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ABSTRACT

Similar to humans, robots benefit from multiple sensing modalities when perform-
ing complex manipulation tasks. Current behavior cloning (BC) policies typically
fuse learned observation embeddings from multimodal inputs before decoding
them into actions. This approach suffers from two key limitations: 1) it requires
all modalities to be present and in-distribution at test time, otherwise corrupting
the latent state and leading to fragile execution; and 2) naive fusion across all
inputs hinders learning from large-scale heterogeneous datasets, where only a
subset of modalities may be informative at different phases of a task. We intro-
duce NOSTRA, a multimodal state-space model that learns a modular per-modality
latent representation, enabling flexible action prediction with or without specific
inputs. BC-NOSTRA improves robustness to unseen noise by using KL divergence
between inferred and imagined multimodal latents as a noise measure, and by
employing latent imagination to predict action trajectories over arbitrary horizons.
On a suite of MuJoCo-based tasks, BC-NOSTRA fits expert demonstrations up to
six input modalities (multi-view RGB, depth, and proprioception), achieving over
20% higher performance under noisy evaluation. Furthermore, NOSTRA adaptively
down-weights non-informative inputs, facilitating effective co-training on large
heterogeneous robotics datasets with O(10k) demonstrations spanning diverse
tasks and visual conditions. Finally, we demonstrate real-world deployment, where
BC-NOSTRA achieves up to a 40% performance gain under camera occlusions on
multiple manipulation tasks.

1 INTRODUCTION

Humans rely on a rich variety of sensing modalities

— vision, hearing, touch, pressure, temperature — to Front-view Cam Wrist Cam  Robot Proprio
perform everyday tasks. Crucially, not all modalities eew - [T 0rrmd

are necessary at once: when one becomes unavailable =) e o
(e.g., vision under occlusion), we draw on experience Imagination = Q,{P Transtormer
and dead-reckoning to bridge the gap, and seamlessly « LC { Robotacton
return to the more informative signal once it becomes Bl e | w ) vl

available again. Achieving human-level robustness in bga“em b '_;

robotic object manipulation requires similar capabil- P ‘ “\

ities. Robots must be able to process diverse inputs f - i
such as multiple camera views, depth, and proprio-

ception, each of which occupies a distinct subspace Figure 1: NOSTRA uses latent imagination
and often warrants its own encoder within a visuo- to handle unforeseen noise in a multimodal
motor policy. Equally important, they must learn to  robotic system. This allows it to maintain
identify which inputs are useful at a given time and performance and robustness even with noisy
remain robust when some become noisy, unreliable, or corrupt inputs.

or entirely missing due to sensor failures. While state-

of-the-art behavior cloning (BC) policies do incorporate multiple input modalities, they typically fuse
their learned representations naively to predict actions (Mandlekar et al., 2021; Chi et al., 2023), a
strategy that falls short of these requirements.

Incorporating multimodal observations into visuomotor policies presents significant challenges,
particularly in deciding when and how each modality should contribute to decision-making. Not
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Figure 2: Model Capabilities. NOSTRA enables per-modality robustness to noise via latent imagina-
tion, and learns latent embeddings that adapt to the heterogeneity in multimodal inputs.

all task phases require every modality, and incorporating irrelevant or unreliable signals can inject
noise, corrupt shared representations, and degrade policy performance. Prior work has attempted
to address this through task-specific heuristics or modality-specific gating. For example, He et al.
(2024) proposed a learned contact predictor to selectively incorporate force/torque feedback only
during contact-rich phases, while Du et al. (2022) use information-theoretic criteria to identify useful
modalities — but their approach is limited to just two modalities. Despite these advances, existing
strategies remain limited in generality and robustness, particularly in real-world settings where
multiple modalities may intermittently fail or degrade. This highlights the need for a more scalable
framework that can flexibly manage modality reliability while preserving strong visuomotor control.

To address these challenges, we propose a modular latent representation strategy that explicitly
partitions the latent space into subspaces dedicated to individual input modalities. This design
disentangles modality-specific information, ensuring that the degradation of one modality does not
contaminate the entire latent state, while enabling the policy to adaptively weight each input based on
its relevance to the task. To remain robust under missing or noisy inputs, we introduce a marginal
latent state conditioned on a memory module, which leverages historical context to infer plausible
substitutes. Latent variable models have already demonstrated strong capabilities in capturing long-
term dependencies for video prediction (Saxena et al., 2021), 3D navigation (Pasukonis et al., 2022),
and complex Atari gameplay (Hafner et al., 2022), making them a natural foundation for modeling
history in visuomotor control.

In this paper, we present NOSTRA, a multimodal state-space model that enables a visuomotor policy
to (1) ignore individual input modalities in case they become noisy, (2) use per-modality latent
imagination to do open-loop execution for extended periods of noisy inputs, and (3) selectively
attend to informative modalities when learning from datasets that contain non-informative inputs (i.e.
heterogeneous). Our visuomotor policy, BC-NOSTRA, trains to fit sequences of expert demonstrations
for robotic manipulation tasks. NOSTRA handles each input modality independently, and learns
modular representations regularized by an information bottleneck. To allow for our robot policy to
maintain task-specific behavior both with and without inputs, we leverage a learned marginal (prior)
latent distribution, or open-loop latent, for open-loop rollouts, and the variational approximation
to the input-conditioned posterior (for each modality) for closed-loop rollouts. As we show in
our experiments, multimodal latent imagination (MLI) allows BC-NOSTRA to be robust against
out-of-distribution noises in RGB images (such as occlusion or changing textures in the scene), depth,
and robot proprioception. NOSTRA enables efficient pre-training and co-training with large-scale
heterogeneous datasets that may contain non-informative inputs. We also deploy BC-NOSTRA on a
real robot showing sample-efficient policy learning from just 30 human-teleoperated demonstrations,
as well as robustness to camera occlusion. In summary, our contributions are as follows:

1. We present NOSTRA, a novel observation trunk for BC that learns per-modality stochastic
latents for both closed-loop (input-conditioned) and open-loop (marginal) states, allowing
for action generation with missing sensor inputs using multimodal latent imagination (MLI),
and efficient learning from heterogeneous datasets that contain non-informative inputs.
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2. We create an adaptive mechanism to tackle noisy input modalities, called AdaMLI, that uses
the per-modality KL divergence between inferred and imagined latents as a metric to identify
noise, and adaptively switches between latent imagination and closed-loop prediction.

