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ABSTRACT

Federated learning (FL) is a popular distributed machine learning framework in
which clients aggregate models’ parameters instead of sharing their individual
data. In FL, clients communicate with the server under limited network band-
width frequently, which arises the communication challenge. To resolve this chal-
lenge, multiple compression methods have been proposed to reduce the transmit-
ted parameters. However, these techniques show that the federated performance
degrades significantly with Non-IID (non-identically independently distributed)
datasets. To address this issue, we propose an effective method, called FedPSE,
which solves the efficiency challenge of FL with heterogeneous data. FedPSE
compresses the local updates on clients using Top-K sparsification and aggre-
gates these updates on the server by element-wise average. Then clients down-
load the personalized sparse updates from the server to update their individual
local models. We then theoretically analyze the convergence of FedPSE under the
non-convex setting. Moreover, extensive experiments on four benchmark tasks
demonstrate that our FedPSE outperforms the state-of-the-art methods on Non-
IID datasets in terms of both efficiency and accuracy.

1 INTRODUCTION

Federated learning (FL) is a prevailing distributed framework that can prevent sensitive data of
clients from being disclosed (Kairouz et al., 2021; McMahan et al., 2017b). The naive FL in-
cludes three steps: uploading clients’ models to the server after local training, global aggre-
gation, and downloading the aggregated model from the server. In practice, weight updates
∆W = Wnew −Wold can be communicated instead of model weights W (Asad et al., 2021; Li
et al., 2021a). Recently, FL is increasingly applied in multiple tasks, such as computer vision, rec-
ommender systems, and medical diagnosis (Bibikar et al., 2021; Kairouz et al., 2021; Qayyum et al.,
2020; Xu et al., 2021).

1.1 EXISTING PROBLEM

Despite the aforementioned advantage, the communication cost of FL is overburdened by the fact
that the server and clients exchange massive parameters frequently (Asad et al., 2021; Kairouz et al.,
2021). Furthermore, there usually is a limited upstream/downstream bandwidth between the server
and clients, such as wireless connection in the cross-device (ToC) FL and dedicated network in
the cross-silo (ToB) setting, which further decreases the communication efficiency (Li et al., 2021a;
Sattler et al., 2019). FL is much more time-consuming than traditional centralized machine learning,
especially when the model parameters are massive under the cross-silo FL scenarios (Qayyum et al.,
2020; Shi et al., 2020). Therefore, it is necessary to optimize the bidirectional communication
cost to minimize the training time of FL (Bernstein et al., 2018; Philippenko & Dieuleveut, 2021;
Sattler et al., 2019; Wen et al., 2017). In order to resolve the aforementioned challenge, various
methods have been proposed, such as matrix decomposition (Li et al., 2021c; McMahan et al.,
2017b), quantization (Li et al., 2021a; Sattler et al., 2019), and sparsification (Gao et al., 2021;
Mostafa & Wang, 2019; Wu et al., 2020; Yang et al., 2021b). Although these novel algorithms can
reduce the quantity of communicated information significantly, most of them can only work well
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Figure 1: The proposed framework of FedPSE.

under the ideal condition with IID (identically and independently distributed) datasets (Li et al.,
2021c; Sattler et al., 2019; Wen et al., 2017). In fact, the isolated datasets in clients are usually
heterogeneous, due to the reason that each dataset belongs to a particular client with a specific
geographic location and time window of data collection Kairouz et al. (2021); Kulkarni et al. (2020);
Xu & Huang (2022); Yang et al. (2021a). Hence, the current compression techniques, ignoring the
personalization of clients, face a significant performance degradation on Non-IID datasets Liu et al.
(2022); Sattler et al. (2019); Wu et al. (2020).

1.2 SOLUTION

To bridge this gap, we propose a Personalized Sparsification with Element-wise aggregation for
the cross-silo federated learning (FedPSE) paradigm, as shown in Figure 1. For the first step of
FedPSE, under the concern of efficiency and personalization, clients train their models with local
datasets and upload the sparse updates to the server, as shown in Figure 1(a). The kept indices of
these compressed updates are probably different from each other due to the heterogeneity of clients’
datasets. Secondly, we leverage element-wise averaging to aggregate the collected sparse updates on
the server, which can relieve the bias of the traditional aggregation method, as shown in Figure 1(b).
Lastly, the server sparsifies the downstream parameters for each client in a personalized manner,
as shown in Figure 1(c). Especially, the downstream updates, transferred from the server to each
client, also possess individual k elements to keep the overall compression ratio. Please see Section
4 for more details. To this end, FedPSE compresses both upstream and downstream communication
overhead with personalization concerns.

1.3 CONTRIBUTION

We summarize our main contributions as follows:

• We propose a novel personalized sparsification with an element-wise aggregation framework for
FL, which resolves the bidirectional communication challenge on Non-IID datasets.

• We propose an element-wise aggregation method, which can promote the performance of FL with
sparse aggregated matrices.

• We propose a downstream selection mechanism to personalize the clients’ models, which adapts
to various distributions and significantly increases the performance in the Non-IID setting.

• We provide a convergence analysis of our method as well as extensive experiments on four bench-
mark datasets, and the results demonstrate that our proposed FedPSE outperforms the existing
state-of-the-art FL framework on Non-IID datasets in terms of both efficiency and accuracy.

2 RELATED WORK

In this section, we briefly review optimization methods that focus on the core challenges in FL.

2.1 COMMUNICATION EFFICIENCY

Although FedAVG (McMahan et al., 2017a), the naive federated algorithm, can decrease the com-
munication cost by allowing multiple local steps, the massive transmitted parameters in one com-
munication step are still a critical bottleneck. In general, there are three kinds of compression
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approaches to tackle this problem, i.e. matrix decomposition (Huang et al., 2022; Li et al., 2021c),
quantization (Bernstein et al., 2018; Li et al., 2021a), and sparsification (Gao et al., 2021; Sattler
et al., 2019; Wu et al., 2020).

Firstly, the decomposition method, decomposing the transmitted matrix, is unpractical with a smaller
compression ratio and more computation complexity. Secondly, the quantization-based methods,
limiting the number of bits, have the upper bound of the compression ratio and slow down the
convergence speed in terms of training iterations (Chai et al., 2020). Thirdly, the sparsification-based
methods mask some elements of the transmitted matrices, among which the Top-K sparsification
with residual error is most widely used due to its promising performance and convergence guarantee
(Dan Alistarh et al., 2018; Gao et al., 2021; Wu et al., 2020; Yang et al., 2021b). Therefore we
leverage the error-compensated Top-K compressor to reduce the communication overhead in this
article.

2.2 PERSONALIZATION

Since FL relies on the stochastic gradient descent (SGD) algorithm to train neural networks, the
performance of FL is easily biased by the Non-IID datasets, e.g. feature skew and label skew, etc
(Kairouz et al., 2021; Zhu et al., 2021). Different strategies have been applied to FL with heteroge-
neous concerns (e.g. data shuffling, multi-task learning, and local model optimization) (Achituve
et al., 2021; Chen & Chao, 2021; Huang et al., 2021; Li et al., 2021b; Ma et al., 2022; Oh et al.,
2021; T Dinh et al., 2020; Xu & Huang, 2022; Zhang et al., 2021). Although these state-of-the-art
methods perform well under the Non-IID condition, the communication efficiency is often ignored.

