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Abstract
Auto-regressive partial differential equation
(PDE) foundation models have shown great po-
tential in handling time-dependent data. How-
ever, these models suffer from error accumula-
tion caused by the shortcut problem deeply rooted
in auto-regressive prediction. The challenge be-
comes particularly evident for out-of-distribution
data, as the pretraining performance may ap-
proach random model initialization for down-
stream tasks with long-term dynamics. To deal
with this problem, we propose physics-informed
temporal alignment (PITA), a self-supervised
learning framework inspired by inverse problem
solving. Specifically, PITA aligns the physical
dynamics discovered at different time steps on
each given PDE trajectory by integrating physics-
informed constraints into the self-supervision sig-
nal. The alignment is derived from observa-
tion data without relying on known physics pri-
ors, indicating strong generalization ability to
out-of-distribution data. Extensive experiments
show that PITA significantly enhances the accu-
racy and robustness of existing foundation mod-
els on diverse time-dependent PDE data. The
code is available at https://github.com/
SCAILab-USTC/PITA.

1. Introduction
With the ongoing advancement in computational capabilities
and data-driven methodologies (Cicirello, 2024; Brunton
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Figure 1: Insight of the proposed framework. Existing (a)
Auto-regressive prediction may cause error accumulation
for long-term PDE data. (b) Physics-informed temporal
alignment is integrated to handle this problem.

& Kutz, 2024), PDE foundation models (Shen et al., 2024;
Song et al., 2024; Gupta & Brandstetter, 2022) have gained
increasing prominence in scientific machine learning. These
foundational models leverage neural operators as surrogate
models to perform PDE trajectory prediction, which runs
significantly faster than the traditional numerical solvers.
Among the various PDE foundation models, auto-regressive
prediction, i.e., predicting the next behavior based on past
dynamics data, is one of the most promising strategies for
training or pretraining, which aims to endow the models
with generalization ability to downstream tasks (Geneva &
Zabaras, 2020). However, it is observed that auto-regressive
prediction may introduce a deeply-rooted shortcut problem,
where the model chooses a simple and mendacious solu-
tion to approximately satisfy the optimization objective by
duplicating previous dynamics. More details are discussed
in Appendix B. Since the duplicating operation is easy for
neural networks to learn, the model may overlook capturing
long-term dynamics, resulting in error accumulation. There-
fore, the long-term accurate prediction of auto-regressive
PDE foundation models remains a significant challenge
when facing downstream tasks with long trajectory data.

As we know, all trajectories of PDE data are simulated based
on the underlying physical dynamics. Thus, the unique un-
derlying physical equation can govern any segment in the
corresponding PDE trajectory. This property naturally facil-
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itates embedding physical constraints into the PDE trajec-
tory prediction. Early research such as (Raissi et al., 2019;
Cuomo et al., 2022) utilizes known physics information to
construct optimization objectives, enabling precise solutions
for specific PDE trajectories. However, this approach may
overfit the training data with known physics laws, prevent-
ing the models from serving as a foundation for downstream
tasks. To this end, some foundation models (Song et al.,
2024; Cao et al., 2024; Zhou et al., 2024; Sun et al., 2024)
introduce PDE symbols as a condition prior to encoding into
embedded representations by neural networks, thus guid-
ing the prediction results. Although these methods flexibly
encode various known PDE symbols to impose physical
constraints on the prediction results, they merely perform
conditional mapping based on known equation priors rather
than capturing the intrinsic dynamics that represent PDE tra-
jectory data. They may encounter significant performance
degradation for downstream tasks without known physical
priors. Therefore, exploring universal physical constraints
is critically important for PDE foundation models.

Inspired by solving inverse problem (Rudy et al., 2017;
Stephany & Earls, 2022), we thought over how to derive
unknown dynamics systems from observation data and trans-
form them into physics-informed constraints during auto-
regressive prediction. To achieve this, we propose a self-
supervised learning framework named physics-informed
temporal alignment (PITA), which integrates governing laws
discovery into auto-regressive prediction, as shown in Fig-
ure 1. In detail, PITA first discovers the governing PDE
equation given the initial values with an unknown dynamics
system by time series measurements. This process identi-
fies the key derivative terms and parameters that form the
structure and explicit expression of the PDE. Then, the auto-
regressive prediction results are merged into the initial value
sequence and used to rediscover the governing equation.
Since the initial value sequence and the merged sequence
are represented by the same underlying physical law, any
discrepancy between the discovered governing equations
corresponding to them indicates that auto-regressive predic-
tion results may contain dynamics deviation. Based on this
insight, we utilize the discrepancies of physical laws discov-
ered from observation data and auto-regressive predictions
to supervise the auto-regressive PDE models. Moreover, the
discovered governing equation can also serve as physics-
informed regularization, added to the optimization objective
to supervise the auto-regressive predictions to follow the
physical laws described. Finally, leveraging uncertainty-
based weighting and alternating direction optimization, the
physical supervisions derived from observation data are in-
tegrated into data-driven auto-regressive prediction. This
ensures that the predictions follow both the observed tem-
poral dynamics and the underlying physics laws, making
PITA applicable to diverse time-dependent PDE data. In this

way, PITA seamlessly unifies data-driven forecasting with
physics-based modeling, offering a versatile framework for
reliable long-term dynamics prediction.

2. Related Work
2.1. PDE Foundation Models

PDE foundation models have shown immense potential in
many fields, such as fluid dynamics (Liu et al., 2024b; Luo
et al., 2023), geophysics (Liu & Ma, 2024), solid mechan-
ics (Yizheng et al., 2024), and chemical reactor modelling
(Wang & Wu, 2024). Recently, PDE foundation models
have been proposed to enable operator learning across dif-
ferent PDE families, incorporating pretraining and finetun-
ing to enhance generalization. For instance, PIMRL (Wan
et al., 2025) introduces a two-stages multi-scale learning
framework that leverages multi-scale data for spatiotempo-
ral dynamics prediction. PROSE (Sun et al., 2024) applies
an encoder-decoder framework to integrate numerical data
and equation embeddings, while PROSE-FD (Liu et al.,
2024b) extends this approach to develop a foundation model
for fluid dynamics. Moreover, MPP (McCabe et al., 2023)
adopts an auto-regressive approach for pretraining and fine-
tuning on time-dependent PDE datasets. To further investi-
gate the generalization of auto-regressive prediction, DPOT
(Hao et al., 2024) introduces a denoising pretraining strategy
to improve transferability for downstream tasks. Despite
the aforementioned advancements, there are many other
works (Yang et al., 2023; Subramanian et al., 2024; Song
et al., 2024; Ye et al., 2024b;a; Chen et al., 2024; Cao et al.,
2024; Shen et al., 2024; Zhao et al., 2023) contributing to
the development of PDE foundation models across various
domains.

2.2. Shortcut Problem and Error Accumulation

Shortcuts commonly emerge as decision rules allowing mod-
els to excel on standard benchmarks while struggling to
generalize under more complex testing conditions. This dis-
crepancy between intended and learned solutions (Geirhos
et al., 2020) leads to severe error accumulation, particu-
larly in long temporal sequences. Several frameworks have
been proposed to address shortcut learning. For example,
the LTGR framework (Du et al., 2021) prevents overconfi-
dent predictions on shortcut samples, while COMI (Zhao
et al., 2024) reduces the model’s reliance on shortcuts by
integrating standard empirical risk minimization to enhance
its ability to extract underlying information. Additionally,
diffusion-based and auto-regressive generative classifiers
have been proposed to address shortcut issues by modeling
both causal and spurious features (Li et al., 2024). Other
works (Luo et al., 2021; Brown et al., 2023; Du et al., 2021;
Dagaev et al., 2023; Robinson et al., 2021; Hermann et al.,
2023; Scimeca et al., 2023; Chuah et al., 2022) have also
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explored various strategies to detect and rectify shortcut
learning.

2.3. Data-driven Inverse Problems

Modeling complex dynamical systems has traditionally
relied on PDEs. Recently, data-driven techniques have
emerged to uncover the underlying PDEs efficiently (Long
et al., 2018; Brunton & Kutz, 2024). Sparse regression
methods have leveraged finite differences to approximate
partial derivatives and employed sparsity-promoting algo-
rithms such as the Douglas–Rachford algorithm (Schaeffer,
2017) and Sparse Threshold Ridge Regression (STRidge)
(Rudy et al., 2017) to identify PDE coefficients.

Physics-informed neural network (PINN) (Raissi et al.,
2019) has been integrated into PDE discovery to address
these limitations. For instance, DeepMoD (Both et al., 2021)
combines PINNs and SINDy by introducing regularization
terms into the PINN loss function. PINN-SR (Chen et al.,
2021) adopts a similar loss function structure and introduces
an alternating direction optimization training strategy.

3. Methodology
3.1. Overview

The general form of PDEs is considered as follows:

∂u(x, t)
∂t

= F [u](x, t),

u(x, 0) = u0(x), x ∈ Ω,

B[u](x, t) = 0, x ∈ ∂Ω,

(1)

where x ∈ Ω ⊂ Rd denotes the spatial variable, u :
[0, T ] × Ω → Rdu is the solution of a time-dependent PDE.
F [u](x, t) = F (t, x, u, ∂xu, ∂xxu, · · · ) is a differential
operator with spatial derivative terms. The initial condition
is given by u0(x) : Ω → Rdu , and the boundary condition
is defined by the operator B.

We propose PITA, a physics-informed temporal alignment
strategy for PDE foundation models. PITA integrates
auto-regressive prediction and PDE discovery into a self-
supervised learning framework, as shown in Figure 2. This
physics-informed alignment ensures that the predictions
conform to both the observed temporal dynamics and the
underlying PDEs, thereby enhancing predictive accuracy
and maintaining physical fidelity.

