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Abstract

In-context learning (ICL) can solve new tasks
on pre-trained Large Language Models (LLMs)
given a few demonstrations as input. However,
so far there is little understanding of how many
demonstrations are required for the real-world ap-
plications with large label spaces. In this work, we
conduct a meticulous study under various settings
with different LLMs and datasets. Our insights
suggest that: (i) we might not even need demon-
strations, especially when the class names are
descriptive and the model is strong-performing
(e.g., GPT-4). Nevertheless, (ii) datasets with
extremely large label space can benefit with addi-
tional human-created demonstrations. Lastly, (iii)
automatically generated demonstrations might not
yield additional benefits. We believe our study
leads to new insights on understanding the induc-
tive bias of ICL.

1. Introduction

Machine learning has witnessed remarkable advances with
the advent of Large Language Models (LLMs) such as
GPT (Radford et al., 2018; 2019; Brown et al., 2020). These
LLMs enable a novel paradigm of in-context learning (ICL),
where the LLM can answer a query that is not part of its
original objective without changing the LLM parameters.
Nevertheless, we can supply few examples as input, which
are referred to as demonstrations (Brown et al., 2020). ICL
offers a significant advantage over training a specialized
model, as it can achieve similar results without requiring
large amounts of data (Radford et al., 2019). Moreover, ICL
allows the user to perform the task by simply and instantly
interacting with the LLM. The key question now is how
many demonstrations to provide.
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Zhao et al. (2021); Hashimoto et al. (2023) advocate that
few-shot demonstrations outperform zero-shot (i.e., no
demonstrations) in ICL under a limited label-space. Min
et al. (2022) investigate which parts of the demonstration
and the prompt instructions are critical to improve ICL.
Despite the progress in understanding the role of demonstra-
tions, the aforementioned works focus on small label spaces,
while in real-world applications larger label spaces are im-
portant (Minaee et al., 2021; Apté et al., 1994; Kowsari
et al., 2017). In other words, the following question remains
yet elusive: How does the number of demonstrations affect
the performance under large label spaces?

In this paper, we explore this question by studying three
commonly-used settings across various LLMs. The first
setting is retrieval, which is the most successful setting to
date for ICL. In retrieval we recover demonstrations from a
pool of similar queries to our test query. Our first key insight
dictates that the number of demonstrations required differs
substantially per LLM used. Notably, the highest accuracy
is achieved under the retrieval setting with GPT-4, when
we use more demonstrations than the recommendations of
previous work.

Our second setting alleviates the limitation for a pool of
queries. In particular, when demonstrations are not readily
available, we can synthesize them using an auxiliary LLM.
This setting with self-generated demonstrations, called 2LM,
has a high variance depending on the LLM used, while it
usually cannot match the performance of the retrieval setting.
We examine the potential reasons behind the ineffectiveness
of self-generated demonstrations. The third setting, which
is called CoT-2LM extends the 2LLM setting using the idea
of Chain-of-Thought (Wei et al., 2022b), which has been
effective in improving the performance of LLMs.

The key surprising message though is that demonstrations
might not be required in all cases. Notably, we consider
a setting without any demonstrations, called “zero-shot”,
and observe that the model can still perform on par with the
retrieval setting in many cases. Given the runtime efficiency
of zero-shot setting, we do believe this is a promising avenue
even for large label settings. We believe that this zero-
shot setting can also further scrutinize the quality of the
latent space of LLMs, since we observe high variance in the
performance of LLMs on this setting.
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2. Methodology

Let us define the problem and the various prompt settings
we assess in this work.

2.1. Problem description

We aim to study in-context learning (ICL) in large label-
space text classification. We denote X’ as the input text
space and ) as the label space. We assume we have
N class labels. Let S = Ugen{(®1,y1,- -, Tk, Yk, V) :
x; € X,y; € YV} be the set of k finite-length sequences
of (z,y) pairs followed by the label space. We refer to
(1,91, Tk, Yk, V) as context Cy, and the {(x;,y:)}5_,
pairs in context as demonstrations. The context Cj and a
test query T € A, along with the instruction set ¢ are fed
into a pretrained language model (henceforth referred to as
predictor). We assume the predictor has fixed parameters.
The predictor model M : § x X — Y should predict yeg
as follows:

Ypred = arg)rjnax/\/l(- | Cky Tpests L) -

2.2. Prompt configurations

In this paper, we consider a variety of prompt configurations
that have emerged in the literature and (partially) depend on
the availability of demonstrations.

