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ABSTRACT

Generating molecular dynamics (MD) trajectories using deep generative mod-
els has attracted increasing attention, yet remains inherently challenging due to
the limited availability of MD data and the complexities involved in modeling
high-dimensional MD distributions. To overcome these challenges, we propose
a novel framework that leverages structure pretraining for MD trajectory genera-
tion. Specifically, we first train a diffusion-based structure generation model on a
large-scale conformer dataset, on top of which we introduce an interpolator module
trained on MD trajectory data, designed to enforce temporal consistency among
generated structures. Our approach effectively harnesses abundant structural data to
mitigate the scarcity of MD trajectory data and effectively decomposes the intricate
MD modeling task into two manageable subproblems: structural generation and
temporal alignment. We comprehensively evaluate our method on the QM9 and
DRUGS small-molecule datasets across unconditional generation, forward simu-
lation, and interpolation tasks, and further extend our framework and analysis to
tetrapeptide and protein monomer systems. Experimental results confirm that our
approach excels in generating chemically realistic MD trajectories, as evidenced
by remarkable improvements of accuracy in geometric, dynamical, and energetic
measurements.

1 INTRODUCTION

Molecular Dynamics (MD) is a computational method used to model the physical motions of atoms
and molecules over time (Alder & Wainwright, 1959; Verlet, 1967). Numerically integrating Newton’s
equations of motion, MD simulates the temporal evolution of molecular systems at atomic resolution.
It has become a widely adopted tool in biology (McCammon et al., 1977), chemistry (Rahman,
1964), and materials science (Antalı́k et al., 2024). However, MD can be computationally demanding,
often requiring long simulation times and many small integration steps, especially for physio-
realistic dynamics. This cost has motivated extensive work on accelerating MD and improving
sampling efficiency (Shaw et al., 2009; Darden et al., 1993; Laio & Parrinello, 2002). Moreover,
advances in biomolecular engineering increasingly leverage machine learning to design molecular
systems (Jumper et al., 2021; Passaro et al., 2025; Powers et al., 2025), highlighting its importance
in drug discovery. In this context, deep generative models—especially diffusion models (Noé et al.,
2019; Jing et al., 2024a; Klein et al., 2023)—have emerged as effective surrogates for capturing the
complex and diverse distributions observed in MD simulations.

Despite their promise, we identify a factor that poses remarkable limitations on their utility. The
MD generative models are typically optimized on a single or limited number of molecular systems
(Noé et al., 2019; Han et al., 2024; Jing et al., 2024c), making it a fundamental challenge for
them to generalize across arbitrary molecules. Two main factors contribute to this issue. Data
scarcity: Constructing large-scale, physio-realistic MD datasets spanning diverse molecular systems
is prohibitively expensive due to the high computational cost of running MD simulations at scale.
As a result, available training data is insufficient for capturing the full diversity of MD distributions.
Modeling complexity: MD data extends the molecular structure space with an additional temporal
dimension, making it inherently high-dimensional. This significantly increases modeling difficulty,
especially when models must preserve both structural fidelity and realistic dynamical behavior.
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Figure 1: The overall two-stage framework of EGINTERPOLATOR. Structure pretraining: We first
pretrain a conformer model ϵθ on a large-scale conformer dataset. MD fine-tuning: The model is
then combined with additional temporal interpolator stpϕ to approach the MD distribution pmd(x[T ]).

In this work, we propose a novel approach named EGINTERPOLATOR that addresses the challenges
through structure pretraining. Specifically, we decompose the MD modeling problem into two
sequential subtasks. First, we train a conformer diffusion model to generate conformers—i.e.,
plausible molecular structures corresponding to frames along an MD trajectory—using large-scale
conformer datasets. Building on this pretrained structure model, we then initialize additional temporal
layers and integrate structural and temporal information through a novel module called the equivariant
temporal interpolator. We theoretically show that the temporal interpolator implicitly models a
transition from a temporally independent structural distribution to the fully correlated MD distribution.
This formulation alleviates optimization difficulty by decoupling spatial and temporal learning,
which enables (1) more efficient learning of dynamics from limited MD data through the temporal
interpolator, and (2) generation of higher-fidelity, physically realistic molecular poses implicitly
constrained by the pretrained structure module.