3. We train BC-NOSTRA on 12 MuJoCo-based tasks (up to 3 noisy evaluation variants, and 6
modalities including RGB, depth, and robot proprio), showing our method identifies and
ignores noisy RGB, depth, and low-dim inputs, achieving higher success by up to 60%,
>20% on avg. (Table 1 & 2), in a suite of high-precision, prehensile, and long-horizon tasks.

4. We analyze how BC-NOSTRA trains on tasks where not all inputs are informative (heteroge-
neous). When pre-training on a dataset with non-informative RGB inputs, BC-NOSTRA is
able to better utilize a finite network capacity by re-attributing extracted nats to informative
modalities, resulting in better fine-tuning with higher success by up to 18% (Table 4), as
well as better co-training with diverse datasets (O(10k) demos), by up to 20% (Table 5).

2 RELATED WORKS

Behavior Cloning from Diverse Datasets. Learning visuomotor policies from offline data has
become an increasingly popular method of training robots to learn manipulation strategies. These
end-to-end policies, trained on expert demonstrations, take multimodal observations as input and
output robotic actions (Levine et al., 2016). Lack of standardized large datasets pose significant
challenges in learning stable visuomotor policies. Various works have studied leveraging different
visual input representations to aid learning, including video (Liang et al., 2024; Hu et al., 2024;
Jain et al., 2024; Luo & Du, 2024), voxel-grids (Shridhar et al., 2022; Liu et al., 2024), and point-
clouds (Zhu et al., 2024; Peri et al., 2024) to bridge the gap in datasets. Moreover, different generative
modeling techniques, such as diffusion models (Chi et al., 2023; Ze et al., 2024; Chen et al., 2024;
Pearce et al., 2023; Saxena et al., 2024), flow-matching (Chisari et al., 2024; Zhang & Gienger, 2024;
Zhang et al., 2025a; Ding et al., 2024), have been explored. However, significant challenges in robot
learning still remain that stem in the inherent heterogeneity of tasks and datasets, which make it hard
to learn causal relationships between available inputs and target actions. Current methods are either
constrained to specific input modalities (Kim et al., 2024) or simply fuse different modalities (e.g., by
feature concatenation), which limit their performance to certain tasks or are sensitive to perception
noise. In this work, we propose a general multi-modality visuomotor policy framework that learns
a modular per-modality latent space, explicitly regularized by history-conditioned marginal latents,
enabling our method to process multimodal inputs robustly and efficiently.

Autoregressive Models in Robot Learning. In recent years, autoregressive models for robotic
policy learning (Mandlekar et al., 2021; Chen et al., 2021; Gong et al., 2024; Zhang et al., 2025b; Jia
et al., 2024) have gained significant attention due to their simple yet scalable architecture designs.
Recent works have also identified memory modeling as a significant challenge in state-of-the-
art visuomotor policies (Torne et al., 2025) that use fixed observation chunks to condition action
generation (Chi et al., 2023). Latent variable models on the other hand have been successful at
modelling world dynamics to predict long-horizon video (Saxena et al., 2021; Denton & Fergus,
2018) or for long-horizon planning (Hafner et al., 2019; 2022). In this work, we aim to bring the
benefits of state-space models to robot learning, using latent imagination for robust policy execution,
while solving practical challenges in robot learning. Specifically, we build upon Hafner et al. (2019)
to create a multimodal latent-space with per-modality open-loop prediction capability, that allows our
model to be robust to individual inputs. In contrast to (Hafner et al., 2019), our method is trained
purely on gradients from action prediction, without reconstructing observations.

3 METHOD

We present NOSTRA, a multimodal state-space model that learns a modular latent space given inputs
from multiple observation modalities. A modular latent space allows our downstream visuomotor
policy, BC-NOSTRA, to attend to useful modalities during rollouts and ignore non-informative
ones when training on heterogeneous datasets. BC-NOSTRA can also ignore individual noisy
input modalities and use latent imagination to execute with only partial inputs. In this section, we
describe our methodology for training BC-NOSTRA to fit a dataset of N expert demonstrations,
D = {@ol:M () gx AN containing M different input modalities that include multi-view RGB
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Figure 3: Training BC-NOSTRA. (Left) We show a graphical model representing the generation
(po, solid arrows) and inference (g4, broken arrows) procedures in our generative model. (Right)
We show details of training the modular latent space in NOSTRA. We use a GRU to aid latent
dynamics computation (open-loop latents), with separate networks for processing inputs (closed-loop
latents) that share the GRU. Our loss weighs Dx;, and Dy 1, with Dk, pulling open- and closed-loop
gradients together, while Dy, ensures acurate action prediction using closed-loop gradients.

images, depth maps, and low-dimensional robot proprioception. We consider each input that is either
captured by a separate physical sensor, occupies a different subspace, or requires a separate encoder,
as its own modality, since it acts as an independent source of state information.

3.1 NOSTRA: A MULTIMODAL STATE-SPACE MODEL

Joint distribution BC-NOSTRA learns to maximize the likelihood of data under a joint model
p(a1.1,01:2), with learned latents 23, that is factonzed into two components: (1) a latent dynamics
model that transitions a collection of latents z}*™ given the latent history, and (2) an action and

observation (not trained) generation model conditioned on the current multimodal latent. Concretely,
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action decoder latent dynamics

We model all distributions as diagonal multivariate Gaussians with learned means and variances for
all latents, and learned means and fixed variance for decoders. Since the focus of this work is to learn

visuomotor policies, we set the variance of the observation decoder pg(0z|z;™) to inf, resulting in a
model that trains to generate actions only.