Zero-shot ICL. We only provide the label information
and the test query to the predictor. The context Cy, is then
reduced to the label space, i.e., Co = ) , while k = 0. We
call this the “zero-shot” setting throughout this paper. This
is the most general and economical setting that does not
require any domain-specific demonstrations and uses fewer
input tokens. This setting can be applied to any test query
without needing any additional “similar” demonstrations as
the retrieval setting.

Few-shot ICL with Retrieval. We utilize demonstrations
that are “similar” to the test query. We employ a retrieval
model to recover demonstrations from a pool of available
demonstrations. As a reminder, we have N classes in total,
while the retrieval pool contains demonstrations categorized
per class. We sample 7 demonstrations per class uniformly
at random for our retrieval'. Then, the retrieval model com-
pares the embedding vectors of the sampled demonstrations
with the embedding vectors of the test query. The top-k
samples with the highest cosine similarity are selected as
the demonstrations of ICL. This setting, referred to as re-
trieval, is inspired by Milios et al. (2023a). A schematic of
the retrieval setting is depicted in Appendix C Figure S4(a).

!This number is chosen because most of our experiments have
k < 7. In addition, the experiments in Appendix G exhibit that
even larger retrieval pool does not offer any benefits.

Few-shot ICL with 2LM. A core drawback of the re-
trieval setting is the requirement for a pool of demonstra-
tions that are similar to the test query. In case such human-
labeled data are not available, we can synthesize the demon-
strations using an additional LM. The first LM, called the
generator, synthesizes k demonstrations using the label
space and the test query as the input. Those demonstrations
are then used as the context for the predictor model. A
schematic of the 2LM setting is depicted in Appendix C
Figure S4(b).

Few-shot ICL with CoT-2LM. We augment the last set-
ting using chain-of-thought (CoT) arguments, which en-
hance the performance of LMs as reasoners (Wei et al.,
2022b). CoT inserts an intermediate reasoning process
into the demonstration. We modify the instruction in 2LM
setting to require the generator to synthesize demonstra-
tions with reasoning steps. Here the input-output pair be-
come input-reason-output tuple (x1, 71, Y1, - - - , Tk, Tk, Yk )
where r; denotes the reasoning process. The components of
this framework are shown in Appendix C Figure S9.

3. Experiments

In this section, we conduct experiments on GPT-4, GPT-
3.52, Mixtral (Jiang et al., 2024), and LLaMA-2 (Touvron
et al., 2023) under three different configurations, with four
datasets: Banking77 with 77 unique labels (Casanueva et al.,
2020), Clinc150 with 150 unique labels (Larson et al., 2019),
HWUG64 with 59 unique labels (Liu et al., 2019) and GoE-
motions with 27 unique labels (Demszky et al., 2020). Our
detailed experimental setup can be found in Appendix B.

3.1. GPT-4 on different prompt configurations

Our first experiment assesses the performance of the con-
figurations of Section 2.2 on GPT-4, which is currently the
strongest performing model. The results on HWU in Fig-
ure 1(a) exhibit that the zero-shot is on par with the k-shot
configurations. Notice that the performance remains stable
across different number of demonstrations.

To further evaluate the effect of the number of demonstra-
tions k on the retrieval setting, we generalize our validation
to all datasets. We observe in Figure 1(b) that the retrieval
performance improves with increasing k in 2 out of the 4
datasets, namely Banking77 and Clinc, with Clinc showing
the largest improvement. A natural question is whether
this improvement is related to the larger number of classes
of Clinc and Banking77 datasets over the HWU and GoE-
motions. We measure the impact of the number of classes
on the number of demonstrations by randomly sampling
a subset of classes from the Clinc dataset. The results in

https://platform.openai.com/docs/models
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(a) GPT-4 on HWU across three settings

(b) retrieval with GPT-4 on four datasets

(c) retrieval with GPT-4 on Clinc

Figure 1. (a) Accuracy on HWU over three settings on GPT-4. Notice that the few-shot settings do not result in significant performance
gains compared to the zero-shot on GPT-4. (b) Accuracy over retrieval setting on GPT-4 under the retrieval pool: 7/N. Retrieved
demonstrations result in a gradual increase on intent classification datasets. The Clinc dataset has the largest increase, but only when
additional demonstrations are utilized. (c) Accuracy under a decreasing size of label space on Clinc dataset. The larger the label space, the
higher the number of retrieved demonstrations required. Highlighted regions denote the standard deviation in this paper.
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Figure 2. (a) Accuracy of vanilla 2LM and CoT-2LM settings (depicted with solid and dashed lines respectively) on GPT-4. CoT results in
a minor improvement from vanilla 2LM, especially in the regime of {3, 5} demonstrations. (b) Accuracy of vanilla 2LM and CoT-2LM
settings on GPT-3.5. Vanilla-2LLM brings dramatic accuracy decrease, while CoT greatly improves the performance from vanilla 2LM.
When k = 1, CoT-2LM outperforms zero-shot, but decreases as k gradually increases.
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Figure 3. Time (in seconds) required to perform a full-flow GPT-4
ICL task on Clinc dataset. Once retrieval is involved, the cost of
time increases steeply.