2.3 COMPRESSION WITH PERSONALIZATION

In a word, few algorithms take both of the above two challenges into consideration. To our best
knowledge, FedSTC (Sattler et al., 2019) and FedSCR (Wu et al., 2020) declare that they resolve
the communication overburden with Non-IID data in one shot. Specifically, FedSTC compresses
the clients’ updates by combining Top-K sparsification and ternary quantization. Similarly, Fed-
SCR compresses the transferred information by removing the redundant updates which are less than
the adaptive threshold. However, the clients in FedSTC and FedSCR share the same model, which
decreases the federated performance significantly in the Non-IID setting. In this paper, we pro-
pose a personalized compression paradigm for FL, which has competitive efficiency and promoted
performance for heterogeneous data.

3 PRELIMINARY

In this section, we present some preliminary techniques of our proposal, including FedAVG and
Top-K sparsification.

3.1 FEDAVG

FedAVG (McMahan et al., 2017a), a basic FL algorithm, builds distributed machine learning models
via model aggregation rather than data aggregation. We suppose that there are N clients with their
datasets {D1, D2, ..., DN} in FL. Client i, i ∈ {1, . . . , N}, trains the local model W r−1

i using ni

samples individually and uploads the weight updates ∆W r
i to the server for aggregation during the

r-th federated round. Then the server leverage the averaging function to generate the global matrix:
∆W r

s ←
∑N

i=1
ni∑N
i=1 ni

∆W r
i . In the end, the global matrix ∆W r

s is sent back to each client to

update the local model W r
i ←W r−1

i +∆W r
s .

3.2 TOP-K SPARSIFICATION

Top-K Sparsification is the most widely used compression method in FL, which remains a stable
performance even with a high proportion of ignored parameters (Gao et al., 2021; Wu et al., 2020;
Sattler et al., 2019; Yang et al., 2021b). The Top-K compressor selects K elements of the input
matrix with the largest absolute values.
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4 METHOD

In this section, we first give an overview of the proposed FedPSE paradigm. We then present its
three main components, i.e., Upstream Personalized Sparsification (UPS), Element-Wise Aggrega-
tion (EWA), and Downstream Personalized Sparsification (DPS). Finally, we summarize the whole
algorithm.

4.1 OVERVIEW

Our purpose of FedPSE is to design an FL paradigm that reduces the bidirectional communication
cost while improving the performance on Non-IID datasets. We optimize the steps of FL according
to its training process, as shown in Figure 1. Firstly, in order to reduce the upstream communica-
tion burden, we should compress the information from clients to the server. Secondly, as the global
updates may be biased due to the compression, it is worth developing a new aggregation method
that is suitable for sparse matrices. Thirdly, since clients with Non-IID datasets should have individ-
ual local models, the server needs to personalize the downstream information to each client while
keeping the compression sparsity. Then we propose the motivation of our methods in the following
paragraphs.

Algorithm 1: UPS
Input: downstream personalized sparse

updates ∆Ŵ r−1
s,i , sparsity ratio p

Output: upstream sparse updates ∆Ŵ r
i ,

samples number nr
i

1 W r,0
i = W r−1,0

i +∆Ŵ r−1
s,i

2 Reset nr
i = 0

3 for each local training step t = 1, . . . , T
do

4 Sample a batch: Br,t
i ∼ Di

5 gr,ti = ▽fi(W
r,t−1
i , Br,t

i )

6 W r,t
i = Opt(W r,t−1

i , gr,ti , α)

7 nr
i = nr

i +
∥∥Br,t

i

∥∥
8 end
9 ∆W r

i = W r,T
i −W r,0

i + er−1
i

10 ∆Ŵ r
i = Top-K(∆W r

i , p)

11 eri = ∆W r
i −∆Ŵ r

i

12 return ∆Ŵ r
i , n

r
i

The first step, upstream personalized sparsifi-
cation, compresses clients’ updates after local
training, which is inspired by the current work
(Sattler et al., 2019; Wu et al., 2020). Ac-
cording to the prior research Wu et al. (2020),
the matrices of weights updates are structure-
sparse, in which most elements are redundant
in the Non-IID setting. As a result, we leverage
the Top-K sparsification operator with residual
error to compress the weight updates, whose
convergence rate has been theoretically proved
(Gao et al., 2021; Haddadpour et al., 2021).
Apparently, the reserved indices of compressed
updates have its personalized distributions on
heterogeneous datasets. Then each client trans-
mits its individual updates to the server for the
following aggregation.

The second step is proposing an appropriate ag-
gregation method for the sparse updates. We
demonstrate the bias of FedAVG with two
examples under IID/Non-IID settings in Ap-
pendix A, which is caused by the sparsification.
Then the effectiveness of the EWA method is proved, which is more suitable for sparse aggregation.
Please see more details in Appendix A.

Thirdly, the server should sparsify the downstream updates for each client under the concern of
personalization. In order to quantitatively measure the divergence between the global distribution
and the local distribution, we compress the global updates, possessing k elements, and compute its
correlation distances with clients’ upstream updates. Apparently, the correlation distances are likely
different from each other in the Non-IID setting. Finally, the personalized downstream updates are
selected by the correlation distances. Further details can be found in Section 4.4.

4.2 UPSTREAM PERSONALIZED SPARSFICATION (UPS)

We suppose that there are N clients with their own training datasets {D1,D2, ...,DN} and a server
participated in FL. At the beginning of FL, client i (∀i ∈ P,P = {1, 2, ..., N}) initializes its weights
Wi with the same parameters W0 (Zhao et al., 2018). Algorithm 1 presents the process of local
training on client i during r-th federated round, where the inputs, i.e. weight updates ∆Ŵ r−1

s,i and
sparsity ratio p, are transmitted from the server. The first step of local training is updating the client
model with the received ∆Ŵ r−1

s,i (line 1). Secondly, client i trains its individual model with nr
i
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samples (lines 3-8), in which fi indicates the loss function and Opt (e.g., SGD or Adam) indicates
the model’s optimizer with the learning rate α.

After that, the client i compresses the updates via the error-compensated Top-K compressor (lines
9-11). Finally, the sparse updates ∆Ŵ r

i and the number of local training samples nr
i are uploaded

to the server for aggregation.

4.3 ELEMENT-WISE AGGREGATION (EWA)

Algorithm 2: EWA

Input: sparse updates ∆Ŵ r
i , samples

number nr
i , i ∈ P

Output: aggregated updates: ∆W r
s

1 for i = 1, . . . , N do
2 Computes the index matrices of

client updates:
Mr

agg,i = Sign
(∣∣∣∆Ŵ r

i

∣∣∣)
3 end
4 Sum matrix of training samples:
5 N =

∑N
i=1 n

r
i ·Mr

agg,i

6 ∆W r
s =

(∑N
i=1 n

r
i ·∆Ŵ r

i

)
⊘N

7 return ∆W r
s

From the perspective of the selection mecha-
nism in federated learning, the kept non-zero
value in ∆Ŵ r

i indicates that the correspond-
ing client i is selected by the server at this ele-
ment location. Apparently, each element of the
aggregated matrix has its individual participat-
ing samples. We introduce our Element-Wise
Aggregation (EWA) method in Algorithm 2.
Firstly, the server receives the sparse updates
∆Ŵ r

i from client i during r-th federated round,
∀i ∈ P . Then the server computes the indices
of nonzero values Mr

agg,i for ∆Ŵ r
i , which is

used to calculate the sum matrix N of training
samples for each location (lines 1-5). Finally,
the server aggregates the global updates ∆W r

s ,
in which ⊘ indicates the element-wise division
operator (line 6).

