
DistillMIKE: Editing Distillation of Massive In-Context Knowledge Editing
in Large Language Models

Anonymous ACL submission

Abstract

Among the recently emerged knowledge edit-001
ing methods, in-context knowledge editing002
(IKE) (Zheng et al., 2023) has shown re-003
spectable abilities on knowledge editing in004
terms of generalization and specificity. Not-005
ing the promising advantages but unexplored006
issues of IKE, we propose DistillMIKE as a007
novel extension of IKE, i.e., editing distillation008
of “Massive” In-context Knowledge Editing in009
large language models (LLMs), mainly consist-010
ing of two expansions; 1) Massive in-context011
knowledge editing (MIKE), which extends IKE012
to a massive editing task, aiming to inject not a013
single edit but a set of massive edits to LLMs;014
To preserve specificity, our key novel extension015
is a “selective” retrieval augmentation, where016
the retrieval-augmented IKE is only applied017
to “in-scope” examples, whereas the unedited018
model without IKE is employed for “out-of-019
scope” ones. 2) Editing distillation of MIKE020
using low-rank adaptation (LoRA), which dis-021
tills editing abilities of MIKE to parameters of022
LLMs in a manner of eliminating the need of023
lengthy in-context demonstrations, thus remov-024
ing the computational overhead encountered025
at the inference time. Experimental results on026
the zsRE and CounterFact datasets demonstrate027
that MIKE shows the state-of-the-art perfom-028
rances and DistilMIKE show comparable per-029
formances with MIKE. Our code is available at030
https://github.com/xxxx/xxxx.031

