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Abstract
With the rapid integration of AI in virtual001
meeting platforms, automatic summarization002
has become essential for productivity across003
sectors. While text summarization has seen004
significant progress, dialogue-based summa-005
rization remains underexplored, with efforts006
largely focusing on improving quality and ad-007
dressing domain adaptation. Privacy concerns,008
however, are often neglected, exposing sensi-009
tive information, particularly in critical settings010
like healthcare, finance, and legal interactions.011
This paper introduces a privacy-sensitive taxon-012
omy addressing diverse scenarios and explores013
strategies to safeguard privacy in AI-generated014
summaries. Our hybrid approach combines015
rule-based and learning-based techniques to ad-016
dress direct and indirect privacy threats while017
maintaining content accuracy. Using a special-018
ized dataset curated around our taxonomy, we019
fine-tuned large language models and evalu-020
ated them with human and automated metrics,021
including Privacy and Completeness Scores.022
The results demonstrate the effectiveness of023
these models in mitigating privacy risks, offer-024
ing a strong foundation for advancing privacy-025
preserving AI technologies while balancing pri-026
vacy and completeness.027

1 Introduction028

With the integration of AI technologies in virtual029

meeting platforms like Google Meet, Zoom, and030

Microsoft Teams (Google, 2024; Zoom, 2023; Mi-031

crosoft, 2024b, 2023), the automatic generation of032

summaries in remote collaboration environments033

—be it for meetings, codes, documents, or entire034

repositories — has become a powerful tool to en-035

hance productivity and manage information flow.036

However, this advancement brings significant pri-037

vacy concerns to the forefront. As these platforms038

process vast amounts of sensitive data, ensuring039

privacy is critical to prevent unauthorized access,040

data breaches, and compliance violations. Regula-041

tions like GDPR, CCPA, and HIPAA impose strict042

privacy requirements, yet breaches persist, high- 043

lighting the need for better data management. By 044

prioritizing privacy, these summaries help enforce 045

compliance and minimize data exposure across var- 046

ious fields, enabling seamless collaboration while 047

upholding the privacy and compliance essential to 048

digital ecosystems. Figure 4 compares the sum- 049

mary generated by the current baselines for a given 050

conversation with an ideal target summary. The 051

application of Privacy-preserving summaries have 052

further been discussed in Appendix A. (General 053

Data Protection Regulation (GDPR), 2021; Secu- 054

rity Metrics, 2024; U.S. Department of Health and 055

Human Services, 2021) 056

Currently, a lot of work has already been done in 057

the field of text summarization as can be seen from 058

the works of Yadav et al. (2022), Goyal et al. (2023) 059

Hariri (2024), Shakil et al. (2024), and Zhang et al. 060

(2023). A point to note is that although Dialogue- 061

based summarization has become increasingly im- 062

portant across domains, yet the task remains largely 063

unexplored at hand with even less focus on associ- 064

ated Privacy concerns. Some of the earlier works 065

exploring Dialogue-based tasks like those by Wang 066

et al. (2022), Gao et al. (2023) and Zhu et al. (2023) 067

using smaller neural summarization models, and 068

the more recent ones using LLMs like the works 069

of Li et al. (2024b), Ramprasad et al. (2024), Tang 070

et al. (2024) and Tian et al. (2024) , are all mainly 071

focused for maintaining the overall quality of the 072

summary generated, working on factors like Fac- 073

tual Consistency, Hallucinations and Domain Adap- 074

tation using curated datasets and trained models, 075

with not much discussions done on Privacy. The 076

work done by Dou et al. (2024) does address pri- 077

vacy in the form of self-disclosures by developing a 078

taxonomy and fine-tuning models for better results, 079

but we came across a few limitations including a 080

more pronounced focus on a user-identifiable level 081

and reduced scope of overall extensibility under 082

different settings, elaborated in the next section. 083
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Gumusel et al. (2024) identified significant privacy084

concerns in AI-powered chatbots like ChatGPT,085

including monitoring, data aggregation, and unau-086

thorized sharing—risks that highlight potential pri-087

vacy breaches in AI-driven summarization tools for088

virtual meetings if not properly managed. More-089

over, Ruane et al. (2019) discussed the broader090

ethical implications of deploying Conversational091

Agents across various sectors, emphasizing the im-092

portance of handling data sensitively to avoid pri-093

vacy breaches and prevent biases or misrepresenta-094

tion in generated summaries.095

Current privacy-preserving strategies can be096

broadly categorized into three main approaches:097

• Prompt-based masking use task-specific098

prompts to guide models in masking person-099

ally identifiable information (PII) automati-100

cally but struggles with edge cases (Wang101

et al., 2023; Sivarajkumar et al., 2024)102

• Rule-based checklists rely on predefined103

rules like direct matching using regex pat-104

terns or checklists trained using Named Entity105

Recognition (NER) models to mask PII con-106

sistently but struggle in contexts when deal-107

ing with new types of sensitive data or indi-108

rect references like partial private key or a109

masked credit card number in a non-standard110

format (Soomro et al., 2017; Sivarajkumar111

et al., 2024)112

• Learning-based approaches leverage mod-113

els trained on large datasets containing labeled114

PII to autonomously identify and mask sen-115

sitive information (Zheng et al., 2024; Sanh116

et al., 2022)117

118

2 Our Contributions119

The study understands privacy as protecting sensi-120

tive data against unauthorized access and is among121

the first to address this problem in depth. We pro-122

pose a novel taxonomy for identifying sensitive123

data, drawing from literature and real-world con-124

versational scenarios across twelve settings (Fig-125

ure 2). Each setting is structured into categories,126

subcategories, and elements, prioritized by sensi-127

tivity (High, Medium, Low). Inspired by Zhang128

et al. (2024) and Fu et al. (2024), our approach129

integrates rule-based precision with learning-based130

adaptability, training LLMs on a dataset captur-131

ing diverse privacy breaches to generate aligned,132

privacy-preserving responses. We then proceeded133

Figure 1: An overview of the systematic approach used
to generate and verify privacy-preserving summaries in
our research

to the dataset curation process which addressed 134

gaps in existing datasets by generating synthetic 135

conversations using GPT-4o across settings, hav- 136

ing for each data point a dialog, metadata mapped 137

to privacy categories, summaries, violation labels, 138

and revised summaries. To ensure realistic sce- 139

narios, 200 data points from four public bench- 140

marks (DialogSum, SAMSum, etc.) were picked 141

based on their use cases and integrated with our 142

dataset to mimic real-world settings. We then tested 143

not only on these datapoints but also on the ai- 144

masking-400k dataset (Figure 8), achieving high 145

accuracies of detection to show that our approach 146

masks sensitive information in actual real-world 147

settings as well. Finally, the experiments involved 148

fine-tuning seven LoRA-based models on Phi3.5- 149

mini, testing diverse techniques among overfitting 150

analysis, early stopping, and preference optimiza- 151

tion methods. Evaluations used GPT-4-based Pri- 152

vacy and Completeness scores (1-5 scale), NLP 153

metrics (ROUGE, BERTScore, MoverScore), and 154

Human evaluation (Consistency, Relevance, Co- 155

herence, Privacy) with Kappa scores to measure 156

inter-rater agreement. This was then followed by 157

the interpretations based on the results thus ob- 158

tained. Figure 1 gives an overview of the system- 159

atic approach used to generate and verify privacy- 160

preserving summaries in our research. 161

3 Relevant Works 162

Differential Privacy The introduction of differ- 163

ential privacy into language models provides foun- 164

dational insights into privacy preservation. Li 165

et al. (2024a) introduce a comprehensive evaluation 166
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framework for language models, assessing privacy167

