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ABSTRACT

Existing single image super-resolution (SISR) methods learn the convolutional
kernel solely from a single image modality. However, the SR performance is lim-
ited by the diversity of input modality and the insufficient image-level information
in low-resolution images. In this paper, we seek to use multi-modal prompts (texts
or images) to assist existing SR networks to learn more discriminative features,
leading to superior SR performance. To this end, we develop the Dynamic Cor-
relation Module in a plug-and-play form for existing SR networks, which learns
meaningful semantic and textural information from multi-modal prompt embed-
dings extracted from a large-scale vision-language model (such as CLIP). Specif-
ically, Spatially Multi-Modal Attention Module is proposed to generate the pixel-
wise cross-modal attention mask which would highlight the interest regions given
certain prompts. Moreover, to the best of our knowledge, we are the first ones that
introduce multi-modal prompts into convolutional kernel estimation which can
better handle spatial variants and retain cross-modal relevance. Extensive experi-
ments and ablation studies demonstrate the effectiveness of the proposed Dynamic
Correlation Module which exploits the discriminative prompt features to recover
realistic high-resolution images, elevating existing SR performance by a notable
gap.

1 INTRODUCTION

Single image super-resolution (SISR) aims to recover high-resolution (HR) images given their low-
resolution (LR) counterparts. As a long-standing low-level computer vision problem, SISR has been
investigated for decades (Sun et al., 2008; Zhang et al., 2012; Yang & Yang, 2013) and can be applied
to many downstream tasks, such as surveillance and medical imaging (Trinh et al., 2014; Pang et al.,
2019).

Existing SISR methods can be categorized into optimization-based methods (Mairal et al., 2009;
Dong et al., 2012; Elad & Aharon, 2006; Aly & Dubois, 2005; Riegler et al., 2015; He & Siu, 2011;
Tipping & Bishop, 2002) and learning-based methods (Saharia et al., 2022; Wang et al., 2018b; Lim
et al., 2017; Zhang et al., 2021; Ma et al., 2022; Rombach et al., 2022; Bell-Kligler et al., 2019; Gu
et al., 2019; Ledig et al., 2017; Zhang et al., 2018b; Shi et al., 2016; Sun et al., 2023; Wang et al.,
2023; Gao et al., 2023; Gou et al., 2023). For optimization-based methods, probabilistic models
are elaborately designed to simulate the HR degradation process. However, tedious optimization
procedures are required to super-resolve low-resolution images, which does not meet the real-time
need. Since the pioneering work SRCNN (Dong et al., 2014), learning-based SR methods (Saharia
et al., 2022; Wang et al., 2018b; Lim et al., 2017; Zhang et al., 2021; Ma et al., 2022; Rombach et al.,
2022; Bell-Kligler et al., 2019; Gu et al., 2019; Ledig et al., 2017; Zhang et al., 2018b; Shi et al.,
2016) have brought prosperous progress and surpass optimization-based SR methods by a huge
gap. Learning-based methods learn the specific mapping function from LR-HR image pairs with
Convolutional Neural Networks (CNNs), which implicitly learn the convolutional kernels solely
from the image training datasets in an end-to-end manner. However, we argue that a single LR
image may not provide enough information to recover the HR image details, especially when the
scale factor is large. Although some non-blind SR methods bring blur kernel information into the
super-resolve procedure to remedy this problem, the SR performance is still limited due to the static
inference phase (Xu et al., 2020). Nowadays, it is still an open problem that the convolutional kernels
learned by existing SR methods are not robust enough against various degradations (Xu et al., 2020;
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Kim et al., 2021), which may cause the super-resolved images to be the statistical average of possible
HR solutions (Ma et al., 2020).

To address the aforementioned issues, this paper proposes a new Prompt-guided Dynamic Network
(PDN) to introduce powerful multi-modal representations to existing SR frameworks, where the
prompts reflect semantic descriptions of the input LR image. In practice, such descriptions may be
texts (e.g., captions or textual descriptions) or related images (e.g., an image similar to the LR input
or another augmented view). We seek to obtain convolutional kernels by such multi-modal semantic
descriptions to keep the sensitivity to spatially-variant degradations, which may boost the SR per-
formance. To this end, we propose a Dynamic Correlation Module (DCM), which is the first attempt
that utilizes multi-modal prompts to adjust convolutional kernels. Contrary to the existing static SR
networks, PDN can adaptively alter the weights of convolutional kernels for specific spatial regions
depending on the semantic description in the inference phase, resulting in superior SR performance.