4.4 DOWNSTREAM PERSONALIZED SPARSIFICATION (DPS)

This process can be separated into three sub-steps: measurement of the heterogeneity between the
global distribution and local distribution, selection of the downstream indices, and computation of
the downstream personalized updates.

First of all, during the r-th federated round, the server quantifies the heterogeneity of data distribu-
tions via the distance between ∆Ŵ r

s and ∆Ŵ r
i ,∀i ∈ P (lines 1-4). The server flattens the updates

followed by normalization (lines 2-3). Then we compute the distance via the cosine function, which
can be replaced by the other correlation functions (line 4). Secondly, we get the index matrix Mr

s of
the global sparse updates ∆Ŵ r

s via the sign function. In similarity, the index matrix Mr
i of client i

is calculated (line 6). The intersection matrix Mr
i,in of Mr

s and Mr
i can be regarded as the common

information owned by both the server and client i, which will be wholly kept during downstream
transmission (line 7). As Mr

i,in has ki,in elements, we choose the rest k − ki,in elements from
the compensation matrices Mr

i,c and Mr
s,c. In order to enhance the generalization of training, we

leverage the random mechanism to choose drs,i · (k − ki,in) elements from Mr
i,c, while selecting

(1.0− drs,i) · (k− ki,in) from Mr
s,c (lines 8-13). Finally, we combine the personalized index matrix

Mr
s,i of client i (line 14) and calculate the downstream sparse updates ∆Ŵ r

s,i, from the server to
client i (lines 15-16).

Apparently, each client uploads its unique sparse updates ∆Ŵ r
i , which means that the correlation

distance drs,i and the downstream sparse updates ∆Ŵ r
s,i are different from each other.

4.5 PUTTING ALL TOGETHER

To sum up, we conclude the FedPSE framework in the Algorithm 4, which executes the federated
process, named PSE, for R times. Before the training process, we initialize the model weights
of clients as W0, the received updates ∆W 0

s,i as zero and the sparsity ratio p for communication
compression concern. First of all, we get the personalized sparse updates ∆Ŵ r

i of each client i using
UPS method (Algorithm 1) with the last ∆Ŵ r−1

s,i and the sparsity ratio p (line 5). Then we leverage
the EWA operator (Algorithm 2) to compute the global updates (∆W r

s ) during r-th federated round
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Algorithm 3: DPS

Input: Upstream sparse updates ∆Ŵ r
i , global updates ∆W r

s , global sparse updates ∆Ŵ r
s

Output: Downstream sparse updates ∆Ŵ r
s,i to the client i

1 # Measure the heterogeneity of distributions via ∆Ŵ r
s and ∆Ŵ r

i

2 Normalize the global sparse updates: ∆Ŵ r
s = Norm(Flatten(∆Ŵ r

s ))

3 Normalize the client i sparse updates: ∆Ŵ r
i = Norm(Flatten(∆Ŵ r

i ))

4 Compute the correlation distance: drs,i = 0.5− 0.5 · Cosine(∆Ŵ r
s ,∆Ŵ r

i )

5 # Select the reserved indices of downstream updates

6 Get the index matrices: Mr
s = Sign

(∣∣∣∆Ŵ r
s

∣∣∣) and Mr
i = Sign

(∣∣∣∆Ŵ r
i

∣∣∣)
7 The intersection of index matrices: Mr

i,in = Mr
i ⊙Mr

s

8 The number of non-zero value in Mr
s : k = ∥Mr

s ∥
9 The number of non-zero value in Mr

i,in: ki,in =
∥∥Mr

i,in

∥∥
10 The compensations of index matrices: Mr

i,c = Mr
i −Mr

i,in and Mr
s,c = Mr

s −Mr
i,in

11 Combine the indices:
12 M̃r

i,c = Random(Mr
i,c, d

r
s,i · (k − ki,in))

13 M̃r
s,c = Random(Mr

s,c, (1− drs,i) · (k − ki,in))

14 Mr
s,i = Mr

i,in + M̃r
i,c + M̃r

s,c

15 #Compute the downstream personalized updates: ∆Ŵ r
s,i = Mr

s,i ⊙∆W r
s

16 return ∆Ŵ r
s,i

(line 8). Furthermore, the server sparsifies the global updates ∆W r
s and generates the ∆Ŵ r

s with
the compression rate p (line 9). Finally, we get the personalized updates of each client via DPS
method (Algorithm 3) with the inputs of sparse upstream updates ∆Ŵ r

i , global updates ∆W r
s and

sparse global updates ∆Ŵ r
s (line 11).

4.6 THEORETICAL ANALYSIS

Algorithm 4: FedPSE framework
1 Initialization: W 0

i = W0,
∆W 0

s,i = 0 (∀i ∈ P), sparsity ratio p

2 for each federated round r = 1, ..., R do
3 # At clients:
4 for each client i ∈ P do
5 ∆Ŵ r

i , n
r
i ← UPS(∆Ŵ r−1

s,i , p)

6 end
7 # At Server:
8 ∆W r

s ← EWA(∆W r
i , n

r
i ),∀i ∈ P

9 ∆Ŵ r
s ← Top-K(∆W r

s , p)
10 for i ∈ P do
11 ∆Ŵ r

s,i ←
DPS(∆Ŵ r

i ,∆W r
s ,∆Ŵ r

s )
12 end
13 end
14 return WR,T

i ,∀i ∈ P

In this subsection, we analyze the convergence
results of the FedPSE framework theoretically.
We suppose that the loss function (fi : Rn →
R) of client i (∀i ∈ P) is differentiable, where
n is the dimension of parameters. We consider
the general setting in deep learning where fi is a
non-convex function. Our convergence results
are proved under the following assumptions:

Assumption 1. Lipschitz Smoothness:

The loss function fi (∀i ∈ P) is L-
Lipschitz smooth (L-smooth), i.e., ||∇fi(Wu

i )−
∇fi(W v

i )|| ≤ L||Wu
i − W v

i ||,∀Wu
i ,W

v
i ∈

Rn.

Assumption 2. Bounded Gradient:

The second moment of stochastic gradient Gi

calculated by a single sample within client
i is bounded, i.e., E[||

∑N
i=1 Gi(Wi)||2] ≤

σ2,∀Wi ∈ Rn.

We aims to prove that min
r∈{1,··· ,R}

E[||∇fi(W r
i )||2]

R→∞−→ 0 , which is a normal convergence guar-

antee in the non-convex problem (Liu & Wright, 2015). Similar to Dan Alistarh et al. (2018),
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we use W̃ r
i to denote the auxiliary random variable during r-th federated round on client i, and

W̃ r+1 = W̃ r − αrG(W r), where G(W r) = 1
N

∑N
i=1 Gi(W

r
i ) and W̃ 0 = W 0

i (∀i ∈ P).