Inference Similar to (Rezende et al., 2014; Kingma & Welling, 2()22) we introduce a learned
posterior over latents amortized by current observations, g(z}* |z 4 o}M), to help integrate over
the space of introduced latents. Since our latent space is modular we can even sample a subset of
latents in this closed-loop fashion, say, '™ ~ qg (2™ |21, 0F™) where m < M. During training,
we default to inferring latents condltloned on all observations (i.e. m = M) to subsequently condition
the action decoder and latent dynamics.

Generation To sample actions given a multimodal latent 2%, pg(2}M|21 M) transitions the

multimodal latent dynamics which is decoded into actions usmg p(agztM). This formulatlon allows
us to sample actions conditioned solely on the latent state in an open-loop fashion without having
to observe individual inputs. Since our latent space is modular, we can sample open-loop latents
for certain modalities while being closed-loop for others. For example, for some m < M, we can
sample 2} ~ gy (24 ™ |2 oF™) closed-loop while 2" T1M ~ py (2 1M 1M i open-loop.
When open-loop latents 2" M are used to transition latent dynamics, we call this mechanism
“prior-forcing,” which enables latent imagination. Overall, we train the following model components:
closed-loop latents : 2™ ~ qg (2|2, o) V'm € [1, M]
open-loop latents : 2" ~ po (2" |2+ ) Vm € [1, M]
action decoder : a; ~ pg(a;|z}™)

Training objective Since computing the log-likelihood of data in the assumed model (1) is in-
tractable, we use ELBO as our training objective, given as
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We derive this objective in Appendix B, and illustrate training in Figure 3. Our training loss is,
L(D;0,¢) := DL + SDkL, where DyL:=—DyL and S controls regularlzatlon during training.

Implementation details We process image and depth inputs using a ResNet18 (He et al., 2016)
convolutional network, and use low-dim inputs as-is, then pass them into separate MLP layers to
compute individual closed-loop latents g, (2)™ |2, o) for each modality m. Each MLP is followed
by two small MLPs to output mean and variance. Similar to Hafner et al. (2019); Saxena et al. (2021),
we implement open-loop latent dynamics pg (2|21 ) using a GRU Cho et al. (2014). The GRU
network is shared between py and q,. Finally, we fuse per-modality latent samples 2" LM (computed
using the re-parameterization trick), using a multi-head attention Modality Transformer followed by
another small MLP. To aid training visual representations, we weigh gradients on pg and g4 differently

by setting Dxi(q¢,po) = 'Y,DKLA(QQS, stop_grad(pg)), +(1 — ) Dxw(stop_grad(gs ), pe) to get final
loss as L(D; 60, ¢) := Dnir + BDkw, where v € [0, 1] (lower values pushing py toward ¢, more than
vice-versa, relaxing regularization and preventing posterior collapse). We found 3 and ~y easy to tune,
and 3 = 10~* and v = 0.1 to work well in our experiments. Background details are in Appendix A.

3.2 LATENT IMAGINATION & ADAPTING TO INFORMATIVE MODALITIES

Latent imagination for multimodal robustness. The modular latent space in BC-NOSTRA helps
mitigate single-modality corruptions during rollout, e.g., blocked camera or noisy depth. If a modality

m is noisy, we sample open-loop 2" ~ py(z/"|2) and closed-loop z; ™ ~ qy(z; ™2, of)
where superscript —m is short for {1, ..., M} \ {m}. After fusing the open- and closed-loop latents

in the Modality Transformer, the action decoder samples a; ~ pg(a¢|2]", z; ™), which is the policy
output. This mechanism allows the robot to stay privy of all informative inputs while staying robust
against noisy ones. We call this multimodal latent imagination, or MLI. MLI emerges from training
on entirely noise-free multimodal inputs, i.e. training to decode closed-loop latents only. In Sec. 4.1,
we show that MLI strictly strengthens the robustness of the visuomotor policy, compared to baselines
that use noisy inputs as-is, or ablations that swap the joint latent state for an imagined one.

Adaptive multimodal latent imagination To deploy BC-NOSTRA with multimodal robustness, we
require a metric to identify unseen noises in each modality. We use the per-modality KL divergence
D () := KL[gg (2|25, o) Ipe (2772 )] to identify such noises. We build a mechanism
based on the intuitive observation that a sharp rise in D} (t) suggests modality m is noisy, using
which we decide whether to use open- or closed-loop latent for each modality at each timestep. We
call this mechanism AdaMLI. Concretely, at timestep 7', AdaMLI maintains a running average of
KL changes r(T, k.) = k% ZtTZT_k |D (t) — DR (t — 1)| up to k. steps in the past. BC-NOSTRA
switches from closed- to open-loop latents for a modality if D} (T') — D (T — 1) > fo (T, k),
since this large change in KL would be attributed to a large unseen noise in that modality. To
switch back to closed-loop latents, it resets the running average r (7, k,), and switches latents if
DR(T —1)—=DG(T) > foxr(T, k), ie. if the per-modality KL drops significantly. Note that we
compute both latents at each timestep to compute the KL, i.e. we always observe the input, but may
or may not route extracted information to the action decoder. Thresholds and running window sizes
were easy to tune, and we found f, = 20, k, = 10, f. = 3, k. = 2 to work well for all experiments.

Adapting to informative modalities With robotic datasets, not all observations o', ..., 0 are

equally informative for different tasks or even different phases of completing a task (i.e. heteroge-
neous). For instance, during the grasping phase of the coffee task (see Figure 5), precise manipulation
requires the model to focus on inputs from the wrist-view camera rather than the broader agent-view.
With a single latent space representing all modalities, their individual influence would need to be
learned and expressed in the latent. In contrast, BC-NOSTRA, with modular latents, allows the
decoder to focus its learning on extracting the appropriate amount of information from each modality
for the action decoding at hand, making learning more sample efficient. Moreover, as we show in
Sec. 4.1, this enables our model to learn efficiently from large datasets containing non-informative
inputs, in turn enabling better performance when co-training with diverse datasets.
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Table 1: MLI leads to visual robustness. Showing efficacy of multimodal latent imagination (MLI)
on RoboMimic tasks each with 4 different test-time setups: (1) no noise, (2) mask: square black mask
is applied to the camera observations, (3) cam jitter: a random perturbation is applied to the camera
pose, (4) table tex: the texture of the table is changed to an unseen one. We show peak performance
in 600 epochs of training, averaged over 50 rollouts. Best performance within 5% is in bold.