vulnerabilities through simulated attacks. However,168

its focus on cryptographic and DP metrics means169

it may not fully account for the subtleties of natu-170

ral language like semantic nuances and contextual171

implications, risking disclosure of personally iden-172

tifiable information (PII) or sensitive personal opin-173

ions, resulting in privacy breaches. Mu et al. (2024)174

use differential diversity prompting to adapt to the175

context of the task, making them more versatile176

and effective in handling diverse reasoning chal-177

lenges. The study enhances reasoning capabilities178

but lacks mechanisms to assess and manage sen-179

sitive information, posing risks in regulated fields180

like healthcare or finance. This oversight may lead181

to increased privacy violations, potentially compro-182

mising compliance with various regulatory bodies.183

Privacy Frameworks Dou et al. (2024) ad-184

dressed privacy risks in online self-disclosures by185

developing language models trained on Reddit data186

to detect and abstract sensitive information using187

a predefined taxonomy. The study demonstrated188

promising results in minimizing privacy breaches.189

However, the major focus on personal identifiers190

along with the static taxonomy limits the flexibility191

to adapt to new contexts of sensitive information,192

while reliance on Reddit posts reduces the mod-193

els’ effectiveness in diverse linguistic and cultural194

contexts as well. This work might benefit from a195

dynamic taxonomy and a more inclusive dataset196

spanning various platforms and scenarios.197

Fideslang Ethyca (2023a,b) is a technology com-198

pany specializes in privacy engineering, focus-199

ing on helping organizations to streamline privacy200

compliance with global regulations like GDPR.201

In this pursuit, Ethyca developed Fideslang, an202

open-source privacy taxonomy that categorizes203

data types, uses, and subjects, enabling developers204

to embed privacy directly into the software devel-205

opment lifecycle. While effective in this regard, its206

rule-based structure is limited to software systems207

and lacks adaptability to unstructured interactions208

where its generic categorizations might not fully209

capture the subtleties of different contexts. To ad-210

dress this primary issue, a new privacy taxonomy211

overcoming the predefined limitations of the exist-212

ing taxonomy is needed, enabling dynamic adap-213

tation and consistent privacy protection across di-214

verse scenarios through context-aware, sensitivity-215

based classifications .216

Current Baselines In enhancing the safety and 217

reliability of interactions involving LLMs, both 218

the ShieldGemma project (Zeng et al., 2024) and 219

Llama Guard (Inan et al., 2023) have made signif- 220

icant strides with ShieldGemma focusing on ad- 221

vanced content moderation models to detect harm- 222

ful content such as hate speech and harassment, 223

while Llama Guard classifying safety risks associ- 224

ated with user prompts and AI responses through 225

a structured safety risk taxonomy. However, both 226

initiatives lack an adaptive framework for manag- 227

ing sensitive information across contexts and have 228

datasets, though effective for detecting harmful 229

content, lack coverage of complex privacy scenar- 230

ios, limiting their real-world applicability. Our 231

research addresses these gaps by incorporating di- 232

verse real-world cases, proposing an adaptable tax- 233

onomy, and training robust models to balance pri- 234

vacy and utility. With strong results, our work sets 235

a new benchmark for privacy-preserving AI, en- 236

suring both safety and contextual sensitivity in AI 237

interactions. 238

4 Privacy Taxonomy 239

The question of what constitutes privacy and 240

what information is considered sensitive is 241

central to ongoing debates and studies like those 242

conducted by Li et al. (2023), where the authors 243

emphasize that privacy can be understood as the 244

safeguarding of sensitive and personal information 245

that individuals or institutions hold, against any 246

kind of unauthorized access, and by Veritas 247

Technologies (2023), where privacy is defined 248

as the individual’s control over their personal 249

and sensitive data, protecting such data from 250

unauthorized access and breaches. The multi- 251

faceted nature of privacy leads to the definition 252

of a dynamic entity that changes with the context 253

and setting of a conversation. Within each setting, 254

elements are considered sensitive on varying 255

levels and require masking to prevent accidental 256

leakage (Figures 2 and 5) . To address these 257

complexities, based on existing literature, datasets 258

and most common scenarios we came across, 259

we have proposed a taxonomy encompassing 12 260

settings - Family and Relationships, Healthcare 261

settings, Employment, Finances, Social Media, 262

Legal Proceedings, Political Activities, Religious 263

Contexts, Sexual Orientation and Gender Identity, 264

Travel and Location, and Education, along with 265

a Generic setting, covering any information that 266
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Figure 2: An overview of the Taxonomy showing the different settings considered

comes under PII. The settings were chosen to cover267

most of the sensitive information that typically268

arise in regular conversations in our day-to-day269

lives and is at risk of being exposed. We delve270

deeper into each setting, identifying all the possible271

different sensitive categories, sub-categories, and272

elements, organized according to the different273

levels of priority or sensitivity—High, Medium, or274

Low. We follow the Fideslang notation given by275

Ethyca (2023b), representing any element as <set-276

ting>.<sensitivity_level>.<category>.<subcategory277

(if any)> , with each of the levels mentioned in278

snake_case. For example, Work History from279

Figure 5 (b) would be represented as employ-280

ment.high_sensitivity.work_history. While a strict281

demarcation is impractical, our approach aligns282

with general privacy concepts and perceptions of283

sensitivity, organizing privacy-sensitive informa-284

tion into hierarchies and clusters, and enabling285

a holistic view of potential risks. Our goal is286

not to achieve perfect privacy masking but to287

balance it with completeness, ensuring that all288

the necessary information is delivered without289

significant leakage of sensitive data, adhering to290

accepted privacy standards.291

Moreover, this taxonomy can also can be incor-292

porated into a dynamic pipeline where it would293

serve as a foundational “safety layer”, ensuring294

alignment with existing privacy regulations, and295

LLMs can then be used to propose new categories,296

either deeper into an existing setting or a new one297

entirely, with human experts validating these addi-298

tions to ensure legal and ethical alignment. This299

would ensure that the taxonomy remains both com-300

prehensive and adaptable to new scenarios.301

5 Dataset Curation302

Existing datasets often focus on narrow aspects like303

hate speech or explicit identifiers, missing indirect304

privacy risks such as inferences or metadata, which 305

are critical in domains like healthcare, law, and 306

finance. Our dataset addresses this by covering 307

both explicit and subtle privacy violations. We gen- 308

erated 1,100 synthetic data points using GPT-4o, 309

each containing six key columns: setting, dialog, 310

metadata mapped to privacy categories, privacy- 311

preserving summary, evaluation labels for viola- 312

tions, and corrected summaries addressing iden- 313

tified privacy risks. The process followed an ap- 314

proach consisting of five key steps: 315

• Step 1: Dialog Generation We generated 316

conversations between participants based on 317

our taxonomy, covering different privacy- 318

sensitive situations. For each setting we gen- 319

erated around 100 conversations, infusing a 320

few minor settings and their related sensitive 321

elements. We passed the major setting and 322

the minor settings in the prompt, along with 323

our taxonomy to help generate the required 324

conversations. 325

• Step 2: Metadata Extraction Next, we ex- 326

tracted all relevant metadata from the conver- 327

sation, mapping it to the appropriate privacy 328

categories in the taxonomy. Here we provided 329

the conversation generated in the previous 330

step along with the taxonomy as input in the 331

prompt. 332

• Step 3: Summary Generation In the third 333

step, a privacy-preserving summary was gen- 334

erated from the conversation. For the inputs, 335

we provided the Conversation and the Taxon- 336

omy. Guided by the taxonomy, this summary 337

aimed to remove sensitive information while 338

retaining key elements to provide an overall 339

idea of the conversation. 340

• Step 4: Summary Quality After the initial 341

summary, we identified privacy violations by 342
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providing the Summary and the Metadata gen-343