Figure 1(c) exhibit that the number of classes significantly
affects the performance with respect to the number of
demonstrations. Specifically, when the number of classes is
reduced to 100 or less, adding more than 5 demonstrations
does not lead to significant improvement, which is much
lower than the optimal £ = 13 in the full dataset. Moreover,
when the number of classes is only 10, the zero-shot setting
outperforms all the k-shot retrieval settings.

We extend our experiments on both the vanilla 2LM and the

CoT-2LM settings. The results in Figure 2(a) indicate that
neither the vanilla 2LLM nor the CoT-2LLM settings have a
consistent improvement across datasets and different num-
ber of demonstrations. However, notice that the CoT-2LM
setting results in a slight increase, particularly in the regime
of 3 or 5 demonstrations. This is more evident in the chal-
lenging dataset of GoEmotions, where the performance of
CoT-2LM consistently surpasses retrieval setting for all val-
ues of k up to and including 7.

Beyond the accuracy, the computational complexity of each
configuration differs. To evaluate that, we sample randomly
five test queries in the Clinc dataset and repeat each ex-
periment three times. As visualized in Figure 3 the re-
trieval setting is more computationally demanding for up to
9 demonstrations with the zero-shot setting being the fastest.

3.2. Experiments on different models

We extend our validation to the popular models of GPT-3.5,
Mixtral 8x7B and LLaMA-2. As we elaborate below, the
three models differ significantly from GPT-4 with respect
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to their ICL performance. Noticeably, in all cases the per-
formance is not better than the corresponding accuracy on
GPT-4. Initially, we focus on the HWU dataset as in GPT-4
and then extend our experimentation to all datasets in the
retrieval setting.

GPT-3.5 and Mixtral 8x7B: As illustrated in Figure 2(b)
and Figure S6, the zero-shot setting performs favorably to
the vanilla 2LLM setting, which is consistent with our previ-
ous observations. However, there are two key differences
from GPT-4: (i) the CoT-2LM setting improves substantially
the vanilla 2LM setting, (ii) the gap between the retrieval
and the vanilla 2LLM setting is large. The results with CoT-
2L.M on GPT-3.5 across all datasets (see Figure 2(b)) exhibit
the peak performance at k¥ = 1. That differs from the ob-
servations on GPT-4, in which k£ > 1 performs favorably in
CoT-2LM.

We extend our experiments on the retrieval setting to fur-
ther compare the models. The results in Figure S5 depict
two key differences from GPT-4: (i) the retrieval setting is
more important on GPT-3.5 and Mixtral when compared to
GPT-4, (ii) the performance saturates after 5 demonstrations.
Interestingly, in Clinc dataset, Mixtral performs worse than
GPT-3.5, while in GoEmotions the demonstrations hurt the
performance in Mixtral.

LLaMA-2: As indicated in Figure S6(c), LLaMA-2 dif-
fers from all the aforementioned models in: (i) its zero-shot
performance is much lower than the previous models, (ii)
CoT-2LM does not have consistent benefits across different
number of demonstrations. Nevertheless, in the retrieval
setting with more demonstrations LLaMA-2 performs on
par with GPT-3.5 and Mixtral. Notably, in GoEmotions
dataset the retrieval setting of LLaMA-2 outperforms the
equivalent results in Mixtral as visualized in Figure S5(c).

3.3. Key takeaway messages on configurations

Zero-shot setting: Both GPT models and Mixtral offer a
strong-performing zero-shot setting. We hypothesize that as
long as the class labels are descriptive, zero-shot is a valid
option that offers little to no overhead as a side benefit.

Retrieval setting: All four datasets include demonstra-
tions, which makes them amenable to the retrieval setting.
However, having available pool of demonstrations on arbi-
trary ICL tasks might be harder, especially under the more
realistic scenario of large label spaces. Yet, the retrieval
setting can be beneficial, particularly when the model is not
GPT-4. Concretely, for GPT-3.5, Mixtral and LLaMA-2 a
few demonstrations can bring significant performance in-
crease. Additionally, our ablation experiment in Appendix G
exhibits that randomly selecting demonstrations instead of
optimizing their selection may hurt the performance.

2LM settings: CoT leads to an improved performance in
most cases. CoT 2LM setting is particularly helpful in the
GoEmotion dataset, where a step-by-step process is more
beneficial than human-labelled emotions, which might not
be ideal for ICL.