Specifically, the proposed DCM is made up of Spatially Multi-Modal Attention Module and Prompt-
Guided Dynamic Convolution Module. Given the textual or visual semantic descriptions, we first
derive the prompts with a large-scale pre-trained model (such as CLIP (Radford et al., 2021)), which
is a natural solution so that our model not only obtains more discriminative features for downstream
tasks but also supports mixed input of images and text as prompts (Gu et al., 2021; Kuo et al., 2022).
Then, the spatially multi-modal attention predicts the interest regions in space that are semantically
related to the prompts by measuring the similarity between image features and prompt embeddings.
Based on that, the Prompt-Guided Dynamic Convolution Module derives appropriate convolutional
kernels from the kernel bank for feature transformation according to the prompts. These two tech-
niques promote each other and jointly enable SR networks to learn meaningful semantic information
and enrich the details, leading to an elevation of SR performance. In addition, the proposed Spa-
tially Multi-Modal Attention Module and Prompt-Guided Dynamic Convolution Module are flexible
and versatile and can be conveniently incorporated into various SR frameworks as a plug-and-play
module.

We conduct extensive experiments on four popular benchmark datasets, Set5 (Bevilacqua et al.,
2012), Set14 (Zeyde et al., 2012), Urban100 (Huang et al., 2015), and Celeba-HQ (Karras et al.,
2018). Experimental results demonstrate the superiority of the proposed technique in improving
existing SR methods. We incorporate our modules into many state-of-the-art SR networks and
elevate the quantitative results by a notable gap. For example, with text descriptions, PDN improves
PSNR up to 0.11 and improves SSIM up to 0.013 over state-of-the-art SR methods at the scale factor
of ×4.

The main contributions are as follows:

• This paper proposes a novel Prompt-guided Dynamic Network (PDN) which introduces
powerful multi-modal representations to existing SR frameworks. PDN is capable of learn-
ing meaningful semantic information from prompts, whose key component is the Dynamic
Correlation Module (DCM). The technical contributions of DCM include 1) a Spatially
Multi-Modal Attention Module and 2) a Prompt-Guided Dynamic Convolution Module.
Such components enable PDN to learn meaningful semantic and texture information from
multi-modal prompts, making full use of both LR images and prompts.

• To the best of our knowledge, we are the first to introduce multi-modal prompts into con-
volutional kernel estimation for feature transformation, leading to a better capability of
modeling cross-modal coherence and spatial variations.

• We conduct comprehensive analyses of the effectiveness of the proposed modules, demon-
strating the significance of introducing multi-modal information into SR models, which
may inspire further research.

2 RELATED WORKS

Before the deep-learning era, optimization-based methods (Mairal et al., 2009; Dong et al., 2012;
Elad & Aharon, 2006) dominate the SR field. Probabilistic models are established to simulate the
HR degradation process. However, tedious optimization procedures are required to super-resolve
low-resolution images, which does not meet the real-time need. SRCNN (Dong et al., 2014) first
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Figure 1: Diagram of the proposed Prompt-guided Dynamic image super-resolution Network
(PDN).

introduces a three-layer CNN to SR and shows remarkable improvements over optimization-based
methods. In recent years, with the development of residual learning (He et al., 2016), SRRes-
Net (Ledig et al., 2017), EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018b), RDN (Zhang
et al., 2018c), and ESRGAN (Wang et al., 2018b) take SR performance to the next level. These
methods usually stack several residual blocks and expand the SR network, posing impressive SR
results when handling bicubic degradation. Additionally, to enhance the robustness of SR models
for various degradations (such as isotropic/anisotropic Gaussian blur), a series of representative SR
methods (Bell-Kligler et al., 2019; Gu et al., 2019; Huang et al., 2020) split the problem of SR
into kernel-estimation and non-blind SR. By estimating accurate blur kernels and unfolding the ker-
nel information into SR networks, non-blind SR methods retain robustness to variant degradations.
Nevertheless, most non-blind SR methods are trained on synthetic datasets, which implicitly rely
on “fixed” and “ideal” blur kernels, leading to high sensitivity to the accuracy of kernel estimation.
Thus, small deviations from the ground-truth kernel may lead to significant performance drops.