The auto-regressive prediction, detailed in Sec. 3.2, enables
iterative future state predictions by progressively leveraging
prior outputs. To mitigate error accumulation inherent in the
auto-regressive approach, PDE discovery is incorporated as
discussed in Sec. 3.3. This integration encompasses several
key steps, including compressing data across the full spa-

tiotemporal domain, constructing tailored function libraries,
and employing sparse regression to identify dominant dy-
namics. Finally, the loss functions comprising data loss,
physics loss, and consistency loss are introduced in Sec. 3.4.
Together, these losses guide the model to balance among
learning from observed data, enforcing physical constraints,
and ensuring temporal coherence.

3.2. Auto-regressive Prediction

In the auto-regressive prediction, a neural operator Gθ, pa-
rameterized by weights θ, takes Tin frames as input and
predicts the next frame based on the previous frames:

ût+1 = Gθ (u<t) ,

where u<t represents {ui}t
i=t−Tin+1. When t = Tin, the

input sequence denotes the ground truth frames, ensuring
that the model starts with accurate information. θ denotes
the parameters of the neural operator. To predict the (t + 2)-
th frame, the neural operator uses Tin frames along with the
predicted frame ût+1 as input. By iteratively performing
this step, the model rolls out a time window of length Tar,
which can be customized. In our experiments, the roll-in
window length is set to Tin = 10, and the roll-out window
length is set to Tar = 1 or Tar = 10. However, directly
applying this strategy may lead to the shortcut problem,
causing the accumulation of errors propagated across the
time window. Our framework employs a physics-informed
temporal alignment strategy to address this issue.

3.3. Governing Equations Discovery

Following the auto-regressive predictions, the process of
PDE discovery is employed to identify the underlying phys-
ical laws from the data while ensuring temporal alignment.
First, the data is downsampled in both the spatial and tem-
poral domains to enhance computational efficiency. Next,
a nonlinear library is constructed, incorporating candidate
terms that may represent the underlying physical dynamics.
Finally, sparse regression is applied to derive the funda-
mental form of the PDE. Note that downsampling is not
employed for the initial input sequence, so as to ensure the
accuracy of the PDE discovered from ground truth data.

Downsampling Data: Before obtaining the PDE coeffi-
cients, the data generated through the auto-regressive pre-
diction is downsampled to reduce computational time. For
each ut, we assume that the function ut is discretized over
n points, represented as Xn = {x1, x2, . . . , xn}, xi ∈ Rd.
In the spatial domain, the grid is randomly sampled to re-
duce the number of points to one-quarter of its original size.
The sampled grid is denoted as X̃w = {xi1 , xi2 , · · · , xiw

},
where w = ⌈n/4⌉ and {i1, · · · , iw} ⊆ {1, 2, · · · , n} rep-
resents the set of sampled indices. The selection of w will
be discussed in Sec. 4.4. The derivatives are computed
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Figure 2: Work flow of PITA. The proposed framework integrates auto-regressive prediction and PDE discovery with
self-supervised learning: (1) The pretrained PDE model takes the initial temporal states {ut}Tin

t=1 as input and predicts
future states {ût}Tin+Tar

t=Tin+1 as output in an auto-regressive manner; (2) Data-driven PDE discovery is then performed on the
compressed input sequence to infer the governing equations. Temporal alignment is achieved by matching the discovered
physical laws from predictions with those obtained from the ground truth sequence; (3) The loss function consists of three
parts, i.e., data loss LData, physics loss LP hy , and consistency loss LCon, with an uncertainty-based strategy employed to
adjust the weights dynamically.

using a small number of spatially localized points near each
measurement position via polynomial interpolation (Rudy
et al., 2017). In the temporal domain, the most recent TC

frames are retained, enabling the capture of critical temporal
information that is more relevant than the entire sequence.
As shown in Figure 2, the diagonal matrix D signifies the
downsampling process, with Di,j ∈ {0, 1} for i = j and
Dij = 0 for i ̸= j, where non-zero diagonal elements indi-
cate retaining data. For simplicity, the matrix D is omitted
in the following contexts.

Building Libraries of Candidate Terms: Before con-
structing libraries, a preparatory step involves rearranging
all the compressed data Ũ(θ) ∈ Rn×m×C into a matrix
U(θ) ∈ R(n×m)×C , which represents C physical variables
collected over n spatial locations and m time points.

Next, we construct a library Φ(θ) ∈ R(n×m)×S consisting
of S predefined candidate linear and nonlinear terms, along
with partial derivatives for the PDE (Rudy et al., 2017).
For instance, Φ(θ) may include time derivatives, spatial
derivatives, and n-th degree polynomial terms (Rudy et al.,
2017), assembled in a matrix represented by

Φ(θ)=
[
U(θ), . . . , ∂xU(θ), U(θ)∂xU(θ), . . . ,1

]
, (2)

where finite differences are used to compute the derivatives.
Each column of Φ(θ) contains all of the values of a partic-
ular candidate function across all (n × m) space-time grid
points where the data are collected.

Sparse Regression: After constructing the libraries for the
PDE, the equation can be expressed as

∂tU(θ) = Φ(θ)Λ, (3)

where Φ(θ) is the library of candidate terms, and Λ ∈
RS×C represents the sparse coefficient matrix. Assuming
that only a few key terms dominate the underlying dynamics,
the discovery problem is formulated as a sparse regression
to identify the sparse coefficient matrix Λ:

Λ = arg min
Λ

∥Φ(θ)Λ − ∂tU(θ)∥2
2 + α ∥Λ∥0 . (4)

This optimization problem is addressed using sparse re-
gression (Rudy et al., 2017; Ma et al., 2023; Zhang, 2008).
For example, if C = I where U = [U1, · · · , UI ], Λ =
[λ1, · · · , λI ], where Ui ∈ R(n×m)×1, λi ∈ RS×1. Equa-
tion (3) can be rewritten as

[∂tU1(θ), · · · , ∂tUI(θ)] = Φ(θ) [λ1, · · · , λI ] . (5)

Thus the coefficient matrix Λ is solved iteratively through
each λi, as detailed in Algorithm 1. This approach in-
tegrates ridge regression with hard threshold to enforce
sparsity, striking a balance between model complexity and
accuracy.

3.4. Integrating Data and Physics Supervisions

The total loss function integrates three parts: the data loss
LData, the physics loss LP hy and the consistency loss
LCon.
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Algorithm 1 Sparse regression for Equation (4) and (5).

Input: Time derivative vector ∂tUi(θ), candidate func-
tion library matrix Φ(θ), threshold tolerance β, maxi-
mum iteration number K.
Initialize: λi = Φ†(θ)∂tUi(θ), i = 1, · · · , I , k = 0.
for k ⩽ K do

Determine two groups of indices of coefficients in λi:
P = {p ∈ P : |λp

i | < β} , Q = {q ∈ Q : |λq
i | ⩾ β}.

Impose sparsity on small values:
λP

i = 0.
Update λQ

i :
λQ

i =arg min
λQ

i

{∥ΦQ(θ)λQ
i − ∂tU

Q
i (θ)∥2

2+ α∥λQ
i ∥0}.

Update k = k + 1.
end for
Output: The best solution λi = λP

i ∪ λQ
i .

Data Loss: The data loss is defined as

LData(θ) = 1
Tar

Tar∑
i=1

∥ui+Tin
− ûi+Tin

(θ)∥2
∥ui+Tin

∥2
, (6)

where ûi+Tin(θ) represents the predicted solution and
ui+Tin

is the ground truth data. This term quantifies the
discrepancy between predictions and observations. Previous
works have employed similar approaches such as (Raissi
et al., 2019; Chen et al., 2021; Both et al., 2021).

Physics Loss: Inspired by (Rudy et al., 2017; Brunton et al.,
2016; Chen et al., 2021; Raissi et al., 2019), the physics loss
is expressed as

LP hy(θ)=
Tar∑
i=1

∥∂tUi(θ) − Φi(θ)Λi∥2
2 +α ∥Λi∥0 , (7)

where the residual term ensures that the product of the com-
puted coefficients Λi and the function library Φi(θ) ap-
proximates the time-dependent term ∂tUi(θ). The ℓ0 norm
enforces sparsity in the coefficients.

Consistency Loss: The consistency loss is defined as

LCon(θ) =
Tar∑
i=1

∥Λ∗ − Λi(θ)∥2
2 , (8)

where Λ∗ denotes the true coefficients from ground-truth
data and Λi(θ) are from the i-th time window, both obtained
via sparse regression as detailed in Algorithm 1. This loss
enforces consistency between the discovered physics laws
represented by Λi(θ) and real physics laws represented by
Λ∗. To the best of our knowledge, it is the first work to use
time alignment as a constraint for PDE foundation models.

Uncertainty-Based Weighted Loss Function: The total
loss function combines these three supervisions to balance

the different learning tasks of the model. Determining the
penalty coefficients for each term is challenging, as model
performance across tasks strongly depends on the relative
weighting of each loss (Sener & Koltun, 2018; Chen et al.,
2018). Instead of relying on traditional hyperparameter
tuning, we employ an uncertainty-based multi-task learning
strategy (Kendall et al., 2018; Liebel & Körner, 2018) to
adjust these weights dynamically.

Let δ = {δ1, δ2, δ3} be the parameters for the weights of
the three losses in our task. The weighted total loss function
becomes

LT otal(θ, δ) = 1
2δ2

1
LData(θ) + 1

2δ2
2

LP hy(θ)

+ 1
2δ2

3
LCon(θ) + log δ1δ2δ3.

(9)

These parameters are updated simultaneously with the
model parameters during training. Minimizing this objective
with respect to δ1, δ2, and δ3 allows the model to adaptively
learn the relative weights of the three losses based on the
data, which enables robustness across varying datasets.