erated above with the prompt and asked GPT-344

4o to check if anything sensitive in the meta-345

data is leaked into the summary. In case of346

minor, low sensitivity or no violations, the347

summary was labeled as "GOOD", otherwise348

"BAD" along with the violations in the same349

manner as in the Taxonomy.350

• Step 5: Summary Correction If a summary351

was labeled as "BAD," a corrective step was352

taken where We provided in the input prompt353

the Summary generated along with the Vio-354

lations identified in the previous step . We355

then obtained a revised summary generated356

by addressing the violations found in the ear-357

lier summary.358

To ensure data quality, we first manually ver-359

ified 30 initial datapoints and used them for In-360

Context Learning (ICL) with GPT-4o to generate361

better datapoints. These were not partial checks362

but a structured seed dataset for guiding ICL. Since363

privacy can be subjective, each generated conver-364

sation was then manually reviewed to ensure it365

seemed natural and aligned with realistic possi-366

bilities. While synthetic data formed the major-367

ity, we incorporated 200 real-world examples from368

benchmark datasets—DialogSum, SAMSum, Con-369

voSumm, and TweetSum—selecting 50 examples370

from each to improve real-world connectivity and371

mimic realistic scenarios. Edge cases were delib-372

erately included for completeness to ensure broad373

coverage of privacy-sensitive situations. After cu-374

rating the entire dataset, full manual verification375

was done on all the datapoints to ensure alignment376

with real-world privacy needs. The final dataset377

had 1,300 data points, with 1,065 for training and378

235 for testing, ensuring a comprehensive privacy379

coverage. The importance of this dataset is further380

elaborated in Appendix B.1.381

6 Experiments382

383

Model Prompting We had done an extensive384

analysis to check the adaptation of the models385

using prompting alone (zero-shot, one-shot, few-386

shot) but we observed that despite providing the387

complete taxonomy and incorporating few-shot ex-388

amples for In-Context Learning (ICL), the gener-389

ated summaries exhibited a lot of inconsistencies,390

with some successfully masking sensitive informa-391

tion while others inadvertently leaking private data,392

even though it had specifically been provided in- 393

formation about sensitive data including named 394

entities (Appendix E.1 contains more details on 395

this). Figure 9 shows a few cases where despite 396

providing all information, prompting alone failed 397

to adhere to some indirect as well as some very 398

basic checks. These results were unreliable, as 399

there was no consistent guarantee of privacy preser- 400

vation across responses. Given the limitations of 401

prompting-based approaches, we shifted our focus 402

to fine-tuning models for the task. 403

Model Fine-tuning For testing our dataset in 404

privacy-preserving summarization, we fine-tuned 405

seven LoRA-based models using different tech- 406

niques each with Phi-3.5-mini as the base (Model 407

0), chosen for its 128K token context length and 408

strong dialogue-handling capabilities. Model 1 409

analyzed overfitting by training on both correct 410

and incorrect summaries, while Model 2 applied 411

early stopping to balance learning and generaliza- 412

tion. Model 3 was trained solely on correct sum- 413

maries, serving as a benchmark for ideal conditions 414

without dealing with potential privacy leaks ex- 415

plicitly. Model 4 introduced corrected summaries 416

post-privacy violations to teach correction mecha- 417

nisms. Model 5 used Direct Preference Optimiza- 418

tion (DPO) to align with human preferences, while 419

Model 7 leveraged Odds Ratio Preference Opti- 420

mization (ORPO) for the same with efficient han- 421

dling of ambiguous privacy violations. Model 6 422

generated both normal and privacy-preserving sum- 423

maries simultaneously for training the model to 424

balance completeness and privacy-preservation dy- 425

namically. These models were systematically de- 426

signed to explore different optimization strategies, 427

ensuring a complete evaluation of privacy protec- 428

tion in summarization. Section C elaborates further 429

about the different techniques used to train the mod- 430

els along with the intuition behind them. 431432

7 Evaluations 433

7.1 LLM-as-a-Judge 434

To evaluate the model responses, we employed 435

Privacy and Completeness scores as metrics, using 436

the LLM-as-a-judge evaluation technique. GPT-4 437

was used as the judge, scoring summaries on these 438

two aspects based on a detailed scoring rubric with 439

the original conversation, the generated summary, 440

and the scoring criteria included. The Privacy score 441

assesses the extent to which summaries preserve 442
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Table 1: Model performance across privacy settings (Bold values compare models to the highest scores overall)

settings Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 GPT-4o

Generic 0.3673 0.5714 0.3878 0.9592 0.6327 0.9796 0.9388 0.9796 0.7551
Education 0.2973 0.4865 0.5676 0.9459 0.6757 0.9730 0.9459 0.9730 0.7297

Employment 0.2083 0.6667 0.4375 0.9583 0.5000 0.9792 0.9583 0.9792 0.7500
Family and Relationships 0.2778 0.5370 0.3519 0.9444 0.5926 0.9815 0.9444 0.9630 0.7407

Finances 0.4524 0.6667 0.4286 0.9524 0.5238 0.9762 0.9286 0.9762 0.7619
Healthcare settings 0.4615 0.6346 0.3846 0.9423 0.5962 0.9808 0.9231 0.9808 0.8077
Legal Proceedings 0.2647 0.5294 0.4118 0.9118 0.6176 0.9706 0.9118 0.9706 0.7941
Political Activities 0.2778 0.5556 0.3056 0.9167 0.6944 0.9722 0.9444 0.9722 0.7778
Religious Contexts 0.2979 0.6170 0.5319 0.9149 0.5957 0.9787 0.9149 0.9787 0.8085

Sexual Orientation and Gender Identity 0.2564 0.5128 0.4872 0.9487 0.5385 0.9744 0.9487 0.9744 0.7436
Social Media 0.2286 0.6857 0.6000 0.9143 0.5429 0.9714 0.9429 0.9714 0.8000

Travel and Location 0.2121 0.6667 0.5455 0.9394 0.5455 0.9697 0.9394 0.9697 0.7273

Average 0.3063 0.5949 0.4466 0.9387 0.5870 0.9763 0.9368 0.9743 0.7668

Table 2: Comparison of Privacy and Completeness scores for Models across LLMs

Models Phi-3.5 Phi-4 Qwen2.5

Model 0 Model 3 Model 6 Base Model Model 3 Model 6 Base Model Model 3 Model 6

Privacy Score 4.235 4.605 4.884 3.8205 4.6175 4.6562 3.6438 4.5857 4.3233

Completeness Score 4.270 4.051 4.047 4.4756 4.0424 4.0293 4.2439 3.9878 4.0537

sensitive information by effectively masking sen-443

sitive information while the Completeness score444

measures how well summaries retain the key in-445

formation from the original conversation and con-446

vey the essential points. Scores were rated on a447

5-point scale, ranging from 5 (perfect) to 1 (critical448

issues), with 4 indicating minor issues, 3 moderate449

gaps, and 2 significant shortcomings in privacy or450

completeness. It should be noted that GPT-4 here451

doesn’t serve as an infallible judge, instead it serves452

as a preliminary evaluation tool in a multi-layered453

framework, using structured guidelines for Com-454

pleteness and Privacy. Its assessments are validated455

against NLP metrics and human evaluations, ensur-456

ing a balanced, iterative approach that minimizes457

biases. Moreover, all conclusions drawn in the pa-458

per are then based on a combination of GPT-4’s459

assessments, NLP metrics and human evaluations,460

ensuring a balanced approach that mitigates poten-461

tial biases from any source. We also evaluated all462

models for various categories and subcategories463

across settings and obtained setting-wise and over-464

all privacy accuracy scores. These, along with the465

LLM-as-a-Judge scores together, acted as a screen-466

ing tool for us to determine which techniques effec-467

tively balanced Privacy and Completeness, inform-468

ing the next steps of evaluation in our research.469

Results Based on overall average scores across470

settings (Table 1), the percentage of acceptable471

summaries (Figure 7), and LLM metrics (Table 9),472

Models 3 and 6 effectively balanced privacy and 473

completeness, achieving scores comparable to or 474

surpassing the baseline GPT-4o and approaching 475

the scores of the Ground Truth summaries. Conse- 476

quently, we decided to focus on these two models 477

for further analysis and experimentation. Model 478

3, trained solely on privacy-preserving summaries, 479

achieved high scores in privacy (4.605) and com- 480

pleteness (4.051), while Model 6, generating both 481

normal and privacy-preserving summaries simul- 482

taneously, also achieved similarly high scores in 483

privacy(4.884) and completeness (4.047), reflect- 484

ing their capability to manage the trade-offs effec- 485

tively. Similar trends were observed with Phi-4 and 486

Qwen2.5 (Table 2), confirming the robustness of 487

Model 3 and Model 6 across LLM architectures 488

with privacy scores around 4.5 and completeness 489

above 4.0, faring much better than the respective 490

base models overall. 491

7.2 NLP Metrics 492

We also used metrics that current models often 493

rely on such as ROUGE (Lin, 2004), BERTScore 494

(Zhang et al., 2020), and MoverScore (Zhao et al., 495

2019), all meant to measure content quality but 496

in different ways. While ROGUE focuses on 497

text overlap of n-grams, BERTScore and Mover- 498

Score rely on semantic embeddings to evaluate 499

the similarity between the generated and reference 500

summaries. This semantic-based evaluation helps 501

accommodate the different conversation and dia- 502
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Table 3: Model Comparison across NLP Metrics with Phi-3.5 baseline

Models ROUGE Scores BERTScores MoverScores

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum BERT-base RoBERTa DeBERTa BERT-Tiny BERT-Small BERT-Medium

Model 3 0.4934 0.2062 0.3573 0.3572 0.7163 0.9156 0.7664 0.5716 0.5005 0.4530
Model 6 0.4998 0.2143 0.3680 0.3676 0.7236 0.9177 0.7715 0.5832 0.5112 0.4624
Base Model 0.4766 0.1952 0.3450 0.3471 0.7018 0.9111 0.7526 0.5591 0.4834 0.4323