Stack D1 Stack Three D1
no noise | mask cam jitter table tex  no noise | mask cam jitter table tex
Method =
po |

BC-LSTM (Mandlekar et al., 2021) 100 2 10 2 86 20 6
Diffusion Policy (Chi et al., 2023) 100 44 72 64 90 66 68
Diffusion Forcing (Chen et al., 2024) 76 50 70 48 22 8 16
Diffusion Forcing + prior forcing 72 72 72 18 18
BC-RSSM 100 28 42 0 86 38 66
BC-RSSM + LI 62 62 62 64 64
BC-NOSTRA (ours) 100 22 24 10 92 68 66
BC-NOSTRA + MLI (ours) 84 84 84 80 80

Square D2 Coffee D2

no noise | mask cam jitter table tex  no noise | mask  cam jitter table tex
Method . —
Saul

BC-LSTM (Mandlekar et al., 2021) 46 2 6 2 62 6 20 4
Diffusion Policy (Chi et al., 2023) 58 8 26 40 70 8 16 22
Diffusion Forcing (Chen et al., 2024) 6 0 2 0 8 0 0 0
Diffusion Forcing + prior forcing 4 4 4 4 4 4
BC-RSSM 48 14 12 20 66 0 20 8
BC-RSSM + LI 20 20 20 26 26 26
BC-NOSTRA (ours) 54 18 22 0 74 0 16 2
BC-NOSTRA + MLI (ours) 38 38 38 38 38 38

4 EXPERIMENTS

We seek to validate four key hypotheses. H1: Multimodal Latent Imagination (MLI) in NOS-
TRA enables robustness against noisy inputs achieving higher success in manipulation tasks. H2:
NOSTRA can identify when noises occur, and adaptively employ MLI over RGB, depth, and robot
proprioception (AdaMLI). H3: Multimodal state-space enables NOSTRA to effectively pretrain
from hetereogenous datasets that contain extra modalities uninformative to a downstream task. H4:
BC-NOSTRA can be deployed on a real robot, with robustness capabilities useful in real-world
manipulation. We evaluate on 12 simulated benchmark tasks and deploy NOSTRA to a real robot
with 4 challenging manipulation tasks.

Tasks. We evaluate BC-NOSTRA on 12 MuJoCo-based tasks in simulation, including 4 Mimic-
Gen (Mandlekar et al., 2023) tasks (Stack D1, Stack Three D1, Square D2, and Coffee D2) that contain
RGB and robot proprioception, and 8 MimicLabs (Saxena et al., 2025) tasks (bin carrot, bin bowl,
open drawer, close drawer, open microwave, close microwave, open drawer & place bowl, place bowl
& close drawer) that also contain depth maps. We use 1000 demonstrations for each MimicGen task
and 200 for MimicLabs tasks, made available by those works. We also show co-training experiments
on 2 tasks from the MimicLabs benchmark. Details of all simulated tasks are in Appendix E. Our
policies are trained on up to 6 input modalities: agent-view RGB, wrist-view RGB, agent-view depth,
end-effector (EEF) position, EEF orientation, and gripper width. On a real Franka Emika Panda
robot, we experiment on 4 manipulation tasks: lift block, serve snack, marker in cup, and pour beans.
We collect 30 demonstrations for each task using a Meta Quest 2 headset and controller. More details
about real-robot tasks are in Appendix G.

Baselines For comparison, we use BC-LSTM (Mandlekar et al., 2021), Diffusion Policy (Chi et al.,
2023), Diffusion Forcing (Chen et al., 2024) as baselines in our experiments. We also construct a
baseline without modular latents but with the latent imagination capability on the joint latent. Since
this baseline shares most architecture design choices with the recurrent state-space model (RSSM) in
Hafner et al. (2019), we call it BC-RSSM. More details are in Appendix C.

Training Details We train all models using the Adam (Kingma & Ba, 2014) optimizer with a fixed
learning rate of 1e —4, and Diffusion Policy using the AdamW (Loshchilov & Hutter, 2019) optimizer
using the same learning rate with a half-cosine decay schedule (as in the original work). We train all
models on a single NVIDIA A40 GPU. Please see Appendix D for all training hyperparameters.
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Table 2: AdaMLI for multimodal noises. We show success rates (SR) on 8 MimicLabs tasks with
unseen noising in different sets of multimodal inputs: “RGB” (masking agent-view and wrist-view
images), “RGBD” (additional masking depth maps), and “All” (additionally zero-ing out robot
proprioception to emulate sensor failure). BC-NOSTRA measures noise in individual inputs and
adaptively employs MLI to maintain high success for this suite of prehensile, non-prehensile, and
long-horizon tasks.