3.5. Alternating Direction Optimization

The total loss function described in Equation (9) exhibits
an implicit and complex form, which complicates the direct
resolution of the optimization problem due to the ℓ0 regular-
ization, rendering it NP-hard (Chen et al., 2021). Although
relaxing the ℓ0 term through the less stringent ℓ1 regulariza-
tion enhances well-posedness and allows for optimization in
a continuous space, this may lead to false-positive identifica-
tion, hindering the accurate realization of the sparsity of the
PDE coefficients (Berg & Nyström, 2019; Both et al., 2021).
Inspired by (Chen et al., 2021), we employ an alternating
direction optimization (ADO) algorithm to decompose the
overall optimization problem into a series of manageable
subproblems, enabling the sequential optimization of θ and
Λ over several alternating iterations (denoted as k). For
instance, in the (k + 1)-th alternating iteration, the sparse
coefficient matrix Λ in Equation (11) is updated to Λk+1
using sparse regression, based on the parameters θk of the
neural operator Gθ from the previous iteration:

Λk+1 := arg min
Λ

[∥Φ(θk)Λ−∂tU(θk)∥2
2+α ∥Λ∥0]. (10)

Next, the parameters θ in the current iteration are then
updated to θk+1 based on the solved Λk+1,

θk+1,δk+1 :=arg min
θ,δ

[ 1
2δ2

1
LData(θ, Λk+1)

+ 1
2δ2

2
LP hy(θ, Λk+1)

+ 1
2δ2

3
LCon(θ, Λk+1) + log δ1δ2δ3].

(11)
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Table 1: Comparison of PITA and existing auto-regressive strategies with Tar = 1. The underlined results represent the
predictions of PITA, while the bold results indicate the optimal outcomes for the same model. ’-’ means that the result is
unavailable. Notably, five datasets exhibit long trajectory characteristics, with detailed descriptions provided in Appendix C.

Finetune FNO-NS-ν PDEBench PDEBench-CNS-(M, η) PDEArena CFDBench
Model Strategy 1e-5 1e-4 1e-3 DR SWE 1,0.1 1,0.01 M1 0.1,0.1 0.1,0.01 M0.1 NS-Force NS -

Predict short trajectory
DPOT-Ti Auto-regress 0.05200 0.00385 0.00380 0.01326 0.00208 0.01120 0.01950 0.01535 0.01740 0.01380 0.01560 0.10269 0.09100 0.00391

7M PITA 0.05629 0.00499 0.00218 0.02119 0.00202 0.01793 0.01565 0.01679 0.01080 0.01250 0.01165 0.11988 0.06465 0.00360
DPOT-S Auto-regress 0.03220 0.00641 0.00301 0.01239 0.00210 0.01290 0.01670 0.01480 0.0152 0.01260 0.01390 0.07598 0.08670 0.00382

30M PITA 0.02240 0.00232 0.00157 0.01346 0.00150 0.01057 0.01217 0.01137 0.01750 0.01140 0.01445 0.06769 0.04190 0.00335
MPP-Ti Auto-regress - - - 0.03510 0.00645 - - 0.05841 - - 0.04611 - - -

7M PITA - - - 0.03384 0.00605 - - 0.04370 - - 0.04025 - - -
MPP-S Auto-regress - - - 0.02974 0.00281 - - 0.04287 - - 0.02012 - - -

30M PITA - - - 0.03024 0.00274 - - 0.04051 - - 0.01906 - - -
DPOT-M Auto-regress 0.02290 0.00385 0.00297 0.01209 0.00219 0.00998 0.01460 0.01230 0.01610 0.00947 0.01280 0.05571 0.02940 0.00373

122M PITA 0.03199 0.00185 0.00193 0.00957 0.00154 0.01101 0.01032 0.01067 0.00945 0.01010 0.00958 0.05829 0.02191 0.00289
FNO-M Auto-regress 0.08036 0.00577 0.00302 0.08608 0.00501 0.27849 0.03345 0.15597 0.13200 0.04449 0.08825 0.15190 0.15590 0.01382
170M PITA 0.07668 0.00552 0.00152 0.07014 0.00423 0.10947 0.03483 0.07215 0.10224 0.05686 0.07955 0.15594 0.14066 0.00756

DPOT-L Auto-regress 0.02130 0.00400 0.00298 0.00801 0.00184 0.01080 0.01310 0.01195 0.01600 0.00905 0.01253 0.05493 0.02780 0.00322
500M PITA 0.01059 0.00198 0.00139 0.01084 0.00172 0.01001 0.00995 0.00998 0.02004 0.01871 0.01938 0.04965 0.02048 0.00302

Predict long trajectory
DPOT-Ti Auto-regress - 0.03670 0.00580 0.01480 0.00241 - - - - - - 0.30034 - -

7M PITA - 0.01718 0.00327 0.01090 0.00199 - - - - - - 0.31012 - -
DPOT-S Auto-regress - 0.02370 0.00437 0.01350 0.00235 - - - - - - 0.26800 - -

30M PITA - 0.00854 0.00223 0.00994 0.00137 - - - - - - 0.22620 - -
MPP-Ti Auto-regress - - - 0.05212 0.03291 - - - - - - - - -

7M PITA - - - 0.03844 0.02174 - - - - - - - - -
MPP-S Auto-regress - - - 0.04258 0.01631 - - - - - - - - -

30M PITA - - - 0.03704 0.00950 - - - - - - - - -
DPOT-M Auto-regress - 0.0126 0.00335 0.01030 0.00227 - - - - - - 0.17200 - -

122M PITA - 0.00694 0.00139 0.00904 0.00135 - - - - - - 0.16390 - -
FNO-M Auto-regress - 0.01761 0.00425 0.04101 0.00924 - - - - - - 0.43136 - -
170M PITA - 0.01710 0.00227 0.02884 0.00614 - - - - - - 0.38731 - -

DPOT-L Auto-regress - 0.0104 0.00323 0.00739 0.00170 - - - - - - 0.17000 - -
500M PITA - 0.00708 0.00199 0.00670 0.00121 - - - - - - 0.16488 - -

This alternation between the suboptimal solutions will con-
verge towards a high-quality optimization result that satisfies
global convergence.

4. Experiments
Datasets: To enable comparisons with baselines employing
the auto-regressive strategy, we select 12 datasets from four
different sources: 3 datasets from FNO (Li et al., 2020), 6
datasets from PDEBench (Takamoto et al., 2022), 2 datasets
from PDEArena (Gupta & Brandstetter, 2022), and 1 dataset
from CFDBench (Luo et al., 2023). For generalization tasks,
the Burgers’ equation from (Boussif et al., 2022) is included
as an additional dataset. Additional details regarding the
datasets used can be found in the Appendix C.

Baselines: We compare PITA with auto-regressive base-
lines, primarily focusing on PDE foundation models such
as DPOT (Hao et al., 2024) and MPP (McCabe et al., 2023).
For DPOT, we select models of sizes Ti, S, M, and L, which
have been pretrained on 12 datasets. In the case of MPP,
we choose the Ti and S models, pretrained on 10 datasets.
Both models are designed to work predominantly with 2D
datasets. Additionally, we assess our method on single-
family models (Shen et al., 2024), where pretraining and
finetuning are conducted on a single dataset instead of mul-
tiple datasets. FNO-M (Li et al., 2020) serves as the repre-
sentative baseline. The sizes and parameters of the various
models are detailed in Appendix D.1. These ensure a com-
prehensive and fair evaluation across diverse PDE settings.

Training and Evaluation: All experiments are carried out
on a single A800 GPU with 80 GB of memory. We apply the
commonly used scale-independent normalized root mean
squared error (nRMSE) (Takamoto et al., 2023; Hao et al.,
2023) to measure the quality of the prediction, which is
defined as follows,

nRMSE = 1
Ttest

Ttest∑
i=1

∥ui − ûi(θ)∥2
∥ui∥2

, (12)

where Ttest indicates the length of testing data in the tem-
poral domain.

4.1. State-of-the-Art Results

The in-distribution performance of PITA is evaluated and
presented in Table 1. The testing datasets comprise PDE
data that share the same boundary conditions and parame-
ters as the training data but differ in their initial conditions.
Overall, PITA demonstrates state-of-the-art (SOTA) perfor-
mance in both short trajectory predictions (10 steps) and
long trajectory predictions (longer than 10 steps). A detailed
analysis of the results is provided below.

Short Trajectory Prediction: When performing short tra-
jectory prediction, PITA achieves SOTA performance across
most datasets and various model sizes, particularly with
medium and large models. For small-sized models (Ti, S),
PITA achieves the best results in 75% of prediction tasks,
with an average improvement of 11.21% in testing outcomes.
Notably, the maximum improvement observed was an im-
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pressive 63.81% with the DPOT-S model on the FNO-NS-
1e-4 dataset. For medium and large-sized models (M, L),
PITA excels in 77.78% of the prediction tasks, achieving
an average reduction in nRMSE of 13.53%, with the best
improvement recorded at 53.36% using the DPOT-L model
on the FNO-NS-1e-3 dataset. These results indicate that
although PITA is not specifically tailored for PDE data with
relatively short trajectories, it still exhibits excellent perfor-
mance compared to finetuning approaches that rely solely
on the auto-regressive approach. This highlights PITA’s ro-
bustness and effectiveness in handling a variety of prediction
tasks, contributing to its overall superiority in performance.

Long Trajectory Prediction: By integrating temporal
alignment with physics-informed constraints, PITA demon-
strates superior performance over traditional auto-regressive
training methods, effectively addressing the shortcut prob-
lem commonly encountered in long trajectory prediction.