Table 4: Model Comparison across NLP Metrics with Phi-4 baseline

Models ROUGE Scores BERTScores MoverScores

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum BERT-base RoBERTa DeBERTa BERT-Tiny BERT-Small BERT-Medium

Model 3 0.5112 0.2247 0.3729 0.3726 0.7192 0.9163 0.7682 0.5726 0.5028 0.4674
Model 6 0.4963 0.2052 0.3587 0.3688 0.7001 0.9107 0.7521 0.5623 0.4855 0.4239
Base Model 0.4317 0.1624 0.2883 0.2960 0.6425 0.8914 0.7009 0.4629 0.3976 0.3573

logue patterns encountered during testing, provid-503

ing more flexibility in measuring summary qual-504

ity. These metrics were computed using the Fru-505

galscore Framework (Eddine et al., 2021) for effi-506

cient computation.507

Results Regarding the NLP metrics, we observed508

similar trends across LLMS Phi-3.5, Phi-4 and509

Qwen2.5 (Tables 3, 4 and 5), where Model 3 and510

Model 6 achieved the highest scores across all511

ROUGE metrics, suggesting better retained critical512

information while adhering to privacy constraints513

across different model architectures. They also514

delivered highest scores across all configurations515

of BERTScore, highlighting superior semantic un-516

derstanding and alignment with ground-truth sum-517

maries. The models again emerged as the strongest518

across BERT-based student models in MoverScore,519

indicating ability to align summaries with input520

conversations while preserving semantic integrity.521

In all these cases they consistently outperformed522

the base model particularly for use cases requir-523

ing both context preservation and strong privacy524

safeguards, making them highly suitable for appli-525

cations in sensitive domains.526

7.3 Human Evaluation527

While NLP metrics prioritize semantic similar-528

ity and coherence they often fail to assess privacy529

preservation, meaning a high score could still im-530

ply exposure of sensitive information. This paper531

thus advocates for a Human evaluation to ensure532

summaries meet privacy constraints while main-533

taining coherence, relevance, and factual accuracy534

to a standard generally considered acceptable. Our535

evaluation criteria, adapted from DialogSum (Chen536

et al., 2021) with an added Privacy parameter, in-537

clude:538

• Consistency: Measures whether the summary 539

consistently reflects the original conversation. 540

• Relevance: Judges how well the summary 541

retains essential information for completeness 542

• Coherence: Evaluates whether the summary 543

logically flows and makes sense. 544

• Privacy: Assesses how well the summary ef- 545

fectively masks sensitive data 546

Evaluations used a binary scale (0 or 1) with 547

inter-rater agreement measured via Cohen’s and 548

Fleiss’ Kappa scores (McHugh, 2012). Initially, 549

six evaluators, who had been given instructions 550

on how to annotate using a clear evaluation crite- 551

ria, assessed 10 conversations across seven fine- 552

tuned models, the base model, GPT-4o, and ground 553

truth summaries. After identifying top-performing 554

models, a more focused or Distilled Evaluation 555

followed on 20 additional conversations to vali- 556

date findings, ensuring a rigorous and credible as- 557

sessment of the models’ effectiveness in generat- 558

ing privacy-preserving summaries. Further details 559

about our choice of scale here have been discussed 560

in Appendix E.3. 561

Results In the initial human evaluation, Model 3 562

showcased a strong performance, achieving high 563

scores in Privacy (0.89) while also maintaining 564

good results across other dimensions. Similarly, 565

Model 6 demonstrated high performance, with a 566

Privacy score of 0.88, reflecting its effectiveness 567

in privacy-preserving summarization. Both mod- 568

els outperformed GPT-4o, which, despite strong 569

overall performance, struggled with maintaining a 570

decent score in Privacy (0.73). The distilled eval- 571

uations reinforced these findings, with Model 3 572

slightly improving its Privacy score while Model 573

6 showed further advancements, reaching 0.90 in 574

Privacy. Both models continued to outperform 575

GPT-4o, demonstrating their suitability for privacy- 576
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Table 5: Model Comparison across NLP Metrics with Qwen2.5 baseline

Models ROUGE Scores BERTScores MoverScores

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum BERT-base RoBERTa DeBERTa BERT-Tiny BERT-Small BERT-Medium

Model 3 0.4365 0.1758 0.3649 0.3351 0.6830 0.9049 0.7374 0.5410 0.4685 0.4100
Model 6 0.4605 0.1984 0.3460 0.3557 0.6971 0.9099 0.7503 0.5636 0.4732 0.4390
Base Model 0.4192 0.1513 0.2738 0.3139 0.6258 0.8861 0.6849 0.4542 0.3885 0.3513

Table 6: Human evaluation of Models against GPT-4o and Groundtruth as baselines with Kappa scores

Models Initial Evaluation Distilled Evaluation

Consistency Relevance Coherence Privacy Consistency Relevance Coherence Privacy

Model 3 0.88 0.83 0.84 0.87 0.93 0.85 0.86 0.88
Model 6 0.90 0.81 0.85 0.86 0.91 0.84 0.88 0.90
GPT-4o 0.91 0.80 0.82 0.75 0.92 0.82 0.84 0.72
Ground Truth 0.93 0.88 0.90 0.91 0.93 0.83 0.87 0.80

Cohen’s Kappa (Avg) 0.798 0.716 0.817 0.744 0.813 0.729 0.832 0.761
Fleiss’ Kappa 0.797 0.714 0.817 0.748 0.814 0.732 0.834 0.763

centric summarization tasks with minimal content577

quality compromise. The high Kappa scores, both578

Cohen’s and Fleiss’ scores closing 0.8 and above579

across all dimensions, validated these results with580

average scores increasing in the Distilled Evalua-581

tion, indicating strong agreement among evaluators582

and further validating that well-tuned models can583

deliver enhanced privacy protection without com-584

promising summary quality.585

8 Future Work586

The study by Li et al. (2020) explores the impact587

of cultural differences on privacy and the need for588

dynamic categorization of sensitive elements ac-589

cording to contextual settings while the work of590

Liang (2019) talks about ways to implement user-591

level customization. Future work could aim to592

integrate our models into a dynamic pipeline, that593

allows individuals to provide relational information594

for tailored masking of sensitive data, adapting to595

context and user needs to address these concerns.596

The management of permission access to sensitive597

data could present challenges across organizations,598

which could be minimized by exploring ways for599

curation, training and inference locally within a se-600

cure environment. The model’s performance after601

quantization could also be explored to enable edge602

computing on personal devices, enhancing privacy,603

reducing latency, and improving scalability.604

9 Conclusion605

This study addresses privacy-preserving summa-606

rization, balancing completeness with safeguard-607

ing privacy. We introduced a structured taxonomy608

identifying sensitive elements across diverse do-609

mains and curated a dataset integrating synthetic 610

and real-world examples to ensure diversity and 611

relevance. Seven models were fine-tuned on Phi 612

3.5, with Model 3 and Model 6 performing best. 613

The robust evaluation framework, combining NLP 614

metrics and human assessments, confirmed these 615

models’ capabilities in real-world settings. Model 616

3, trained on high-quality, privacy-aware exam- 617

ples, demonstrated an optimal balance by inter- 618

nalizing omission patterns without excessive false 619

positives. Model 6 introduced a dual-output design, 620

generating both standard and privacy-preserving 621

summaries, further enabling dynamic adaptation to 622

meet varying privacy requirements across scenarios. 623

In contrast, models emphasizing strict redactions, 624

such as Model 5 (DPO) and Model 7 (ORPO), pri- 625

oritized privacy but compromised completeness at 626

the cost of excessive content loss, highlighting the 627

inherent trade-off between the two. While GPT-4o 628

served as a benchmark, its lack of domain-specific 629

privacy control emphasized the necessity of such 630

a tailored, domain-focused training. Our findings 631

demonstrate that no single paradigm universally re- 632

solves this trade-off but instead privacy-focused AI 633

requires contextual awareness and adaptable archi- 634

tectures to optimize for the task. By establishing a 635

structured taxonomy, dataset, and evaluation frame- 636

work, this work provides insights for developing 637

systems that mitigate privacy risks while maintain- 638

ing content integrity, thus supporting compliance, 639

collaboration, and innovation in digital ecosystems. 640

The dynamic nature of privacy, however, demands 641

ongoing refinement of these models to accommo- 642

date evolving scenarios and user-specific needs, 643

which is something future works could focus on. 644
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Limitations645