2.1 GUIDED IMAGE SUPER RESOLUTION

The ill-posed nature of SISR makes it difficult to get better SR results just solely depending on LR
images. Recently, SPSR (Ma et al., 2020), FSRNet (Chen et al., 2018), DeepSEE (Buhler et al.,
2020), and SFTGAN (Wang et al., 2018a) claim that the internal/external priors (e.g., image edges,
semantic segmentation maps, and facial landmark heatmaps) can significantly boost the SR perfor-
mance. For example, SPSR adds an additional gradient estimation network alone with an existing
SR network. Compared with the baseline SR network ESRNet (Wang et al., 2018b), SPSR alleviates
the issue of geometric distortion which commonly appears in GAN-based SR methods. Generally,
SPSR utilizes gradient information to guide the super-resolve process. It does not require prompts
of different modalities. Furthermore, inspired by the success of text-to-image synthesis, TGSR (Ma
et al., 2022) regards image SR as text-guided detail generation, which is the first attempt that makes
use of multi-modal prompts in SR. The proposed text attention module (TAM) incorporates text
embeddings and features and highlights the regions of interest corresponding to each input word.
Nevertheless, these guided SR methods either limit the diversity of guidances or fail to investigate
the full potential of guidances, leading to inferior quantitative results compared with existing SR
methods.

3 PROPOSED METHODS

3.1 MOTIVATION

Conventional single image super-resolution (SISR) takes low-resolution images ILR as input and
generates super-resolved images ISR given its high-resolution counterparts IHR. For blind SR, let
Gθ denote the SR network with parameters θ, we have ISR = Gθ(I

LR). And for non-blind SR with
additional input blur kernel k, we have ISR = Gθ(I

LR, k). The blur kernel is usually compressed
by the dimensionality stretching strategy (Zhang et al., 2018a). Typically, an estimator E is utilized
to predict the blur kernel information given ILR as input (Bell-Kligler et al., 2019; Gu et al., 2019),
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namely k = E(ILR). Obviously, both LR images and blur kernels are solely derived from image
modality for conventional (both blind and non-blind) image SR.

Unlike conventional image SR, the prompt-guided image SR pursues to explore the potential of
multi-modal prompts for SR. We use p to denote the SR prompt, which can either be the caption of
the HR image or an image with scenes that are similar to the HR image. Intuitively, we desire the
SR prompt to serve as the global description by providing a variety of decisive information about the
interested objects (such as the gender of the person or the color of the sky), so that the SR network
can better locate the most important objects and pay more attention to these areas, which will boost
the final SR performance. Furthermore, conventional image SR methods usually suffer significant
performance drops when dealing with different degradations (Gu et al., 2019; Zhang et al., 2020).
This is mainly due to the static network architecture (Xu et al., 2020), which lacks the capability
to handle cross-image or spatial variations. To solve this problem, we propose a novel mechanism
to generate the dynamic convolutional kernels in order to make the SR model capable of utilizing
multi-modal prompts, which clearly distinguishes our method from the prior works that generate the
kernels solely according to the extracted image features (Xu et al., 2020; Chen et al., 2020).

Specifically, we propose Prompt-guided Dynamic Network (PDN), which is composed of regular
SR network components, and our proposed Dynamic Correlation Module (DCM). In the following
subsections, we first give a brief description of PDN, then elaborate on DCM, where the critical
designs include Spatially Multi-Modal Attention Module and Prompt-Guided Dynamic Convolution
Module.

3.2 PROMPT-GUIDED DYNAMIC NETWORK

We present the Prompt-guided Dynamic Network (PDN) to introduce powerful multi-modal rep-
resentations into the super-resolution procedure. The sketch of PDN is shown in Figure 1, which
consists of the multi-modal pre-trained encoder, Dynamic Correlation Modules, and several resid-
ual blocks. For the multi-modal prompt encoder, we utilize CLIP for its generalization ability and
robustness. We adopt the residual in residual (RIR) block (Zhang et al., 2018b) as the basic residual
block. The optimization objective of PDN is to minimize the L1 loss function

L = EILR ||Gθ(I
LR)− IHR||1 . (1)

3.3 DYNAMIC CORRELATION MODULE

A Dynamic Correlation Module consists of Spatially Multi-Modal Attention Module and Prompt-
Guided Dynamic Convolution Module. It is lightweight and can be easily plugged into existing SR
networks.