Overall, PITA reduces the total accumulated error signif-
icantly compared to the auto-regressive approach, achiev-
ing an improvement of 30.22% over the long trajectory,
which translates to an average decrease of 2.00% in error
for each time step. The shortcut problem is particularly
pronounced in the FNO-NS-1e-4 dataset, where the average
percentage of error accumulation per prediction step reaches
34.31%. In contrast, the shortcut problem is less significant
in the PDEBench-SWE and PDEBench-DR datasets that
are longest trajectory datsets (91 steps). This discrepancy
can be attributed to a main factor that the dynamics exhibits
smaller variations in long term trajectory, making it easier
for the model to capture the temporal dynamics (Takamoto
et al., 2022). Despite this, PITA still demonstrates meaning-
ful performance improvements over all the baselines. We
further analyze the relevance between the performance gains
of PITA and foundation model size. The experiments are
conducted on PDEBench-DR with the longest trajectory, as
shown in Figure 3. We can see that in long trajectory predic-
tions, PITA demonstrates scalability. It even outperforms
the baseline with 100M parameters when using only 30M
parameters, showcasing parameter efficiency in modeling
long-term dynamics. Additional scaling experiments on
long trajectory datasets are presented in Appendix E.3.

4.2. Solution to Error Accumulations

Following the error visualization methodology introduced
in (Christlieb et al., 2016), we compute and plot the rolling-
step mean squared error (MSE) for each long-term fore-
casting dataset, as illustrated in Figure 10. This rolling
window highlights temporal trends in prediction quality
and makes error accumulation more apparent. Our anal-
ysis demonstrates that prediction errors on datasets such
as PDEBench-SWE, FNO-NS-1e-3, and FNO-NS-1e-4 ex-
hibit no significant error accumulation over time. For other
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Figure 3: Results of scalability for different model sizes.

datasets, although errors display a gradual increase with
temporal progression, PITA substantially reduces error ac-
cumulation compared to conventional auto-regressive bench-
marks. These findings provide strong empirical evidence
that PITA’s multi-scale consistency mechanism effectively
mitigates error propagation across extended temporal se-
quences in long-term forecasting tasks.

4.3. Generalizing to Downstream tasks

To investigate the generalization performance of PITA on
downstream tasks, we consider two experimental settings:
(1) PDEs of the same type as those in the pretraining
datasets, but with different coefficients, (2) PDEs of a dif-
ferent type not present in the pretraining datasets.

In the first setting, we assess PITA’s generalization capac-
ity using the compressible Navier-Stokes equations from
PDEBench (Takamoto et al., 2022) with different shear
viscosity η and bulk viscosity ζ. The finetuning results,
detailed in the fourth column of Table 2, demonstrate that
PITA outperforms all other settings, achieving an average
reduction in error by 5.93%. This exceptional performance
highlights PITA’s capability to proficiently adapt to the in-
tricate challenges posed by compressible fluid dynamics.

In the second setting, we use the viscous Burgers’ equation
(Boussif et al., 2022) for evaluation. The pretrained model
is finetuned on this dataset for 500 epochs employing both
auto-regressive training and PITA. The corresponding re-
sults, presented in the third column of Table 2, demonstrate
that PITA consistently outperforms across all model sizes,
achieving an average error reduction of 37.8% compared to
the original auto-regressive approach. The incorporation of
PDE discovery enables PITA to effectively learn the under-
lying physical laws of the dataset without prior knowledge,
indicating enhanced adaptability to various types of PDEs.
These findings underscore PITA’s robust adaptability and
practical value for a broad range of physical modeling tasks.
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Figure 4: Rolling step MSE on long trajectory datasets.

Table 2: Generalization on two downstream tasks of PITA
compared with baselines. More comprehensive generaliza-
tion experiments are presented in Appendix E.4.

Pretrained
Model

Finetune
Strategy

Burgers PDE-Bench CNS-(M, η)
1,1 × 10−8

DPOT-Ti Auto-regress 0.00904 0.18681
PITA 0.00894 0.16498

DPOT-S Auto-regress 0.00533 0.13372
PITA 0.00458 0.12941

DPOT-M Auto-regress 0.00378 0.14607
PITA 0.00362 0.14453

4.4. Ablation Studies

We performed five ablation studies to assess the impact
of different design choices in PITA, training small-scale
models on the FNO-NS-1E-3 dataset for Tasks 1–4 and on
the Burgers equation for Task 5.

Task 1: Effectiveness of Loss Components. To highlight
the indispensability of each supervision, we systematically
evaluate the pretrained model under various configurations.
Specifically, LData refers to using only data loss, following
the auto-regressive strategy. LData+LP hy denotes the com-
bination of data loss and physics loss, while LData + LCon

represents the combination of data loss and consistency
loss. LT otal represents the inclusion of all three compo-
nents, aligning with the PITA training strategy. Except for
the LData setting, all configurations adopt the multi-task
learning strategy described in Sec. 3.4. As shown in Ta-
ble 3, PITA achieves the best results across all settings,
underscoring the effectiveness of integrating multiple loss

components. Notably, the physics loss LP hy plays a piv-
otal role in guiding the model to adhere to the underlying
physical laws, resulting in 44.97% accuracy promotion. The
consistency loss LCon leads to a 44.10% increase in accu-
racy. It maintains temporal alignment and is essential for the
stability of the learned solution, ensuring smooth transitions
in long-term predictions.

Task 2: Effects of Spatial Downsampling. To boost com-
putational efficiency, PITA adopts a downsampling strategy
to randomly select grids in the spatial domain. The sampled
grid is represented as X̃w = {xi1 , xi2 , . . . , xiw

}, where
w = ⌈n/l⌉ denotes the number of sampled points, and l
represents the downsampling factor. The value of l is se-
lected from {1, 2, 4}. Experimental results indicate that
larger downsampling factors (i.e., fewer sampled grids) of-
ten lead to better performance, which can be attributed to the
balance between data sparsity and generalization (Liu et al.,
2024a). Fewer sampled grids encourage the model to focus
on key spatial features, effectively mitigating overfitting to
fine-grained noise present in denser grids.

Task 3: Effects of Temporal Downsampling. To enhance
computational efficiency, PITA employs a downsampling
strategy that selects frames within the temporal domain.
The sampled solution is expressed as {ut}T −1

t=T −TC
, where

T represents the last frame and TC denotes the number of
frames retained during downsampling. The values of TC are
selected from {10, 7, 5, 3}. Notably, the best results for both
prediction tasks occur at TC = 7. Conversely, increasing
or decreasing TC from this optimal point results in elevated
nRMSE values. While excessive downsampling can lead to
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a significant loss of critical information, retaining too many
frames may detract from the model’s efficiency. Given that
the results for TC = 3 and TC = 7 are relatively close, we
opted to use TC = 3 for the majority of our results presented
in Table 1 to optimize computational costs.

Task 4: Effects of Multi-Task Learning Strategy. The in-
fluence of weighting different components of the total loss is
evaluated. The data loss weight is set 1, the physics loss and
consistency loss are weighted by α1 and α2, respectively.
We compare manually chosen weights (α1, α2) with the
automatically adjusted strategy. The tested manual settings
for (α1, α2) are (0.5, 0.5), (0.3, 0.7), and (0.7, 0.3). As pre-
sented in Table 3, PITA achieves an average improvement
of 9.06% over all manual weight settings, suggesting the ef-
fectiveness of its adaptive strategy in dynamically balancing
competing objectives. This ensures each loss component
contributes optimally to the learning process. Furthermore,
PITA exhibits greater robustness to weight variations com-
pared to existing methods (Raissi et al., 2019), highlighting
its superior ability to generalize across diverse PDE data.

Task 5: Effects of Key Library Terms. We assessed how
key library terms affects PITA’s performance in inferring
physical laws by conducting experiments with distinct con-
figurations on the Burgers equation dataset, which was ex-
cluded from pre-training. The Burgers equation is composed
of a time-dependent term ∂tu, a diffusion term β∇u and a
convective term uδu, which are indispensable for capturing
the underlying dynamics of the system (Gao & Zou, 2017).
Table 3 compares three configurations: “None” removes all
first- and second-order derivatives (no convective or diffu-
sion terms), “One-Order” removes only second-order deriva-
tives (diffusion eliminated, convection retained), and “Full”
uses the complete library. It is evident that the full library
achieves state-of-the-art predictive accuracy. In the ”One-
Order” configuration where only the convective term is
retained, the performance experiences a slight degradation.
Further removal of both the convective and diffusion terms
leads to a modest compromise in the model’s ability to cap-
ture the underlying dynamics. Nevertheless, the model still
achieves a 41.42% improvement over the baseline, demon-
strating the robustness of the approach even with limited
incorporation of physical knowledge. These results concur
with Task 1’s ablation of physics loss, where PITA continues
to improve over the baseline via data and consistency losses
even when physics loss is ineffective.

4.5. Limitations

Despite the advantages mentioned above, the proposed PITA
still has some limitations. First, PITA may require more
computational cost, which results from an intricate gradient
propagation process due to the additional two losses. Impor-
tantly, this extra computation time does not scale with model

Table 3: Results of the ablation studies. For each task, only
the specified settings are different with the other hyperpa-
rameters and training configurations remaining the same.

Task No. Settings nRMSE nRMSE
(10 Step) (Full Length)

TASK 1

LData 0.00301 0.00437
LP hy + LData 0.00166 0.00240
LCon + LData 0.00165 0.00249
LT otal 0.00157 0.00223

TASK 2
l = 1 0.00169 0.00238
l = 2 0.00168 0.00237
l = 4 0.00157 0.00223

TASK 3

TC = 10 0.00161 0.00229
TC = 7 0.00155 0.00221
TC = 5 0.00170 0.00240
TC = 3 0.00157 0.00223

TASK 4

(0.5, 0.5) 0.00172 0.00243
(0.3, 0.7) 0.00175 0.00246
(0.7, 0.3) 0.00171 0.00242
Automatic 0.00157 0.00223

TASK 5

None 0.00325 0.01091
One-Order 0.00287 0.00862
Complete 0.00152 0.00776
Auto-regress 0.00431 0.01857

size, indicating that PITA remains suitable for larger models.
For example, PITA may take approximately 42.32% and
22.8% longer to process for DPOT-Ti and DPOT-L, respec-
tively. Thus, an appropriate downsampling strategy in PDE
discovery is advisable to balance effectiveness and computa-
tional consumption. Second, the performance of PITA may
also be limited by the method used for PDE discovery. The
completeness of the library of terms and the level of noise in
the observational data may affect the model’s performance.