Lemma 1. For any federated round r ≥ 1: E[||W r
i −W̃ r

i ||2] ≤
1+2φ

ρ

∑r
q=1(φ(1+ρ))q(αr−q)2 σ2

N ,
where φ = 1− k

n , 0 < k ≤ n and ρ > 0.

We propose the bound of the difference between W̃ r and W r
i during r-th federated round in Lemma

1. Consequently, the convergence of FedPSE is guaranteed as shown below.

Theorem 1. Choose the learning rate schedule α, s.t.
∑r

q=1(φ(1 + ρ))q (αr−q)2

αr ≤ C(∀r > 0),
then our proposed FedPSE satisfies:

1∑R
r=1 α

r

R∑
r=1

αrE[||∇fi(W r
i )||2] ≤

4(fi(W̃
0)− fi(W̃

∗))∑R
r=1 α

r
+

2σ2L
N (1 + 2L(1+2φ)C

ρ )
∑R

r=1(α
r)2∑R

r=1 α
r

where constant C > 0 and W̃ ∗ denotes the optimal solution auxiliary variable.

Theorem 1 implies that client model W r
i converges if federated round R is large enough when αr

satisfies the following conditions: limR→∞
∑R

r=1 α
r = ∞, limR→∞

∑R
r=1(α

r)2∑R
r=1 αr = 0. Finally, we

derive the convergence speed of our framework, please see more details and proofs in Appendix B.

5 EXPERIMENT

In this section, we empirically compare the performance of our proposed FedPSE framework with
other federated learning paradigms for personalized compression. We aim to answer the following
questions.

• Q1: whether FedPSE outperforms other optimized algorithms on the Non-IID data?
• Q2: whether the convergence speed of FedPSE is acceptable in the Non-IID setting?
• Q3: whether the correlation distance can be adopted to quantitatively measure the divergence

between the local distribution and the global distribution?
• Q4: whether the EWA method can promote the performance of FedPSE?
• Q5: how does the sparsity ratio influence the performance of FedPSE?

5.1 EXPERIMENTAL SETTINGS

Datasets. To test the effectiveness of our proposed model, we choose four widely used benchmark
datasets: MNIST (Deng, 2012), Fashion-MNIST (FMNIST) (Xiao et al., 2017), IMDB (Maas et al.,
2011) and Cifar-10 (Krizhevsky et al., 2009). We load these datasets using the Keras package in
Tensorflow2.8, keeping their original train/test samples (Abadi et al., 2016).

Non-IID Setting. As most empirical work on synthetic Non-IID datasets partitions a ”flat” existing
dataset based on the labels (Kairouz et al., 2021), we also use the label distribution skew as our
Non-IID setting. Then we set a variable Non-IID ratio λ, ranging from 0.0 to 1.0, to simulate
the Non-IIDness of clients’ datasets, which is the same with Beutel et al. (2020). In this way, the
distribution of clients’ datasets is becoming more heterogeneous with a larger λ. Please see more
details in Appendix C.1.

Metrics. Following the existing work (Sattler et al., 2019; Wu et al., 2020), we use accuracy on
the test dataset as the evaluation metric. To compare the performance of different strategies in the
decentralized scenario, we optimize their hyper-parameters and choose the average of metrics in all
clients as the optimization target. Please see more details in Appendix C.2 and C.3.

5.2 PERFORMANCE COMPARISON OF ALGORITHMS WITH DIFFERENT NON-IID RATIOS

To answer the proposed question Q1, we firstly set different Non-IID ratios λ, i.e. 0.0, 0.5 and 1.0, to
partition the original datasets for clients. As shown in Table 1 and Appendix D.1, we set the different
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Table 1: Performance comparison of algorithms on datasets with different Non-IID ratios λ.

Dataset Clients λ FedAVG FedSTC FedSCR FedPSE Dataset FedAVG FedSTC FedSCR FedPSE

MNIST

2
1.0 0.9785 0.9927 0.9904 0.9967

IMDB

0.8406 0.8522 0.8961 0.9999
0.5 0.9901 0.9913 0.9851 0.9910 0.8804 0.9010 0.8811 0.9013
0.0 0.9905 0.9915 0.9867 0.9910 0.8810 0.8815 0.8815 0.8869

5
1.0 0.9694 0.9907 0.9741 0.9939 0.8494 0.9099 0.9375 0.9989
0.5 0.9899 0.9902 0.9816 0.9909 0.8864 0.8941 0.8862 0.8977
0.0 0.9904 0.9910 0.9851 0.9908 0.8827 0.8862 0.8841 0.8792

10
1.0 0.9530 0.9876 0.9791 0.9940 0.9080 0.9591 0.9633 0.9991
0.5 0.9725 0.9899 0.9801 0.9901 0.8900 0.8922 0.8901 0.8951
0.0 0.9904 0.9905 0.9819 0.9865 0.8908 0.8846 0.8770 0.8602

FMNIST

2
1.0 0.8781 0.8844 0.9031 0.9466

Cifar10

0.7508 0.7611 0.7723 0.8576
0.5 0.8804 0.8926 0.8624 0.8953 0.7712 0.7732 0.7731 0.7743
0.0 0.9003 0.8906 0.8523 0.8911 0.7736 0.7711 0.7724 0.7721

5
1.0 0.8068 0.8388 0.8403 0.9243 0.7654 0.7786 0.7841 0.8602
0.5 0.8835 0.8952 0.8512 0.8967 0.7760 0.7801 0.7822 0.7843
0.0 0.8995 0.8839 0.8641 0.8760 0.7805 0.7805 0.7804 0.7780

10
1.0 0.7909 0.8040 0.8305 0.9334 0.7630 0.7721 0.7734 0.8741
0.5 0.8697 0.8850 0.8655 0.8910 0.7800 0.7811 0.7832 0.7856
0.0 0.8993 0.8960 0.8644 0.8725 0.7815 0.7822 0.7788 0.7770

numbers of clients, ranging from 2 to 100, for the cross-silo federated learning, which is similar to
previous studies (Gao et al., 2021; Wu et al., 2020). Furthermore, we compare the accuracy of our
proposed FedPSE and the three aforementioned algorithms, i.e. FedAVG McMahan et al. (2017a),
FedSTC Sattler et al. (2019), and FedSCR (Wu et al., 2020). Among them, FedAVG is the baseline
method without communication compression. In addition, FedSTC and FedSCR are state-of-the-art
methods to solve the communication efficiency problem in the Non-IID setting. Especially, we set
the same sparsity parameter p = 0.9 for FedSTC, FedSCR, and FedPSE, which means that only
10% parameters are transmitted between clients and the server compared with FedAVG. Then we
summarize the results in Table 1 and Appendix D.1, which compare the performance of FedAVG,
FedSTC, FedSCR, and FedPSE paradigms on these benchmark datasets.
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Figure 2: Test accuracy regarding rounds.