When should we avoid the zero-shot setting? The
datasets used so far include descriptive class labels, which
can partly explain the strong performance of the zero-
shot setting. On the contrary, when the labels are not
descriptive, demonstrations are critical for ICL. We pro-
vide evidence with the following experiment: we man-
ually modify the class labels of HWU by randomly in-
serting letters and digits. For instance, the altered ver-
sion of the label ‘lists_createoradd’ is transformed into
‘lisPts_7creyateloraldd’. The zero-shot performance of GPT-
3.5 in this modified label space is significantly reduced as
reported in Figure S7. If we use as few as 1 demonstration,
the performance increases significantly.

Why do self-generated demonstrations degrade the per-
formance on GPT-3.5 but not on GPT-4? As mentioned
above, the vanilla 2LM setting degrades the performance on
GPT-3.5, while on GPT-4 the performance remains mostly
the same. Can this be attributed to the generator or to the
predictor model? We conduct the following ablation to as-
sess which of the two models has a larger impact on the
final result. We utilize GPT-3.5 and GPT-4 for this task as
two representative instances. As illustrated in Figure S8(a)
when GPT-4 serves as the generator and GPT-3.5 as the
predictor LM, there is a significant improvement in perfor-
mance with respect to the vanilla 2LM setting of GPT-3.5.
Noticeably, in the 1-shot setting, this combination of GPT-4
and GPT-3.5 surpasses even the CoT-2LLM setting. This is
indicative of higher quality demonstrations synthesized by
GPT-4. Let us now assess the symmetric setting, where
GPT-3.5 synthesizes the demonstrations and GPT-4 acts as
the predictor model. The results in Figure S8(b) exhibit
that there is no significant difference from the vanilla 2LM
setting with GPT-4. We hypothesize that GPT-4 is capable
of weighting the quality of the demonstrations and thus the
performance does not suffer significantly.

4. Conclusion

In this paper, we explore the critical question of how many
demonstrations are required for ICL under different settings
and across datasets. We compare the performance of the
retrieval setting, 2LM setting, and CoT-2LM setting on the
most prevailing LLMs for ICL text classification in a large
label space. We show that state-of-the-art LLMs deliver
promising zero-shot performance, but retrieved demonstra-
tions can help LLMs improve accuracy.
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Impact Statement

In this paper, we investigate the phenomenon of in-context
learning (ICL), where large language models (LLMs) can
perform new tasks without any parameter updates, just by
conditioning on natural language prompts that include task
demonstrations. We explore the factors that influence the
effectiveness of ICL, such as the dataset size, the model, and
the number of demonstrations. We acknowledge that our
work has potential implications for the security and ethics of
LLMs, especially as they become more accessible and pow-
erful. On one hand, our work can help developers and users
of LLMs to leverage ICL for various applications, such as
natural language understanding, generation, and translation,
with minimal computational and data resources. On the
other hand, our work can also expose the vulnerabilities and
biases of LLMs, which can be exploited or manipulated by
malicious actors. Nevertheless, we strive in our work to
focus on datasets that have been ethically approved in the
past, and also encourage the community to further increase
the safety and guardrails of these models.
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Contents of the Appendix

The Appendix is organized as follows:

* Appendix A discusses the related work.
* Appendix B states our experimental setup.

* In Appendix C, we provide additional information to
the main paper.

* In Appendix D, we explore why self-generated demon-
strations are useless.

* Appendix G contains the ablation experiments con-
ducted on randomly selected demonstrations, as well
as experiments on varying retrieval pool sizes.

» Appendix H includes the ablation experiments on vary-
ing testset sizes.

* In a supplementary experiment detailed in Appendix E,
we test the “confidence” of GPT-4 towards each label.

* We describe in Appendix F whether the predictions of
the different models are constrained by the label space.

A. Related work

In-context learning (ICL) is considered a property of pre-
trained LLMs (Brown et al., 2020). Despite the fact that ICL
does not change the parameters of the pre-trained model,
ICL has demonstrated impressive outcomes. This has re-
sulted in a flurry of papers attempting to explain the under-
lying causes behing the emergence of ICL and its properties.
Shin et al. (2022); Wei et al. (2022a) investigate ICL from
the perspective of pre-training stage. For inference stage, the
importance of demonstrations for ICL was first indicated by
Liu et al. (2022). Anonymous (2023) demonstrate that in
addition to demonstrations, the information provided by the
task description in the prompt also largely influences ICL
performance. Many prompting strategies are proposed to
extend the reasoning performance of LLMs such as Chain-
of-thought (CoT) (Wei et al., 2022b) and Least-to-Most
Prompting (Zhou et al., 2023).