\ bin carrot bin bowl open drawer close drawer
Method Avg. SRT  Avg. Rank| ‘ RGB RGBD Al ‘ RGB RGBD Al ‘ RGB RGBD All ‘ RGB RGBD All
BC-LSTM (Mandlekar et al., 2021) 63.8 3.1 52 30 30 74 76 80 100 100 100 | 100 100 100
Diffusion Policy (Chi et al., 2023) 61.3 3.9 40 40 46 56 54 60 92 94 98 98 98 98
BC-RSSM 59.9 34 64 42 52 88 96 90 92 90 92 46 58 60
BC-NOSTRA (ours) 70.7 2.7 74 76 78 78 86 82 76 68 86 100 100 100
BC-NOSTRA + AdaMLI (ours) 86.5 14 86 82 86 92 96 90 92 100 96 100 100 100
open microwave close microwave open drawer & put bowl put bowl & close drawer
Method RGB RGBD All | RGB RGBD All | RGB RGBD All | RGB RGBD All
BC-LSTM (Mandlekar et al., 2021) 60 52 46 46 46 56 44 56 56 40 40 46
Diffusion Policy (Chi et al., 2023) 44 48 50 68 62 64 22 18 14 68 70 70
BC-RSSM 88 68 82 52 34 20 40 54 40 22 36 32
BC-NOSTRA (ours) 52 70 58 88 80 84 64 60 48 28 26 34
BC-NOSTRA + AdaMLI (ours) 76 66 78 80 86 88 72 58 78 98 86 90

4.1 MAIN RESULTS

Multimodal latent imagination in NOSTRA enables robustness against unseen visual noises.
We evaluate models on 16 distinct task instances created by adding 3 types of visual noise to four
simulated tasks: black masks for camera occlusion, random camera position jitter, and changing
table textures. Noise is added for multiple durations to hinder performance at critical stages of the
task (details in Appendix F). We summarize results in Table 1. On the base tasks with no noise,
BC-NOSTRA performs comparably to or better than BC-LSTM and Diffusion Policy. When facing
noisy variants, we find that latent imagination (LI) significantly boosts policy robustness. Specifically,
BC-NOSTRA with multimodal latent imagination (MLI) surpasses Diffusion Policy by up to 30% on
Square D2 and Coffee D2 and by an impressive 40% on Stack D1 on masking noise. BC-NOSTRA
+MLI outperforms BC-RSSM+LI by up to 22% (~17% on average), demonstrating the advantage of
a separable multimodal latent space that effectively filters out information from noisy inputs.

Adaptive latent imagination enables robustness against multimodal noise. While our initial
tests showed strong robustness to purely visual noise using MLI, they relied on an “oracle” to
detect when noise occurred - a non-scalable assumption. To address this, we developed AdaMLI,
a mechanism that automatically identifies noise across any modality and adaptively switches to
open-loop latents to maintain robustness. We tested BC-NOSTRA +AdaMLI on 8 MimicLabs tasks
with noise added to RGB images, depth maps, and robot proprioception. Results in Table 2 show
that BC-NOSTRA+AdaMLlI significantly outperforms all other methods, beating Diffusion Policy
by more than 20% on average and up to 60% on long-horizon tasks. This demonstrates its ability to
handle noise irrespective of modality, offering a truly scalable solution.

BC-NOSTRA outputs task-relevant actions in the absence of image inputs for extended durations.
We analyzed the quality of action trajectories predicted using MLI. Figure 4 shows the (z,y, 2)
positions of the robot end-effector during rollout on the Square task with mask noise for ¢ € 75, 110].
We see that the end-effector trajectory using BC-NOSTRA with latent imagination on the image
inputs closely matches that when no noise was added. This shows that the open-loop latent maintains
task-relevant information even in the absence of image inputs for extended durations (35 timesteps in
this case) leading to successful task execution which would otherwise be hindered by visual noise.

Multimodal latents in NOSTRA ignore non-informative input modalities. We train BC-NOSTRA
on 2 variants of 4 simulated tasks: one using a standard, informative agent-view camera, and another
where the robot self-occludes the agent-view making it non-informative. Results in Table 3 show
that BC-NOSTRA effectively identifies when the agent-view image is non-informative. It reduces the
information stored in the corresponding latent space by up to 32%, measured by the per-modality
KL divergence Dy, (in nats), while simultaneously increasing the information extracted from the
remaining modalities. This demonstrates BC-NOSTRA’s ability to adapt its latent representations to
ignore non-informative inputs from a diverse set of modalities.
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Table 3: Adapting to informative modalities. We compare information extracted from two datasets
for each task: one with a clear, informative “good view” camera and another with an “occluded view”
where the robot blocks the camera, using KL (in nats) after 200 epochs of training. BC-NOSTRA’s
multimodal latent space adaptively reduces the information extracted from the non-informative,

occluded view, while increasing focus on other useful inputs.

Stack D1 Stack Three D1 Square D2 Coffee D2
good view  occl. view good view occl. view good view  occl. view good view  occl. view

vy — vy — v § oy —

- p 4 & | &
” a

Wrist-view RGB 4.066  4.847 (+19.2%) 4.446 5.794 (+30.3%) 4374 4909 (+12.2%) 4.349 4.684 (+7.7%)
Agent-view RGB 3.033  2.401 (-20.8%) 3.981 2.707 (-32.0%) 2.876  2.580 (-10.3%) 2954 2476 (-16.2%)
End-effector ori. 0.740  1.039 (+40.4%) 1.025 1.820 (+77.5%) 0919  1.259 (+36.9%) 0452 0.643 (+42.3%)
End-effector pos. 0.347  0.673 (+94.0%) 0.401 1.083 (+169.9%) 0.326  0.598 (+83.5%) 0.278  0.335 (+20.7%)
Gripper width 0270  0.302 (+11.9%) 0.324 0.462 (+42.7%) 0.304  0.348 (+14.2%) 0.283 0312 (+10.0%)
Total 8.456 9.262 (+9.5%) 10.177  11.865 (+16.6%) 8.800  9.693 (+10.1%) 8.316 8.451 (+1.6%)

Table 4: Success rates (peak performance in 600 epochs, averaged over 50 rollouts) when fine-tuning
behavior cloning policies using pre-trained checkpoints, trained for 200 epochs on a dataset containing
a non-informative agent-view image. Results show that a modular latent space almost always leads to
more successful fine-tuning.