Spatially Multi-Modal Attention Module. Given the prompt encoder Q and prompt p, we first
obtain the prompt embedding fp = Q(p) ∈ R1×d, where d is the pre-defined dimension of prompt
embedding. We use fLR ∈ Rc×h×w to denote the intermediate feature of the LR image that is
produced by a specific layer of the model, where c is the number of channels. To generate the cross-
modal attention mask, fLR is projected into d channels by a 1 × 1 convolution. Then we reshape
the projected fLR, which is C1×1(fLR) ∈ Rd×h×w, into a matrix f

′

LR for the following attention
computations, so f

′

LR is a (hw)× d matrix.

Then we apply L2 normalization to both f
′

LR and fp. The attention mask Mc ∈ R(hw)×1 is given
by matrix multiplication of the normalized f

′

LR and fp. That is

Mc = S((
f

′

LR

||f ′
LR||2

· ( fp
||fp||2

)T ) · ζ), (2)

where ζ is a learnable scaling factor initialized as 50, and S denotes the Sigmoid function.

Intuitively, a specific value in the multi-modal attention mask describes the degree of similarity
between the intermediate feature at the corresponding spatial location and the prompt embedding
so that the regions of interest will be highlighted, compared to those not involved in the prompt.
Besides, considering that the values of both prompt embedding and image feature are suppressed
by L2 normalization, we scale the mask by a learnable factor ζ to keep a relatively large variance.
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Such a multi-modal attention mask enables the model to attend to the features adaptively, depending
on the prompts, which is vital for comprehending the semantics encoded in the features. Then the
multi-modal attention mask Mc is element-wisely multiplied to f

′

LR. The result, which is referred
to as the enhanced feature fenhanced ∈ R(hw)×d, will be fed into the Prompt-Guided Dynamic
Convolution Module. That is

fenhanced = Mc ⊙ f
′

LR , (3)

where ⊙ is Hadamard (element-wise) multiplication. Of note is that Mc should be broadcast (i.e.,
replicated) into the same shape as f

′

LR to be more formal, but we omit such an obvious notation for
brevity.

Prompt-Guided Dynamic Convolution Module takes the enhanced feature and prompt embedding
as inputs. Intuitively, this module leverages prompt embedding to guide the convolution operation
for a better prompt-relevant feature representation. Drawn insight from the success of dynamic
convolution, the forward pass of the prompt-guided dynamic convolution module is demonstrated
as follows.

fo = (

n∑
k=1

πk(fp)Wk)fenhanced +

n∑
k=1

πk(fp)bk,

s.t., 0 ≤ πk(·) ≤ 1,

n∑
k=1

πk(·) = 1

(4)

First, the prompt embedding p is projected into an n-dimensional attention vector π through a two-
layer MLP, where n is the pre-defined number of trainable basis kernels in the kernel bank (which
is set to n = 4 by default). Then, we derive the kernel as a sum of the n basis kernels weighted by
the softmax of π together with the bias, as shown in Figure 2. The result of the convolution on the
enhanced feature with the weighted kernel is the output of the DCM.

  

1 n

~ ~

,W b
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two-layer MLP + Softmax

if of

1 1,W b ,n nW b

Figure 2: Comparison between conven-
tional dynamic convolution (a), and the
prompt-guided dynamic convolution (b). π
denotes the dynamic weights.

Remark Compared to the conventional dynamic con-
volution (e.g., CondConv (Yang et al., 2019) for im-
age recognition), the main difference is that we use
the prompt embedding instead of the image feature to
generate the dynamic attention weights π. The rea-
son for doing so is two-fold. First, the conventional
mechanism derives the attention weights based on the
image feature only, which is not suitable for modeling
cross-modal coherence. In contrast, we generate dy-
namic weights by the prompt embedding, which nat-
urally ensures the image-prompt correlation. Second,
conventional dynamic weights are usually “averaged”
in the SR task (Chen et al., 2021), which means the ba-
sis and the weighted kernels tend to end up with little
difference. This is mainly caused by the relatively low
variance of the feature’s global statistics, which limits the potential of conventional dynamic convo-
lution. On the contrary, the prompts embeddings extracted by a large-scale vision-language model
have high variance and sparse distributions (Khandelwal et al., 2022; Tevet et al., 2022), which can
guide the weighted kernels to learn more discriminative patterns.