1 Introduction032

While large language models (LLMs) have shown033

the remarkable abilities across a broad spectrum of034

natural language processing (NLP) tasks (Touvron035

et al., 2023; OpenAI, 2023; Petroni et al., 2020),036

LLMs are still limited in the coverage and veracity037

of their world knowledge, thus causing the reliance038

on outdated knowledge (Onoe et al., 2022; Dhingra039

et al., 2022; Liška et al., 2022), or the generation of040

erroneous, hallucinatory, or biased contents (Zhao041

et al., 2023; Ji et al., 2023; Lazaridou et al., 2021;042

Agarwal and Nenkova, 2022; Gallegos et al., 2023). 043

Provided the evolving nature of world knowledge 044

and the need to correct the inaccurate information 045

of LLMs, there has been recently growing interest 046

in the “knowledge editing” task, aiming at develop- 047

ing the scaled and effective editing mechanism that 048

injects new knowledge to LLMs or corrects false 049

and erroneous information in LLMs. In particular, 050

this paper addresses the “massive editing” task as 051

in (Meng et al., 2022b), where a large number of 052

edits are provided beyond just a single correction 053

of an edit, the resulting editing mechanism needs to 054

properly update more than hundreds or thousands 055

of facts in LLMs simultaneously. 056

Among various approaches of knowledge edit- 057

ing such as parameter updating (PU) (Cao et al., 058

2021; Tan et al., 2024; Meng et al., 2022a,b; Li 059

et al., 2023; Huang et al., 2023; Dong et al., 2022a; 060

Madaan et al., 2022) and memory-based meth- 061

ods (Mitchell et al., 2022b; Zheng et al., 2023; 062

Onoe et al., 2023; Zhong et al., 2023; Madaan 063

et al., 2022), in-context knowledge editing (IKE) 064

has been newly proposed, inspired from in-context 065

learning (ICL) emerged in LLMs (Brown et al., 066

2020; Dong et al., 2022b), showing noticeable edit- 067

ing performances in terms of generalization and 068

specificity. Motivated from the respectable advan- 069

tages of IKE such as its human-interpretable editing 070

way, we would like to go further steps towards ex- 071

panding and improving IKE by addressing the fol- 072

lowing issues: 1) Extension to massive editing task: 073

IKE has not been explored in the massive editing 074

task, and thus it remains largely unclear how IKE 075

is generalized to the massive editing task, how IKE 076

performs compared with other popular PU methods 077

such as MEMIT, and whether the demonstration 078

construction previously suggested in (Zheng et al., 079

2023) is also feasible in the addressed task; 2) Re- 080

solving the computational overhead caused by the 081

use of lengthy prompts: IKE incurs computational 082

and memory overhead at the inference stage, be- 083

1

https://github.com/xxxx/xxxx

cause a length of an input prompt becomes a “long”,084

resulting by prepending a non-trivial number of085

demonstrations.086

Towards a novel extension to address the087

aforementioned issues, we propose DistillMIKE,088

i.e., editing distillation of massive in-context089

knowledge editing in LLMs, which mainly con-090

sists of two components:091

• Massive in-context knowledge editing092

(MIKE), which extends IKE to a massive edit-093

ing task, leading to a retrieval-augmented IKE;094

a large number of massive edits (i.e. facts) to095

be injected to LLMs are first stored in a sepa-096

rate memory, namely the edit memory; given097

an input query prompt, IKE is then preformed098

using its “relevant” edit retrieved from the edit099

memory, referred to a query-matched edit. To100

effectively preserve specificity, without em-101

ploying IKE for all input prompts, we instead102

newly propose a “selective” retrieval augmen-103

tation, where the retrieval-augmented IKE is104

applied only for in-scope examples, not for105

other out-of-scope examples. Furthermore,106

given this selective nature of applying IKE,107

we further propose the use of scope-aware108

demonstrations, paying attention to in-scope109

cases, thus by including only “update” types110

of demonstrations which are likely useful for111

processing in-scope edits, but by excluding112

other “retain” types, as they may be mostly113

useful for out-of-scope cases.114

• Editing distillation of MIKE using low-115

rank adapter (LoRA) for DistillMIKE,116

which distills editing abilities of MIKE to pa-117

rameters of LLMs in a manner of eliminating118

the need of “lengthy” in-context demonstra-119

tions, aiming at reducing the computational120

overhead at the inference time. Inherited121

from the selective retrieval augmentation of122

MIKE, editing distillation of MIKE is a multi-123

teacher distillation (Wu et al., 2021; Liu et al.,124

2020), where two teachers are 1) the retrieval-125

augmented IKE for in-scope examples and 2)126

the unedited base model for out-of-scope ex-127

amples. To substantially reduce the number of128

parameters to be updated, LoRA fine-tuning129

(Hu et al., 2022) is adopted during editing130

distillation, finally resulting in DistillMIKE.131

Experimental results on the zsRE and Counter-132

Fact datasets demonstrate that MIKE achieves state-133

of-the-art performance in CounterFact dataset, and 134

DistillMIKE show comparable performances with 135

MIKE as well as improves the existing editing 136

methods such as IKE and MEMIT, even in the 137

setting that lengthy in-context demonstrations and 138

instruction do not appear in prompts. 139

Our contributions are summarized as follows: 140

1) we propose MIKE, which extends IKE to the 141

massive editing task, based on a selective retrieval 142

augmentation depending on the scope type of an 143

input query, 2) we further propose DistillMIKE, a 144

LoRA-finetuned student model which is distilled 145

from multi-teacher models – IKE and unedited base 146

models, thereby injecting ICL prompts in MIKE 147

into the model parameters, thus enabling to per- 148

form the inference without the need for lengthy 149

demonstration prompts, 3) the proposed MIKE and 150

DistillMIKE show state-of-the-art and promising 151

performances on zsRE and CounterFact datasets. 152

2 Related Works 153

Existing studies are broadly categorized to PU ap- 154

proaches and memory-based methods. An exten- 155

sive review on knowledge editing methods has been 156

presented in (Yao et al., 2023). In this section, we 157

briefly review selected previous methods and dis- 158

cuss some of them regarding the novelty our work. 159

2.1 Parameter Updating (PU) methods 160

PU methods are further categorized into three ap- 161

proaches – Meta-learning, Locate-and-edit, and 162

parameter expansion methods. 163

Meta-learning Knowledge Editor (Cao et al., 164

2021) trains a hypernetwork to predict the parame- 165

ter changes required for the model to predict new 166

knowledge and to preserve old knowledge. MEND 167

(Mitchell et al., 2022a) employs a hypernetwork 168

to transform the initial fine-tuning gradient into a 169

simplified representation using low-rank decompo- 170

sition to produce the parameter updates. More re- 171

cently, MALMEN (Tan et al., 2024) further extends 172

MEND to the massive editing task by aggregating 173

massive parameter updates to a single parameter 174

update, motivated from MEMIT, demonstrating its 175

scalability. 176

Locate-and-edit Dai et al. (2022) proposes the 177

concept of knowledge neurons, for precisely edit- 178

ing factual knowledge editing at the instance level. 179

ROME (Meng et al., 2022a) is a pioneering work 180

that attempts to locate the model parameters as- 181

sociated with the target factual knowledge and 182

2

rewrite the key-value pairs in the feed-forward183

network (FFN) module with computed new vec-184

tors. MEMIT (Meng et al., 2022b) further expands185

ROME to be scalable on the massive editing task by186

spreading the weight changes over multiple model187

layers. PMET (Li et al., 2023) improves MEMIT188

by considering the knowledge storing role of the189

multi-head self-attention (MHSA) layer, thus pre-190

venting from overestimating the extent of the pa-191

rameter updates required for FFN layers.192

Parameter expansion In parameter expansion193

methods, parameters of LLMs are then enlarged by194

integrating the newly trained extra parameters to195

store new knowledge into original ones. T-Patcher196

(Huang et al., 2023) adds one neuron in the last197

layer of FNN to handle a specific edit request, and198

CaliNET (Dong et al., 2022a) extends T-Patcher199

using multiple neurons to cover a set of edits.200

2.2 Memory-based Methods201

IKE (Zheng et al., 2023) extensively explores the202

ICL-based knowledge editing by proposing a novel203

method for demonstration organization in a way204

of comprising multiple types of demonstrations,205

designed to simultaneously improve generalization206

and specificity, the main evaluation metrics of the207

knowledge editing task. MELLO (Zhong et al.,208

2023) stores edited facts externally and prompts209

the language model iteratively to generate answers210

that align with the edited facts.211

SERAC (Mitchell et al., 2022b) stores edits in a212

sperate edit memory and employs a scope classifier213

to determine whether a query edit can be consid-214

ered as in-scope examples within the edit memory.215

If a query edit is classified to be in-scope, SERAC216

uses a counterfactual model. Otherwise, SERAC217

uses the frozen base model for a given query edit.218

Similar to MIKE, SERAC also maintains an edit219

memory, differently reacts to in-scope and out-of-220

scope examples, and uses a scope classifier. How-221

ever, SERAC has not been scaled up to the massive222

editing task. In addition, SERAC requires to addi-223

tionally train the parametric counterfactual model224

and scope classifier, whereas MIKE does not use225

any PU method but rely on the ICL mechanism226

only.227

While DistillMIKE is considered as a PU228

method, but to the best of our knowledge, our229

work on DistillMIKE is the first in using distillation230

methods to knowledge editing task.231

3 Task Definition 232

To formally define the massive editing task, sup- 233

pose thatM is an autoregressive language model, 234

M(x) is the output generated by the decoding step 235

given a prefix sequence x, and new factual knowl- 236

edge to be injected to M is represented as a set 237

of relational triples; More specifically, S is a real- 238

world entities or concepts, R is a set of relations, 239

and E = {ei}Ni=1 is a set of edits (or facts) to be 240

injected toM, where ei = (si, ri, o
∗
i) is the i-th 241

edit, i.e., a relational triple that consists of a subject 242

si ∈ S, a relation ri ∈ R, and an object o∗i ∈ S. 243

It is commonly assumed thatM does not contain 244

each fact ei precisely; given a prefix xi = (si, ri) 245

as the prompt input, M(xi) = oi is usually not 246

equal to the target object o∗i , i.e., oi ̸= o∗i for most 247

i. 248

The goal of knowledge editing is to obtain an 249

edited modelM∗ towards satisfying efficacy, gen- 250

eralization, and specificity, for “all” edits: 251

• Efficacy holds if M∗(si, ri) = o∗i for 252

(si, ri) ∈ E . 253

• Generalization is satisfied if M∗(s′i, r
′
i) = 254

o∗i for a “paraphrased” prefix (s′i, r
′
i) ∈ I(ei) 255

where I(ei) is edit scope of ei, the set of in- 256

scope examples. 257

• Specificity (or Locality) holds ifM∗(s, r) = 258

M(s, r) for any irrelevant prefix (s, r) ∈ 259

O(ei) where O(ei) = U − I(ei) is the set 260

of out-of-scope examples, given that U is a 261

universal set of knowledge. 262

Examples of an edit, its prefix, in-scope, out-of- 263

scope prefixes, and their correct objects are pre- 264

sented in Appendix B. 265

4 Method 266

Figure 1 presents the overall architecture of our 267

proposed MIKE and DistillMIKE, with the brief 268

sketch of their construction below: 269

• Inducing MIKE as a teacher model: i) At 270

the training time, given E , a set of test edits 271

(i.e. new facts), MIKE merely maintains E in 272

an external “edit memory”, without updating 273

parameters. ii) At the inference time, given a 274

query prompt q = (s, r), MIKE first applies a 275

fact retrieval function Ret(q), which returns 276

the best-matched fact eq ∈ E , called a query- 277

matched fact, otherwise Ret(q) returns a null, 278

3

Figure 1: The overall architecture of MIKE and DistillMIKE. (a) MIKE: At the training step, MIKE merely stores
all the massive “test” edits E = {ei}Ni=1 in the edit memory. At the inference time, given a query prompt q = (s, r),
MIKE first performs the fact retrieval Ret(q) to retrieve a “new fact prompt”, called the query-matched fact, eq (in
Section 4.1.1). MIKE behaves differently for in-scope and out-of-scope queries (i.e., Eq (1)); for an in-scope case
(i.e., Ret(q) ̸= ∅), MIKE further calls the demonstration selection component Demo(q) (in Section 4.1.2), and the
resulting demonstrations are further concatenated with a query q, and then they are fed to the decoding process,
resulting inM(Demo(q); q); for an out-of-scope case (i.e., Ret(q) = ∅), without demonstration selection, a query
q is only fed to the decoding process, merely givingM(q). (b) DistillMIKE: Editing distillation is performed by
taking MIKE as a teacher model and initializing a student model by the base model. Inherited from the selective
retrieval augmentation of MIKE, DistillMIKE results from a multi-teacher distillation by taking IKE and the
unedited base model as in-scope and out-of-scope teachers, respectively, thereby decomposing Lkd of Eq. (3) into
Like and Lbase (in Eq. (5) in Section 4.2).

i.e. Ret(q) = ∅. A simple scope classification279

is then performed; q is classified to an out-280

of-scope case when Ret(q) = ∅, otherwise q281

becomes an in-scope case.282

MIKE acts differently for in-scope and out-of-283

scope cases; for an in-scope case, MIKE pre-284

pares in-context demonstrations selected from285

a set of “training” edits, denoted by Demo(q),286

and prepend them to a query prefix x; on287

the other hand, for an out-of-scope case, no288

demonstration is provided in a prompt. The289

resulting prompt with or without demonstra-290

tions is fed toM to finally predict a output291

sequence. With this selective retrieval aug-292

mentation. The inference process of MIKE is293

summarized as follows:294

M∗(q) =

{
M(Demo(q); q), Ret(q) ̸= ∅
M(q), Otherwise.