Inspired by the aforementioned observations, new research
focuses on the topic of demonstrations and how to effec-
tively select them (SU et al., 2023; Li & Qiu, 2023; Nguyen
& Wong, 2023; Peng et al., 2024). Liu et al. (2022) pro-
pose a demonstration retrieval method that uses K-NN for
demonstration selection based on semantic distance and
KATE to be the sentence encoder. Rubin et al. (2022) take
another approach and train a dense retrieval which lever-
ages an additional LM to score the retrieval. Zhang et al.

(2022) leverage reinforcement learning to selection exam-
ples. However, none of the previous studies focuses on the
more realistic case of large label space.

An interesting work that is concurrent and close to our is
that of Milios et al. (2023b). They use the retrieval setting
with extreme number of demonstrations (over 20) to obtain
the best performance on ICL with large label space. This is
complementary to our observations, since we focus on more
realistic cases, since collecting such a large dataset requires
additional cost.

In addition, in our work, we conduct comprehensive experi-
ments on a larger breadth of LLMs including the state-of-the-
art GPT family and Mixtral in this work. Our comparisons
in Section 3 validate that the key insights with recent mod-
els, such as GPT-4 or Mixtral, differ when compared to prior
works. We hypothesize this can be attributed to the stronger
capabilities of recent models.

Beyond the retrieval setting, self-generation of demon-
strations or prompts has also emerged (Kim et al., 2022;
Sorensen et al., 2022; Yang et al., 2023). Li et al. (2022)
developed a self-prompting method where a language model
creates a pseudo QA dataset for use as retrieval pool. Li et al.
(2023) leverage self-generated demonstrations combined
with CoT strategy on multi-task language understanding,
math reasoning task and code generating task. Contrary to
the aforementioned works, we have two core differences:
(i) we focus on large label space and (ii) we conduct experi-
ments on more diverse settings.

Lastly, our work is related to works exploring how models
learn the demonstrations or how demonstrations affect the
final performance (Min et al., 2022; Yoo et al., 2022; Kossen
et al., 2023; An et al., 2023; Hashimoto et al., 2023). Our
work differs from previous efforts in that we encompass the
exploration of self-generated demonstrations, rather than
demonstrations annotated by humans.

B. Experimental Setup

Let us describe the concrete models and datasets used.

Models. We conduct a series of ICL classification exper-
iments on GPT-3.5 (ie., gpt-3.5-turbo-0613)
and GPT4 (ie., gpt-4-turbo-1106).3 Be-
yond GPT-based models, we assess the follow-
ing popular open-source models: LLaMA-2 (i.e.,
LLaMA-2-70b-chat) (Touvron et al., 2023) and Mixtral
8x7B (i.e.,Mixtral-8x7B-Instruct-v0.1) (Jiang
et al., 2024) *. We employ the all-mpnet-base-v2

*https://platform.openai.com/docs/models
*nttps://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1


https://platform.openai.com/docs/models
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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model in Sentence-BERT family (Reimers & Gurevych,
2019) as our retrieval model.

Datasets. We conduct experiments on four datasets: Bank-
ing77 with 77 unique labels (Casanueva et al., 2020),
Clinc150 with 150 unique labels (Larson et al., 2019),
HWUG64 with 59 unique labels (through the concatenation of
“scenario” and “intent”) (Liu et al., 2019) and GoEmotions
with 27 unique emotional labels plus ‘“Neutral” label (Dem-
szky et al., 2020). The first three are intent analysis datasets
and the last one is a fine-grained sentiment analysis task
dataset. All datasets have a larger label space than popular
classification datasets used in previous studies (Min et al.,
2022; Chen et al., 2023; Yoo et al., 2022).

For the GoEmotions dataset we excluded the “Neutral” class.
This decision was based on the fact that when annotators
were not certain about the emotion, they were asked to se-
lect “Neutral”. We believe that excluding this ambiguous
label will facilitate a more accurate and straightforward
evaluation process. For HWU datasets, we use the “an-
swer_normalised” as task input text, which standardizes
the formatting of times, percentages, and values, uniformly
replaces the names of persons from the original text.

We randomly sample 7 data points from each class to form
a 7N sized retrieval pool for model retrieval. For each
value of k, we randomly selected 80 test queries’ in the test
set. We repeat each experiment 3 times and calculate the
mean and standard deviation. For imbalanced test sets, we
perform an undersampling operation on them, reducing all
the samples per class to have a uniform number of samples.

C. Supplementaries to the main text
C.1. Prompt configurations

We give a visual overview of the retrieval setting and 2LM
setting in Figure S4.