Stack D1 Stack Three D1 Square D2 Coffee D2
Num. demos — 10 20 50 10 20 50 10 20 50 10 20 50
BC-LSTM (Mandlekar et al., 2021) 28 62 72 2 2 20 2 4 12 6 18 24
BC-RSSM 14 16 6 2 2 4 0o 0 0 0 4 8
BC-NOSTRA (ours) 44 74 9 4 14 22 2 12 12 24 34 46

--- No noise

BC-NOSTRA enables better pre-training with BCNOSTRA . BCNOSTRA S ML
non-informative inputs. We pre-trained visuomo- v
tor policies for 200 epochs on datasets of 1000 expert s
demos that included an occluded, non-informative
agent-view camera. We then fine-tuned these models
on 10, 20, 50 demos containing a useful agent-view
image. As shown in Table 4, BC-NOSTRA consis-
tently outperforms BC-RSSM (which lacks modular
latents) by up to 30% when fine-tuning on just 10 ~
demos. This strong performance demonstrates that
the modular latent structure of BC-NOSTRA learns
effective representations even from heterogeneous in-  Figure 4: Multimodal latent imagination
puts, enabling superior performance on downstream (MLI) predicts accurate actions over ex-
manipulation tasks. tended durations. We noise inputs for ¢ €
[75,110] (red region) in the Square task, and
show end-effector trajectories output by BC-
NOSTRA with MLI (—) and without (),
as well as BC-NOSTRA on clean inputs (- -
). MLI closely matches robot’s trajectory to
what it could have taken if there was no noise.

20 40 60 80 100 140

Timestep

BC-NOSTRA learns effectively when co-training
with diverse large-scale datasets. We evaluated
our policies on two MimicLabs tasks: bin bowl and
the longer-horizon open drawer & put bowl. For each
task, we co-trained the policies with two different
retrieved datasets: one large and diverse (O(10k) demonstrations) aligned by object/skill, and a
smaller, more specific one (O(1k) demonstrations) aligned by camera poses and spatial arrangements.
Diffusion Policy experienced a significant drop in performance when co-trained with the larger, more
diverse dataset on the long-horizon open drawer & put bowl task. In contrast, BC-NOSTRA showed
a consistent performance boost, achieving a 14% improvement and outperforming a joint latent space
model, BC-RSSM, by 8%. Similar gains were observed on the shorter-horizon bin bowl task. This
consistent improvement highlights the benefits of our modular latent space design in effectively
leveraging diverse, heterogeneous data.

4.2 REAL-ROBOT EXPERIMENTS

We trained visuomotor policies using BC-NOSTRA, BC-RSSM, and Diffusion Policy on four real-
world tasks requiring a variety of motion skills (lifting, picking and placing, pouring), as shown in
Figure 8. On three tasks, we show model performance when the camera was occluded by hand, and
BC-NOSTRA used AdaMLI to stay robust. Results are in Table 6, averaged over 10 trials.
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Table 5: Co-training with the MimicLabs Dataset. We used 10 target demos for the bin bowl task
and 20 for the clear table task. Showing peak performance over 600 epochs of training, averaged
over 50 rollouts. Obj/Skill refers to retrieving demos with matching objects and skills, +all refers to
additional retrieval to align camera pose and placement arrangements.

bin bowl open drawer & place bowl
Method Target only | Obj/Skill +all Target only | Obj/Skill +all
BC-LSTM (Mandlekar et al., 2021) 38 52(+14) 60 (+22) 42 40(2) 58(+16)
Diffusion Policy (Chi ct al., 2023) 10 30 (+20) 30 (+20) 48 28 (-20)  26(-22)
BC-RSSM 40 38(-2) 50 (+10) 40 46 (+6) 38 (-2)
BC-NOSTRA (ours) 38 44.(+6) 66 (+28) 52 66 (+14) 54(+2)
pomms R Figure 5: Showing KL divergence (in nats)

KL (nats)
3 &

A as a measure of amount of information ex-

M {UL A tracted from each input image for different

WM,,\ / w WWM ‘ picking up pod; t=100 - moving towards cof-

b i R fee machine, agent-view more informative;
S t=110 - coffee machine visible in wrist-view,

< both views useful; =150 - fine-tuned placing,
o i mmi

wrist-view useful but agent-view not.

stages of the Coffee task. Task stages: =80 -

gg

=100 =110 =150 =100 =110 =150

BC-NOSTRA learns stable and sample efficient policies in the real world. Using just 30 human
demonstrations, BC-NOSTRA is stable to train and learns policies that outperform Diffusion Policy
on 2 out of 4 tasks and is at-par with one other. The modular latent space is crucial to our state-space
model as we found BC-RSSM with the joint latent space to undergo unstable training, resulting in no
success even on the easy /ift task. BC-NOSTRA introduces structure to the latent space which acts as
regularization resulting in stable downstream performance.

BC-NOSTRA enables robustness against camera occlusion in the real-world We evaluated all
policies in a real-world setting with an external occlusion of the wrist-view camera by a human hand.
As shown in Table 6, BC-NOSTRA with AdaMLI successfully detected and adapted to this unforeseen
noise, achieving a success rate that nearly matched its performance without occlusion. In contrast,
Diffusion Policy failed to complete two out of three tasks. When the camera was occluded, the robot
made jerky motions that caused it to become stuck as errors accumulated. BC-NOSTRA avoided this
failure mode by switching to an open-loop latent imagination, effectively ignoring the noisy camera
input and maintaining high task success.

Table 6: Success rates (averaged over 10 trials) on four real-robot manipulation tasks.