Our approach directly addresses three central challenges. First, it mitigates MD data scarcity by
leveraging large-scale conformer datasets with diverse molecular structures, complementing small-
scale MD data and improving generalization to unseen molecules. Second, it ensures structural and
energetic fidelity by grounding trajectory generation in a pretrained conformer model, which provides
a foundation for downstream dynamics. Third, the two-stage pipeline decomposes the complexity of
modeling high-dimensional MD distributions into two manageable tasks: learning the distribution of
independent frames and subsequently capturing their temporal dependencies.

Contributions. 1. We identify key challenges in the generalization of MD diffusion models and
propose structure pretraining as a remedy. 2. We develop a principled training framework based on
structure pretraining and validate it on small molecular systems. 3. We introduce the equivariant
temporal interpolator, a module for learning temporal dependencies across frames. 4. We evaluate
our framework on unconditional generation, forward simulation, and interpolation, showing accurate
modeling of MD distributions while preserving conformer generation quality across small molecules,
tetrapeptide, and protein monomer systems.

2 RELATED WORK

Geometric diffusion models. Generative models for geometric data have garnered increasing
attention across multiple domains. In molecular generation, GeoDiff (Xu et al., 2022) pioneered
for conformer generation while EDM (Hoogeboom et al., 2022b) operates on both continuous
coordinates and categorical atom types. Subsequent works (Xu et al., 2023; 2024a) introduced
structured latent spaces to enhance scalability and controllability. For larger molecules, GCDM
(Morehead & Cheng, 2024) incorporated geometry-complete local frames and chirality-sensitive
features into SE(3)-equivariant networks. EBD (Park & Shen, 2024) performs hierarchically by first
sampling scaffolds before refining atom positions through blurring-based denoising. Yet, they only
model static structures while in this work we study the problem of their temporal correlation in MD.

Molecular Structure Datasets & Sampling. Large-scale structural datasets are central to molecular
modeling. Some, like the Protein Data Bank (PDB) (Berman et al., 2000), archive experimentally
resolved biomolecular structures, while others, such as GEOM (QM9 and Drugs) (Axelrod & Gomez-
Bombarelli, 2022) and OMol (Levine et al., 2025), provide computationally derived conformer
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ensembles at scale. The latter can utilize accelerated sampling strategies that emphasize structural
diversity while reducing computational cost. For instance, OMol reports many protein–ligand
simulations at elevated temperatures, while GEOM employs CREST (Berman et al., 2000), coupling
the semiempirical GFN2-xTB method (Bannwarth et al., 2019) with metadynamics and geometry
optimization. Such approaches broaden structural coverage but trade dynamic accuracy for diversity,
highlighting the complementary role of generative models in capturing physio-realistic dynamics.

ML-based Molecular Dynamics. Modeling molecular dynamics is challenging due to complex multi-
body interactions, data scarcity, and high-dimensional state spaces. Equivariant architectures such as
EGNN (Satorras et al., 2021b) and SE(3)-Transformer (Fuchs et al., 2020) improve generalization by
embedding physical symmetries (Brandstetter et al., 2022; Xu et al., 2024b), while autoregressive
approaches like Timewarp (Klein et al., 2023) and EquiJump (dos Santos Costa et al., 2024) capture
temporal transitions but suffer from error compounding and limited design flexibility. Diffusion-
based methods address these issues by modeling trajectories holistically: GeoTDM (Han et al., 2024)
enforces equivariance but requires molecule-specific training, and MDGen (Jing et al., 2024b) extends
to peptide torsions with flow-based modeling but relies on key-frame conditioning. In contrast, our
method generalizes more readily across arbitrary molecular systems.

Video Generation from Image Models. Blattmann et al. (2023) highlighted extending image
diffusion models to videos by adding temporal layers, an idea motivating our spatial–temporal
decoupling. Related work in latent image diffusion (Rombach et al., 2021) and holistic video
generation (Brooks et al., 2024) further demonstrate the scalability of spatiotemporal diffusion.

3 PRELIMINARIES

Geometric representation of molecular dynamics. In this work, we represent each molecular
dynamics trajectory as a collection of static structures, or equivalently conformers that evolve through
time. Each frame of conformer at timestep t is viewed as a geometric graph G(t) := (h,x(t), E) where
each row hi ∈ RH is the node feature of atom i such as its atomic number, x(t)

i ∈ R3 is the Euclidean
coordinate of atom i at timestep t, and E is the set of edges induced by the chemical bonds between
atoms. The trajectory with length T is correspondingly represented as x[T ] := x(0:T−1) ∈ RT×N×3.