Concerns regarding truly unbiased data hold for646

our use of GPT-4, GPT-4o, and human evaluators647

to assess the performance and utility of the mod-648

els trained. One set of evaluations was done using649

LLMs, while another was done by human evalua-650

tors, making it important to acknowledge the possi-651

bility that the pre-trained models or evaluators may652

introduce their own biases when determining what653

constitutes sensitive information and what qualifies654

as a privacy violation. Further challenges associ-655

ated with human evaluation include the increased656

time and effort required for evaluating the models657

and their subsequent re-training, if needed, as they658

are inherently more labor-intensive and slower com-659

pared to automated processes. While we attempt to660

mitigate the risk of subjective bias in human judg-661

ments by employing multiple evaluators and using662

standardized criteria, this approach does not fully663

eliminate the risk as some degree of bias may still664

persist since this is not a comprehensive solution.665

Although our models have been tested on both666

synthetic and real-world datasets, they have not yet667

been deployed in real-world settings where their668

performance could be continuously monitored and669

we would be able to observe any violations when670

exposed to new settings and situations, not covered671

in the training phase. So, further testing in the672

real world across a broader range of datasets and673

varied scenarios is necessary to validate the model’s674

general applicability as well.675

Ethics Statement676

This study is conducted in accordance with the677

guidelines of the ACL Code of Ethics. We have678

rigorously filtered out any potentially offensive con-679

tent and removed all identifiable information of the680

participants involved in the study to ensure confi-681

dentiality. The primary objective of this study is to682

develop a tool that mitigates privacy risks associ-683

ated with dialogue-based summarizations, prevent-684

ing both direct and indirect leakage of highly confi-685

dential and sensitive information. Our evaluations686

identified no potential risks that could adversely687

disadvantage any marginalized or otherwise vul-688

nerable populations. We expect that this approach689

will lead to a net improvement addressing privacy690

concerns in existing and future models. The cu-691

rated data is intended solely for research purposes692

only, and the views expressed in the data do not693

necessarily reflect the views of the research team694

or any of its members. 695
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Appendix 916

917

A Why Privacy? 918

919

Motivation Privacy breaches in critical sectors 920

like healthcare, law, and personal relationships 921

can have dire social, legal, and reputational con- 922

sequences. Regulations such as the General Data 923

Protection Regulation (GDPR) and the California 924

Consumer Privacy Act (CCPA) aim to protect per- 925

sonal data, but their enforcement highlights on- 926

going challenges. GDPR, which imposes strict 927

data protection requirements in the EU, subjects 928

companies to fines of up to C20 million or 4% of 929

global turnover for non-compliance. High-profile 930

violations, such as those involving British Airways 931

and Google, emphasize the difficulties organiza- 932

tions face in meeting these standards. Similarly, 933

the CCPA provides Californians with rights over 934

their personal data and imposes penalties for non- 935

compliance, yet many companies struggle to adhere 936

to these regulations, particularly in the tech sector. 937

Despite these regulatory frameworks, breaches 938

continue to occur, exposing vulnerabilities in exist- 939

ing privacy systems, especially within automated 940

systems like conversational AI. The reactive nature 941

of GDPR and CCPA, which address violations post- 942

breach, calls for proactive solutions. This paper 943

argues for the development of privacy-preserving 944

summarization models that can mask sensitive in- 945

formation across diverse contexts such as health- 946

care and legal proceedings, thereby minimizing in- 947

direct privacy risks and safeguarding organizations 948

from legal repercussions and reputational dam- 949

age. (General Data Protection Regulation (GDPR), 950

2021; Security Metrics, 2024) 951

The motivation for this research is rooted in these 952

real-world stakes. Existing privacy-preserving ap- 953

proaches in NLP often fall short in complex con- 954

texts like summarizing sensitive conversations or 955

meetings. This paper aims to highlight and ad- 956

dress these gaps by creating models that do more 957

11
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Column Description
setting The setting of the conversation
dialog Conversation between individuals
metadata Taxonomy-based extraction of all

Privacy Sensitive elements across settings
from the Conversation

summary Privacy Preserving Summary generated
quality Quality of the Summary
violations Violations in the Summary
corrected_summary Privacy Preserving Summary with

all violations addressed

Table 7: The structure of the dataset curated

Figure 3: A sample datapoint showing how data is formatted under each of the columns mentioned in the Dataset

than simple PII masking—they must handle indi-958

rect privacy risks in automated summaries while959

maintaining content fidelity.960

While many tools have been able to mask sen-961

itive information to some extent, none are as962

thorough as we would want them to be in or-963

der to tackle the challenges posed by privacy-964

preserving summarization, mainly focussing on965

context-sensitive leaks and the appropriate use of966

conversational data in providing relevant infor-967

mation as required, which may not contain overt968

PII but still reveal personal or private information969

through inference. Moreover, LLM-based models970

used in real-world applications (e.g., customer ser-971

vice, medical transcriptions) can unintentionally972

expose sensitive information in their outputs, mak-973

ing privacy-preserving summarization critical on974

both an individual level, as well as an organiza-975

tional level.976

977

To illustrate the necessity for privacy-preserving978

summarization, consider several key use cases: 979

• Healthcare: Summarizing doctor-patient in- 980

teractions may inadvertently reveal diagnoses 981

or personal medical history, violating Health 982

Insurance Portability and Accountability Act 983

or HIPAA regulations (U.S. Department of 984

Health and Human Services, 2021). 985

• Education: Summarizing student-teacher in- 986

teractions, especially when discussing mental 987

health, can reveal sensitive details that com- 988

promise a student’s privacy. 989

• Legal: Summarizing confidential legal pro- 990

ceedings or client-attorney conversations 991

could compromise the attorney-client privi- 992

lege or expose sensitive case details. 993

• Corporate: Boardroom meetings or HR dis- 994

cussions may include sensitive financial data, 995

strategic plans, or employee records. A failure 996

in preserving privacy could lead to financial 997

or reputational damage. 998

• Personal Messaging: Applications like mes- 999

saging services that summarize long conversa- 1000

12



Figure 4: A Comparison between current results (From GPT-4o with Privacy violations highlighted) and Target
summary

(a) Family and Relationships (b) Employment

Figure 5: Examples of settings displaying different categories and elements considered in the Taxonomy