Task lift block serve snack marker in cup pour beans

no noise  cam occl. no noise  cam occl. no noise  cam occl.
Diffusion Policy 60 50 0 30 0 70 40
BC-RSSM (ours) 0 20 0 0 0 40 40
BC-NOSTRA (ours) 60 60 40 50 40 50 50

5 CONCLUSION

In this paper, we presented BC-NOSTRA, a visuomotor policy that leverages a multi-modal state-
space model to enable modality-level robustness to noise, and learns latent embeddings that adapt to
the heterogeneity in a manipulation task. We proposed a novel inference strategy called Adaptive
Multimodal Latent Imagination (AdaMLI) that allows our visuomotor policy to identify noisy inputs
and be robust against them, without any explicit training on action prediction with noisy or missing
modalities. Leveraging its modular latent space, BC-NOSTRA offered an effective methodology
for fine-tuning visuomotor policies pre-trained or co-trained with diverse robotic datasets. Our
experiments strongly indicated that the ideas proposed in this paper can result in robust visuomotor
policies, and while proven extensively in single-task settings, our design decisions are general, and
we believe will pave the way for the development of robust large-scale multi-task behavior models.
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A BACKGROUND

D

(a) BC-RNN (b) BC-NOSTRA

Figure 6: Contrasting BC-NOSTRA with BC-RNN (Mandlekar et al., 2021). Solid arrows
represent the generative model, broken and solid arrows combined constitute the inference model.

Given a dataset ® = {(i)01:T7(i) al:T}ﬁvzl, where 01.7 and a;.7 denote IV paired observation-action
trajectories (expert data), o; is a group of multi-modal observations such as multi-view images
and proprioception and a; is expert action, our goal is to fit a model that can generate actions
given observation inputs. Various methods have been proposed in recent literature, that leverage
a history of observations to condition action generation at each timestep, and fit this model by
maximizing likelihood of ® in the assumed model. In this section we cover the fundamental approach
implemented by (Mandlekar et al., 2021) that uses an RNN to utilize a history of observations (Sec.
A.1), and then discuss a latent variable model that uses a combination of stochastic and deterministic
latent states for open-loop state-prediction.

A.1 AUTOREGRESSIVE MODELS FOR BEHAVIOR CLONING

Behavior cloning (BC) is a form of imitation learning where a model learns to replicate expert behavior
by mapping observed inputs directly to actions, using supervised learning. BC-RNN Mandlekar et al.
(2021) is an autoregressive imitation learning algorithm that models a visuomotor policy p(a1.7|o1.7)
factorized as,

plavrlonr) = /P(GLT,ZO:T\OLT)dZO:T 2 /P(Zo)Hp(at|zt)p(zt|2t—1,Ot)dzo;% 3

t=1

where z; is a latent variable that we introduce, p(z:|z;—1, 0;) is the observation-conditioned latent dy-
namics and p(a¢|z:) is the action decoder. Figure 6a illustrates a typical BC-RNN model. Mandlekar
et al. (2021) implemented BC-RNN with a deterministic latent variable z;, using an LSTM (Hochre-
iter & Schmidhuber, 1997) to compute the latent dynamics, which we call BC-LSTM in this paper.
They concatenate learned embeddings of all input modalities into a single latent vector and compute
actions using an MLP. In this paper, we build upon the BC-RNN framework for a visuomotor policy
where we use a multi-modal state-space model NOSTRA instead of an LSTM.

A.2 RECURRENT STATE-SPACE MODEL (RSSM)

Recurrent state-space models (RSSMs) are a class of latent-variable world models that factorize the
action-conditioned distribution on observations p(01.7|a1.7) as

T
plovrlanr) = /p(OI:T7ZO:T|alzT)dZO:T 2 /p(ZO)Hp(ot‘zt)p(zﬂztfl’at)dZO:T~ “
=1

RSSM uses a combination of stochastic and deterministic variables to represent the latent state z;,
with stochastic state filtering information from the current observation and the deterministic state
maintaining long-term history using a GRU. In this work, we extend the RSSM architecture to model
a multi-modal stochastic state and output actions instead of observations.
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B DERIVATION OF ELBO

BC-NOSTRA models the joint distribution of observations-action trajectories p(ay.r, 0} :¥ A1) by intro-
ducing a multlmodal latent space 2™ We integrate out the introduced latents with the help of a

posterior q(z M|z oFM) which leads us to a lower bound (ELBO) on the true log-likelihood
(see Eq. (2)). We prove this variational bound below.

IHP(GLT, 0}%4)

1:M 1:M
= 1n/p(alzT701:TaZ();T )dz():T

21n [ pp)

o

placlzy ™ )ploelz ™ (2™ |24 ) dzgin!

=1
1M d 1M vy ey (% FM N o M) M
1: M : 1: ’ :

= tn [ o™ T] st plonde ot :47) i e debh

=1 q(z -1 0%

A p(z M)
=InE_ 1 : plat|z Z
o o5 LTttt )«twd%QMﬂ
:]\/I|ZI:M)
> Eq(za;TMo};%[ +Zlnp arlz +Zln - M|Zl gy
constant t
not trained

d M q(z M|Zt 1 Otl M)
— 1: )
= Eqyiolt) D <1np( el ™) — (ML) >

t=1 Pz 21

T
= Z (]Eq( 1]VI|ZI<1W 1M)[lnp(at\zt )]
t=1
LM 1M 1:M M
Byttt o) [KLOGEY I o )l 42401
(5)
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C BASELINES

C.1 DIFFUSION FORCING (CHEN ET AL., 2024)

Original Implementation. The official implementation of Diffusion Forcing is provided at
https://github.com/buoyancy99/diffusion-forcing/tree/paper. In the robot learning setup of this imple-
mentation, each diffusion forcing output token consists of two images and 15 actions (a token is the
basic generation unit and the diffusion forcing model generates a video by generating a sequence
of tokens). The resolution of the synthesized image is set to 32 x 32, hence two images result in a
dimension of (32, 32, 6). The official implementation aligns the synthesized action to the dimension
of the image such that both images and actions can be together processed by a neural network.
Specifically, each action vector will be tiled and repeated to a dimension of (32, 32, 1) in a certain
way and then concatenated with the images in the channel dimension. As diffusion forcing leverages
action chunking of size 15, the final output dimension is (32, 32, 21).

Our Implementation in Robosuite. We implement Diffusion Forcing in our Robosuite tasks
based on the original implementation above. To align with common Robosuite setup and enhance
computation efficiency, we make two major modifications as described below. First, we set the
Diffusion Forcing image size to (84, 84, 3) such that the robot state and target objects are clearly
visible. Hence, each output token is in shape (84, 84, 21). Second, as the increased resolution
significantly increase the computation requirement, we reduce the depth of the UNet from 4 to 3 and
set the batch size to a smaller number (e.g., 16) so that the model can fit onto a single NVIDIA A40
GPU with 48 GB memory.