From the results of the experiments, we conclude that our
proposed FedPSE almost achieves the best performance
of all algorithms in the Non-IID setting (λ = 1.0 or 0.5),
which is also robust to the number of clients. For exam-
ple, the average metric of FedPSE outperforms 6.85% for
FedSTC and 5.57% for FedSCR on FMNIST dataset as
shown in Table 2 of Appendix D.1. Besides, FedPSE is
also robust to the Non-IID ratios, which can get very sim-
ilar performance compared with FedAVG and FedSTC,
while FedSCR has a weakness when the data distribu-
tion is more symmetrical ( λ = 0.0). Furthermore, our
method also outperforms other models with partial clients participation for aggregation as shown in
Appendix D.2.

5.3 CONVERGENCE SPEED OF FEDPSE IN THE NON-IID SETTING
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Figure 3: Correlation distance on 5 clients.

To answer the proposed question Q2, we plot the metric
over the federated rounds on the Non-IID (λ = 1.0) FM-
NIST dataset as shown in Figure 2, in which the com-
pression ratio p is 0.9 with 5 participated clients. We
observe that the performance of FedAVG is unstable on
Non-IID datasets, which is also proposed in the previ-
ous result (Zhao et al., 2018), while other methods suffer
the least from Non-IID data. It is essential that our pro-
posed FedPSE, compared with FedSTC and FedSCR, im-
proves the performance with a faster convergence speed.
Furthermore, FedSCR performs best in the Non-IID set-
ting, which is consistent with the former result (Wu et al.,
2020).
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5.4 CORRELATION DISTANCE OF FEDPSE WITH DIFFERENT NON-IID RATIOS

To answer the proposed question Q3, we plot the correlation distance of participated clients with
different Non-IID ratios (i.e. λ = 0.0, 0.5, 1.0) as shown in Figure 3.

Figure 3 shows that the average correlation distance increases over the Non-IID ratios, which demon-
strates that the correlation distance is able to represent the heterogeneity between a local distribution
and global distribution. Furthermore, we compute the variance of correlation distance under diverse
Non-IID settings as shown in Appendix D.3. Apparently, the variance is becoming larger with the
growth of heterogeneity, which means that the correlation distance also has a relationship with the
distribution divergence among each client.
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(a) Comparison on 2 clients
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(b) Comparison on 5 clients
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(c) Comparison on 10 clients
Figure 4: Accuracy comparison of EWA in FedPSE over compression sparsity ratios on Non-IID datasets.

5.5 PERFORMANCE COMPARISON OF FEDPSE WITH DIFFERENT AGGREGATION METHODS
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Figure 5: Accuracy with Non-IID ratios.

To answer the proposed question Q4, we vary sparsity
ratio p from 0.1 to 0.9 on FMNIST dataset and report
the average test accuracy on Non-IID datasets (λ = 1.0)
in Figure 4, in which FedPSE without EWA indicates
FedPSE using the naive aggregation method of FedAVG.
Figure 4 shows that FedPSE with EWA consistently out-
performs FedPSE without EWA under different compres-
sion rates, which demonstrates the effectiveness of our
proposed EWA method. Besides, the average promotion
of EWA is 0.002 on 2 clients, while the promotion is
0.0071 on 5 clients and 0.0143 on 10 clients. We can
indicate that the promotion of EWA increases with the number of clients.

Furthermore, we construct experiments on the FMNIST datasets over Non-IID ratios λ (i.e. from
0.0 to 1.0) with a fixed p = 0.9 as shown in Figure 5. The test accuracy of FedPSE with EWA
exceeds the algorithm without EWA through different distributions. The performance of FedPSE
increases rapidly with the rising λ, which means that our proposed paradigm performs better under
the extreme Non-IID condition. In conclusion, the EWA method is useful for the sparse aggregation
process in the server.

5.6 PERFORMANCE COMPARISON OF FEDPSE WITH DIFFERENT SPARSITY RATIOS

Figure 4 can also answer the proposed question Q5. We can find that the accuracy of FedPSE over
sparsity ratios changes individually on the different number of clients. For instance, the accuracy
keeps steady with most sparsity ratios on two clients, while the metric increases rapidly with the
rising p from 0.1 to 0.7 on more clients. We can optimize the sparsity hyper-parameter p of FedPSE
to balance the performance and efficiency of FedPSE.

6 CONCLUSION

We propose a personalized sparsification with element-wise aggregation for federated learning to
solve the Non-IID isolated scenario. We first sparsify the upstream updates of clients via the Top-K
operator. Then we propose the EWA aggregation method to promote the federated performance for
sparse matrices. Finally, we leverage the DPS method to keep the personalization and sparsification
for the downstream information. Experiments on real-world datasets demonstrate that our model
significantly outperforms the current methods on the isolated Non-IID data.
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A COMPARISON OF DIFFERENT AGGREGATION METHODS
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Figure 6: Aggregation results of different methods.

In this section, we give two examples to com-
pare the results of different aggregation meth-
ods under the IID and Non-IID settings.

For the IID setting, we suppose that there are
three clients with their updates, i.e. ∆W1 =
(1, 1), ∆W2 = (2, 2) and ∆W3 = (3, 3). It
is evident that the original aggregation of these
dense updates is (2, 2) (red arrow) as shown
in Figure 6(a), which is regarded as the accu-
rate result. We then generate the correspond-
ing sparse updates, i.e. ∆Ŵ1 = (0, 1), ∆Ŵ2 = (2, 0) and ∆Ŵ3 = (0, 3), whose biased result(
2
3 ,

4
3

)
(green arrow) is easily aggregated via the naive averaging method (McMahan et al., 2017b).

From a microcosmic perspective, if we compute the aggregated vector via the Element-Wise Ag-
gregation (EWA) method as shown in Section 4.3, we would get the precise aggregation (2, 2) (blue
vector) with the above sparse updates.

In similarity, we assume that the clients’ updates are ∆W1 = (1, 2), ∆W2 = (3, 2) and ∆W3 =

(3, 4) in the Non-IID setting. Then we sparsify these updates via Top-K operator, i.e. ∆Ŵ1 = (0, 2),
∆Ŵ2 = (3, 0) and ∆Ŵ3 = (0, 4). It’s easy to calculate the accurate aggregation,

(
7
3 ,

8
3

)
(red arrow),

the naive result, (1, 2) (green arrow), and the EWA vector, (3, 3) (blue arrow). Apparently, the EWA
result is more close to the accurate dense aggregation than the naive sparse aggregation as shown in
Figure 6(b), when it refers to the direction and magnitude.

Overall, the original averaging approach is easily biased by the sparse matrices, while our proposed
EWA method is more suitable for the sparse aggregation.

B CONVERGENCE ANALYSIS

B.1 ANALYSIS PRELIMINARIES AND ASSUMPTIONS

The framework FedPSE is used to minimize the differentiable loss function fi : Rn → R (∀i ∈ P)
individually, where n indicates the dimension of parameters. We consider the general setting in deep
learning where fi is a non-convex function. Our convergence results are proved under the following
assumptions:

Assumption 3. Smoothness: The loss function fi (∀i ∈ P) is L-Lipschitz smooth (L-smooth), i.e.,
||∇fi(Wu

i )−∇fi(W v
i )|| ≤ L||Wu

i −W v
i ||,∀Wu

i ,W
v
i ∈ Rn.

Then we assume that client i trains its model Wi with unbiased stochastic gradient, i.e.,
E[Gi(Wi)] = ∇fi(Wi), in which Gi denotes the stochastic gradient with a batch of M samples.