3.4 INTEGRATION INTO EXISTING SR METHODS

For a fair comparison, we integrate the proposed Dynamic Correlation Module into state-of-the-
art PSNR-oriented image SR methods: EDSR (Lim et al., 2017), RDN (Zhang et al., 2018c), and
RCAN (Zhang et al., 2018b). These three methods utilize stacks of elaborately designed residual
blocks to generate HR images with plausible details. For EDSR, we add one Dynamic Correlation
Module after each residual block. For RCAN, we add three Dynamic Correlation Modules in each
residual in the residual (RIR) block (with identical intervals). For RDN, we add one Dynamic
Correlation Module after each residual dense block (RDB). For simplicity, we refer to these three
upgraded networks as EDSR+, RDN+, and RCAN+ in the following sections.
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Figure 3: Visual comparison with state-of-the-art SR methods on Urban100 dataset with a scale
factor of ×4. Best viewed on screen.

4 EXPERIMENTS AND ANALYSIS

4.1 DATASETS AND TRAINING DETAILS

For a comprehensive and impartial comparison, we use COCO (Lin et al., 2014) and FFHQ (Karras
et al., 2019) datasets for training and the commonly used benchmarks for evaluation: Set5 (Bevilac-
qua et al., 2012), Set14 (Zeyde et al., 2012), Urban100 (Huang et al., 2015), and Celeba-HQ (Karras
et al., 2018).

We train for 100 epochs with a batch size of 16, an initial learning rate of 10−4, cosine annealing
schedule (Loshchilov & Hutter, 2016), and an ADAM optimizer (Kingma & Ba, 2014) with β1 =
0.9, β2 = 0.999, and ϵ = 10−8. The temperature coefficient of the softmax function in the Prompt-
Guided Dynamic Convolution Module is set to 34 and is decayed by 3 every 10 epochs. We use
PSNR and Structure Similarity (SSIM) as the evaluation metrics.

In the training phase, we first filter out images in the COCO dataset with the longest edge of less
than 512. Then we crop the raw images into sub-images in the shape of 320 × 320. After that,
we blur the HR images by isotropic Gaussian kernel with σ = 1.3 and downsample by bicubic
interpolation to obtain the corresponding LR images. As the inputs to the model are 48×48 patches
cropped from the LR images, the corresponding HR patches should be 48s× 48s, where s denotes
the scale factor. As for the captions of the COCO dataset, we randomly choose one caption for each
image and use the CLIP text encoder to get its prompt embedding, which is finished in advance
as a preprocessing procedure so as to accelerate the training. Considering that FFHQ, Set5, Set14,
and Urban100 datasets have no annotations, we use an augmented view as the semantic description.
Specifically, we send the horizontally flipped image to the CLIP image encoder to get the prompt
embedding.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare the proposed PDN with state-of-the-art image SR methods: RCAN (Zhang et al.,
2018b), RDN (Zhang et al., 2018c), EDSR (Lim et al., 2017), SRGAN (Ledig et al., 2017), ES-
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Table 1: Quantitative comparison with state-of-the-art SR methods. The best performance is high-
lighted in bold.

Method Scale
COCO

Scale
FFHQ

Set5 Set14 Urban100 Celeba-HQ
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