(1)295

• Training DistillMIKE by editing distilla- 296

tion using LoRA: Inspired by the work of 297

(Choi et al., 2023), we distill MIKE to a stu- 298

dent model Mst
θ with parameters θ, based 299

on a LoRA-based PU method, for eliminat- 300

ing the need for “lengthy” demonstrations 301

for in-scope cases. Given a set of “test” ed- 302

its E , we use its in-scope and out-of-scope 303

test edits as training dataset for editing distil- 304

lation, denoted by I (E) = ∪ei∈EI(ei) and 305

O (E) = ∪ei∈EO(ei), respectively. 306

Let pM(y|x) be the generative probability of 307

a sequence y given the prefix x, computed 308

by M. The loss function used for editing 309

distillation is summarized as follows: 310

Led = KL
(
pM∗

∥∥∥pMst
θ

)
(2) 311

≈
∑

q=(s,r)∈E ′

Eo∼pM∗ (·|q) log
pMst

θ
(o|q)

pM∗(o|q)
312

4

where E ′ = I (E) ∪ O (E) indicates a whole313

set of training examples used for editing dis-314

tillation.315

To trainMst
θ under Eq. (3), we undertake the316

LoRA finetuning method of Hu et al. (2022)317

for substantially reducing the number of pa-318

rameters to be updated.319

4.1 Teacher Model: Massive In-context320

Knowledge Editing (MIKE)321

As in Eq. (1), the inference step of MIKE em-322

ploys Ret, the “fact retrieval” function and Demo,323

the “demo selection” module, whose details are324

presented as follows:325

4.1.1 Fact retrieval: Ret(q)326

Given a query prompt q = (s, r), Ret(q) tries to327

find a query-matched fact eq by matching subject328

and relation parts of q maximally. The matching329

for the fact retrieval is divided into four cases:330

1) an exactly matched case with eq = ei where331

ei = (si, ri, oi) ∈ E is exactly matched with332

a subject and a relation of q, i.e., (si, ri) =333

(s, r).334

2) an uniquely subject-matched case with eq =335

ei where ei = (si, ri, oi) ∈ E is uniquely336

matched with a subject of q, i.e., si = s, while337

no other test edits match the subject s.338

3) a subject-matched but ambiguous case with339

eq = top− 1(q, Es where eq is the nearest340

test edit among all the subject-matched ones,341

i.e., given Es = {ei = (si, ri, oi)|si = s}, an342

additional dense retrieval is employed to com-343

pute the similarities between an edit ei and a344

query for finding the nearest edit.345

4) an unmatched case with eq = ∅, where no346

edits match a subject part s of q.347

An illustrated example of the fact retrieval is de-348

scribed in Figure 3, with more details of the process349

in in Figure 3.350

4.1.2 Demonstration selection: Demo(q)351

As in Eq. (1), MIKE requires the demonstration352

selection Demo(q) for in-scope examples when353

Ret(q) = eq ̸= ∅. To be more specific, given E354

a set of test edits, MIKE keeps a separate set of355

“training” edits, denoted as E tr =
{
etrj

}M

j=1
. Un-356

less otherwise stated, an edit refers a “test” edit,357

not being a “training” edit. Different from a test358

edit, each j-th training edit etrj is pre-associated359

with a set of demonstrations, referred to as D(etrj). 360

Similar to (Liu et al., 2022), Demo(q) first finds 361

the top-k “training” edits which are most similar 362

to a query-matched fact eq, i.e., e′1, · · · , e′k where 363

e′i ∈ E tr. Then, the demonstration filter g is fur- 364

ther applied to demonstrations D(e′i) of each i−-th 365

nearest training edits, resulting in g (D(e′i)). All 366

the filtered demonstrations are concatenated and 367

then prepended as a prompt prefix to the given 368

query q, which is feed toM to finally produce a 369

predicted output. Summing up, the formal defini- 370

tion of Demo(q) is given as follows: 371

e′1, · · · , e′k = kNN
(
eq, E tr

)
372

Demo(q) =
[
g(D(e′1)); · · · ; g(D(e′k))

]
373

where kNN
(
eq, E tr

)
is an additional retrieval func- 374

tion that finds the top-k nearest neighbors in the 375

“training” edits E tr, which are the most similar to 376

eq; a kind of dense retrieval is deployed to compute 377

the similarities between a training edit etrj and eq, 378

whose details are presented in Appendix C. 379

Scope-aware demonstration filtering: g For the 380

demonstration filter g, we propose the scope-aware 381

demonstration filter for g, by using only “update” 382

types of demonstrations, not including other types 383

such as“retrain” types. This use of scope-aware 384

demonstrations is motivated by the selective re- 385

trieval nature of MIKE where IKE is applied only 386

for in-scope cases, not for out-of-scope cases. Be- 387

cause IKE is not applied for out-of-scope cases, it 388

is like that excluding “retrain” types of demonstra- 389

tions may not negatively impact the editing perfor- 390

mance. 391

To formally describe the scope-aware filter- 392

ing manner in g, for j-th training edit etrj , its 393

demonstrations D(etrj) further consists of three 394

types of demonstrations, Dcp(etrj), Dud(etrj), and 395

Drt(etrj), which correspond to sets of copy, up- 396

date and retrain types, respectively1, i.e.,D(etrj) = 397

(Dcp(etrj),Dup(etrj),Dtr(etrj)). In the proposed 398

scope-aware demonstration filter, g
(
D(etrj)

)
is de- 399

fined as follows: 400

g
(
D(etrj)

)
= Dup(etrj) (3) 401

The detailed examples of three types of demon- 402

strations are presented in Appendix H. 403

1Here, the demonstration types of copy, update and retrain
correspond to the “requested”, “paraphrased”, and “neighbor-
hood” prompts in CounterFact dataset, respectively.

5

4.2 DistillMIKE404

While MIKE presents promising results showing405

the state-of-the-art performances on the massive406

editing task as in Section 6, however, the major407

drawback is its additional computational overhead408

at the inference time, mainly caused by the in-409

creased prompts from a number of demonstrations.410

Inspired from (Choi et al., 2023), we would like411

to eliminate the need of using lengthy sequence of412

demonstrations, thus propose “editing distillation”413

from MIKE to a student model, such that the result-414

ing student model, i.e., DistillMIKE, does not need415

to prepend a lengthy sequence of demonstrations416

but only use an input query prompt.417

To substantially reduce the training cost for dis-418

tillation, a student model is initialized by MEMIT,419

and is then fine-tuned using LoRA (Hu et al., 2022),420

where only a very small portion of parameters need421

to be updated. It is noticeable that the proposed422

editing distillation of MIKE to a student model423

is also somehow motivated by the previous stud-424

ies of viewing ICL as gradient descent methods425

(Von Oswald et al., 2023; Dai et al., 2023), while426

their results are induced under rather limited set-427

tings such as the linear attention and the few-shot428

learning abilities of ICL.429

Because MIKE consists of two sub-models -–430

IKE and the unedited base model, the editing distil-431

lation applied to DistillMIKE can be seen as a multi-432

teacher distillation, similarly in (Wu et al., 2021;433

Liu et al., 2020). Suppose that training examples434

used for editing distillation E ′ are automatically435

classified into in-scope and out-of-scope examples,436

based on the scope classifier using Ret(q), denoted437

as I ′ and O′, respectively, defined as follows.438

I ′ =
{
e ∈ E ′

∣∣ Ret(e) ̸= ∅}439

O′ = E ′ − I ′ (4)440

The loss function of Eq. (3) is rewritten as:441

Led = Like + Lbase (5)442

Like ∝
∑

q=(s,r)∈I′

d=Demo(q)