5. Conclusion
In this paper, we present PITA, a novel approach for PDE
foundation models. PITA is designed to address the lim-
itations of traditional auto-regressive methods by mitigat-
ing shortcut issues. Instead of relying on prior knowledge
embedded, PITA discovers underlying physical laws in a
data-driven manner and incorporates these laws into opti-
mization objectives, compelling the model to accurately
learn the governing physics. Extensive experiments are con-
ducted to rigorously validate PITA on foundation models
pretrained across diverse datasets scaling up to 500 million
parameters, as well as individual neural operators tailored
to specific PDEs. PITA consistently achieves state-of-the-
art performance across multiple datasets, demonstrating its
effectiveness across models of different sizes. It also ex-
cels in various downstream tasks, highlighting its strong
generalization capabilities.
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Impact Statement
From a scientific perspective, PITA significantly advances
physics-informed machine learning by providing a versatile
framework that effectively bridges data-driven methodolo-
gies with fundamental physical principles. Its capability to
discover governing equations directly from data serves as
a powerful tool for analyzing complex phenomena, partic-
ularly in scenarios where explicit models are incomplete
or unavailable. However, it is essential to acknowledge
that predictions made by neural networks for physical sys-
tems inherently involve approximation errors and often lack
interpretability.

PITA shows significant potential for numerous future ap-
plications in numerical computing. First, as a development
to the traditional auto-regressive approach, PITA can be
seamlessly applied to various PDE foundation models, sup-
porting both pretraining and finetuning processes. Second,
for domain-specific applications like fluid dynamics, library
terms can be tailored according to governing equations such
as Navier-Stokes. Thus enables more accurate solutions and
better alignment with physical laws. Third, by incorporat-
ing PDE discovery, PITA opens up opportunities to utilize
other inverse problem-solving techniques, such as initial
state recovery and parameter inference, to improve forward
problem-solving.
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A. Table of Notations
The primary notations used in this paper are listed in Table 4.

Table 4: Mathematical Notations.

Notations for Sec. 3.1
Symbol Definition

x Spatial variable in the domain Ω ⊂ Rd.
Ω Spatial domain of PDE.

∂Ω Boundary of spatial domain Ω.
u(x, t) Time-dependent function defined over the spatial domain Ω for the time interval [0, T ].

Xn Discretized grid of n points in Ω, represented as {x1, x2, . . . , xn}, where each xi ∈ Rd.
N Total number of spatiotemporal PDEs considered.
du Dimensionality of the solution space of u.
dk Dimensionality of the spatial domain for the k-th PDE.

u0(x) Initial condition for u at t = 0.
F [u](x, t) Differential operator acting on u and its spatial derivatives.
B[u](x, t) Boundary condition operator applied at boundary points x ∈ ∂Ω.

u(x, t) Solution of PDE at time t, defined in domain Ω, with values in Rdu .
Notations for Sec. 3.2

Symbol Definition
θ Parameters of neural operator. In subsequent sections it refers to the parameters of foundation models.
Gθ Neural operator parameterized by weights θ.
Tin Roll-in window length, representing the number of input frames used as ground truth.
Tar Roll-out window length, representing the number of frames predicted iteratively by Gθ.
u<T Set of frames {ui}T

i=1 used as input.
ûT Predicted frame at time step T .
uT Ground truth frame at time step T .

Notations for Sec. 3.3
Symbol Definition

∥ · ∥p Lp norm.
X̃w Sampled grid for spatial domain.
w Number of downsampled grid points.
C Number of physical variables.
U Matrix representing the compressed data of C channels across m time points and n spatial locations.
Φ Library matrix containing S candidate terms and partial derivatives for the PDE.
S Total number of candidate terms in the library.
Λ Matrix of the discovered PDE coefficients.
Φ† Pseudo-inverse of the library matrix Φ.

Symbols used in the formulas but not listed in the tables are clarified in the main text.

B. Illustration of the Shortcut Problem
This section investigates the origin of the shortcut problem and its consequential error accumulation in auto-regressive
prediction frameworks. When predicting the T -th frame, the prediction error at the (T -1)-th time step propagates to
subsequent predictions. This propagation triggers cumulative error amplification over successive time steps, which is a
critical limitation of auto-regressive mechanisms. As illustrated in Figure 5, within a prediction window of length Tar,
errors originating from the initial frame amplify iteratively, thereby degrading the accuracy of later predictions. Such
accumulation manifests as severe deviations or unphysical artefacts in dynamical system simulations, particularly when
predicted states violate the fundamental physical laws represented by the governing PDEs. For instance, in fluid dynamics or
climate modeling applications, these artefacts may manifest as non-physical vorticity patterns or temperature distributions
that diverge from observed system behavior. The compounding errors not only distort short-term predictions but also erode
the validity of extrapolated trajectories over extended timescales. These artefacts ultimately compromise the reliability of
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long-term scientific forecasts, raising significant challenges for applications requiring high-fidelity numerical simulations.
Furthermore, the error accumulation phenomenon arises from shortcut learning in auto-regressive approaches, where models

Motivation: Shortcut and Cumulative Error Problems

𝒖0 𝒖1 𝒖𝑇−1

Input time window Rollout time window

𝒖 = concat(𝒖𝑻, 𝒖)

𝒖 = (𝒖0, ⋯ , 𝒖𝑻−𝟏)

𝒖𝑻 = 𝐺𝑤(𝒖
0, ⋯ , 𝒖𝑻−𝟏)

𝒖𝑻+𝟏 = 𝐺𝑤(𝒖
0, ⋯ , 𝒖𝑻)

𝒖𝑇+𝑇𝑎𝑟𝒖𝑇 𝒖𝑇+1
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ෝ𝒖𝑇 → ෝ𝒖𝑇+1 → ෝ𝒖𝑇+𝟐 → ⋯ෝ𝒖𝑇+𝑇𝑎𝑟
Error

𝑇
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𝑇 + 𝑇𝑎𝑟 − 1

Accumulative Error

⋯⋯

𝒖𝑇−1𝒖0 𝒖𝑇

Figure 5: Illustration of Error Propagation in Auto-regressive Prediction.

prioritize copying values from the (T -1)-th frame to predict the T -th frame, rather than learning the underlying physical
dynamics governed by PDEs. To quantify this behavior, we analyze two long-trajectory datasets using auto-regressive
prediction, where the nRMSE is notably higher compared to other methods, as shown in Figure 6. In this figure, the pink
curve labeled Temporal SSIM (predicted t vs predicted t − 1) measures the structural similarity index (SSIM) between
consecutive predicted frames, ût−1 and ût. The blue curve labeled Frame SSIM (predicted t vs ground truth t ) quantifies
the SSIM between the predicted frame ût and the ground truth frame ut.

At initial time steps, the blue curve dominates the pink curve (Figure 6), indicating that ût aligns more closely with the
ground truth ut than with the prior prediction ût−1. This suggests the model initially captures physical dynamics encoded
in the PDEs rather than relying on superficial shortcut features. However, at later stages, the pink curve surpasses the blue
curve, revealing that ût increasingly resembles ût−1 instead of ut, thereby exacerbating shortcut-driven error propagation.
This divergence reflects the model’s failure to learn true physical features instead, it recursively replicates prior predictions,
introducing incremental errors at each step. Over extended trajectories, the repeated copying of erroneous frame values leads
to severe error accumulation, particularly in systems requiring long-term stability, such as turbulence modeling or climate
projections. Addressing this limitation is critical for improving the robustness of auto-regressive methods in scientific
computing.

C. Details of Datasets
C.1. FNO-NS-ν

This benchmark dataset considers the 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the
unit torus. The equation is written as

∂tw + u · ∇w = ν∆w + f ,

∇ · u = 0,
(13)

where w is vorticity field, u is the velocity field, f is the external force. The only varying component in this dataset is
the viscosity coefficient ν, which takes values from the set

{
1 × 10−5, 1 × 10−4, 1 × 10−3}

, corresponding to the datasets
FNO-NS-1e-5, FNO-NS-1e-4, and FNO-NS-1e-3. For FNO-NS-1e-5, the total length of the testing data is 20 steps, while
for both FNO-NS-1e-4 and FNO-NS-1e-3, the length is 30 steps. The task involves predicting future vorticity steps w(x, t)
given the initial 10 steps, where (x, t) ∈ [0, 1]2 × [0, T ].
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Figure 6: Intrinsic connection between error accumulation and shortcut learning. On the left, we present the shortcut issue on
the PDEBench-DR dataset with a trajectory length being 91. On the right, we present the shortcut issue on the NS2D-Force
dataset with a trajectory length being 46.

C.2. PDEBench-CNS-(M, η)

Different from FNO-ν, this benchmark dataset considers the 2D Navier-Stokes equation for a viscous, compressible fluid.
The equation is written as

∂tρ + ∇ · (ρv) = 0,

ρ (∂tv + v · ∇v) = −∇p + η△v + (ζ + η/3)∇(∇ · v)

∂t

[
ϵ + ρv2

2

]
+ ∇ ·

[(
ϵ + p + ρv2

2

)
v − v · σ′

]
= 0,

(14)

where ρ represents the mass density, v is the velocity, p denotes the gas pressure, and ϵ = p/(Γ − 1) is the internal energy,
where Γ = 5/3. The viscous stress tensor is denoted by σ′, and η, ζ are the shear and bulk viscosity, respectively. The Mach
number M is defined by M = |v|/

√
Γp/ρ.