RCAN

x2

37.33/0.938 33.26/0.899 31.19/0.907

x8

32.94/0.877
RDN 37.06/0.936 33.02/0.896 30.72/0.898 32.99/0.878

SRGAN 27.83/0.843 25.83/0.768 23.70/0.752 28.28/0.839
ESRGAN 37.15/0.937 33.14/0.898 31.10/0.901 32.46/0.868

EDSR 37.25/0.935 33.16/0.898 31.01/0.902 32.43/0.870
PDN 37.46/0.939 33.37/0.900 31.45/0.907 33.27/0.881

RCAN

x4

30.26/0.825 27.46/0.744 24.34/0.707

x16

28.74/0.826
RDN 30.55/0.836 27.60/0.751 24.55/0.718 28.57/0.820

SRGAN 27.45/0.810 24.81/0.706 22.54/0.688 27.88/0.812
ESRGAN 31.39/0.856 28.12/0.768 25.55/0.754 28.85/0.828

EDSR 30.74/0.842 27.75/0.756 24.74/0.726 28.55/0.824
PDN 31.47/0.857 28.20/0.769 25.66/0.759 29.18/0.833

RGAN (Wang et al., 2018b), and SPSR (Ma et al., 2020). Specifically, we make a comparison on
the COCO dataset with scale factors of ×2 and ×4, and a comparison on the FFHQ dataset with
scale factors of ×8 and ×16. Results of PSNR and SSIM values are presented in Table 1. Note
that RDN does not provide ×8 and ×16 models in the official source code, so we add additional
up-sampling blocks for ×8 and ×16 experiments. At each row, the best results are highlighted in
bold. Impressively, PDN achieves the best PSNR and SSIM performance on all of the datasets and
the gap increases with large-scale factors or large test datasets. In summary, the quantitative results
demonstrate the superiority of PDN in perceptual quality.

We also conduct a visual comparison on the Urban100 dataset with a scale factor of ×4. From
Figure 1, we see that our results are more natural and realistic than other methods. Taking the
image “img 056” for example, it can be observed that most of the existing methods cannot recover
the wooden floors with reasonable edges and details. In contrast, PDN can better alleviate the
blurring artifacts and restore more details. And as for image “img 045”, all the other methods are
prone to generate blurry edges, which contradict the HR image, while the structure of our result is
clear with little distortions. The visual comparison shows that the proposed Dynamic Correlation
Module can enhance existing SR methods to learn more structural and textural information from
prompts, which helps generate perceptual-realistic SR images. More visual results can be found in
the supplementary material.

4.3 COMPARISON WITH TGSR

TGSR Ma et al. (2022) regards SISR as a text-guided semantic image detail enhancement problem,
which aims to generate high-resolution images that match the text descriptions in a coarse-to-fine
process. As the authors did not release the official code, we reproduce the experiments with the same
setup as reported in the paper (Ma et al., 2022) for a fair comparison. Except for PSNR and SSIM,
we also report the results in NIQE (Mittal et al., 2012), Perceutal Index (PI), and Fréchet Inception
Distance (FID) (Heusel et al., 2017), which are shown in Table 2. It can be observed that PDN sur-
passes TGSR by a significant gap on PSNR, SSIM, NIQE, and FID while TGSR outperforms PDN
on PI. As pointed out in (Jinjin et al., 2020), PI cannot fairly reflect the subjective performance, since
it prefers images with obviously unrealistic artifacts produced by GAN-based methods. Since TGSR
is trained in an adversarial setting, it is expected that TGSR poses better PI values. In summary, PDN
shows better performance on text-guided image super-resolution than TGSR, which can be explained
from four perspectives. First, TGSR’s text encoder (LSTM) is trained from scratch along with the
main SR network, which cannot take advantage of large-scale multi-modal pre-training. Second,
TGSR projects each word into high-dimensional embedding rather than the whole sentence, which
neglects the relationship between words. Third, because of the static inference process, TGSR is not
capable enough to handle spatial variations, especially when scale factors are large. Last, TGSR uti-
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Figure 4: Visualization of multi-modal attention masks given different prompts. The most informa-
tive words in the caption are marked red.

lizes an adversarial training strategy which is prone to suffer from geometric distortions (Ma et al.,
2020).

Table 2: Quantitative results of TGSR and PDN. The best performance is highlighted in bold.
Method PSNR↑ SSIM↑ NIQE↓ FID↓ PI↓
Bicubic 26.59 0.810 14.514 105.232 9.676
TGSR 23.48 0.766 8.846 93.919 7.165
PDN 29.18 0.833 8.634 24.307 7.390

4.4 INCORPORATING DYNAMIC CORRELATION MODULE INTO OTHER MODELS

In this section, we investigate the effect of the proposed Dynamic Correlation Module by incorporat-
ing it into EDSR, RDN, and RCAN (Lim et al., 2017; Zhang et al., 2018b;c). The upgraded networks
are referred to as EDSR+, RDN+, and RCAN+, respectively. All these upgraded and baseline net-
works are trained on the COCO dataset with a scale factor of ×4 and the configurations are identical
to those described in Section 4.2. The quantitative results are presented in Table 3. It is obvious that
the proposed module boosts the SR performances notably. The upgraded networks achieve a PNSR
improvement of up to 0.51 dB and at least 0.11 dB. In terms of SSIM, the improvement is 0.02 at
the maximum and 0.009 at the minimum, demonstrating the effectiveness of the proposed DCM.