Evaluation. As shown in Table 1, we evaluate Diffusion Forcing in two settings: Diffusion Forcing
and Diffusion Forcing w/ prior-forcing. In the first setting, following the original implementation, the
current observation input is used to update the rolling latent z. In the w/ prior forcing variant, we only
use the current observation to update z if the observation is clean; and will use the predicted rolling
latent Z for action decoding when noisy observation is given. We present examples in Figure 7.
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Video Prediction
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Figure 7: Evaluating Diffusion Forcing. Video prediction (top) and rollout observations (bottom)
when evaluating the Diffusion Forcing baseline on a noisy variant of Stack D1 (left) w/ prior forcing,
and the base Coffee D2 (right) task. When the table texture was changed in Stack D1, prior-forcing
was able to successfully predict future video and task-relevant actions in an open-loop fashion given
the observation history. For the base Coffee D2 task however video predictions and actions were not
accurate enough to complete the task.
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D HYPERPARAMETERS

Table 7: BC-NOSTRA hyperparameters.

batch size
sequence length
optimizer
learning rate

learning rate scheduler

num. gradient steps
image encoder
image resolution

latent size (per modality)

modality transformer embed size
modality transformer heads
modality transformer blocks
decoder MLP hidden layers

B

~
action space

32

16

Adam

le — 4
constant
300000
ResNet18
(84, 84)
40

256

2

1

400 x 400
le — 4

0.1

delta cartesian

Table 8: Diffusion Policy hyperparameters.

batch size

observation horizon (To)

action horizon (Ta)

prediction horizon (Tp)

diffusion method
optimizer
learning rate

learning rate scheduler

num. gradient steps

image encoder
image resolution
action space

32

2

8

16

DDPM

AdamW

le — 4
half-cycle cosine
300000
ResNet18

(84, 84)

absolute cartesian
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E DETAILS OF SIMULATED ROBOSUITE TASKS

Below are details of MuJoCo-based simulated tasks used in our experiments:

e Stack DI (Mandlekar et al., 2023): stack the red block on the green block; blocks are
initialized in a 0.4m x 0.4m range with a random yaw rotation

 StackThree DI (Mandlekar et al., 2023): stack the red block on the green block, followed by
the blue block on the red block; blocks are initialized in a 0.4m x 0.4m range with a random
yaw rotation

* Square D2 (Mandlekar et al., 2023): grasp the nut and insert it onto the peg; nut and peg are
initialized in a 0.5m x 0.5m range with random yaw rotations for both nut and peg

* Coffee D2 (Mandlekar et al., 2023): pick the coffee pod and insert it into the coffee machine;
coffee machine is initialized on the right side of the table in a 0.1m x 0.1m range with 90
degrees of yaw rotation variation, pod is initialized on the left side of the table and the pod
is initialized in a 0.25m x 0.13m box

* Bin carrot (Saxena et al., 2025): put the carrot in the bin; the carrot is initialized in a 0.2m x
0.2m range

* Bin bowl (Saxena et al., 2025): put the bowl in the bin; the bowl is initialized in a 0.2m x
0.2m range

* Open microwave (Saxena et al., 2025): open the microwave door; microwave is on the left
of the robot

* Close microwave (Saxena et al., 2025): close the microwave door; microwave is on the right
of the robot

* Open drawer (Saxena et al., 2025): open the top drawer of the cabinet; cabinet is on the left
of the robot

* Close drawer (Saxena et al., 2025): close the top drawer of the cabinet; cabinet is on the
right of the robot

* Open drawer & place bowl (Saxena et al., 2025): open the top drawer of the cabinet and put
the bowl in it; the bowl is initialized in a 0.2m x 0.2m range

F DETAILS OF NOISY ROBOSUITE TASKS

We provide additional details of noising in different Robosuite Zhu et al. (2020) tasks from Table 1.

* Rollout horizon: We rolled out each task until £ = 600 timesteps, which corresponds to
30s in real-time using a 20Hz controller.

* Noising windows: We choose noising windows roughly corresponding with the critical
phases of the task, such as grasping or placing to make the task as difficult as possible during
testing. For Stack D1, we chose two noising windows, ¢ € [25, 75)U[100, 150), and for Stack
Three D1, Square D1, and Coffee D2 we chose noising windows ¢ € [75,100) U [125, 150).

Below are details of different types of noises that we add during noising windows stated above.

* Masking: We overlay a black mask of size (50, 50) at a random position on the (84, 84)
image, making sure the entire mask was on the image.

» Camera jitter: We normally jittered the 3D position of both agent-view and wrist-view
cameras centered around their original position with a standard deviation 0.1.

 Table texture: We replace the table texture with a new one during the noising windows.
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G REAL-ROBOT TASKS
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Figure 8: Real-world tasks. We evaluate our method and baselines on 4 tasks using a Franka Emika
Panda robot. We show the initial state (left) and final state (right) for each task.
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Figure 9

We run experiments on 4 real-robot tasks:

* [lift: Lift up the red block. Reset range is 5in x 5in, illustrated in Figure 9a.

* serve snack: Pick the snack bag and put it on the plate. The snack is reset in a 10in x 10in
range, while the plate had minimal variation. Illustrated in Figure 9b.

* marker in cup: Pick up the blue marker and put it in the cup. The marker is reset in a 10in x
5in range and the cup was varied in a smaller 4in x 4in range. Illustrated in Figure 9c.

* pour beans: Pour beans from the blue bowl onto the plate. The bowl with beans was reset in
a 6in x 10in range while the plate had minimal variation. Illustrated in Figure 9d.
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H LLM USAGE

We used LLMs solely for the purpose of polishing writing. We did not use LLMs for any sort of
project ideation or discovering related works.
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