This benchmark examines the varying components of Mach number M and shear viscosity η , with values consisting
of (1, 0.1), (1, 0.01), (0.1, 0.1), and (0.1, 0.01). The total length of the dataset is 21 steps. The prediction length for the
short trajectory is set to 11, whereas for the other datasets, the prediction length for the short trajectory is 10. Given
the initial 10 steps, the objective is to predict the velocity v(x, t), pressure p(x, t), and density ρ(x, t) fields, where
(x, t) ∈ [0, 1]2 × [0, 1].

C.3. PDEBench-SWE

The shallow-water equations, derived from the general Navier-Stokes equations, present a suitable framework for modelling
free-surface flow problems. The equation is written as

∂th + ∂xhu + ∂yhv = 0,

∂thu + ∂x

(
u2h + 1

2grh2
)

+ ∂yuvh = −grh∂xb,

∂thv + ∂y

(
v2h + 1

2grh2
)

+ ∂xuvh = −grh∂yb,

(15)

where u and v represent the velocities in the horizontal and vertical directions, h describes the water depth, and b indicates
a spatially varying bathymetry. The total length of the testing dataset comprises 101 steps. Given the initial 10 steps, the
objective is to predict the water depth h(x, t) within the domain [−2.5, 2.5]2 × [0, 1].
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C.4. PDEBench-DR

This benchmark dataset considers diffusion-reaction type PDE that combines a diffusion process and a rapid evolution from
a source term. The equation is expressed as

∂tu = Du∂xxu + Du∂yyu + Ru, ∂tv = Dv∂xxv + Dv∂yyv + Rv, (16)

where Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively, Ru = Ru(u, v) and Rv = Rv(u, v)
are the activator and inhibitor reaction function, respectively. The total length of the testing dataset comprises 101 steps.
Given the initial 10 steps, the task is to predict the density fields u, v where the domain is [−1, 1]2 × [0, 5].

C.5. PDEArena

This benchmark dataset focuses on the incompressible Navier-Stokes equations in velocity function and vorticity stream
formulation,

∂v

∂t
= −v · ∇v + µ∇2v − ∇p + f ,

∇ · v = 0,
(17)

where v represents the velocity flow fields, f denotes the external force, and p is the internal pressure. This benchmark
consists of two subsets: the PDEArena-NS, which includes a fixed external force, and the PDEArena-NS-Force, which
incorporates a variable external force. For the PDEArena-NS dataset, the length of the testing data is 14 steps, while for
the PDEArena-NS-Force dataset, the length is 56 steps. The objective for both datasets is to predict the velocity v(x, t),
pressure p(x, t), and density ρ(x, t) fields using the initial 10 steps, where (x, t) ∈ [0, 32]2 × [0, 24].

C.6. CFDBench-NS

This benchmark dataset focuses on the incompressible fluid dynamics on domains with irregular geometries

∂

∂t
(ρu) + ∇ · (ρu2) = −∇p + ∇ · µ

[
∇u + (∇u)⊤]

,

∇ · (ρu) = 0,
(18)

where ρ is the density and µ is the dynamic viscosity, u is the velocity field, and p is the pressure. The total length of the
testing dataset consists of 20 steps. The task is to predict the velocity field u(x, t) given the initial 10 time steps.

C.7. Magnet-Viscous Burgers

To evaluate whether PITA can effectively handle downstream tasks, we consider the Burgers’ equation, which models the
dynamics of a field u incorporating nonlinear advection and diffusion. The equation is written as:

∂tu + u∇u = β∆u,

u(0, x, y) =
5∑

j=1
Aj sin

(
2πlx

j x/64 + Φx
j

)
cos

(
2πly

j y/64 + Φy
j

)
,

(19)

where u represents the field, β is the diffusion coefficient β ∈ (0, 0.2], and the coefficients of initial conditions are sampled
as Aj ∈ [−0.5, 0.5], lx

j , ly
j ∈ {1, 2, 3}, and Φx

j , Φy
j ∈ [0, 2π). The total length of the testing dataset consists of 50 steps. The

task is to predict the field u(x, t) over the domain (x, t) ∈ [0.25, 63.75]2 × [0, 9.8], given the initial 10 steps.

D. Training Details
D.1. Model Configuration

Below, we provide the details of the various model configurations and scales used in the paper.

• DPOT: In Table 5, we provide the training configurations of DPOT (Hao et al., 2024).
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Table 5: Configurations of DPOT of different sizes.

Size Attention Dim MLP Dim Layers Heads Params
Tiny 512 512 4 4 7M
Small 1024 1024 6 8 30M

Medium 1024 4096 12 8 122M
Large 1536 6144 24 16 509M

• FNO: In Table 6, we provide the training configurations of FNO (Li et al., 2020), where Mode1 and Mode2 represent
the number of Fourier modes used in x and y spatial dimension respectively.

Table 6: Configurations of FNO.

Size Mode1 Mode2 Width Depth Params
Medium 8 5 512 4 170M

• MPP: In Table 7, we provide the training configurations of MPP (McCabe et al., 2023).

Table 7: Configurations of MPP.

Size Embed Dim MLP Dim Heads Blocks Patch Size Params
Tiny 192 768 3 12 [16,16] 7.6M
Small 384 1536 6 12 [16,16] 29M

D.2. Hyperparameters

The following training hyperparameters are used across all experiments, except where explicitly stated otherwise.

Table 8: Training Hyperparameter Settings Across Models and Strategies.

Model DPOT MPP FNO
Strategy Auto-regressive PITA Auto-regressive PITA Auto-regressive PITA

Batch Size 20 20 24 24 20 20
Gradient Clipping 10000 10000 1 1 1 1

Dropout 0 0 0.1 0.1 0 0
Initial Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Optimizer Adam Adam AdamW AdamW Adam Adam
Learning Rate Schedule Cycle Cycle Cycle Cycle Cycle Cycle

Weight Decay 1e-6 1e-6 5e-2 5e-2 1e-6 1e-6
Warmup Epoch 50 50 5 5 50 50

optimizer momentum (0.9,0.9) (0.9,0.9) (0.9,0.999) (0.9, 0.999) (0.9,0.9) (0.9,0.9)

E. Supplementary Experimental Results
E.1. Data Efficiency Analysis of Downstream Tasks

To establish that PITA can be effectively applied to downstream tasks with limited and costly data acquisition, we conducted
a series of experiments with varying sample sizes, analyzing data efficiency as shown in Table 9. Our experiments
utilize the DPOT-S model. In general, both PITA and the auto-regressive model exhibit improved performance with an
increased number of samples, whether training from scratch or finetuning from pretrained models. Notably, when finetuning
from pretrained models, PITA achieves comparable prediction accuracy to the auto-regressive model, utilizing only 500
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samples—half the number required by the latter, which requires 1000 samples to reach a similar level of accuracy. Moreover,
when training from scratch, PITA demonstrates state-of-the-art performance, achieving an average reduction in nRMSE by
11.48%. This significant improvement highlights PITA’s efficiency and suitability for scenarios where data is scarce and
expensive to obtain.

Table 9: Comparisons of Data Efficiency on Downstream Tasks.

Finetuning from Pretrained Model Training from Scratch
Samples Size Auto-regress PITA Auto-regress PITA

10 0.1092 0.10273 0.14395 0.13873
100 0.01077 0.00998 0.01538 0.01405
500 0.00549 0.00514 0.00640 0.00586
800 0.00543 0.00451 0.00636 0.00531
1000 0.00518 0.00504 0.00629 0.00502

E.2. Performance Comparison of PITA and Auto-regressive Methods on Long Trajectory Datasets

To demonstrate that PITA effectively helps the shortcut problem commonly encountered in long trajectory datasets and
achieves superior performance, we present the prediction results for both auto-regressive and PITA methods in Figure 7.
The nRMSE for each method across the datasets is calculated as the average of the prediction results from all models, as
detailed in Table 1. The results indicate that PITA consistently outperforms other methods across all long trajectory datasets,
achieving an average nRMSE reduction of 29.15%. Except for the PDEBench-DR and PDEArena-NS-Force datasets, PITA
also significantly outperforms the auto-regressive training approach, achieving an average nRMSE reduction of 15.93%.
While the performance of PITA on the two aforementioned datasets is relatively close to that of auto-regressive, the results
remain competitive.

PDEBench-SWE PDEBench-DR FNO-NS-1e-3 FNO-NS-1e-4 PDEArena-NS-Force
Datasets with Long Trajectory

10 2

10 1

nR
M

SE

Auto-regressive prediction of 10 steps
PITA prediction of 10 steps
Auto-regressive prediction of full length
PITA prediction of full length

Figure 7: Results of PITA and Auto-Regressive Methods on Long Trajectory Datasets.

E.3. Scaling Experiments

In this section, we analyze the scaling results from Table 1, which are illustrated in Figure 8. It is observed that as the
model size increases, the average nRMSE across the five datasets with long trajectories decreases, generally following a
scaling law. However, on two larger-scale datasets (FNO-NS-1e-3 and FNO-NS-1e-4) PITA performs less stably on the
larger-sized baselines. The main reason may be that the DPOT baseline uses a cyclic learning rate decay incorporating
very high learning rates during training. This may lead to gradient explosion or overly aggressive weight updates, affecting
the convergence of models with more parameters. Furthermore, DPOT performs finetuning for all model sizes with only
500 epochs and sets the gradient clipping value to 10,000. This prevents PITA from converging stably on larger datasets
with larger model sizes. We found that this issue can be mitigated after adjusting the training settings. For example, when
we provide sufficient training, PITA shows more stable convergence results, as shown in Table 10 of Appendix E.4. To
demonstrate PITA’s plug-and-play performance more fairly, we still follow DPOT’s training settings in the experiments,
without making any adjustments to PITA, except for special declarations.
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Figure 8: Results of scaling experiments for different dataset sizes. In the first row, we present results for PDEBench-SWE
(left) and FNO-NS-1e-3 (right). In the second row, we show results for NS-Force (left) and FNO-NS-1e-4 (right).