C.2. Prompt visualization

In this subsection we visualize our prompt for better under-
standing. Different components of our prompts are illus-
trated in Figure S9, taking COT-2LM as an example.

C.3. Complete experimental results

In this subsection we present supplementary results which
are discussed in Section 3. Accuracy of retrieval setting over
all datasets on GPT-3.5, Mixtral and LLaMA-2 can be found
in Figure S5. Accuracy on HWU over three settings on
GPT-3.5, Mixtral, and LLaMA-2 are presented in Figure S6.

SWe conduct ablation studies in Appendix H to show that ex-
periments on test sets of different sizes present consistent results.

Figure S7 shows the results on GPT-3.5 after modifying the
descriptiveness of label space.

D. Why self-generated demonstrations are not
helpful?

The experimental results in Section 3 indicate that the 2LM
setting does not enhance the performance. Can this be at-
tributed to the bias of self-generated demonstrations? We
investigate this question on GPT-4, since this is the strongest-
performing model. We focus on two topics: (i) the distribu-
tion over classes on the self-generated demonstrations, (ii)
the match between demonstration vs test query class.

D.1. Distribution over classes

We utilize the GoEmotions dataset, since this contains a
more manageable number of classes. We request the gen-
erator model to synthesize text-label pairs, given only the
label space. The label space for this particular experiment
is ordered alphabetically with the name of classes, while we
repeat the experiment 40 times. The results in Figure S10
indicate that the self-generated demonstrations do not dis-
tribute evenly across the classes. Notably, the model ex-
hibited a strong preference for certain class “joy”. Despite
expecting 27 unique classes based on the dataset, our 40
repetitions yield only 7 distinct classes. A similar trend is
identified in LLaMA-2. In 40 repetitions of the experiment,
only 13 non-repeated classes appeared in all demonstrations
(we expect 27), and most of these demonstrations belonged
to positive emotions, as reported in Figure S11.

Could the generation improve if we “inform” the generator
model about the test query? Yes, more diverse samples are
synthesized as visualized in Figure S12 when we concate-
nate the label space and the test query. Nevertheless, notice
that the distribution is still not uniform.

We conduct an ablation study on the ordering of the classes
and assess whether we can obtain more diverse demonstra-
tion labels. Specifically, we only prompt the label space
to generator and ask generator to generate one informa-
tive demonstration. Random shuffle the order of classes
in the label space set each time. Figure S13 verifies that
we cannot synthesize demonstrations evenly across classes.
Furthermore, the generator has a preference for the labels
that appear first in the label space when it is provided with
only a randomized order of label space, but this preference
becomes less apparent when the test query is provided.

Just as previous work (Lu et al., 2022) has found that the
order of the demonstrations affects model performance sim-
ilarly, we find that the position order in which the labels
appear in the space set also affects the results generated
by generator GPT-4 (shown in Figure S14). Given a la-
bel spaces in random order, labels of output demonstration
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Figure S4. Overview of two prompt configurations. (a) depicts the pipeline of the retrieval setting under a retrieval pool of 7 demonstrations.

(b) depicts the vanilla 2L.M setting, which consists of two stages: a generation stage and a prediction stage. Notice that the 2LLM setting
does not require any ‘pool of demonstrations’.
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Figure S5. Accuracy of retrieval setting over all datasets on (a) GPT-3.5, (b) Mixtral, (¢) LLaMA-2. GPT-3.5 and Mixtral have similar
performance in the HWU and the Banking77 datasets. However, in Clinc dataset, Mixtral does not benefit as much from the demonstrations
when compared to GPT-3.5. Contrary to GPT-4, the number of demonstrations to reach the peak performance is less in these three models.
In most cases, the first demonstration makes the largest difference, especially in the case of LLaMA-2.
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Figure S6. Accuracy on HWU over three settings on (a) GPT-3.5, (b) Mixtral, (c) LLaMA. Notice that GPT-3.5 and Mixtral offer similar
patterns (e.g., significant improvement when CoT is used), while the performance of LLaMA-2 differs. A common pattern is that
self-generated demonstrations in vanilla 2LM setting do not perform as well as the zero-shot setting.

generated by generator becomes more diverse compared to
alphabetical order case, although still very skewed. Further,
when test query is also given, the position skew is not evi-
dent, as shown in Figure S15. GPT-4 can almost overcome

the sensitivity to order when self-generating context.
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Figure S7. Prediction accuracy (mean=std %) of GPT-3.5 retrieval
setting after randomly inserting alpha\digit into labels on HWU,
e.g. lists_createoradd — lisPts_7creyateloraldd

Table S1. Domain analysis of 1-shot setting for 20 correct and 20
incorrect final predictions in the Banking77 dataset. The number
before the slash represents the count of 1-shot demonstrations that
feature under-specified/same/different labels compared to the test
query, out of the 20 correct (incorrect) samples.