Eo∼pM(·|d;q) log
pMst

θ
(o|q)

pM(o|d; q)
443

Lbase ∝
∑

q=(s,r)∈O′

Eo∼pM(·|q) log
pMst

θ
(o|q)

pM(o|q)
444

Therefore, under Eq. (5), it is clearly seen that445

for a given query q, DistillMIKE results from446

two teacher models – the IKE loss Like from447

pM(o|Demo(q); q) and the base loss Lbase from 448

pM(o|q), depending on whether q ∈ I ′ or q ∈ O′. 449

5 Experiments 450

5.1 Dataset and Metrics 451

We evaluate MIKE and DistillMIKE on the Zero- 452

Shot Relation Extraction (zsRE, Levy et al. 453

(2017)) dataset and the CounterFact dataset 454

(Meng et al., 2022a) with 10,000 knowledge ed- 455

its. The details and formats of the datasets are 456

outlined in the Appendix H. 457

For zsRE, three metrics – Efficacy, Paraphrase, 458

and Specificity – are employed to measure the edit- 459

ing capability concerning editing requests, para- 460

phrases, and the retaining capability for out-of- 461

scope examples, respectively. The detailed defi- 462

nitions of these metrics are provided in the Ap- 463

pendix J. 464

For CounterFact, similar to the three metrics 465

used in zsRE, we compute the Efficacy Score 466

(ES), Paraphrase Score (PS), and Neighborhood 467

Score (NS) to evaluate editing accuracy (on edit- 468

ing requests and paraphrase prompts) or retain- 469

ing accuracy (on neighborhood prompts), respec- 470

tively. In addition, we report their mean difference 471

in magnitude terms: Efficacy Magnitude (EM), 472

Paraphrase Magnitude (PM), and Neighborhood 473

Magnitude (NM), which measure the significance 474

of editing. The aggregated Score (S) is calculated 475

as the harmonic mean of ES, PS, and NS. Detailed 476

definition can be seen in Appendix J. 477

The implementation details are provided in Ap- 478

pendix I. 479

5.2 Settings and Baselines 480

We use the GPT-J 6B model (Wang and Komat- 481

suzaki, 2021), a widely employed backbone model 482

in relevant works, for comparing MIKE and Dis- 483

tillMIKE with various existing knowledge-editing 484

methods. In DistillMIKE we adopt MEMIT as an 485

initial student model, because it gives us a good 486

starting point in terms of editing performances, as 487

discussed in Section 6.2. The baseline methods 488

include fine-tuning and four PU methods – MEND 489

(Mitchell et al., 2022a), ROME (Meng et al., 490

2022a), MEMIT (Meng et al., 2022b), and PMET 491

(Li et al., 2023). We also included the instance- 492

level ICL-based method IKE (Zheng et al., 2023). 493

6

Method Score ↑ Efficacy ↑ Paraphrase ↑ Specificity ↑
GPT-J 26.4 26.4 25.8 27.0
FT 42.1 69.6 64.8 24.1
MEND 20.0 19.4 18.6 22.4
ROME 2.6 21.0 19.6 0.9
MEMIT 50.7 96.7 89.7 26.6
PMET 51.0 96.9 90.6 26.7
MIKE 52.6 99.9 99.6 27.0
DistillMIKE 52.2 98.5 97.0 27.0

Table 1: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on zsRE dataset. Score is the
harmonic mean of Efficacy, Paraphrase and Specificity. Column-wise best are in bold, second best are underlined.

Method Score Efficacy Generalization Specificity
S ↑ ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑

GPT-J 20.47 14.66 -7.40 15.06 -7.50 83.97 7.65
FT 63.54 99.91 98.24 88.14 48.65 38.67 -8.22
MEND 25.23 17.61 -12.19 20.10 -11.34 80.83 12.55
ROME 49.92 49.36 -0.03 49.51 -0.09 50.92 0.09
MEMIT 85.71 99.10 87.85 88.33 38.02 73.59 4.64
IKE 84.88 99.98 92.86 96.29 67.37 66.88 25.19
PMET 86.20 99.50 - 92.80 - 71.40 -
MIKE 90.87 99.48 95.58 98.99 83.29 77.76 2.75
DistillMIKE 89.53 97.10 73.09 95.36 63.04 78.61 13.83

Table 2: Performance comparison of GPT-J (6B) with 10,000 knowledge edits on CounterFact dataset. Score S is
the harmonic mean of ES, PS and NS. Column-wise best are in bold, second best are underlined.

6 Results494

6.1 Main Results495

6.1.1 Editing 10k knowledge in zsRE.496

Table 1 presents comparison results of MIKE497

and DistillMIKE and other baselines on the zsRE498

dataset. MIKE achieves the best overall per-499

formance (Score), with particularly noticeable500

improvement in Paraphrase. DistillMIKE also501

achieves improvements over the baseline models,502

while showing slightly lower performance com-503

pared to its teacher MIKE.504

GPT-J, the original unedited model shows a505

Specificity score of 27.0 only on the zsRE dataset,506

thus it is likely expected that Specificity is not very507

much improved varying knowledge editing meth-508

ods.509

6.1.2 Editing 10k knowledge in CounterFact.510

Table 2 presents the comparison results of MIKE511

and DistillMIKE and baselines in terms of both512

accuracy metrics ES, PS, NS and the magnitude513

metrics EM, PM, NM.514

For the comparison based on GPT-J, the pro-515

posed MIKE and DistillMIKE significantly out- 516

perform all baselines in terms of overall perfor- 517

mance (Score). MIKE and DistillMIKE demon- 518

strate substantial improvements in Generalization 519

and noticeably in Specificity. The fine-tuned (FT) 520

model performs well in Efficacy and Generalization 521

but shows a substantial deterioration in Specificity. 522

While MEND also shows admirable Specificity, 523

it is largely weak in its other editing capabilities 524

in the case of 10,000 edits. IKE exhibits strong 525

performances on Efficacy and Generalization but 526

underperforms in Specificity. We clearly observe 527

the substantial performance gaps in Generalization 528

between DistillMIKE and other baseline methods 529

such as MEMIT, PMET, and ICL-based methods 530

(IKE), and the results confirm the effectiveness of 531

editing distillation again. 532

6.2 Ablation Study 533

In Table 3, we further examine the effect of using 534

the in-scope and out-of-scope teachers on editing 535

distillation, denoted by MIKEike and MIKEbase, 536

respectively, comparing to the MEMIT-initialized 537

student model; MIKEike and MIKEbase are the 538

7

Model S ↑ ES ↑ PS ↑ NS ↑
MIKEike 25.02 100 99.78 10.01
MIKEbase 21.93 14.66 17.65 83.97
Student 85.71 99.10 88.33 73.59
DistillMIKE
- Like 88.37 99.25 98.45 72.91
- Like + Lbase 89.53 97.10 95.36 78.61

Table 3: Ablation study of DistillMIKE on CounterFact.
MIKEike is the in-scope teacher, MIKEbase is the out-
of-scope teacher (base model). “Student” refers to a
student model before editing distillation, initialized by
MEMIT. DistillMIKE with Like is the run of performing
the partial distillation with Like only in Eq. (5).