E.4. Comparative Analysis of Training from Scratch and Finetuning Pretrained Models

To compare the performance of pretrained models with those trained from scratch, we selected four datasets, as shown in
Table 10. Testing on the PDEBench-DR and FNO-NS-1e-5 datasets represents in-distribution testing, while the PDEArena-
SWE and Burgers serve as the out-of-distribution test. It is noteworthy that although the shallow-water equation was
included in the training dataset for the DPOT model, the only physics variable observed during training was the water depth.
In the out-of-distribution context, in addition to predicting the surface height h, the model will also predict 88 steps of zonal
velocity u, meridional velocity v, pressure field p, and wind vorticity field ξ.

Firstly, for in-distribution test, the results from finetuning are slightly better than those achieved by training from scratch
using the auto-regressive and PITA methods. This improvement is attributed to the former’s training over 2500 epochs,
compared to only 1500 epochs for the latter. With a reduction of 19.684% in nRMSE, the training cost for finetuning is
1.5 times that of training from scratch using PITA or the auto-regressive method. This suggests that large scale pretraining
on PDE datasets may not be effective and does not scale well with an increased number of training epochs. Secondly, in
out-of-distribution test, the results from finetuning using pretrained models are generally worse than those from training
from scratch. This indicates that during the pretraining process, the model primarily learns the physical laws from the
training datasets, lacking the capacity to generalize to unseen tasks where the underlying physical principles are unknown.
Moreover, the physics laws governing different families of PDEs share little similarity, even among PDEs within the same
family but with varying parameters. As a result, a foundation model may struggle on out-of-distribution tests. Lastly, when
training from scratch, the results are generally better than those obtained using the auto-regressive method. This observation
highlights PITA’s potential application in PDE foundation models.

E.5. Comparison of PITA and Auto-regressive Methods (Tar = 10)

In this section, we present the training results for Tar = 10. Each dataset’s full trajectory is predicted, with the roll-out
prediction length fixed at Tar = 10. Consequently, Table 11 contains only the results for long trajectory predictions. It is
observed that when the roll-out window length is set to 10, the results are generally poorer compared to those from Tar = 1.
This decline in performance can be attributed to the shortcut problem that occurs during training.
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Table 10: Experimental Results of Pretrained Models Versus Models Trained from Scratch Using Auto-regressive and PITA
Methods. Finetune in the table indicates that the model is finetuned on a pretrained model of a specific size. Train from
Scratch (Auto-regress) refers to models trained using the auto-regressive approach without any pretrained models. Train
from Scratch (PITA) denotes models trained using the PITA approach without any pretrained models.

In Distribution Out of Distribution
PDEBench-DR FNO-NS-1e-5 PDEArena-SWE Burgers

Model Strategy
Epoch 500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500

DPOT-Ti
Finetune (Auto-regress) 0.12281 0.04249 0.00522 0.11144 0.06398 0.03595 18.46497 5.24994 1.01142 0.03712 0.02543 0.00455
Train from Scratch (Auto-regress) 0.29705 0.05467 0.00651 0.18219 0.07222 0.04072 5.98731 3.20792 0.99990 0.06691 0.01526 0.00419
Train from Scratch (PITA) 0.42291 0.03921 0.00577 0.15501 0.07312 0.04009 2.07097 3.89625 0.99710 0.06945 0.01318 0.00374

DPOT-S
Finetune (Auto-regress) 0.14761 0.02113 0.00456 0.11242 0.04399 0.03054 44.70683 2.69744 0.99152 0.04679 0.01627 0.00304
Train from Scratch (Auto-regress) 0.20054 0.05483 0.00617 0.11495 0.04570 0.03771 8.0087 2.66849 0.99414 0.06251 0.02703 0.00383
Train from Scratch (PITA) 0.80244 0.05853 0.00807 0.11741 0.06509 0.03701 16.16088 1.87741 0.99051 0.04121 0.01943 0.00307

Table 11: Comparisons of PITA and Auto-regressive Strategies Across Various Models and Datasets (Tar = 10).

FNO-NS-ν PDEBench PDEBench CNS-(η, ζ) PDEArena CFDBench
1e-5 1e-4 1e-3 DR SWE 1,0.1 1,0.01 M1 0.1,0.1 0.1,0.01 M0.1 NS-Force NS

Small Models
DPOT-Ti Auto-regress 0.0982 0.0779 0.0065 0.0342 0.0083 0.0523 0.0345 0.0434 0.0492 0.0213 0.0352 0.3441 0.0762 0.0027

7M PITA 0.0897 0.0692 0.0058 0.0286 0.0032 0.0505 0.0298 0.0402 0.0531 0.0262 0.0397 0.2862 0.0585 0.0019
DPOT-S Auto-regress 0.0879 0.0406 0.0022 0.0312 0.0036 0.0678 0.0280 0.0479 0.0439 0.0357 0.0398 0.2185 0.0570 0.0028

30M PITA 0.0790 0.0371 0.0025 0.0183 0.0016 0.0548 0.0301 0.0425 0.0405 0.0311 0.0358 0.2335 0.0621 0.0016
DPOT-M Auto-regress 0.0785 0.0402 0.0031 0.0384 0.0032 0.0512 0.0216 0.0364 0.0517 0.0216 0.0367 0.2256 0.0540 0.0039

122M PITA 0.0630 0.0285 0.0019 0.0305 0.0020 0.0468 0.0175 0.0322 0.0532 0.0208 0.0370 0.1878 0.0500 0.0028
FNO-M Auto-regress 0.1592 0.0338 0.0029 - 0.0023 0.0527 0.0373 0.0450 0.0588 0.0263 0.0425 0.3064 0.2446 0.0041
170M PITA 0.1300 0.0148 0.0018 - 0.0030 0.0478 0.0414 0.0446 0.0621 0.0310 0.0466 0.2485 0.1997 0.0049

Large Models
DPOT-L Auto-regress 0.0704 0.0208 0.0031 0.0344 0.0018 0.0308 0.0344 0.0326 0.0585 0.0287 0.0436 0.1741 0.0562 0.0036

500M PITA 0.0688 0.0185 0.0036 0.0299 0.0019 0.0274 0.0328 0.0301 0.0523 0.0312 0.0417 0.1675 0.0509 0.0039

E.6. Comparison of Sparse Regression and Other Numerical Algorithms

The choose of sparse regression framework for PDE discovery is primarily based on its theoretical and experimental
advantages. Firstly, the ℓ0 regularization in sparse regression in our PDE discovery step inherently suppresses noise by
enforcing sparsity in the candidate coefficient space. As noted in compressed sensing theory (Donoho, 2006), sparse
regularization, particularly ℓ0 regularization, prunes small-magnitude terms caused by observational noise, effectively
driving them to zero while preserving dominant dynamical terms (Huang & Aviyente, 2006; Wen et al., 2018). Additionally,
prior work (Chen et al., 2021; Rudy et al., 2017) has provided experimental evidence that sparse regression can successfully
identify governing equations with high accuracy even in the presence of noisy data. The ℓ0-norm regularization adopted in
this paper systematically eliminates noise-dominated low-magnitude terms through a hard thresholding mechanism.

Secondly, compared to the sparse regression algorithm, existing regression methods exhibit significant limitations in
complex correlation and noise scenarios. While the classical LASSO (Tibshirani, 1997) method achieves sparsity through
ℓ1 regularization, its convex relaxation property tends to randomly select collinear features when high correlations exist
between columns of the data matrix (as demonstrated in the typical PDE identification scenario in reference (Knowles
& Renka, 2014)), leading to unstable identification of true physical patterns and resulting in non-unique solutions and
pseudo-sparsity phenomena. The sequentially thresholded least squares (STLS) method (Budišić et al., 2012) improves
sparse identification through a recursive thresholding mechanism, but its iterative process based on ordinary least squares
lacks regularization mechanisms. In the presence of ill-conditioned matrices or highly correlated features (as shown in
the experiments of reference (Budišić et al., 2012)), the computation of unregularized inverse matrices amplifies noise
sensitivity and leads to cumulative parameter estimation bias with increasing iterations. Regarding interpretability, although
traditional ridge regression improves matrix condition numbers and mitigates collinearity effects through ℓ2 regularization
(as theoretically analyzed in reference (Noack et al., 2003)), its inherent non-sparse solution property fundamentally conflicts
with the interpretability requirements of physical models.

Thirdly, in our experiments, when employing other non-sparse methods such as pseudo-inverse or least squares regression
(Golub & Pereyra, 1973), the resulting coefficient matrices exhibit significant non-physical oscillations due to the lack of
sparsity constraints in the solution space. This leads to an increase in the second-order norm of the residual terms by 2 or 3
orders of magnitude. Such ill-conditioned solutions make it difficult to effectively normalize LP hy and can also trigger
gradient explosion phenomena during back propagation.
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Table 12: Comparisons of Numerical Algorithms Adopted for PITA in the DPOT-Ti Model.