Prediction Under-specified class In-class Out-of-class
Incorrect 4/20 4/20 12/20
Correct 0/20 13/20 7/20

D.2. Demonstration vs test query labels

One reasonable question is whether the 2LM setting fails be-
cause the demonstrations synthesized are not matched with
the test query class. In this experiment we select the Bank-
ing77 dataset, since the 2LLM setting results in the largest
degradation in the performance. We select 20 samples in
the 1-shot setting and define three patterns (which as visual-
ized in Figure S16) for the self-generated demonstrations.
Those patterns are: (i) In-class: The demonstration belong
to the same class as the test query, (ii) Out-of-class: The
demonstration belongs to a different than the test query and
(iii) Under-specified class: The demonstration is difficult
to categorize.

Table S1 reports that only 20% of the incorrect prediction
prompts have in-class demonstrations. However this num-
ber for correct prediction prompts is 65%. Notice that the
generator synthesizes under-specified demonstrations ap-
proximately 20% of the time, which will confuse the predic-
tor model. Furthermore, this weakness may be amplified in
tasks involving large label space classification, where labels
are more detailed and fine-grained.
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E. How confident is the model in its
prediction?

One interesting question is how confident the predictor LM
is on its predictions. We evaluate this asking GPT-4 to di-
rectly output the confidence on the retrieval setting. In our
experiment, one experimental group is denoted as in-class
group, in which the labels of the demonstrations in prompts
are the same as the label of the test query (see the visual-
ization examples in Figure S16), while the other group is
all different labels than the test query (out-of-class). When
prompting, we ask the model to sort the label space accord-
ing to the probability of each label to be the right class of
test query. The probability value given by the model after
normalizing is considered by us as the model’s confidence
in that label. In the samples that were correctly predicted
in both sets of experiments (where the TOP-1 label given
by the model matches the ground truth), we visualize the
confidence distribution of the model as Figure S17. We find
that while in-class can give the model more extreme con-
fidence (0.99), out-of-class demonstrations do not confuse
the model to any great extent and the model remains very
confident (with most confidence greater than 0.85).

F. Is the class prediction constrained to the
label space?

Evaluating whether the prediction belongs in the label space
is a challenging problem, which is particularly important in
our large label space setup. In order to create a fair com-
parison, we take a number of measures to ensure that the
output is a class from the label space. Firstly, we make
sure the context includes the label set. Secondly, we ask the
predictor model the following in the instruction: ‘“Please be
brief and concise, and do not say any other words except the
output label, no pleasantries, no explanation”. Nevertheless,
Mixtral 7x8B and LLaMA-2 still give some non-compliant
output, while GPT-4 and GPT-3.5 adhere to the require-
ments. Specifically, 37.5% of responses of LLaMA-2 prefix
the label with something like “The output of the last input
is:”, while 9% of responses include pleasantries such as
“Sure, Id love to help you”. 17% of the responses from
Mixtral 8x7B provide a note in parentheses to explain the
answer.

When evaluating the results, previous works determine
whether the prediction is correct or not by first retrieving
the label in the label space that is most similar to the model
output based on semantic distance and then comparing this
label with ground-truth label (Milios et al., 2023a). How-
ever, this approach can lead to a higher final accuracy than
the actual accuracy because the model may generate an-
swers that are outside the label space. In our work, we
strictly compare whether the model output label matches
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(b) GPT-4 as the predictor

Figure S8. Ablation study on HWU when different model are used as the generator and the predictor. (a) GPT-4 is the generator LM and
GPT-3.5 the predictor LM. When GPT-4 generates the demonstrations the results are significantly improved, especially for less than 7
demonstrations. (b) GPT-3.5 is the generator and GPT-4 the predictor. Interestingly, GPT-4 performs similarly regardless of whether the

demonstrations are synthesized from GPT-3.5 or GPT-4.

the ground-truth label.

G. Ablation studies on the configurations

Baseline ICL: What happens if instead of retrieved
demonstrations we use random samples from the pool of
available demonstrations?

To assess this setting, we sample k data points uniformly at
random and use those as the demonstrations. The result on
HWU is reported in Figure S18(a) for GPT-4 and in Fig-
ure S18(b) for GPT-3.5. In GPT-4, the performance remains
stable even under randomly sampled demonstrations, which
is consistent with our prior observations. On the contrary,
on GPT-3.5 the performance is significantly decreased when
comparing with the other configurations on GPT-3.5. No-
tably, when there is only 1 demonstration, the performance
deteriorates drastically.