Geometric diffusion model for conformer generation. Geometric diffusion models (Xu et al.,
2022; Hoogeboom et al., 2022a; Xu et al., 2023) are a family of diffusion-based generative mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020a; Song & Ermon, 2019; Song et al., 2021) ded-
icated to capture the distribution of static conformer structures p(x|h, E), given the configura-
tion of the molecular graph specified by the node feature h and edge connectivity E . Inherit-
ing the framework of diffusion models, they feature a Markovian forward noising process that
gradually perturbs x0 toward xT through T diffusion steps, with the Gaussian transition ker-
nel q(xτ |xτ−1) = N (xτ ;

√
1− βτxτ−1, βτ I), where βτ is the noise schedule such that xT is

close to the Gaussian prior N (0, I). The reverse process denoises toward the clean data using
pθ(xτ−1|xτ ) = N (xτ−1;µθ(xτ ; τ), σ

2
τ I). The model is optimized via (Ho et al., 2020a):

Lconf = Ex0∼Dconf ,τ∼Unif(1,T ),ϵ∼N (0,I)∥ϵ− ϵθ(xτ , τ)∥22, (1)

where Dconf is the conformer dataset, xτ =
√
ᾱτx0 +

√
1− ᾱτϵ with ᾱτ being certain noise

schedule and ϵθ parameterizes the mean by µθ(xτ , τ) =
1√
ατ

(xτ − βτ√
1−ᾱτ

ϵθ(xτ , τ)). A critical
property of geometric diffusion models lies in the SE(3)-invariance of their marginal1, i.e., pθ(x0) =
g·pθ(x0), g ∈ SE(3), where g is an arbitrary group action in SE(3) that consists of all 3D rotations and
translations, and pθ(x0) = p(xT )

∏T
τ=1 pθ(xτ−1|xτ ). This is achieved by parameterizing ϵθ with

an equivariant graph neural network (Satorras et al., 2021b;a) such that g · ϵθ(xτ , τ) = ϵθ(g · xτ , τ)
which guarantees the SE(3)-equivariance of the transition kernel pθ(xτ−1|xτ ) at each step τ .

Problem definition. In this work, we seek to design a diffusion model that captures the distribution
of molecular dynamics pmd(x[T ]) given node features h and edges E . Based on this goal, we
are additionally interested in two relevant subtasks, namely forward simulation, which models the
conditional distribution pmd(x(1:T−1)|x(0)) given the initial structure x(0), and interpolation, which
models pmd(x(1:T−2)|x(0),x(T−1)) given both the initial frame x(0) and final frame x(T−1).

1For conciseness we henceforth omit the conditions h, E in p(x0|h, E) unless otherwise specified.
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4 METHOD

In this section, we present our approach for generating MD trajectories by temporally aligning
structural distributions. § 4.1 introduces the overall framework of conformer pretraining and temporal
alignment; § 4.2 describes the temporal interpolator that couples conformer and temporal layers; and
§ 4.3 details the implementation of EGINTERPOLATOR.

4.1 TRAJECTORY GENERATION BY ALIGNING STRUCTURE MODEL

Motivation. While substantial research has advanced the modeling of empirical conformer data
distribution pcf(x), generalizing this paradigm to molecular dynamics trajectories remains inherently
challenging for two primary reasons. 1. Data scarcity. Unlike conformer modeling, which benefits
from extensive datasets (Ramakrishnan et al., 2014; Axelrod & Gomez-Bombarelli, 2022), molecular
dynamics simulations incur prohibitive computational costs. Consequently, existing MD datasets
(Chmiela et al., 2017; Meersche et al., 2024) are typically constrained to limited molecular classes,
significantly restricting generalizeability across more arbitrarily defined molecular types. 2. Modeling
complexity. MD trajectories inhabit high-dimensional spaces with an additional temporal dimension.
The inherent complexity of the joint distribution pmd(x[T ]) is further exacerbated by data scarcity,
as insufficient training samples create greater sparsity in the high-dimensional data support, thereby
complicating accurate density estimation.