Assumption 4. Bounded Gradient: The second moment of local gradient Gi is bounded, i.e.,∑N
i=1 E[||Gi(Wi)||2] ≤ σ2,∀Wi ∈ Rn, where ||.|| is ℓ2-norm.

As shown in Algorithm 5, FedPSE includes three steps, i.e., upstream personalized sparsification
(UPS), element-wise aggregation (EWA), and downstream personalized sparsification (DPS). The
training steps of each federated round are termed as PSE collectively in the following sections. The
local model is updated during the (r + 1)-th federated round by the following expression:

W r+1
i = W r

i − PSEN
i=1(α

rGi(W
r
i ) + er−1

i ) (1)

where αr is the learning rate.
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According to Algorithm 2, er−1
i = αr−1Gi(W

r−1
i ) − Top-k(αr−1Gi(W

r−1
i ) + er−2

i ). We then
expand the PSE with the previous parameters and get

PSEN
i=1(α

rGi(W
r
i ) + er−1

i )

=(Mr
in + R(Mr

i,c, d
r
s,i · kc) + R(Mr

s,c, (1− drs,i) · kc)⊙∆W r
s

=(Mr
in + M̃r

i,c + M̃r
s,c)⊙∆W r

s

=W r ⊙ (Mr
in + M̃r

i,c)⊙ Top-k(
N∑
i=1

Top-k(αrGi(W
r
i ) + er−1

i ))

+ M̃r
s,c ⊙ Top-k(αrGi(W

r
i ) + er−1

i )

(2)

where Top-k(·) is the compress operator which is described in Algorithm 1, R(·) denotes the random
selection function in Algorithm 4 and W r = 1⃗n ⊘

∑N
i=1 Sign

(∣∣Top-k(αrGi(W
r
i ) + er−1

i )
∣∣) is the

element weight matrix.

Similar to Dan Alistarh et al. (2018), we use W̃ r
i to denote the auxiliary model weight with conver-

gence guarantee during r-th federated round on client i, and get
W̃ r+1 = W̃ r − αrG(W r) (3)

where G(W r) = 1
N

∑N
i=1 Gi(W

r
i ) and W̃ 0 = W 0

i (∀i ∈ P). The difference between the auxiliary
model W̃ r and the local model W r

i can be represented by

W r
i − W̃ r

=W 0
i −

r∑
q=1

PSEN
i=1(α

qGi(W
q
i ) + eq−1

i )− W̃ 0 +

r∑
q=1

αqG(W q)

=
1

N

r∑
q=1

N∑
i=1

αqGi(W
q
i )−

r∑
q=1

PSEN
i=1(α

qGi(W
q
i ) + eq−1

i )

(4)

Then we define a commonly used k-contraction operator (Gao et al., 2021; Sebastian U. Stich, 2018)
as shown below:
Definition 1. For any vector W ∈ Rn and 0 < k ≤ n, operator Q (Rn → Rn) is a k-contraction
operator if it satisfies the following property:

E||W − Q(W)||2 ≤ (1− k

n
)||W ||2,∀W ∈ Rn (5)

Apparently, the Top-K compressor is a k-contraction operator.
Lemma 2. ∀Wi ∈ Rn and 0 < k ≤ n, we have

E[|| 1
N

N∑
i=1

(αrGi(W
r
i ) + eri )− PSEN

i=1(α
rGi(W

r
i ) + eri )||2]

≤(1− k

n
)|| 1

N

N∑
i=1

(αrGi(W
r
i ) + eri )||2

(6)

Proof. Combining equation 2 and Definition 1, we obtain

E[|| 1
N

N∑
i=1

(αrGi(W
r
i ) + eri )− Top-kN

i=1(α
rGi(W

r
i ) + eri )||2]

≤E[|| 1
N

N∑
i=1

(αrGi(W
r
i ) + eri )− PSEN

i=1(α
rGi(W

r
i ) + eri )||2]

≤E[ 1
N

N∑
i=1

(αrGi(W
r
i ) + eri )− Q(E[|| 1

N

N∑
i=1

(αrGi(W
r
i ) + eri )])

≤(1− k

n
)|| 1

N

N∑
i=1

(αrGi(W
r
i ) + eri )||2
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B.2 MAIN PROCESS

As a standard situation in non-convex settings (Liu & Wright, 2015), we want to guarantee the
following convergence:

min
r∈{1,··· ,R}

E[||∇fi(W r
i )||2]

R→∞−→ 0

that is, the algorithm converges ergodically to the optimal point where gradients are zero. Our
purpose is to minimize the difference between the “real” model W̃ r

i and the viewed W r
i observed

at federated round r, which means decreasing the value of loss function fi(W
r
i ). Furthermore, we

need to bound the following expression:

1∑R
r=1 α

r

R∑
r=1

αrE[||∇fi(W r
i )||2]

Then We get Lemma 3:
Lemma 3. For any federated round r ≥ 1:

E[||W r
i − W̃ r

i ||2] ≤
1 + 2φ

ρ

r∑
q=1

(φ(1 + ρ))q(αr−q)2
σ2

N
(7)

where φ = 1− k
n , 0 < k ≤ n and ρ > 0.

Proof. We derive the difference between W r+1
i and W̃ r+1:

E[||W r+1
i − W̃ r+1

i ||2]
=E[||W r

i − PSEN
i=1(α

rGi(W
r
i ) + eri )− W̃ r + αrG(W r)||2]

=E[||W r
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From Lemma 2, we can obtain
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From equation (4) and Lemma 2, we have
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Iterate the above inequality by r to get:

E[||W r
i − W̃ r

i ||2] ≤
1 + 2φ

ρ

r∑
q=1

(φ(1 + ρ))qE||αr−qG(W r−q)||2

From Assumption 4 and Lemma 3, we have

E[||W r
i − W̃ r

i ||2] ≤
1 + 2φ

ρ

r∑
q=1

(φ(1 + ρ))qE||αr−qG(W r−q)||2

≤ 1 + 2φ

ρ

r∑
q=1

(φ(1 + ρ))q(αr−q)2
σ2

N

Theorem 2. Assume that our proposed FedPSE is applied to minimize the objective loss function fi
that satisfies the assumptions in A.1. If we choose a learning rate schedule that satisfies:

r∑
q=1

(φ(1 + ρ))q
(αr−q)2

αr
≤ C (8)

then for some constant C > 0, we have the following result after R federated rounds:

1∑R
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r

where W̃ ∗ is the optimal solution to fi.

