Master accurately infers the spatial and temporal charac-
teristics of sound events, while the competing models fail to
effectively integrate these multimodal cues. These qualitative
results reinforce our quantitative findings, showing that AV-
Master is more robust in fine-grained audio-visual reasoning,
particularly in scenarios that require synchronized and cross-
modal understanding. This further validates the effectiveness
of our carefully designed modules in fully leveraging both
audio and visual modality information. The inference results
for VideoLLaMA2 and Qwen3-Max were obtained from its
official demo, simulating application scenarios in low-resource
environments.

V. CONCLUSION

In this paper, we propose AV-Master, a novel dual-path
audio-visual question answering expert model designed to
address the challenges faced by existing models in processing
complex audio-visual scenes. Current methods often struggle
to flexibly focus on the most question-relevant spatiotemporal
segments when confronted with a large amount of redundant
information, and they lack the ability to dynamically perceive
the importance of different modalities for different questions.
This limits their comprehensive understanding of audio-visual
scenes. To tackle these difficulties, AV-Master introduces a
dynamic adaptive focus sampling mechanism and a global
modality preference activation strategy. These enable it to ef-
fectively capture question-relevant audio-visual segments and
modality preferences, thereby enhancing its decision-making
capabilities. Extensive experiments on multiple large-scale
AVQA benchmark demonstrate that by meticulously capturing
key audio-visual details and integrating a global understanding
of modality preferences, AV-Master provides an efficient and

powerful solution for AVQA, particularly excelling in complex
reasoning tasks and under challenging data distributions.
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