Our solution. We propose to leverage a pretrained conformer diffusion model and transform it
into an MD generation model, by stacking additional trainable temporal layers to enforce temporal
consistency along each MD trajectory. Formally, given a pretrained conformer diffusion model ϵθ
inducing the marginal pcfθ (x), we devise ϵmd

θ,ϕ for modeling the MD distribution pmd
θ,ϕ(x

[T ]), where ϕ
represents parameters in the additional temporal layers, indicating that the MD generative model with
parameter set {θ, ϕ} is partially initialized from the pretrained structure model θ. The MD diffusion
model is then optimized on the MD trajectory dataset with the diffusion loss

Lmd = E
x
[T ]
0 ∼Dmd,τ∼Unif(1,T ),ϵ[T ]∼N (0,I)

∥ϵ[T ] − ϵmd
θ,ϕ(x

[T ]
τ , τ)∥22, (2)

where x
[T ]
τ =

√
ᾱτx

[T ]
0 +

√
1− ᾱτϵ

[T ] and ϵ[T ] ∈ RT×N×3 is the Gaussian noise and Dmd is
the MD dataset. Our proposal effectively addresses the core challenges. We mitigate MD data
scarcity by initializing with a conformer model trained on large-scale conformer datasets, transferring
generalization capability to unseen molecules. Furthermore, our two-stage pipeline decomposes
the complex modeling of pmd(x[T ]) into manageable subproblems: conformer pretraining first
models each frame independently, yielding an intermediate trajectory-level distribution p̂md

θ (x[T ]) :=∏T−1
t=0 pcfθ (x

(t)) that does not incorporate any temporal correlation. The second stage introduces
additional parameters ϕ to capture the temporal dependency across different frames, leading to the
joint distribution pmd

θ,ϕ(x
[T ]). This approach efficiently offloads the complexity by using p̂md

θ (x[T ]) as
an anchor. The flowchart of our proposed framework is depicted in Fig. 1.

4.2 TEMPORAL INTERPOLATOR

With the proposed framework, it is still yet unrevealed how to allocate the additional parameters ϕ to
capture the temporal dependency across frames for aligning the structures into an MD trajectory. To
this end, we introduce a novel temporal interpolator module that entangles the pretrained structure
denoiser ϵcfθ with the additional temporal network ϵtpϕ through a linear interpolation:

ϵmd
θ,ϕ(x

[T ]
τ , τ) = αϵ̂md + (1− α)ϵtpϕ (x[T ]

τ , ϵ̂md, τ), s.t. ϵ̂md = [ϵcfθ (x
(t)
τ , τ)]T−1

t=0 , (3)

where α ∈ R is the interpolation coefficient, and [ϵθ(x
(t)
τ , τ)]T−1

t=0 is the concatenation along the
temporal axis for the outputs ϵcfθ (x

(t)
τ ) at frames 0 ≤ t ≤ T − 1, and ϵtpϕ (x

[T ]
τ , ϵ̂md, τ) = stpϕ (x

[T ]
τ +

ϵ̂md, τ)− x
[T ]
τ where stpϕ is an equivariant temporal attention network (Han et al., 2024).

Intuitively, Eq. 3 mixes the output from the structure model ϵcfθ together with the the temporal model
ϵtpϕ as the final output ϵmd

θ,ϕ, making it both structural and temporal-aware. Notably, compared with
other mixing strategies, our design has several unique benefits, as we analyzed below.
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We start by showing that the interpolation mechanism in Eq. 3 implicitly induces an intermediate
distribution for the temporal network to learn. We reveal such insight in the following theorem.

Theorem 4.1. Suppose ϵcfθ perfectly models pcf(x) and ϵmd
θ,ϕ perfectly models pmd(x[T ]), then the

interpolation in Eq. 3 implicitly induces the distribution p̃md(x[T ]) ∝ pmd(x[T ])β p̂md(x[T ])1−β for
ϵϕ, where β = 1

1−α and p̂md =
∏T−1

t=0 pcf(x(t)).

Temporal interpolator reduces training overhead. Instead of directly matching the highly complex
MD distribution pmd(x[T ]), the temporal network is now expected to model an intermediate transition
between the frame-independent distribution p̂md(x[T ]) obtained from the structure model and the
target MD distribution pmd(x[T ]), with β = 1

1−α defining the weight. By this means, we relieve from
the optimization difficulty for learning the MD distribution by leveraging the interpolation p̃md(x[T ])
as the stepping stone, while also effectively taking advantage from the conformer pretraining by
incorporating pcf(x(t)) using p̂md(x[T ]) as the bridge. The effectiveness of our design is also
supported by the ablation study in Sec. ?? which shows clear advantage of our approach compared
against a naive two-stage separate training.