tions may reveal unintended and private infor-1001

mation about relationships, sexual orientation,1002

political views, or religious beliefs.1003

There’s more as for social media, Privacy pre-1004

serving summaries can be used to exclude geolo-1005

cation or identifiers, curbing breach of personal1006

privacy or doxxing risks for activists. Developers1007

can strip security vulnerabilities from code sum-1008

maries before external sharing, while organizations1009

can leverage them to comply with GDPR’s “right1010

to be forgotten” by avoiding raw data storage on1011

unsecured servers. Individuals also benefit by stor-1012

ing sanitized information in their own note-taking1013

apps, eliminating accidental retention of passwords1014

or sensitive conversations. All these applications in-1015

dicate that Privacy preserving summaries transform 1016

data sharing into a privacy-first process, mitigating 1017

legal, ethical, and security risks inherent in AI- 1018

driven workflows. In today’s interconnected, AI- 1019

driven workflows, the risk of oversharing is preva- 1020

lent everywhere. Privacy-preserving summaries 1021

are not merely a limited solution but a proactive 1022

safeguard against both human error and systemic 1023

vulnerabilities, ensuring privacy is preserved not 1024

just for the user, but for every entity downstream. 1025

Their value lies in enabling collaboration and inno- 1026

vation without compromising the ethical and legal 1027

obligations that uphold trust in digital ecosystems. 1028

1029
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B Dataset Curation1030

The process of dataset curation played a crucial1031

role in supporting the development and evalua-1032

tion of our privacy-preserving strategies. Once1033

we had our taxonomy in hand, we created a hy-1034

brid dataset comprising the synthetic dataset as1035

well as datapoints from the 4 real-word datasets1036

DialogSum, ConvoSumm, TweetSum, and SAM-1037

Sum, as discussed earlier. The dataset consisted1038

of around 1300 data points having dialog conver-1039

sations, metadata of the conversation containing1040

extracted sensitive information based on our tax-1041

onomy hierarchy,summaries (which may or may1042

not preserve privacy), quality labels along with1043

privacy violations in the summaries (if any), and1044

a final privacy-preserved summary. Table 7 pro-1045

vides an overview of the structure of the dataset,1046

while Figure 3 shows a sample datapoint in the1047

set. This structured dataset covers not only the1048

common cases, but also many of the edge cases of1049

privacy sensitivity across various settings, ensuring1050

the model is exposed to the full range of privacy1051

violations and scenarios.1052

1053

B.1 Dataset Importance1054

The dataset introduced in this study is one of1055

the first to address privacy at such depth and repre-1056

sents a critical advancement in privacy-preserving1057

research, addressing a significant gap in existing1058

resources. While prior datasets focus narrowly on1059

explicit identifiers (e.g., names, addresses) or iso-1060

lated domains like hate speech, our work system-1061

atically tackles the multifaceted nature of privacy1062

through a novel, context-aware taxonomy spanning1063

across real-world settings (e.g., healthcare, finance,1064

legal). By combining synthetic data—generated1065

to rigorously cover edge cases and indirect pri-1066

vacy risks (e.g., metadata leaks, inferential dis-1067

closures)—with carefully selected datapoints from1068

real-world benchmarks to mimic actual settings, the1069

dataset provides a framework for training and eval-1070

uating models in realistic, high-stakes scenarios.1071

Furthermore, the taxonomy’s hierarchical structure1072

(categorizing sensitivity levels, domains, and sub-1073

elements) offers a scalable foundation for extend-1074

ing to new emerging privacy challenges, such as1075

evolving regulations or new technologies. Beyond1076

summarization, the dataset serves as a versatile1077

resource for privacy detection, policy alignment,1078

and benchmarking, enabling reproducible research1079

across domains. 1080

1081

C Training Methods 1082

We decided to leverage LoRA (Low-Rank Adap- 1083

tation), a technique for fine-tuning large-scale lan- 1084

guage models - in our case Phi 3.5 - that enables 1085

efficient adaptation with minimal additional param- 1086

eters. Here the data we generated comes in handy 1087

a lot as we are able to try different techniques in 1088

order to check which method helps learn the deeper 1089

relationships best and distinguish Privacy elements 1090

from the others efficiently. In this section, we dis- 1091

cuss the various models employed for the privacy- 1092

preserving summarization task. Each model was 1093

chosen based on its unique characteristics, training 1094

methodology, and its potential to offer insights into 1095

different aspects of privacy violation detection and 1096

summarization performance. Table 6 gives an over- 1097

all idea about the different techniques used to train 1098

the models along with a basic intuition. 1099

1100

C.1 Model 0: Phi 3.5 Base Model, 1101

Pre-finetuning 1102

The Phi 3.5 model serves as the foundational archi- 1103

tecture for subsequent models in this research. It 1104

is derived from datasets used in the development 1105

of Phi 3, leveraging a combination of synthetic and 1106

high-quality filtered data from publicly available 1107

sources. With an extensive context length of 128K 1108

tokens, Phi 3.5 is optimized for handling complex 1109

dialogue tasks. The model underwent an initial 1110

phase of supervised fine-tuning, complemented by 1111

Proximal Policy Optimization (PPO) and Direct 1112

Preference Optimization (DPO), improving its ca- 1113

pacity to follow instructions with precision while 1114

adhering to safety and ethical standards. 1115

This model is particularly well-suited as a base- 1116

line for our experiments due to its extensive train- 1117

ing across diverse datasets and ability to generalize 1118

effectively. The use of both PPO and DPO en- 1119

sures that it balances task accuracy with alignment 1120

to human preferences, which is crucial in privacy- 1121

preserving tasks. As the starting point for all subse- 1122

quent fine-tuned variants, Phi 3.5 provides a robust, 1123

well-rounded base capable of offering solid perfor- 1124

mance across multiple contexts (Microsoft, 2024a). 1125

1126
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C.2 Model 1: Overfitted, 30 Iterations, Mixed1127

Dataset1128

Model 1 was designed to investigate the effects1129

of overfitting within the privacy-preserving sum-1130

marization domain. Trained for 30 iterations on1131

a mixed dataset containing both correct and incor-1132

rect summaries, this model did not include any1133

significant regularization mechanisms or tuning of1134

hyperparameters. The training data exposed the1135

model to privacy violations explicitly marked in1136

incorrect summaries, allowing it to learn patterns1137

related to those violations.1138

The primary motivation for including this model1139

lies in understanding the behavior of overfitting1140

and its potential implications for identifying pri-1141

vacy violations. While overfitting was expected,1142

it offered an opportunity to observe whether the1143

model learned specific patterns related to privacy1144

violations or whether it simply memorized the train-1145

ing data. This model highlights the necessity of1146

regularization to avoid spurious pattern learning1147

and to improve generalization on unseen data.1148

1149

C.3 Model 2: Early Stopping, 10 Iterations,1150

Mixed Dataset1151

To address the overfitting observed in Model 1,1152

Model 2 employed early stopping after 10 itera-1153

tions on the same mixed dataset. Early stopping1154

is a standard technique to prevent overfitting by1155

halting training once the model begins to lose gen-1156

eralization ability. This approach allows the model1157

to learn key aspects of privacy violations while1158

maintaining the flexibility to generalize across new1159

and unseen inputs.1160

Including this model is essential for examining1161

the trade-off between training time and generaliza-1162

tion ability. By limiting the number of iterations,1163

Model 2 was able to capture important features1164

from both correct and incorrect summaries without1165

overfitting, offering insights into how a balanced1166

training process impacts performance on privacy-1167

preserving tasks. The use of early stopping im-1168

proved generalization over the baseline overfitted1169

model, making it a critical step in understanding1170

the effect of training duration.1171

1172

C.4 Model 3: Trained on Correct-Only 1173

Datasets 1174

Model 3 focused exclusively on correct summaries, 1175

with no exposure to incorrect or privacy-violating 1176

data. The rationale behind this model was to train 1177

the model purely on ideal, well-structured data, 1178

hypothesizing that it would learn optimal patterns 1179

for generating privacy-preserving summaries. 1180

This model is particularly valuable as it estab- 1181

lishes a benchmark for summarization performance 1182

in an "ideal" setting where no privacy violations are 1183

present. The exclusion of incorrect examples en- 1184

sures that the model’s training is free from spurious 1185

patterns or noise introduced by violations. How- 1186

ever, the absence of incorrect summaries means the 1187

model may lack the robustness needed to handle 1188

real-world scenarios, where privacy violations are 1189

likely. As such, this model serves as a control to 1190

measure the importance of exposing models to both 1191

correct and incorrect data during training. 1192

C.5 Model 4: Mixed Dataset with Corrected 1193

Summaries after Violations 1194

Building on the mixed dataset approach, Model 4 1195

introduces a new layer of complexity by including 1196

corrected summaries after privacy violations are 1197

identified. The model was trained on both correct 1198

and incorrect examples, with an additional step 1199

that presented the corrected version of a summary 1200

following the detection of violations. This provides 1201

the model with an explicit "repair" mechanism to 1202

learn from. 1203

This training methodology is important as it 1204

mirrors real-world applications where incorrect or 1205

privacy-violating data needs to be corrected. The in- 1206

clusion of this model in our analysis sheds light on 1207

how well models can learn to transition from incor- 1208

rect to correct outputs, offering insights into their 1209

ability to autonomously correct privacy violations. 1210

By learning the process of correction, this model 1211

demonstrates a more sophisticated approach to han- 1212

dling privacy-preserving summarization, which is 1213

critical in domains where errors must be identified 1214

and amended efficiently. 1215

1216

C.6 Model 5: Direct Preference Optimization 1217

(DPO) on Chosen and Rejected Options 1218

Model 5 introduces Direct Preference Optimiza- 1219

tion (DPO), a fine-tuning method that optimizes the 1220

model based on pairs of "chosen" and "rejected" 1221

15



Figure 6: Overview of Models and Techniques for Privacy-Preserving AI Summarization