runs of using M (Demo(q); q) (using our scope-539

aware demonstrations) andM (q) in Eq. (1) for540

“all” test queries, regardless their scope types.541

MIKEike achieves near-perfect performances in542

ES and PS (i.e., Efficacy and Generalization), while543

showing a very low value of NS (i.e., Specificity).544

In contrast, as expected, MIKEbase presents almost545

upper bound of NS, while showing low values of546

ES and PS. MEMIT, as the initial student model,547

exhibits a balanced performance of three metrics,548

however, its PS and NS performances are still far549

lower than those of MIKEike and MIKEbase, re-550

spectively.551

Given its improved performance in Table 1-2, it552

is expected that DistillMIKE benefits by integrating553

distinct abilities from both worlds of two teachers,554

i.e., learning the “editing” ability from MIKEike555

and the “retaining” ability from MIKEbase during556

editing distillation. Table 3 further shows the result557

of performing the “partial” distillation using only558

MIKEike with Like in Eq. (5. Compared to the559

full-fledged version (i.e., Like + Lbase), there is a560

substantial decrease in NS, indicating that learn-561

ing the “retraining” ability is not sufficiently done562

during distillation, using Like alone.563

We believe that the use of MEMIT as a student564

model leads to a good starting point, where MEMIT565

already pursues a balancing mechanism in a man-566

ner of keeping the “retrain” ability, and thus the567

subsequent editing distillation does not seriously568

cause the catastrophic forgetting problem for out-569

of-scope examples.570

To examine the effect of using MEMIT as a stu-571

dent model, Table 4 presents the performances of572

NS before and after applying the partial editing dis-573

tillation, when using different versions of MEMIT574

(including GPT-J) as student models varying the575

Model Student DistillMIKE ∆NS ↓
GPT-J 83.97 51.48 32.49
6000 edits 78.29 55.49 22.80
10000 edits 73.59 72.91 0.68

Table 4: Performances of NS before and after the partial
editing distillation with Like across different settings
of MEMIT. “Student” refers to variants of MEMIT dif-
fering the number of edits among 0 (GPT-J), 6,000,
10,000 edits. “DistillMIKE” are the corresponding post-
distilled runs after performing the partial editing distil-
lation to these student models. ∆NS is the difference in
NS between before and after the editing distillation.

number of edits. It is shown that as the number of 576

edits imposed to MEMIT is increasing (i.e., more 577

extensively “surgical” pre-parametric updates are 578

applied), the corresponding LoRA-distilled Dis- 579

tillMIKE keeps NS performances with greater sta- 580

bility. Thus, the results confirm that the choice of 581

using MEMIT as a student model is indeed neces- 582

sary to achieve the balanced editing performances 583

for generalization and specificity. 584

7 Conclusion 585

In this paper, we proposed MIKE, extending pre- 586

vious in-context knowledge editing work from the 587

instance level to a massive scale. Furthermore, 588

we conducted editing distillation of MIKE to in- 589

duce DistillMIKE, which implicitly injects ICL 590

prompts into model parameters, such that Dis- 591

tillMIKE greatly saves the computational overhead 592

caused by lengthy demonstration prompts. Ex- 593

tensive experiments conducted on the zsRE and 594

CounterFact datasets demonstrated that MIKE and 595

DistillMIKE surpassed existing knowledge editing 596

methods, achieving state-of-the-art overall perfor- 597

mance. 598

In future work, we would like to invent a direct 599

unified approach for inducing DistillMIKE, moti- 600

vated from the existing works reveal that ICL can 601

be somehow equivalently projected to gradient de- 602

scent methods (Von Oswald et al., 2023; Dai et al., 603

2023). Noting that incremental learning on knowl- 604

edge editing is arguably important, it would be 605

worthy to generalize the current editing distillation 606

towards “continual” distillation, given the stream 607

of sets of new edits. It would be also interesting to 608

evaluate MIKE on other knowledge editing datasets 609

such as MQuAKE (Zhong et al., 2023). 610

8

Limitations611

Current models primarily process data612

samples presented in tuple form, such as613

(subject, relation, object), while real-world614

natural language exhibits more diversity and615

complexity. Investigating whether the current616

research can extend its applicability to universal617

text formats is an important issue for future618

exploration. Additionally, the scope classifier619

proposed and utilized in our wokr is currently a620

straightforward method applicable to the existing621

dataset. For more diverse data, further exploration622

is required to develop more intricate and advanced623

scope classifiers.624

In practical applications, the iterative updates of625

a model necessitate incremental knowledge edit-626

ing. This involves continuing to edit additional new627

knowledge on a previously edited model. There-628

fore, exploring whether massive knowledge editing629

can be stably performed in an incremental itera-630

tive manner is also an important avenue for future631

work. We would also like to conduct experiments632

on larger-scale models, such as GPT-NeoX 20B633

and models from the Llama (Touvron et al., 2023)634

family, to investigate the effectiveness of deploying635

massive knowledge editing on larger models.636

Furthermore, real-world questions are interre-637

lated, and for question-answering tasks, practical638

questions often exhibit multi-hop characteristics.639

However, exploration in the realm of multi-hop640

question-answering is still limited in existing lit-641

erature. We also aim to explore the application of642

massive knowledge editing in multi-hop question-643

answering, such as extending it to the MQuAKE644

(Zhong et al., 2023) dataset.645

Finally, existing knowledge editing datasets are646

insufficient in scale and contain a considerable647

amount of noisy data. In the future, we will strive648

to create larger and more comprehensive dataset to649

explore knowledge editing on a larger scale.650

References651

Oshin Agarwal and Ani Nenkova. 2022. Temporal ef-652
fects on pre-trained models for language processing653
tasks. Transactions of the Association for Computa-654
tional Linguistics, 10:904–921.655

Tom Brown, Benjamin Mann, Nick Ryder, Melanie656
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind657
Neelakantan, Pranav Shyam, Girish Sastry, Amanda658
Askell, Sandhini Agarwal, Ariel Herbert-Voss,659
Gretchen Krueger, Tom Henighan, Rewon Child,660

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 661
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 662
teusz Litwin, Scott Gray, Benjamin Chess, Jack 663
Clark, Christopher Berner, Sam McCandlish, Alec 664
Radford, Ilya Sutskever, and Dario Amodei. 2020. 665
Language models are few-shot learners. In Ad- 666
vances in Neural Information Processing Systems, 667
volume 33, pages 1877–1901. Curran Associates, 668
Inc. 669

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 670
ing factual knowledge in language models. 671

Eunbi Choi, Yongrae Jo, Joel Jang, Joonwon Jang, and 672
Minjoon Seo. 2023. Fixed input parameterization 673
for efficient prompting. In Findings of the Associa- 674
tion for Computational Linguistics: ACL 2023, pages 675
8428–8441, Toronto, Canada. Association for Com- 676
putational Linguistics. 677

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 678
Chang, and Furu Wei. 2022. Knowledge neurons in 679
pretrained transformers. In Proceedings of the 60th 680
Annual Meeting of the Association for Computational 681
Linguistics (Volume 1: Long Papers), pages 8493– 682
8502, Dublin, Ireland. Association for Computational 683
Linguistics. 684

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming 685
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT 686
learn in-context? language models secretly perform 687
gradient descent as meta-optimizers. In Findings of 688
the Association for Computational Linguistics: ACL 689
2023, pages 4005–4019, Toronto, Canada. Associa- 690
tion for Computational Linguistics. 691

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin 692
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and 693
William W. Cohen. 2022. Time-aware language mod- 694
els as temporal knowledge bases. Transactions of the 695
Association for Computational Linguistics, 10:257– 696
273. 697

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, 698
Zhifang Sui, and Lei Li. 2022a. Calibrating factual 699
knowledge in pretrained language models. Findings 700
of Empirical Methods in Natural Language Process- 701
ing (EMNLP). 702