Proof. Under the Assumption 3, we have

fi(W̃
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2
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Taking the expectation at federated round r, we bonud
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Taking the expectation before r, it yields
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Apply (8) to the above inequality, we get
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Combine with inequality (10), we can obtain
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Summing up the above inequality for r = 1, 2, · · · , R, we have
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By dividing the summation of learning rates and therefore:
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The condition (8) keeps right if φ(1 + ρ) < 1. To derive the bound of ρ, we have

φ(1 + ρ) = (1− k

n
)(1 + ρ) < 1

Therefore, one should choose ρ < k
n−k to satisfy the above inequality. Theorem 2 implies that each

client’s model in the FedPSE framework will converge if federated round R is large enough when
αr satisfies the following conditions:

lim
R→∞
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r=1(α

r)2∑R
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r
= 0

Corollary 1. Under the assumptions in Theorem 2, if τ = φ(1 + ρ) and αr = θ
√

MN
R , ∀r > 0,

where θ > 0 is a constant, we have the convergence speed of FedPSE:
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Proof. First we prove that αr = θ
√

MN
R , a constant step size, satisfies the inequality (8). we set

αr = α for simplification:
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Since 0 ≤ r < 1, we then obtain
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Therefore, inequality (8) holds under the condition: C = ατ

1−τ . From Theorem 2, we obtain the
inequality of the expected average-squared gradients of fi, i.e.,
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From Corollary 1, we can conclude that the framework FedPSE has a convergence rate of O( 1√
R
)

with a proper learning rate,. It also indicates that the hyper-parameter k (in Top-K) has minor
impacts on the convergence rate if R is large enough.

C DETAILS OF EXPERIMENTS SETTINGS

C.1 SEPARATION OF CLIENTS’ DATASETS

In this section, we propose the details of the splitting method with a ”flat” existing dataset in the
Non-IID setting. Firstly, the whole training/test samples are separated into two parts, including the
heterogeneous subset with λ percent and the homogeneous subset with (1.0 − λ) percent. On one
hand, the homogeneous subset is averaged partitioned into N clients randomly. On the other hand,
the heterogeneous subset is sorted by labels and split into N clients by order, which indicates that
each client has its own distribution. Finally, we combine the above-mentioned homogeneous part
and heterogeneous part into the individual training/test dataset of each client.

C.2 MODELS FOR DIFFERENT DATASETS

We establish an ConvNet2 model (Beutel et al., 2020) for MNIST and FMNIST datasets (Subramani
et al., 2021). In similarity, we construct a model with one Embedding layer, which is prebuilt in
Keras, followed by a fully-connected layer on the IMDB dataset. Finally, we train the Resnet18
model (He et al., 2016) on the Cifar10.

C.3 HYPER-PARAMETERS OPTIMIZATION

We fix the architectures of models and the random seed as 1. Then we optimize the hyper-
parameters(e.g. batch size ranging from 64 to 512 and learning rate ranging from 1e−3 to 1e−2) for
different strategies to compare their best metrics in the following experiments. Particularly, in order
to accelerate the training process of Resnet18 on Cifar10, we use a pre-trained model to initialize the
clients’ weights. The experiments are conducted in a stand-alone PC to simulate the communication
in federated learning.

D SUPPLEMENTARY EXPERIMENTS

D.1 PERFORMANCE COMPARISON OF ALGORITHMS WITH DIFFERENT NUMBERS OF CLIENTS

In order to prove the effectiveness of our method, we vary the number of clients from 2 to 100 and
report their accuracy in Table 2, where we perform the experiments on the FMNIST and IMDB
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Figure 7: Accuracy comparison over sampling ratios on Non-IID datasets.

datasets with λ = 1.0. Then we compute the promotion of our method compared to the SOTA
methods via the following function:

Promotion =
AccFedPSE −AccSOTA

AccSOTA

Then we abbreviate the promotion of FedPSE compared to FedSTC as P1 and the promotion of
FedPSE compared to FedSCR as P2 as shown in Table 2. From Table 2, we have the conclusion
that our proposed FedPSE achieves the best performance among all algorithms under the different
numbers of clients, which is consistent with Section 5.2.

Table 2: Performance comparison of algorithms with the different number of clients on Non-IID datasets.

Datasets FMNIST IMDB

clients FedAVG FedSTC FedSCR FedPSE P1 P2 FedAVG FedSTC FedSCR FedPSE P1 P2

2 0.8781 0.8844 0.9031 0.9466 7.03% 4.82% 0.8406 0.8409 0.8438 0.9953 17.33% 11.65%
5 0.8068 0.8756 0.8821 0.9267 5.84% 5.06% 0.8494 0.9066 0.9366 0.9966 9.78% 6.55%

10 0.7909 0.8614 0.8603 0.9371 8.79% 8.93% 0.9080 0.9582 0.9620 0.9989 4.17% 3.72%
25 0.8045 0.8553 0.8612 0.9021 5.47% 4.75% 0.8570 0.9104 0.9112 0.9923 10.30% 8.99%
50 0.8071 0.8343 0.8531 0.8939 7.14% 4.78% 0.8356 0.9003 0.9085 0.9986 10.92% 9.92%
100 0.7921 0.8211 0.8344 0.8772 6.83% 5.13% 0.8401 0.9036 0.9101 0.9975 10.41% 9.63%

Average 0.8133 0.8553 0.8657 0.9139 6.85% 5.57% 0.8551 0.9017 0.9120 0.9965 10.68% 9.43%

D.2 PERFORMANCE COMPARISON OF ALGORITHMS IN THE PARTIAL CLIENT PARTICIPATION
SCENARIO

We take experiments with partial clients participation for aggregation on the FMNIST and IMDB
datasets in the Non-IID setting (λ = 1.0). Specifically, the clients are randomly sampled by the
server at different rates. As shown in Figure 7, our method (red line) significantly outperforms other
models, which is align with the conclusion in Section 5.2.

D.3 VARIANCE OF CORRELATION DISTANCE

Table 3: Variance of correlation distances in FedPSE with different Non-IID ratios.

Datasets FMNIST IMDB

clients 2 clients 5 clients 10 clients 2 clients 5 clients 10 clients

λ = 1.0 5.8e-3 6.3e-3 2.0e-3 2.8e-3 1.2e-2 1.7e-3
λ = 0.5 3.6e-5 4.7e-5 4.0e-4 2.3e-4 4.5e-4 1.3e-3
λ = 0.0 1.0e-8 3.3e-6 2.9e-4 1.7e-4 2.0e-4 4.1e-4
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In this section, we compute the variance of correlation distances with diverse Non-IID ratios λ as
shown in Table 3, in which we perform the experiments on the FMNIST and IMDB datasets with a
variable clients’ number. Then we deduce our conclusion in section 5.4.

D.4 CONTRIBUTION OF THE DPS ALGORITHM
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Figure 8: Accuracy with different downstream updates.

In order to prove the effectiveness of the DPS
algorithm, we construct experiments of FedPSE
with different downstream updates on the FM-
NIST datasets over Non-IID ratios λ (i.e. from
0.0 to 1.0) as shown in Figure 5. The FedPSE
without the DPS algorithm indicates that the
server sparsifies the global updates with the
TopK method and broadcasts the same sparse
information to all clients. Apparently, the ac-
curacy of FedPSE with DPS exceeds the algo-
rithm without DPS through different distribu-
tions in the Non-IID setting (i.e. λ ≥ 0.2). In
conclusion, the DPS method, personalizing the
clients’ models, is useful for our paradigm with heterogeneous datasets.

E EXAMPLE CODE

We provide the example code for our framework in this section. Figure 9 shows an example code of
the UPS algorithm, while Figure 10 is an example implementation of the EWA algorithm and Figure
12 for the DPS algorithm. Furthermore, we present the training process of FedPSE in Figure 13, in
which we assume that there are two clients (a and b) with two-layers neural networks.