The parameterization of ϵtpϕ . Another core design lies in that we inherit the output from the structure
model, ϵ̂md, as the input to the temporal model, instead of only feeding in the original noised trajectory
x
[T ]
τ . This is beneficial in terms of facilitates the optimization for ϵtpϕ . Consider the extreme case

that the frame-independent distribution is close to the MD distribution, p̂md(x[T ]) ≈ pmd(x[T ]).
According to Theorem 4.1, we have that the implicit distribution for the temporal model to approach
would be p̃md(x[T ]) ≈ p̂md(x[T ]). Therefore, equivalently the temporal model only needs to satisfy
ϵtpϕ (x

[T ]
τ , ϵ̂md, τ) ≈ ϵ̂md, which can be simply realized by stpϕ being an identity mapping, according

to Eq. 3. Therefore, negligible optimization effort is required for stpϕ .

Interpolation coefficient α. To further enhance thr training flexibility, empirically we adopt the
parameterization of α = σ(k) where σ(·) is the Sigmoid function to ensure a smooth interpolation,
where k is a learnable parameter optimized during training.

Temporal interpolator enables flexible inference. Our design enables two inference modes. Setting
α = 1 suppresses the temporal network, reducing output to ϵ̂md, equivalent to independent conformer
generation for each frame with batch size T and preserving conformer capability. Using the learned
α⋆ restores the full dynamics sampler. Shown in Appendix A.9.2, perturbations of α between these
modes also yield meaningful inference behaviors, underscoring the flexibility of our approach.

Spatial Layer

Temporal Attention𝛼

1 − 𝛼

Spatial Convolution

1 − 𝛼

𝛼

Temporal Attention

1 − 𝛼

𝛼

Figure 2: Flowchart of
cascaded temporal inter-
polator block.

Temporal interpolator preserves equivariance. Importantly, the lin-
ear interpolation rule for our temporal interpolator preserves the SE(3)-
equivariance (proof in Appendix D.2), given the SE(3)-equivariance of
both the structure and the temporal models. This property is vital for
ensuring the SE(3)-invariance of the marginal, a critical inductive bias
to promote data efficiency.

Cascaded temporal interpolator. Given the justifications for the
interpolator, we further explore an extension of our approach by
performing such operation in a block-wise manner, enabling more
expressive information fusion between the pretrained structure model
and the additional temporal module. Specifically, we perform the
interpolation for the output from the structure and temporal model at
the l-th block with α(l) ∈ R being the coefficient. Furthermore, we
also incorporate the interpolation between each layer in the temporal
block and the output from the structure block. Detailed flowchart can
be found in Fig. 2. Such design inherits the benefits of the interpolator while permitting a much
denser information flow between the network that evidently improves optimization. We henceforth
coin the original design SIMPLE and the cascaded version CASC.
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A. Coverage and Matching Results on QM9 and GEOM-Drugs

Method COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Mean Med. Mean Med. Mean Med. Mean Med.

Q
M

9 CONFGF 88.49 94.31 0.2673 0.2685 46.43 43.41 0.5224 0.5124
GEODIFF-A 90.54 94.61 0.2104 0.2021 52.35 50.10 0.4539 0.4399
BASICES 87.62 92.03 0.2574 0.2613 58.12 53.24 0.4451 0.4445

D
ru

gs CONFGF 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863
GEODIFF-A 88.36 96.09 0.8704 0.8628 60.14 61.25 1.1864 1.1391
BASICES 92.35 100.00 0.8340 0.8245 65.59 70.87 1.1389 1.0973

B. Generated Conformers

Figure 3: (A) reports performance of BASICES with borrowed numbers from (Xu et al., 2022) on
SOTA baselines; (B) Example conformers from BASICES on both QM9 & Drugs

4.3 INSTANTIATION OF EGINTERPOLATOR

Based on the dedicated design of the temporal interpolator in § 4.2, we describe the overall instantia-
tion of our framework following the paradigm depicted in § 4.1.

Conformer pretrainings stage. The first stage of our pipeline is the structure pretraining using the
large scale conformer dataset Dcf . For the conformer model ϵcfθ , we resort to Equivariant Graph
Convolution Layer (EGCL) (Satorras et al., 2021b) as the basic building block with the update:

x′,h′ = fES(x,h, E), (4)

where ES is shorthand for Equivariant Structure layer. The denoiser ϵθ consists of L layers of fES

stacked sequentially, and is optimized using the loss in Eq. 1 for structure pretraining.