Larger retrieval pool: In our experiments, the size of the
retrieval pool is 7N, which means that we have 7 demonstra-
tions for each of the IV classes. The number was selected
to minimize the annotation cost without altering our key
takeaways. The following question arises though: Does a
larger retrieval pool necessarily lead to better performance?

We conduct an ablation experiment on HWU and Clinc to
scrutinize this question. We set the size of the retrieval pool
to k x N, i.e., the size of retrieval pool will increase as
k increases. As reported in Figure S19, the performance
is almost indistinguishable from that of the fixed retrieval
pool size 7N, indicating that a larger retrieval pool is not
necessarily better. Importantly, our key findings hold with
the 7N retrieval pool.
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H. Ablation studies on varying testset sizes

In order to extend our experimentation to larger demon-
strations, while maintaining a reasonable number of exper-
iments to avoid increasing our energy footprint, our main
experiments are conducted on 80 randomly sampled data
points. Would the results differ significantly if we used the
whole testset?

We assess the impact of the testset in this ablation study
using the strongest-performing model, i.e., GPT-4. We con-
duct experiments on HWU and Banking77 with varying
size of testset. Each experiment is repeated 3 times. The
results in Figure S20 indicate that the core insights remain
similar even for larger testset sizes across different number
of demonstrations. Therefore, in the rest of the paper, we
use 80 data points for our experimentation.
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[ Input: Do | have a meeting with Paul today? ] Test query

Figure S12. Distribution of the classes of demonstrations generated

C) by generator given alphabetical order label space w/ test query.
Label space: {account_blocked, alarm_set,
book_hotel, bill_balance, calculator, Label space 14
calendar_set, calendar_update, calories, ...} =12
o
c 10
) g8
26
Please choose an answer as the last output Instruction o
from the label space. v ‘21
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Figure S9. Different components of prompts in COT-2LM setting.
Figure S13. Distribution of the classes of demonstrations generated
by GPT-4 given random order label space w/o query each time.
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Position of the demonstration's label in the label set prompted
Figure S14. Distribution of label positions for GPT4-generated
demonstrations when the model is given a randomly ordered label
space w/o querying each time. The x-axis represents the position
of the demonstration’s label in the label set of the prompt.
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Figure S15. Distribution of label positions for GPT4-generated
demonstrations when the model is given a randomly ordered label
space w/ querying each time. After being provided with a test
query, GPT-4 is significantly less sensitive to labeling order.

Query Class Label

Test query ground truth  “My transfer didn't work” » failed_transfer

In-class demo  “| failed to transfer” — failed_transfer

Out-of-class demo  “John didn’t receive my transfer” — transfer_not_received_by_recipient

o~ transfer_not_received_by_recipient
/

Under-specified demo  “My transfer to John didn't work "

<
" failed_transfer

Figure S16. In-class demo, out-of-class demo and under-specified
demo. The latter two patterns are more likely to lead to eventual
prediction failure. We provide precise experiment detail utilizing
these patterns in Table S1 and Appendix E.
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Figure S17. The x-axis represents the model’s confidence in each
label as the correct answer, and the y-axis represents the smoothed
frequency density of these confidence.
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(a) GPT-4 with random demonstrations (b) GPT-3.5 with random demonstrations

Figure S18. Ablation study on HWU. We compare the performance of the main settings with the baseline ICL, which considers using

randomly selected demonstrations (gray line). On GPT-4 the performance remains similar, while on GPT-3.5 selecting randomly the
demonstrations decreases the accuracy.
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Figure S19. Ablation study on the size of the retrieval pool size with GPT-4 on (a) HWU (b) Clinc datasets. The results indicate that the
size of the retrieval pool does not have a large influence on the performance.

100

100
= —
80 80 —
=
R
R R
S, 60 S, 60
o o
o o
3 3
g 401 —e— 40 test samples g 401 —e— 40 test samples
80 test samples 80 test samples
—e— 120 test samples —e— 120 test samples
201 —=— 160 test samples 201 —=— 160 test samples
—e— 200 test samples —e— 200 test samples
—e— whole test set (567) —e— whole test set (3080)
0 ! | ! 0 | | !
0 1 5 11 0 1 5 11
k-shot k-shot
(a) HWU (b) Banking77

Figure S20. Accuracy of retrieval setting with GPT-4 on testset of different sizes over (a) HWU (b) Banking77 dataset. The test set of

HWU is acquired by undersampling by classes and then splitting by a 60-40 ratio. Notice the consistent trends over the different sizes of
the testset.
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