20



Under review as a conference paper at ICLR 2023

1 from abc import ABC
2 import numpy as np
3 import tensorflow as tf
4
5
6 # define the client class with the ups algorithm
7 class Client(ABC):
8 def __init__(
9 self, model, ds_train, ds_valid

10 ):
11 self.model = model
12 self.ds_train = ds_train
13 self.ds_valid = ds_valid
14 self.model_weights = []
15 self.res_err = []
16
17 def ups(self, updates, sparsity):
18 # update local model with downstream updates
19 self.model_weights = [
20 np.add(w, u) for w, u in zip(self.model_weights , updates)
21 ]
22 self.model.set_weights(self.model_weights)
23 # train the local model using local dataset
24 hist = self.model.fit(
25 self.ds_train,
26 validation_data=self.ds_valid,
27 epochs=1
28 )
29 n_samples = self.ds_train.cardinality().numpy()
30 # sparsify the upstream updates via topk with error residual
31 self.client_updates = [
32 np.subtract(new_w, old_w)
33 for new_w, old_w in zip(self.model.get_weights(), self.model_weights)
34 ]
35 merged_updates = [
36 np.add(new_u, err)
37 for new_u, err in zip(self.client_updates , self.res_err)
38 ]
39 upstream_updates = topk_algorithm(merged_updates)
40 self.res_err = [
41 np.subtract(lu, su)
42 for lu, su in zip(merged_updates , upstream_updates)
43 ]
44
45 return upstream_updates , n_samples

Figure 9: Example code of the UPS algorithm.

21



Under review as a conference paper at ICLR 2023

1 from functools import reduce
2 import numpy as np
3
4
5 # define the function of the EWA algorithm
6 def ewa(clients_updates , clients_samples):
7 # get the participated samples of each element
8 weighted_num = [
9 [np.sign(np.absplute(layer)) * num for layer in updates]

10 for updates, num in zip(clients_updates , clients_samples)
11 ]
12 num_samples = [
13 reduce(np.add, layer_num) for layer_num in zip(*weighted_num)
14 ]
15
16 # get the weighted sum of updates on each index
17 weighted_updates = [
18 [layer * num for layer in updates]
19 for updates, num in zip(clients_updates , clients_samples)]
20 sum_updates = [
21 reduce(np.add, layer_updates) for layer_updates in zip(*weighted_updates)
22 ]
23
24 # get the element-wised updates
25 element_wise_updates = [
26 np.divide(u, n)
27 for u, n in zip(sum_updates , num_samples)
28 ]
29
30 return element_wise_updates

Figure 10: Example code of the EWA algorithm.
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1 import numpy as np
2
3
4 def merge_indices(server_indices , client_indices , dist):
5 merged_indices = []
6 # compute the merged indices of each layer
7 for s_ind, c_ind, d in zip(server_indices , client_indices , dist):
8 # get the intersection of index matrices
9 inter_ind = np.multiply(s_ind, c_ind)

10 i_nonzero_num = np.count_nonzero(inter_ind)
11 inter_index = np.flatnonzero(inter_ind)
12 # compute the corresponding compensation
13 s_nonzero_num = np.count_nonzero(s_ind)
14 server_c = s_ind - inter_ind
15 client_c = c_ind - inter_ind
16 server_c_index = np.flatnonzero(server_c)
17 client_c_index = np.flatnonzero(client_c)
18 # select the indices from the compensations
19 client_num = round(d * (s_nonzero_num - i_nonzero_num))
20 server_num = round((1.0 - d) * (s_nonzero_num - i_nonzero_num))
21 server_index = np.sort(
22 np.random.choice(server_c_index , server_num , replace=False)
23 )
24 client_index = np.sort(
25 np.random.choice(client_c_index , client_num , replace=False)
26 )
27 # get the merged indices
28 merge_index = np.concatenate((inter_index , server_index , client_index))
29 indices_array = np.zeros(s_ind.shape).flatten()
30 indices_array[merge_index] = 1
31 merged_indices.append(indices_array.reshape(s_ind.shape))
32 return merged_indices

Figure 11: Example code of the utils.
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1 import numpy as np
2 from utils import merge_indices
3
4
5 # define the function of the DPS algorithm
6 def dps(c_updates , s_updates , s_sparse_updates):
7 clients_down_updates = []
8 # get the index matrices of the server
9 server_indices = [

10 np.sign(np.absolute(layer))
11 for layer in s_updates
12 ]
13 s_norm = [w / np.linalg.norm(w) for w in s_updates]
14 # get the downstream updates of each client
15 for client_updates in c_updates:
16 # get the index matrices of the client
17 client_indices = [
18 np.sign(np.absolute(layer))
19 for layer in client_updates
20 ]
21 # compute the correlation distance
22 client_norm = [w / np.linalg.norm(w) for w in c_updates]
23 dist = [
24 0.5 - 0.5 * cosine_distance(s_layer, c_layer)
25 for s_layer, c_layer in zip(s_norm, client_norm)
26 ]
27 # get the combined indices
28 merged_indices = merge_indices(
29 server_indices ,
30 client_indices ,
31 dist
32 )
33 # compute the downstream personalized updates
34 client_down_updates = [
35 np.multiply(layer, index)
36 for layer, index in zip(s_updates , merged_indices)
37 ]
38 clients_down_updates.append(client_down_updates)
39 return tuple(clients_down_updates)

Figure 12: Example code of the DPS algorithm.
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1 import numpy as np
2 import tensorflow as tf
3
4 from ewa import ewa
5 from dps import dps
6 from ups import Client
7
8
9 # define a neural network model

10 def build_model(input_shape):
11 model = tf.keras.Sequential(
12 [
13 tf.keras.Input(shape=input_shape),
14 tf.keras.layers.Dense(50, activation="relu"),
15 tf.keras.layers.Dense(10, activation="relu"),
16 ]
17 )
18 model.compile(
19 optimizer=tf.keras.optimizers.Adam(),
20 loss=tf.keras.losses.categorical_crossentropy ,
21 metrics=["accuracy"]
22 )
23 return model
24
25 # main process
26 # initial hyper-parameters
27 sparsity = 0.9
28 max_round = 100
29
30 # clients load data
31 a_ds_train , a_ds_valid , feature_dim = load_tf_datasets("data_a_location")
32 b_ds_train , b_ds_valid , feature_dim = load_tf_datasets("data_b_location")
33
34 # define model
35 model = build_model(feature_dim)
36 client_a = Client(model, a_ds_train , a_ds_valid)
37 client_b = Client(model, b_ds_train , b_ds_valid)
38 a_down_updates = []
39 b_down_updates = []
40 for _ in range(max_round):
41 a_up_updates , a_samples = client_a.ups(a_down_updates , sparsity)
42 b_up_updates , b_samples = client_b.ups(b_down_updates , sparsity)
43 clients_updates = [a_up_updates , b_up_updates]
44 clients_samples = [a_samples , b_samples]
45 s_updates = ewa(clients_updates , clients_samples)
46 s_sparse_updates = topk_algorithm(s_updates)
47
48 a_down_updates , b_down_updates = dps(
49 clients_updates , s_updates , s_sparse_updates
50 )
51
52 client_a.model.save(’client_a_model.h5’)
53 client_b.model.save(’client_b_model.h5’)

Figure 13: Example code of the main process.
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