MD training stage. With the pretrained conformer model, we conduct the second stage, the MD
training stage with the limited-size MD dataset Dmd, with the additionally initialized temporal
network parameterized by smd

ϕ . For the temporal network, we utilize the Equivariant Temporal
Attention Layer introduced in Han et al. (2024) to capture the temporal dependency with attention:

x′[T ],h′[T ] = fET(x
[T ],h[T ], E), (5)

where ET refers to Equivariant Temporal layer. Each temporal block is a stack of three layers—ET
at the top and bottom, with an ES layer in the middle—a design that promotes dense entanglement
of structural and temporal features. For every ES layer in the pretrained model, we initialize one
temporal block; together, these form L interpolator blocks. The model is trained with the trajectory
denoising loss (Eq. 2), freezing the pretrained ES layers. This yields a performant MD generative
model without degrading conformer generation performance—an assurance not achieved in prior
work. Appendix A.8.4 details the contribution of the temporal module and MD training, while
Appendix A.9, E.8 interpret the learned α values.

Forward simulation and interpolation. Our model naturally supports structure-conditioned MD
generation: forward simulation conditions on the first frame x(0), and interpolation on both x(0) and
x(T−1). Conditioning frames are treated as control signals, passed with noisy frames through the
interpolator, and removed before loss computation to ensure the loss is applied only to noisy frames.

5 EXPERIMENTS

We refer to our framework as EGINTERPOLATOR, which builds on the pretrained spatial layers of
BASICES, our lightweight structure-learning model. We evaluate its ability to generate realistic
MD trajectories for unseen molecules under practical data constraints—limited MD simulations
supplemented with diverse static structural data. We focus first on small organic molecules because
(1) conformer and simulation datasets exist at sufficient scale to support systematic ablations, and (2)
they span a wide range of chemotypes and functional groups, providing broad coverage of chemical
space. We then further extend our analysis and framework to tetrapeptides and protein monomers.

5.1 CONFORMER PRETRAINING

Datasets. We use GEOM-QM9 (Ramakrishnan et al., 2014) and GEOM-Drugs (Axelrod & Gomez-
Bombarelli, 2022) following prior work in conformer generation (Xu et al., 2022; Ganea et al., 2021).
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Table 1: Performance Comparison on QM9 Unconditional Generation and Drugs Forward Simulation.

Method JSD (Mean — Median) (↓)

Bond Angle Bond Length Torsion TICA 0 TICA 0,1

Q
M

9
MD ORACLE 0.042 0.028 0.032 0.031 0.192 0.134 0.318 0.291 0.413 0.394
AR + EGNN 0.702 0.677 0.770 0.780 0.702 0.761 0.770 0.788 0.820 0.824
AR + ET 0.705 0.746 0.680 0.721 0.553 0.586 0.568 0.562 0.783 0.786
AR + GEOTDM 0.752 0.746 0.699 0.694 0.466 0.506 0.456 0.463 0.714 0.719
GEOTDM 0.691 0.690 0.676 0.670 0.489 0.527 0.449 0.453 0.691 0.694
EGINTERPOLATOR-SIMPLE 0.357 0.350 0.263 0.246 0.381 0.405 0.426 0.423 0.652 0.655
EGINTERPOLATOR-CASC 0.305 0.292 0.210 0.188 0.363 0.380 0.417 0.406 0.636 0.642

D
ru

gs

MD ORACLE 0.036 0.023 0.030 0.028 0.215 0.131 0.484 0.494 0.610 0.630
AR + EGNN 0.663 0.655 0.748 0.784 0.723 0.741 0.716 0.731 0.806 0.821
AR + ET 0.765 0.766 0.733 0.745 0.526 0.533 0.565 0.558 0.791 0.795
AR + GEOTDM 0.608 0.611 0.613 0.613 0.509 0.497 0.504 0.505 0.727 0.725
GEOTDM 0.640 0.645 0.643 0.645 0.498 0.503 0.531 0.550 0.712 0.720
EGINTERPOLATOR-SIMPLE 0.208 0.192 0.258 0.244 0.385 0.399 0.462 0.465 0.660 0.662
EGINTERPOLATOR-CASC 0.173 0.153 0.1419 0.112 0.377 0.388 0.454 0.441 0.650 0.644

Our spatial model is pretrained separately on each dataset, using the same train/validation splits as
(Xu et al., 2022) and a preprocessing pipeline similar to (Ganea et al., 2021) (Appendix B.1.1). This
results in 37.7K/4.7K training/validation molecules with 188.6K/23.7K conformers for QM9 and
38.0K/4.8K training/validation molecules with 190.0K/23.7K conformers for Drugs. We then use the
same test sets from (Xu et al., 2022; Shi et al., 2021a), consisting of 200 distinct molecules, with
22.4K conformers for QM9 and 14.3K for Drugs.