responses, grounded in human preferences. The1222

dataset includes a task instruction, a preferred hu-1223

man response (chosen), and a disfavored response1224

(rejected). This training process allows the model1225

to prioritize more aligned behavior by reinforcing1226

chosen responses while discouraging rejected ones.1227

The decision to include DPO in this study stems1228

from its streamlined approach to preference model-1229

ing, which combines both task instruction and user1230

preference optimization without the computational1231

overhead of traditional methods like Reinforcement1232

Learning with Human Feedback (RLHF). By in-1233

corporating DPO, this model enhances the abil-1234

ity to produce privacy-preserving summaries that1235

align more closely with human expectations. It1236

introduces an efficient mechanism for adjusting the1237

model’s behavior toward privacy-sensitive outputs1238

with minimal compute costs, making it a valuable1239

component of the analysis.1240

1241

C.7 Model 6: Simultaneous Generation of1242

Normal and Privacy-Preserving1243

Summaries (ppSummary)1244

Model 6 was trained to simultaneously generate1245

both a normal summary and a privacy-preserving1246

summary (ppSummary), enabling the model to1247

learn the relationship between regular summariza-1248

tion and privacy preservation. This dual-output ap-1249

proach facilitates the model’s understanding of how1250

sensitive information must be handled and masked 1251

in the privacy-preserving version while retaining 1252

the core meaning of the content in both outputs. 1253

This model’s inclusion offers a unique perspec- 1254

tive on how the model can be trained to not only 1255

detect privacy violations but also actively trans- 1256

form content into a privacy-safe version. The si- 1257

multaneous generation task provides an additional 1258

layer of understanding, helping the model learn 1259

the subtleties of balancing content fidelity with pri- 1260

vacy requirements. This approach proved essential 1261

in highlighting the trade-offs between information 1262

retention and privacy safeguarding, especially in 1263

sensitive domains such as healthcare and legal pro- 1264

ceedings. 1265

1266

C.8 Model 7: Odds Ratio Preference 1267

Optimization (ORPO) on Chosen and 1268

Rejected Options 1269

Finally, Model 7 builds on the preference-based 1270

approach of Model 5 by incorporating Odds Ra- 1271

tio Preference Optimization (ORPO). ORPO dif- 1272

fers from DPO by applying an odds ratio-based 1273

penalty to the negative log-likelihood (NLL) loss, 1274

allowing the model to optimize preference align- 1275

ment more efficiently without requiring a reference 1276

model. This approach reduces computational over- 1277

head, making it a more resource-efficient option 1278

compared to DPO. 1279
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The rationale for including ORPO lies in its abil-1280

ity to handle preference optimization with fewer1281

computational demands, while still ensuring that1282

the model learns from chosen and rejected re-1283

sponses effectively. Its integration into the study1284

enables a comparison between two preference-1285

based optimization methods, illustrating their re-1286

spective advantages in terms of efficiency and align-1287

ment. ORPO’s performance in handling nuanced1288

privacy violations and ambiguous cases marks it1289

as a critical model for summarization tasks where1290

computational efficiency and robust alignment are1291

paramount.1292

1293

D Implementation1294

In this research project, we employed a range of1295

state-of-the-art libraries and tools designed to op-1296

timize model training and evaluation processes.1297

These libraries were carefully chosen to support1298

the various phases of model fine-tuning, dataset1299

management, and evaluation in a resource-efficient1300

manner. Below, we discuss each library and its1301

purpose, alongside the hardware and software con-1302

figurations used to carry out the experiments.1303

1304

D.1 Libraries and Frameworks1305

D.1.1 peft (Parameter-Efficient Fine-Tuning)1306

The peft library enables efficient fine-tuning of1307

large models by updating only a fraction of the1308

model’s parameters. It was instrumental in im-1309

plementing LoRA (Low-Rank Adaptation), which1310

allowed us to significantly reduce the number of1311

trainable parameters during fine-tuning. Using the1312

LoraConfig object, we configured critical hyper-1313

parameters to optimize performance and resource1314

usage. The rank parameter (lora_r) was set to 32,1315

determining the capacity of the low-rank adapta-1316

tion matrix to capture task-specific nuances. The1317

scaling factor (lora_alpha) was set to 64, con-1318

trolling the contribution of LoRA parameters to1319

the overall model’s output. To enhance gener-1320

alization and mitigate overfitting, a dropout rate1321

(lora_dropout) of 0.1 was employed, randomly de-1322

activating a fraction of the LoRA parameters during1323

training. Finally, the task type (task_type) was set1324

to TaskType.CAUSAL_LM, targeting causal lan-1325

guage modeling tasks that predict the next token1326

in a sequence based on preceding tokens. This1327

configuration allowed us to fine-tune the model ef- 1328

ficiently while maintaining high performance for 1329

privacy-preserving summarization tasks. 1330

1331

D.1.2 trl (Transformer Reinforcement 1332

Learning) 1333

The trl library provides advanced reinforcement 1334

learning algorithms tailored specifically for trans- 1335

former models, enabling task-specific fine-tuning 1336

while minimizing computational costs. In this 1337

project, we utilized three key classes: SFT- 1338

Trainer, DPOTrainer, and ORPOTrainer. The SFT- 1339

Trainer facilitated soft fine-tuning of pre-trained 1340

language models, efficiently adapting them to the 1341

privacy-preserving summarization task by leverag- 1342

ing previously learned representations and enabling 1343

parameter-efficient updates. The DPOTrainer (Di- 1344

rect Preference Optimization) optimized the model 1345

based on user preferences, allowing us to fine-tune 1346

outputs to align closely with human-defined quality 1347

and relevance criteria, enhancing the usability of 1348

generated summaries. Finally, the ORPOTrainer 1349

(Offline Reinforcement Learning with Policy Opti- 1350

mization) refined the model using historical inter- 1351

action data, leveraging large datasets to improve 1352

summarization capabilities without the risks associ- 1353

ated with online learning, such as degradation from 1354

poorly chosen interactions. Together, these tools 1355

allowed us to adapt the model effectively to our 1356

task, balancing quality and efficiency in generating 1357

privacy-preserving summaries. 1358

1359

D.1.3 FrugalScore 1360

FrugalScore (Eddine et al., 2021) was included as 1361

an efficient evaluation metric for Natural Language 1362

Generation (NLG) models. Based on a distillation 1363

approach, FrugalScore offers low computational 1364

overhead while retaining the performance charac- 1365

teristics of more expensive metrics like BERTScore 1366

and MoverScore. It was particularly valuable for 1367

large-scale evaluations where computational effi- 1368

ciency was paramount. FrugalScore’s models were 1369

pretrained on a synthetic dataset constructed us- 1370

ing summarization, backtranslation, and denoising 1371

models, enabling them to capture internal mapping 1372

functions and similarity measures from more ex- 1373

pensive metrics. This allowed us to achieve reliable 1374

evaluations without overwhelming computational 1375

resources. 1376

1377
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Figure 7: Percentage of Acceptable Summaries, i.e. Summaries having min(Privacy,Completeness)>3 for Different
Models

Table 8: Comparison of Model Performance Across Datasets

Models DialogSum ConvoSumm TweetSum SAMSum

Privacy Completeness Overall Privacy Completeness Overall Privacy Completeness Overall Privacy Completeness Overall

Model 0 3.800 4.407 3.707 4.651 4.751 4.050 3.186 4.307 3.164 3.412 4.323 3.570
Model 1 3.889 3.889 3.889 4.658 4.286 4.138 3.714 3.950 3.643 3.947 3.825 3.807
Model 2 3.878 4.074 4.074 4.840 4.321 4.121 3.643 3.964 3.893 3.907 4.105 3.988
Model 3 4.926 4.259 4.185 4.889 4.564 4.300 4.857 4.179 4.111 4.930 4.070 4.327
Model 4 4.004 4.037 3.652 4.697 4.302 4.064 4.057 3.929 3.686 4.047 3.970 3.697
Model 5 5.000 2.626 2.596 5.000 2.714 2.514 5.000 3.236 2.736 5.000 2.821 2.781
Model 6 4.908 4.296 4.161 4.870 4.533 4.293 4.864 4.168 4.129 4.965 4.059 4.335
Model 7 5.000 2.926 2.715 5.000 2.407 2.486 5.000 3.307 2.871 5.000 2.785 2.507
GPT-4o 4.415 4.482 3.827 4.213 4.414 4.114 4.086 4.231 3.857 4.377 4.216 4.022

Ground Truth 4.900 4.374 4.092 4.722 4.204 4.235 4.674 4.309 3.979 4.863 4.234 4.228

Table 9: Comparison of Privacy and Completeness
scores across models with Phi-3.5 as Base Model (Bold
values indicate scores comparable to Ground Truth)

Models Privacy Completeness

Model 0 4.235 4.270
Model 1 3.924 3.932
Model 2 3.820 4.111
Model 3 4.605 4.051
Model 4 3.992 4.115
Model 5 5.000 3.227
Model 6 4.884 4.047
Model 7 4.697 3.960
GPT-4o 4.107 4.370