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong 703
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhi- 704
fang Sui. 2022b. A survey for in-context learning. 705
arXiv preprint arXiv:2301.00234. 706

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, 707
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon- 708
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. 709
2023. Bias and fairness in large language models: A 710
survey. 711

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 712
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 713
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 714
large language models. In International Conference 715
on Learning Representations. 716

9

https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://doi.org/10.18653/v1/2023.findings-acl.533
https://doi.org/10.18653/v1/2023.findings-acl.533
https://doi.org/10.18653/v1/2023.findings-acl.533
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
http://arxiv.org/abs/2309.00770
http://arxiv.org/abs/2309.00770
http://arxiv.org/abs/2309.00770
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,717
Wenge Rong, and Zhang Xiong. 2023. Transformer-718
patcher: One mistake worth one neuron. arXiv719
preprint arXiv:2301.09785.720

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan721
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea722
Madotto, and Pascale Fung. 2023. Survey of halluci-723
nation in natural language generation. ACM Comput.724
Surv., 55(12).725

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya,726
Devang Agrawal, Adam Liska, Tayfun Terzi, Mai727
Gimenez, Cyprien de Masson d’Autume, Tomas Ko-728
cisky, Sebastian Ruder, et al. 2021. Mind the gap:729
Assessing temporal generalization in neural language730
models. Advances in Neural Information Processing731
Systems, 34:29348–29363.732

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-733
moyer. 2017. Zero-shot relation extraction via read-734
ing comprehension. In Proceedings of the 21st Con-735
ference on Computational Natural Language Learn-736
ing (CoNLL 2017), pages 333–342.737

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun738
Ma, and Jie Yu. 2023. Pmet: Precise model editing739
in a transformer. arXiv preprint arXiv:2308.08742.740

Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tay-741
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien742
de Masson d’Autume, Tim Scholtes, Manzil Zaheer,743
Susannah Young, Ellen Gilsenan-McMahon Sophia744
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022.745
Streamingqa: A benchmark for adaptation to new746
knowledge over time in question answering models.747
arXiv preprint arXiv:2205.11388.748

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,749
Lawrence Carin, and Weizhu Chen. 2022. What750
makes good in-context examples for GPT-3? In751
Proceedings of Deep Learning Inside Out (DeeLIO752
2022): The 3rd Workshop on Knowledge Extrac-753
tion and Integration for Deep Learning Architectures,754
pages 100–114, Dublin, Ireland and Online. Associa-755
tion for Computational Linguistics.756

Yuang Liu, Wei Zhang, and Jun Wang. 2020. Adap-757
tive multi-teacher multi-level knowledge distillation.758
Neurocomputing, 415:106–113.759

Aman Madaan, Niket Tandon, Peter Clark, and Yiming760
Yang. 2022. Memprompt: Memory-assisted prompt761
editing with user feedback.762

Kevin Meng, David Bau, Alex Andonian, and Yonatan763
Belinkov. 2022a. Locating and editing factual asso-764
ciations in GPT. Advances in Neural Information765
Processing Systems, 35.766

Kevin Meng, Arnab Sen Sharma, Alex Andonian,767
Yonatan Belinkov, and David Bau. 2022b. Mass768
editing memory in a transformer. arXiv preprint769
arXiv:2210.07229.770

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 771
Finn, and Christopher D Manning. 2022a. Fast model 772
editing at scale. In International Conference on 773
Learning Representations. 774

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 775
pher D Manning, and Chelsea Finn. 2022b. Memory- 776
based model editing at scale. In Proceedings of the 777
39th International Conference on Machine Learning, 778
volume 162 of Proceedings of Machine Learning 779
Research, pages 15817–15831. PMLR. 780

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg 781
Durrett. 2022. Entity cloze by date: What LMs know 782
about unseen entities. In Findings of the Associa- 783
tion for Computational Linguistics: NAACL 2022, 784
pages 693–702, Seattle, United States. Association 785
for Computational Linguistics. 786

Yasumasa Onoe, Michael Zhang, Shankar Padmanab- 787
han, Greg Durrett, and Eunsol Choi. 2023. Can LMs 788
Learn New Entities from Descriptions? Challenges 789
in Propagating Injected Knowledge. In Proceedings 790
of the 61st Annual Meeting of the Association for 791
Computational Linguistics (Volume 1: Long Papers), 792
pages 5469–5485, Toronto, Canada. Association for 793
Computational Linguistics. 794

OpenAI. 2023. Gpt-4 technical report. ArXiv, 795
abs/2303.08774. 796

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim 797
Rocktäschel, Yuxiang Wu, Alexander H Miller, and 798
Sebastian Riedel. 2020. How context affects lan- 799
guage models’ factual predictions. arXiv preprint 800
arXiv:2005.04611. 801

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 802
Sentence embeddings using siamese bert-networks. 803
arXiv preprint arXiv:1908.10084. 804

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive 805
editing for large language model via meta learning. 806
In The Twelfth International Conference on Learning 807
Representations. 808

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 809
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 810
Baptiste Rozière, Naman Goyal, Eric Hambro, 811
Faisal Azhar, et al. 2023. Llama: Open and effi- 812
cient foundation language models. arXiv preprint 813
arXiv:2302.13971. 814

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 815
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 816
Kaiser, and Illia Polosukhin. 2017. Attention is all 817
you need. In Advances in Neural Information Pro- 818
cessing Systems, volume 30. Curran Associates, Inc. 819

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran- 820
dazzo, Joao Sacramento, Alexander Mordvintsev, 821
Andrey Zhmoginov, and Max Vladymyrov. 2023. 822
Transformers learn in-context by gradient descent. 823
In Proceedings of the 40th International Conference 824
on Machine Learning, volume 202 of Proceedings 825
of Machine Learning Research, pages 35151–35174. 826
PMLR. 827

10

https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.048
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.048
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.048
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://aclanthology.org/2023.acl-long.300
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-828
6B: A 6 Billion Parameter Autoregressive Lan-829
guage Model. https://github.com/kingoflolz/830
mesh-transformer-jax.831

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021.832
One teacher is enough? pre-trained language model833
distillation from multiple teachers. In Findings of834
the Association for Computational Linguistics: ACL-835
IJCNLP 2021, pages 4408–4413, Online. Association836
for Computational Linguistics.837

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan838
Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and839
Ningyu Zhang. 2023. Editing large language mod-840
els: Problems, methods, and opportunities. CoRR,841
abs/2305.13172.842

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,843
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen844
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A845
survey of large language models. arXiv preprint846
arXiv:2303.18223.847

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong848
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we849
edit factual knowledge by in-context learning? arXiv850
preprint arXiv:2305.12740.851

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-852
ning, Christopher Potts, and Danqi Chen. 2023.853
MQuAKE: Assessing knowledge editing in language854
models via multi-hop questions. arXiv preprint855
arXiv:2305.14795.856

A Details of MEMIT857

Note the MLP weights in a Transformer (Vaswani858

et al., 2017) as W that can be operated as a key-859

value store, where WK ≈ V , K = [k1|k2|...]860

and V = [v1|v2|...]. Given requested edits E =861

{(si, ri, oi)}, language modelMθ, layers to edit862

L = {L1, L2, ..., Ll}, and pre-cached covariance863

constant CL of k computed from Wikipedia sam-864

ples (Meng et al., 2022a). For each (si, ri, oi) ∈ E ,865

a target vector zi will be computed:866

zi ← hLl
i + δi, (6)867

where δi is optimized by:868

δi ← argmin
δi

1

P

P∑
j=1

ξi869

870
ξi = − logPM(h

Ll
i +=δi)