Experimental Setup & Baselines We train our base BASICES model on this conformer generation
task up to 800K steps for both QM9 and Drugs, learning 1000 denoising steps over only heavy atom
coordinates. We compare the performance of our pretrained spatial models to that reported in (Xu
et al., 2022), namely GEODIFF-A as well as CONFGF (Shi et al., 2021a).

Metrics. Per prior work in the space, we utilize the Coverage and Matching metrics (Ganea et al.,
2021; Xu et al., 2022) (Appendix B.1.3). We report both the Recall (R) to measure diversity and
Precision (P) to measure accuracy. We use default δ Coverage values, 0.5Å / 1.25Å (QM9/Drugs).

Results & Discussion. Results are summarized in Figure 3. Our pretrained BASICES model performs
competitively with prior SOTA methods. For QM9, we prioritize precision-based metrics relevant to
MD pretraining, which leads to slightly lower COV/MAT-R scores but superior fidelity in conformer
bond angle and bond length distributions (see Appendix A.2).

5.2 MOLECULAR DYNAMICS FINETUNING

To generate MD data for diverse organic and drug-like molecules, we subsample from GEOM,
resulting in 1109/1018/240 train/validation/test splits for QM9 and 1137/1044/100 for Drugs. We
then perform five, all-atom (including hydrogens), explicit-solvent simulations of 5 ns per molecule.
In the test set, four trajectories are used as reference data and the fifth serves as an oracle baseline
(MD ORACLE). Full simulation and force field details are provided in the Appendix B.2.

Experimental Setup & Baselines. Unless otherwise noted, all models are trained with trajectory
time-steps ∆t = 5.2 ps. We learn across heavy atoms and use 1000 denoising steps. We compare
our EGINTERPOLATOR framework against several representative approaches. First, we evaluate
against GEOTDM (Han et al., 2024), a recent all-atom trajectory diffusion model. We also implement
Markovian autoregressive baselines using EGNN (Hoogeboom et al., 2022a) and the Equivariant
Transformer (Thölke & Fabritiis, 2022) as push-forward networks, denoted AR + EGNN and AR
+ ET, respectively. Finally, inspired by dos Santos Costa et al. (2024), we include a autoregressive
diffusion baseline that adopts GeoTDM’s architecture, denoted AR + GEOTDM.

5.3 UNCONDITIONAL GENERATION

In the unconditional generation setting, we train models to generate 2.6 ns trajectories with no
reliance on a reference frame. For evaluation, we sample ten unconditional generations per molecule,
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A CB D

E F G

Figure 4: (A) Bond length and (B) torsion angle distributions from reference (red), our generations
(green), and GeoTDM (blue). MSM occupancies from reference versus (C) our generations and (D)
MD oracles. Autocorrelations of torsion angles for an example molecule from (E) reference, (F) our
generations, and (G) GeoTDM. Gray dashed line marks the 1/e decorrelation threshold.
resulting in 26 ns of generated trajectories. We focus on QM9 for this setting given the smaller
memory footprint of these molecules. In Appendix A.5, we also highlight block diffusion roll-outs
for GEOM-Drugs in an unconditional manner.

Distributional & Energetic Results. A prerequisite to good molecular dynamics, we evaluate
similarity between generated and reference trajectories using average Jensen–Shannon divergence
(JSD) across key collective variable distributions: bond lengths and angles (energetically constrained
features), as well as torsions. As shown in Table 1, EGINTERPOLATOR consistently outperforms
baselines, with the CASC variant further improving over SIMPLE. Figure 4A,B examples illustrate
gains over GeoTDM (Han et al., 2024) , with near-perfect alignment to ground-truth bond-length
distributions, closely matched tri-modal torsion profiles, and similar trends across additional collective
variables in Figure 11. Moreover, important potential energy analyses are reported in Appendix A.7,
E.5 , where EGINTERPOLATOR shows markedly improved agreement over GEOTDM.

5.4 FORWARD SIMULATION

In the forward simulation setting, models are trained to generate 1.3 ns trajectories conditioned on a
reference frame. We then extend these to 5.2 ns using successive block diffusion roll-outs, sampling
five such trajectories per molecule. This setting focuses on GEOM-Drugs, targeting larger molecules.

Distributional & Energetic Results. Across all metrics in Table 1, EGINTERPOLATOR outperforms
baselines and approaches the distributional fidelity of the replicate MD ORACLE on torsions. We once
again see that the CASC variant further improves SIMPLE. Additionally, complementary potential
energy analyses, including quantifying error propagation in short (4-block) and long (16-block)
diffusion roll-outs, are reported in Appendix A.7, E.5 and further support our methods.