PDEBench-DR FNO-NS-1e-5
Numerical Algorithm Test Loss (91 Steps) Test Loss (10 Steps)

Pseudoinverse 0.02016 0.08971
Least Squares Method 0.06903 0.09470

Sparse Regression 0.01090 0.05629

E.7. Comparison of Computational Cost Between PITA and Auto-regressive Methods

PITA differs from conventional auto-regressive methods by incorporating a PDE discovery procedure, which introduces
additional training-time computation and CPU memory usage. We measured per-batch training time, the extra time incurred
by the PDE discovery process (“STRidge time” in Table 13), and CPU memory consumption. Given that GPU memory
usage remains invariant relative to the baseline, it is therefore excluded from our measurements. The results are summarized
in Table 13 and Figure 9.

As shown in Figure 9 (right), the overhead due to PDE discovery (detailed in Section 3.3) is constant and independent of
model size. During inference, PITA matches the baseline’s efficiency—because discovery and alignment occur only during
training—and consistently outperforms it on long-term prediction benchmarks (see Figure 7).

Figure 9 (left) shows that PITA requires no additional GPU memory but incurs a fixed, moderate increase in CPU memory for
candidate library construction and sparse regression. This decoupling of computational overhead from model dimensionality
enables PITA to scale to billion-parameter architectures without prohibitive resource demands. For example, a 500 M-
parameter, L-level model incurs only 0.517s extra per batch ( 20% increase) while achieving a 31.61% improvement in
long-trajectory prediction accuracy.

Table 13: Computation Cost Comparison Between PITA and Auto-regressive.

Size Model Training Time (s) STRidge Time (s) CPU Memory Consumption (MB)

Ti PITA 0.4124 0.0959 1429.43
Auto-regressive 0.2941 - 1060.53

S PITA 0.5783 0.0847 1533.21
Auto-regressive 0.3464 - 1095

M PITA 1.2012 0.1124 2207.5
Auto-regressive 0.8924 - 1937.48

L PITA 3.0381 0.1098 2581.84
Auto-regressive 2.5207 - 2203.63

E.8. Influence of the Percentage of Remained Library Terms

To evaluate the impact of the incomplete library, we conducted experiments with subsampled candidate term sets, as shown
in Table 14. When randomly retaining 50% of the library terms, the test loss on PDEBench-SWE increases from a baseline
of 0.00137 (achieved with full-term libraries) to 0.00213. Notably, this performance degradation diminishes when preserving
80% of library terms, where the test loss stabilizes at 0.00135 – statistically comparable to the full-library configuration.
Crucially, this finding indicates that the library architecture requires no specialized customization for individual PDE
systems.

Table 14: Influence of the Percentage of Remained Library Terms on Test Loss.

Percentage of the Remained Library Terms Test Loss (10 Steps) Test Loss (Full Length)
50% 0.00209 0.00213
80% 0.00145 0.00135

100% 0.00150 0.00137
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Figure 9: Results of Computational Costs Between PITA and Auto-regressive Method. In the left, we present the CPU
memory consumption of each approach. In the right, we show the additional computational time for the sparse regression
process of PITA.

E.9. Influence of Accuracy of the Discovered Physics Accuracy on PITA’s Performance

In this discussion, we designed a specific experiment to evaluate PITA’s robustness against dynamic failure, where we
deliberately injected noise into the gradient computation of PITA’s physics loss to simulate inaccurate or corrupted dynamics.
As illustrated in Table 15, even under such a direct attack on the physics constraint, PITA still exhibits strong robustness.

Table 15: Influence of Discovered Physics Accuracy on PITA Under Noise Attack in Terms of Physics Loss.

PDEBench-SWE
Method nRMSE (10 Steps) nRMSE (91 Steps)

PITA (Salt Pepper Noise) 0.00224 0.00256
PITA (Without Noise) 0.00202 0.00199

Auto-regressive 0.00208 0.00241

We further validate robustness by perturbing the PDE spatial grid (see Table 16), showing that even with an intentionally
distorted grid, the method maintains performance parity with unperturbed settings. Even when the PDE discovery fails, the
multi-task learning framework mitigates its negative impact, ensuring that the model degrades gracefully to the baseline
performance.

Table 16: Influence of Discovered Physics Accuracy on PITA in the DPOT-Ti Model.

PDEBench-SWE PDEBench-DR
Grid Type nRMSE (10 Steps) nRMSE (91 Steps) nRMSE (10 Steps) nRMSE (91 Steps)

Wrong Grid 0.0024 0.00231 0.02115 0.01684
Correct Grid 0.00202 0.00199 0.02119 0.0109

E.10. Performance on Modeling Chaotic Dynamical Systems

To rigorously evaluate PITA’s capacity for modeling chaotic dynamical systems under extended temporal extrapolation,
we conducted controlled experiments on synthetic 2D Kolmogorov turbulence flows, which is a canonical benchmark for
chaotic PDE systems exhibiting multiscale energy cascades and nonlinear dissipation processes. Our turbulence simulation
dataset contains 300 spatiotemporal trajectories with 64 × 64 grid resolution and 150 temporal steps, intentionally designed
to challenge long-term forecasting fidelity. Both methodologies leverage the same pretrained DPOT-Ti model. As shown in
Table 17, our results demonstrate that PITA significantly outperforms the auto-regressive baseline in capturing the intricate
patterns of chaotic fluid evolution. Specifically, PITA exhibits superior alignment with the underlying physical dynamics,
showcasing its enhanced ability to model complex, long-term behaviors in turbulent systems.
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Table 17: Test Loss on Kolmogorov Turbulence Flow.

Test Loss (10 Steps) Test Loss (150 Steps)
Auto-regressive 0.2581 0.4459

PITA 0.2247 0.3152

E.11. Robustness Analysis of PITA under Noise and Data Masking

One of the most significant challenges facing PDE foundation models is their ability to cope with noisy or incomplete
data in real-world scenarios. To assess PITA’s robustness, we firstly conduct a series of experiments in which Gaussian
noise is injected into the dataset at three different levels: 0.05, 0.005 and 0.0005. As summarized in Table 18, PITA
consistently outperforms all baseline methods under every noise condition, achieving an average accuracy improvement
of 51.79 %. Notably, even at the highest noise level of 0.05, PITA maintains stable performance, demonstrating a much
smaller degradation compared to its peers. These results not only confirm PITA’s strong resilience to data corruption but
also highlight its practical potential for deployment in applications where high-quality measurements are difficult to obtain.

Table 18: Test Loss with Noisy Data at Different Noise Levels on the DPOT-Ti Model with the FNO-NS-1e-3 Dataset.

Auto-regressive PITA
Noise Scale nRMSE (10 Steps) nRMSE (20 Steps) nRMSE (10 Steps) nRMSE (20 Steps)

0.05 0.32331 0.45795 0.2017 0.3214
0.005 0.01947 0.0631 0.00828 0.01241

0.0005 0.00402 0.00608 0.00237 0.00333

Secondly, we evaluate PITA’s capability to reconstruct solutions from incomplete observations. Specifically, 25% of the
PDE dataset is randomly masked, and the model is tasked with predicting the full field, including within the occluded
regions. As reported in Table 19, PITA significantly outperforms the auto-regressive baseline under these conditions. While
all methods experience some performance degradation when confronted with missing data, PITA’s relative drop in accuracy
is markedly lower. We attribute this resilience to PITA’s integrated PDE-discovery module, which infers the governing
dynamics even from downsampled, partially missing inputs, enabling it to generalize beyond the observed measurements.
These results demonstrate PITA’s enhanced ability to recover accurate solutions in data-sparse settings, highlighting its
potential for deployment in real-world scenarios where measurement gaps are ubiquitous.

Table 19: Test Loss with Incomplete Data on the DPOT-Ti Model with the PDEBench-SWE Dataset.

Auto-regressive PITA
Mask Ratio nRMSE (10 Steps) nRMSE (91 Steps) nRMSE (10 Steps) nRMSE (91 Steps)

0.25 0.02176 0.1264 0.0112 0.0801

E.12. Error Bars of PITA on Long Trajectory Datasets

To ascertain that the improvements of PITA demonstrated in Table 1 stem specifically from its PDE discovery framework
and alternating direction optimization algorithm, we evaluate the performance of PITA against auto-regressive methods on
datasets featuring extended temporal trajectories. Such datasets inherently pose challenges for long-term prediction and
downstream tasks due to their temporal complexity. By assessing multiple model scales, we further investigate how variance
patterns and reliability metrics correlate with model complexity. As illustrated in Figure 10, the results confirm that PITA’s
enhancements are statistically significant and intrinsically tied to its architectural design, rather than stochastic fluctuations.

F. Visualizations of Trajectory
In this section, we visualize datasets predictions presented in Table 1.
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Figure 10: Mean Value and Standard Deviation on Datasets with Long Trajectory.

F.1. PDEBench-DR

In this section, we visualize two quantities from the diffusion-reaction equation: the density fields u and v.
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F.2. FNO-NS-ν

Here we visualize the vorticity w of the incompressible Navier-Stokes equation, with different viscous coefficient ν =
1 × 10−3, 1 × 10−4, 1 × 10−5.

• ν = 1 × 10−3

• ν = 1 × 10−4
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• ν = 1 × 10−5
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F.3. PDEArena

Here we visulize the velocity v, pressure p, and density fields ρ from two datasets from PDEArena-NS1/2: NS-Force and
NS.

• NS-Force
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F.4. PDEBench-CNS

Here we visualize the velocity fields u and v, pressure p and density ρ of the compressible naive-stokes equation with
different parameters.

• (M, η) = (1, 0.01)
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• (M, η) = (0.1, 0.01)
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• (M, η) = (1, 0.1)
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• (M, η) = (0.1, 0.1)
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• (M, η) = (1, 1 × 10−8)
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F.5. Magnet-Viscous Burgers

Here we visualize the field u from viscous burgers’ equation.
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F.6. CFDBench

Here we visualize the velocity and pressure fields u.
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F.7. PDEBench-SWE

Here we visualize water depth h from the shallow-water equation.
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