[oi|xj ⊕ (si, ri)] (7)871

Then for each editing layer L ∈ L, the hidden state872

is updated by:873

hLi ← hL−1
i + aLi +mL

i (8)874

where a and m denote the "attention" and "MLP" 875

contributions computed from previous layers in 876

Transformer (Vaswani et al., 2017) model. On the 877

current layer, for each (si, ri, oi) ∈ E , the MLP 878

key updated as: 879

kLi ← kLi =
1

P

P∑
j=1

k(xj + si) (9) 880

where xj are random prefixes that aid generaliza- 881

tion across contexts. The distributed residual ϕ 882

over remaining layers is computed as: 883

ϕL
i ←

zi − hLl
i

l − idx(L) + 1
(10) 884

where idx(L) denote the number index of L. Thus 885

in this layer kL = {kLi } and ϕL = {ϕL
i }. 886

To update the MLP weights in the editing lay- 887

ers, for each layer L ∈ L, the adding weight is 888

computed as: 889

∆L ← ϕLkL
T
(CL + kLkL

T
)−1, (11) 890

finally in current layer L the MLP weights updated 891

as: 892

WL ←WL +∆L, (12) 893

after the above updating performed on all the edit- 894

ing layers, we can obtain the parametric updated 895

modelMθ∗ . 896

B Edit Examples 897

Here we present more examples in CounterFact, 898

where edits the factual answer to a pseudo-factual: 899

example1: 900

• Editing request ei: "The 46th president of the 901

US is Biden". 902

• Editing Prefix (si, ri): "The 46th president of 903

the US is". Predict o∗: "Biden". 904

• In-scope prefix (Paraphrase) (s′i, r
′
i) ∈ I(ei): 905

"The winner of the 46th US presidential elec- 906

tion is". Predict o∗: "Biden". 907

• Out-of-scope prefix (s, r) ∈ O(ei): "The 908

president of Colombia is". Predict o: "Petro". 909

example2: 910

• Editing request ei: "Fiat Multipla is a product 911

of IBM". 912

11

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.48550/arXiv.2305.13172
https://doi.org/10.48550/arXiv.2305.13172
https://doi.org/10.48550/arXiv.2305.13172

• Editing prefix (si, ri): "Fiat Multipla is a913

product of ". Predict o∗: "IBM".914

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Fiat Multi-915

pla is produced by". Predict o∗: "IBM".916

• Out-of-scope prefix (s, r) ∈ O(ei): "Fiat917

Brevetti is created by". Predict o: "Fiat".918

example3:919

• Editing request ei: "Tor Endresen, who is a920

citizen of Nigeria".921

• Editing prefix (si, ri): "Tor Endresen, who is922

a citizen of ". Predict o∗: "Nigeria".923

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Tor En-924

dresen holds a citizenship from". Predict o∗:925

"Nigeria".926

• Out-of-scope prefix (s, r) ∈ O(ei): "Leon-927

hard Hess Stejneger, a citizen of ". Predict o:928

"Norway".929

example4:930

• Editing request ei: "Kirsti Huke plays opera".931

• Editing prefix (si, ri): "Kirsti Huke plays ".932

Predict o∗: "opera".933

• In-scope prefix (s′i, r
′
i) ∈ I(ei): "Kirsti Huke934

performs". Predict o∗: "opera".935

• Out-of-scope prefix (s, r) ∈ O(ei): "Zeena936

Parkins performs". Predict o: "jazz".937

C Details of kNN Function938

We use the dense retrieval for kNN based on the939

cosine similarity between the training edit eTj and940

the given requested edit ei. More precisely, sup-941

pose thatMsent is an additional sentence encoder,942

whereMsent(s) ∈ Rd is the sentence vector for a943

given sentence s. For notational convenience, given944

an edit e = (s, r, o),Msent(e) =Msent([s; r; o])945

where [s; r; o] is the natural language format that946

concatenates s, r, and o using a proper verbalizing947

template. The similarity between e = (s, r, o) and948

e′ = (s, r, o) is defined as follows:949

sim(e, e′) = cos(Msent(e),Msent(e
′)) (13)950

For a given edit ei ∈ E , kNN (ei, T) is defined as951

follows:952

top-k
{
(etj , sim(ei, e

t
j))

}M

j=1
(14)953

where top-k is the operator for selecting top-k ele- 954

ments given the set of pairs of objects and their as- 955

sociated similarities. ForMsent, we deploy the pre- 956

trained sentence encoder (Reimers and Gurevych, 957

2019). 958

D Ablation: KL-Divergence 959

We further present the KL divergences on ES, PS, 960

and NS between the MEMIT-initialized student 961

models under different scales of parametric updat- 962

ing and the teacher model of full DistillMIKE in 963

Figure 2. Here, the KL divergences on ES, PS, and 964

PS are computed from Eq. (3), but summing over 965

three types of query examples – copy-scope, in- 966

scope, and out-of-scope examples, corresponding 967

to E , O (E), and O (E), respectively. 968

KLES =
∑

q=(s,r)∈E

Eo∼pM∗ (·|q) log
pMst

θ
(o|q)

pM∗(o|q)
969

KLPS =
∑

q=(s,r)∈I(E)

Eo∼pM∗ (·|q) log
pMst

θ
(o|q)

pM∗(o|q)
970

KLNS =
∑

q=(s,r)∈O(E)

Eo∼pM∗ (·|q) log
pMst

θ
(o|q)

pM∗(o|q)
(15) 971

(16) 972

It demonstrates that when using more extensive 973

pre-parametric updating, the distribution gap be- 974

tween the output logits of the student and teacher 975

models decreases. This also provides evidence that 976

pre-parametric updating leads to faster convergence 977

and better distillation results. 978

E ICL Demonstration 979

The ICL demonstration as shown in Table 5. 980

Type Demonstration

update
New Fact: Willy Brandt, who is employed by Boeing
Prompt: Willy Brandt, who works for Boeing

New Fact Prompt: Willy Brandt, who is employed by Boeing
query Prompt (edit): Willy Brandt, who is employed by?

Prompt (paraphrase): Willy Brandt worked in?
Prompt (neighborhood): Joseph Reinach used to worked in?

Table 5: Single example of our demonstration.

F Detailed Illustration of Fact Retrieval 981

of Ret(q) 982

Figure 3 describes the detailed illustration of the 983

fact retrieval function Ret(q). 984

12

Figure 2: Plots of KL-divergences on ES, PS and PS using Eq. (16) between the teacher MIKE and the MEMIT-
initialized student model under different parametric updating scales, varying number of edits imposed on the
MEMIT-based initialization. The more edits are imposed using MEMIT for initializing the student model during the
pre-editing stage, the smaller KL divergences between DistillMIKE and MIKE. The results confirm that the choice
of using MEMIT-initialized student models with more edits is necessary for pursuing the stability during editing
distillation.