Ground Truth 4.669 4.087

D.2 Hardware and Software Environment 1378

The fine-tuning experiments were conducted on an 1379

NVIDIA A100 GPU with 80GB VRAM, hosted 1380

on Azure Cloud Services, providing the computa- 1381

tional power necessary for memory-intensive op- 1382

erations like gradient computation and backpropa- 1383

gation, critical for fine-tuning privacy-preserving 1384

large language models. For the software environ- 1385

ment, we used Visual Studio Code (VSCode) v1.94 1386

as the primary code editor, alongside Python 3.12.3 1387

to ensure compatibility with the latest libraries and 1388

frameworks. This setup allowed us to efficiently 1389

process large datasets and fine-tune models with 1390

high parameter counts. 1391

1392

E Results 1393

1394

E.1 Model Prompting 1395

We had done an extensive analysis to check the 1396

adaptation of the models based on prompting 1397

18



Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 GPT-4o

0.5

0.6

0.7

0.8

0.9

1

0.502

0.748

0.631

0.934

0.718

0.999

0.926

0.999

0.778

A
cc

ur
ac

y

Figure 8: Performance Across Models on ai-masking-400k dataset.

alone, but we observed that despite providing the1398

complete taxonomy and incorporating few-shot1399

examples, the generated summaries exhibited a lot1400

of inconsistencies, with some successfully masking1401

sensitive information while others inadvertently1402

leaking private data, even though it had specifically1403

been provided information about sensitive data1404

including named entities. These results were1405

unreliable, as there was no consistent guarantee1406

of privacy preservation across responses. Given1407

the limitations of prompting-based approaches,1408

we shifted our focus to fine-tuning models for the1409

same task, aiming for better results.1410

1411

Figure 9 shows a few cases where despite pro-1412

viding all information, prompting alone failed to1413

adhere to some indirect as well as some very basic1414

checks. Please note that the ’Violations’ here are1415

recorded in an easy to interpret format, while in the1416

dataset they have been extensively categorized as1417

per our taxonomy.1418

1419

E.2 Public Datasets1420

The results presented in Table 8 demonstrate the1421

performance of various models across four datasets:1422

DialogSum, ConvoSumm, TweetSum, and SAM-1423

Sum. The metrics being evaluated are Privacy,1424

Completeness, and Overall scores, with particu-1425

lar emphasis on how well the models balance pri-1426

vacy preservation with the completeness of the sum-1427

maries.1428

Although Models 5 and 7 show excellent Pri-1429

vacy scores (scoring 5.000 on multiple datasets),1430

they struggle significantly when it comes to Com- 1431

pleteness. For instance, Model 5 achieves a perfect 1432

Privacy score across all datasets but exhibits a ma- 1433

jor drop in Completeness—ranging from 2.626 on 1434

DialogSum to 3.236 on TweetSum. This implies 1435

that while Models 5 and 7 are extremely effective 1436

at ensuring that sensitive information is masked, 1437

they do so at the expense of producing coherent 1438

and comprehensive summaries. 1439

Models 3 and 6 stand out for their consistently 1440

high performance across all datasets. Both mod- 1441

els achieve the highest overall scores, with Model 1442

3 having a slight edge on some datasets in terms 1443

of Completeness, while Model 6 maintains a very 1444

close performance. This indicates that these mod- 1445

els are able to strike a good balance between pro- 1446

tecting privacy and preserving the completeness 1447

of the summaries. For example, on DialogSum, 1448

Model 3 scores 4.185 overall, while Model 6 scores 1449

4.161 — both well above other models. Across 1450

all datasets, the overall scores of Models 3 and 1451

6 are consistently above 4. This indicates that 1452

both models are robust and reliable in producing 1453

privacy-preserving summaries without sacrificing 1454

too much completeness. Their performance is no- 1455

tably superior compared to other models like GPT- 1456

4o, where the scores dip slightly below 4 on some 1457

datasets (such as 3.827 overall on DialogSum) 1458

while Ground Truth or GT sets a high standard 1459

with its overall balanced scores (around 4.7+ in Pri- 1460

vacy and 4.3+ in Completeness), though the gap is 1461

relatively narrow compared to the top-performing 1462

models. 1463

1464
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Figure 9: Examples of cases where prompting alone failed key checks

E.3 Human Evaluation1465

Human evaluation was done to assess how well1466

the generated summaries align with generally ac-1467

cepted standards across key dimensions of usability.1468

Now, these dimensions - Privacy, consistency, rel-1469

evance, and coherence assessments are inherently1470

subjective and context dependent. A binary scale1471

forces annotators to make crisp, actionable judg-1472

ments aligned with real-world deployment needs.1473

In contrast, a 1–5 Likert scale introduces ambiguity1474

and risks conflating qualitatively distinct errors. By1475

simplifying the decision space, we have reduced the1476

cognitive load and ensured that raters focused on1477

developing strong thresholds rather than debating1478

minute distinctions. Moreover, in practical applica-1479

tions of privacy-preserving summarization, stake-1480

holders would typically require binary decisions -1481

a summary is either safe to share or requires redac-1482

tion. Our approach also aligns with best practices in1483

high-stakes evaluation frameworks as for example,1484

medical diagnostics often use binary judgments1485

(e.g., “malignant” vs. “benign”) for critical deci-1486

sions despite inherent subjectivity (Jain et al., 2024)1487

while content moderation systems like hate speech1488

detection (Naznin et al., 2024) or spam detection1489

(Kadir et al., 2022) rely on binary flags to ensure1490

consistent policy enforcement.1491

While we agree that no grading system is per- 1492

fect, the binary scale was an empirically grounded 1493

choice to balance reproducibility, practicality, and 1494

alignment with real-world needs. We have revised 1495

the manuscript to clarify this rationale and included 1496

appropriate citations as well, reinforcing that our 1497

methodology aligns with established practices for 1498

evaluating subjective, high-stakes tasks. 1499

The term "distilled evaluation" refers to a sub- 1500

sequent, more focused analysis where the top- 1501

performing models were re-evaluated with an ex- 1502

panded set of summaries to confirm initial findings. 1503

For Human evaluation, we had initially started with 1504

summaries generated by all the different models 1505

along with the ground truth. After grading this first 1506

round, we analyzed performance to identify the top 1507

models (Model 3 and Model 6), and to validate 1508

these findings we followed with a more focused 1509

round of re-evaluation, having many more addi- 1510

tional conversations graded, a process we referred 1511

to as “Distilled Evaluation” in our work. This step 1512

was intended to refine our understanding and vali- 1513

date the robustness of the models under different 1514

conditions. 1515

1516
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E.4 Privacy Evaluation on PII Detection1517

We also tested the performance of our models1518

for evaluating any kind of direct violation of pri-1519

vacy in the form of PIIs. We employed the1520

ai-masking-400k dataset by AI4Privacy, which is1521

the world’s largest open dataset for privacy mask-1522

ing. AI4Privacy is a community-driven initiative1523

dedicated to advancing privacy in AI technologies.1524

It focuses on developing methods and tools that en-1525

hance data protection and user confidentiality in AI1526

applications. By promoting awareness and facilitat-1527

ing collaborations, AI4Privacy aims to set higher1528

standards for privacy, ensuring AI systems are se-1529

cure and trustworthy for handling sensitive informa-1530

tion across various industries and uses (AI4Privacy,1531

2024). The dataset features a diverse array of 541532

PII classes across various sectors and interaction1533

styles, with over 13.6 million text tokens in about1534

209,000 examples in multiple languages, ensuring1535

no privacy violations through synthetic data and1536

human validation and consists of examples specifi-1537

cally designed for training and evaluating models in1538

removing personally identifiable information (PII)1539

and other sensitive elements from text. The models1540

were tested for their ability to detect PII here, and1541

the results have been recorded in Figure 8.1542

1543

E.4.1 Evaluation Summary1544

Model 3 and Model 6 strike the best balance be-1545

tween privacy preservation and relevance. Their1546

high accuracy on PII detection, without sacrificing1547

context, makes them the most applicable for diverse1548

privacy-preserving summarization use cases. Mod-1549

els 5 and 7 are ideal for scenarios where absolute1550

privacy is required, but they come with significant1551

trade-offs in content relevance. Overfitted Model1552

1 performs well in this specific dataset, but its ten-1553

dency to overfit may limit its generalization ability1554

in broader applications. Model 0 (the baseline)1555

and Model 2 (early stopped) demonstrate that in-1556

adequate or incomplete training severely impacts1557

PII detection, showing the importance of robust1558

training approaches1559

1560
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