Table 3: Quantitative results of the upgraded networks and the baseline networks. The best perfor-
mance is highlighted in bold.

Method Set5 Set14 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR 30.74/0.842 27.75/0.756 24.74/0.726
EDSR+ 31.13/0.851 27.99/0.763 25.12/0.740
RCAN 30.33/0.828 27.46/0.744 24.34/0.707

RCAN+ 30.76/0.841 27.75/0.755 24.77/0.727
RDN 30.55/0.836 27.60/0.751 24.55/0.718

RDN+ 31.06/0.847 27.93/0.760 25.03/0.737

4.5 SENSITIVITY TO DIFFERENT PROMPTS

In this section, we present the visualization of multi-modal attention masks given different prompts,
as shown in Figure 4. We conduct this experiment on COCO datasets with a scale factor of ×8.
Other training details are the same as those described in Section 4.2. It is obvious that multi-modal
attention masks tend to assign a large value at the corresponding spatial location which shows high
correspondence with the textual description. Taking the image “Img-3” for example, if the caption
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is “A big cat and a small cat sitting down with their backs turned”, the cats’ areas are greatly
highlighted. If the caption changes to “Two cats sit side by side while looking at a television”, the
multi-modal attention mask tends to assign large values to the areas of cats and television. More
results can be found in the supplementary material.

4.6 ABLATION STUDY OF DYNAMIC CORRELATION MODULE

In this section, we present the quantitative analysis of the Spatially Multi-Modal Attention Module
and Prompt-Guided Dynamic Convolution Module. Specifically, we remove one of them from the
network upgraded with DCM, which is referred to as EDSR+. We denote the EDSR+ without
Prompt-Guided Dynamic Convolution Module (replaced with standard convolution) as “EDSR+
w/o dy”, and the EDSR+ without Spatially Multi-Modal Attention Module as “EDSR+ w/o att”.
Then such networks are trained on the COCO dataset with a scale factor of ×4. Table 4 shows the
quantitative results.

Table 4: Quantitative results of the ablation studies of DCM. The best performance is highlighted in
bold.

Method Set5 Set14 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR 28.94/0.789 26.47/0.715 23.45/0.670
EDSR+ w/o dy 29.77/0.814 27.04/0.734 23.93/0.692
EDSR+ w/o att 29.81/0.816 27.07/0.735 23.96/0.692

EDSR+ 29.95/0.822 27.07/0.739 24.11/0.701

4.7 VISUALIZATION OF MULTI-MODAL ATTENTION MASK

Furthermore, to validate the effectiveness of DCM, we provide examples of visualization of attention
masks along with their captions and corresponding HR images, as shown in Figure 5. Evidently,
multi-modal attention masks generated by DCM not only keep consistency with the most informative
words in corresponding captions but also plausibly reflect spatial variations. For instance, when
taking the caption “A tennis player running and looking up to find the ball” as the prompt, DCM
tends to highlight the woman’s body area. In summary, we conclude that the multi-modal attention
mask enables satisfactory generalization and adaptation of scene descriptions, which then improves
the SR performances.

A tennis player running and looking up to find the ball. A rear view mirror sitting on the side of a car.
Contents of backpack including books, movies computer and 

equipment.
The couple is taking the dog in the waves.

Figure 5: Visualisation of the multi-modal attention masks along with their captions. The most
informative words in the caption are marked red.

5 CONCLUSION

This paper proposes a Prompt-guided Dynamic Network (PDN) and Dynamic Correlation Module
(DCM) for single image super-resolution (SISR), which introduces powerful multi-modal represen-
tations into the super-resolve procedure. Specifically, the Spatially Multi-Modal Attention Module
is proposed to extract discriminative features according to multi-modal prompts, and the Prompt-
Guided Dynamic Convolution Module is the first to introduce multi-modal prompts into convolu-
tional kernel estimation for feature transformation, leading to better cross-modal coherence and spa-
tial variations. Extensive experimental results show that DCM not only boosts the SR performances
of existing image SR methods but retains high relevance with textual and visual prompts.
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