G Retrieval-based Demonstration985

Construction of Demo(q)986

In the pre-editing stage, a set of “training” ed-987

its with their pre-associated demonstrations are988

prepared in advance; The j-th training edit etrj989

is pre-associated with its demonstrations of copy,990

update and retrain types, denoted by D(etrj) =991 (
Dcp(etrj),Dud(etrj),Drt(etrj)

)
.992

Figure 4 describes the illustration of Demo(q)993

for the retrieval-based demonstration construction.994

H Datasets995

In zsRE, each knowledge sample consists of one996

factual statement (editing request) along with its997

paraphrase, and a natural question unrelated to the998

editing request. In CounterFact, each knowledge999

sample includes a factual statement, 2 paraphrase1000

prompts, and 10 neighborhood prompts, amounting1001

to a total of 21,919 samples.1002

H.1 Dataset Format1003

Dataset Format Example of CounterFact1004

dataset:1005

{1006

"case_id": 0,1007

"requested_rewrite": {1008

"prompt": "The mother tongue of is",1009

"target_new": “str": "English",,1010

"target_true": "str": "French",,1011

"subject": "Danielle Darrieux" 1012

}, 1013

"paraphrase_prompts": [1014

"Danielle Darrieux, a native", 1015

"Danielle Darrieux spoke the language" 1016

], 1017

"neighborhood_prompts": [1018

"The native language of Montesquieu is", 1019

"The native language of Raymond Barre is", 1020

"Jacques is a native speaker of", 1021

. . . (10 prompts in total) 1022

], 1023

"attribute_prompts": [1024

"The mother tongue of Douglas Adams is", 1025

. . . (10 prompts in total) 1026

], 1027

"generation_prompts": [1028

"Danielle Darrieux’s mother tongue is", 1029

. . . (10 prompts in total) 1030

] 1031

} 1032

Dataset Format Example of zsRE dataset: 1033

{ 1034

"case_id": 0, 1035

"requested_rewrite": { 1036

"prompt": "What university did {} attend?", 1037

"subject": "Watts Humphrey", 1038

"target_new": 1039

"str": "Illinois Institute of Technology" 1040

"target_true": 1041

13

Figure 3: An illustration of steps of the fact retrieval function Ret(q). Suppose that the edit memory stores a set
of “test” edits E . Given query q = (s, r), the goal of the fact retrieval is to fine the best-matched fact in the edit
memory, consisting of three steps; 1) match both the subject s and relation r of q in the edit memory. If matched, it
returns the matched fact as the query-matched fact, eq; otherwise, goes to the next step; 2) match the subject s in the
memory. if “uniquely” matched, the matched fact becomes eq. if there exist more facts matched, goes to the next
step. otherwise, it returns the “null”, i.e., Ret(q) = eq = ∅; 3) perform the dense retrieval by ranking a set of the
subject-matched facts. The best-matched fact is the query-matched fact eq .

"str": "<|endoftext|>"1042

},1043

"paraphrase_prompts": [1044

"What university did Watts Humphrey take1045

part in? "1046

],1047

"neighborhood_prompts": [1048

"prompt":1049

"nq question: who played desmond doss1050

father?",1051

"target": " Hugo"1052

]1053

}1054

1055

I Implementation Details1056

To facilitate a fair comparison with related work,1057

we conducted experiments using GPT-J 6B model.1058

We use sentence-transformer toolkit as retriever for1059

any retrieval process.1060

For zsRE (Levy et al., 2017) dataset, we extract1061

10,000 samples as editing/test set to perform mas-1062

sive knowledge editing following related works1063

(Meng et al., 2022b; Li et al., 2023), and use the1064

rest set (172,282 samples) as retrieval corpus for1065

ICL demonstration construction. We follow IKE to1066

use 12 "update" demonstrations, but we do not use 1067

"copy" and "retain" type. 1068

For the CounterFact (Meng et al., 2022a) dataset, 1069

the original dataset comprises 21,919 samples. 1070

However, some samples may involve the same pre- 1071

fix (s, r) editing to different new facts, leading to 1072

conflicts in multiple knowledge editing. To address 1073

this, we filtered the dataset following (Meng et al., 1074

2022b), resulting in a total of 20,877 samples. We 1075

also use 10,000 samples as the editing/test set and 1076

utilize the remaining samples as a retrieval corpus 1077

to construct ICL demonstrations. 1078

For distillation, we distill all in-scope samples 1079

from the editing set and all out-of-scope samples 1080

from zsRE (as only one is provided). However, for 1081

the CounterFact dataset, we use two out-of-scope 1082

samples (the dataset provides 10). This does not 1083

hinder the improvement in NS performance on the 1084

CounterFact dataset because the neighbors of same 1085

editing request are usually similar, thus each neigh- 1086

bor possesses a certain level of representativeness. 1087

We consider this an indication of the model’s gen- 1088

eralization on "out-of-scope" scenarios. 1089

All of our experiments were conducted on 1090

NVIDIA A6000 GPUs. 1091

14

Figure 4: An illustration of obtaining the scope-aware demonstrations in Demo(q). We first prepare a set of “training”
edits with their pre-associated demonstrations are used as a pool for demonstration selection. Given a q = (s, r),
suppose that the query-matched fact eq ̸= ∅ is available, using the retrieval function Ret(q) in Section F. Then, the
additional retrieval function kNN (eq, Etr) is performed to the top-k nearest neighbors in the “training” edits Etr,
denoted by e′1, · · · , e′k. The scope-aware demonstration selection is further performed by taking only the update-type
demonstrations of the top-k training edits, thus finally resulting in Demo(q) = [Dup(e′1); · · · ;Dup(e′k)].

J Detailed Definition of Evaluation1092

Metrics1093

zsRE Metrics1094

For Efficacy and Paraphrase:1095

E[o∗ = argmaxM∗(s, r)], (17)1096

where (s, r) is the prefix query of editing request1097

or its paraphrase respectively.1098

For Specificity:1099

E[o = argmaxPM∗(s, r)], (18)1100

where (s, r) is the prefix query of unrelated state-1101

ment. And the overall Score is the harmonic mean1102

of above three metrics that reflects the integrated1103

performance of the model.1104

CounterFact Metrics1105

Accuracy Terms:1106

For Efficacy Score (ES) and Paraphrase Score (PS):1107

E[P∗
M(o∗|(s, r)) > PM∗(o|(s, r))], (19)1108

where (s, r) denote the prefix query of editing re-1109

quest (for ES) or paraphrase prompt (for PS).1110

For Neighborhood Score (NS): 1111

E[PM∗(o∗|(s, r)) < PM∗(o|(s, r))]. (20) 1112

where (s, r) denote the prefix query of neighbor- 1113

hood prompt. 1114

Magnitude Terms: 1115

Note that Magnitude metrics do not represent 1116

the editing quality and have no absolute positive- 1117

correlation with editing accuracy across different 1118

methods. 1119

For Efficacy Magnitude (EM) and Paraphrase Mag- 1120

nitude (PM): 1121

E[PM∗(o∗|(s, r))− PM∗(o|(s, r))], (21) 1122

where (s, r) denote the prefix query of editing re- 1123

quest (for ES) or paraphrase prompt (for PS). 1124

For Neighborhood Magnitude (NM): 1125

E[PM∗(o|u(s, r))− PM∗(o∗|u(s, r))]. (22) 1126

where (s, r) denote the prefix query of neighbor- 1127

hood prompt. 1128

15

	Introduction
	Related Works
	Parameter Updating (PU) methods
	Memory-based Methods

	Task Definition
	Method
	Teacher Model: Massive In-context Knowledge Editing (MIKE)
	 Fact retrieval: Ret(q)
	 Demonstration selection: Demo(q)

	DistillMIKE

	Experiments
	Dataset and Metrics
	Settings and Baselines

	Results
	Main Results
	Editing 10k knowledge in zsRE.
	Editing 10k knowledge in CounterFact.

	Ablation Study

	Conclusion
	Details of MEMIT
	Edit Examples
	Details of kNN Function
	Ablation: KL-Divergence
	ICL Demonstration
	Detailed Illustration of Fact Retrieval of Ret(q)
	Retrieval-based Demonstration Construction of Demo(q)
	Datasets
	Dataset Format

	Implementation Details
	Detailed Definition of Evaluation Metrics