Dynamical Results. Assessing the dynamical consistency of our model, Table 1 shows that our
method outperforms baselines and approaches the MD oracle in the distribution of the leading
time-lagged independent component analysis (TICA) components, which capture the system’s slow
dynamics. We evaluate torsional dynamics via decorrelation time and find that EGINTERPOLATOR
better captures distinct relaxation behaviors within molecules compared to GeoTDM (Fig. 4E,F,G),
although certain fast relaxations seem to be a challenge. Furthermore, by constructing Markov
State Models (MSMs) from torsion angles and clustering into 10 metastates, we observe agreement
in metastate occupancy between generated and reference trajectories (Fig. 4C). Our model even
surpasses MD oracle baselines in capturing coarse-grained dynamical distributions (Fig. 4D).

5.5 INTERPOLATION

In the interpolation (or transition path sampling) task, models generate 0.52 ns trajectories condi-
tioned on both start and end frames. As this setting requires endpoint conditioning, we compare only
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Figure 5: (A) Reference free energy surface along the top two TICA components. (B) Generated
interpolation trajectory projected onto the reference surface (red = start, orange = end). Surface
is colored by metastate assignment. (C) Key frames from intermediate metastates. (D) Statistics
comparing JSD, valid path rate, average path probability, and valid path probability for generated
trajectories and replicate MD oracles.

to the ML baseline GeoTDM (Han et al., 2024). Results are reported for Drugs (QM9 in Appendix
A.3), using the MSM pipeline from Jing et al. (2024c) to benchmark against MD oracles of varying
lengths. Given prior stronger empirical performance, we use the CASC variant for this task.

Evaluation. Following Jing et al. (2024c), we frame interpolation as transition path sampling. An
MSM built from reference trajectories defines two distant metastates as start and end states, from
which we sample 900 frame pairs. Our model generates 900 corresponding trajectories, evaluated
against reference and MD oracles using JSD over metastate occupancies. Owing to the high barrier
and rare transitions, we also report valid path rate, average path probability, and valid path probability.

Results. As shown in Fig. 5D, our 0.52 ns trajectories yield the lowest JSD and highest average
path probability, outperforming MD oracles of equal length and matching longer ones in path quality.
Although long oracles achieve higher valid path rates, our model excels at generating high-probability
valid transitions. Fig. 5A,B further show a generated trajectory traversing key metastates on the
reference FES, efficiently reaching the target end states.

5.6 ABLATION STUDY

Table 2: Ablation on QM9 Unconditional Generation and
Drugs Forward Simulation

Method JSD (Mean — Median) (↓)

Bond Angle Bond Length Torsion TICA 0,1

Mean Median Mean Median Mean Median Mean Median

Q
M

9 EGINTERPOLATOR-N 0.538 0.538 0.583 0.580 0.441 0.494 0.680 0.685
EGINTERPOLATOR 0.305 0.292 0.210 0.188 0.363 0.380 0.636 0.642

D
ru

gs EGINTERPOLATOR-S 0.325 0.330 0.330 0.321 0.414 0.419 0.673 0.672
EGINTERPOLATOR-N 0.332 0.332 0.386 0.383 0.455 0.466 0.698 0.703
EGINTERPOLATOR 0.173 0.153 0.142 0.112 0.377 0.388 0.650 0.644

We present main ablations here, with
additional in Appendix A.8.

Structural Pretraining. We evaluate
EGINTERPOLATOR-Naive, trained
without conformer pretraining. In
Table 2, this yields degraded bond
length, angle, torsion fidelity, and di-
minished TICA 0,1.

Interpolation and Architecture
EGINTERPOLATOR-STACK removes
(1) our cascaded layer design and (2) interpolation, using a residual stack of temporal modules
atop pretrained spatial layers as a finetuned head. In Table 2, this variant underperforms
EGINTERPOLATOR, underscoring the importance of our interpolation architecture.

5.7 TETRAPEPTIDES

We extend our evaluation to tetrapeptides using the Timewarp dataset (Klein et al., 2023), which
comprises 1500/400/433 train/validation/test sequences simulated for up to 50 ns (train) and 500

9
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Figure 6: (A) Free energy surface along top two TICA components for a reference (top), ours (top),
and GeoTDM (bottom) tetrapeptide trajectory. (B) Torsion auto-correlations from ours reference
(left), ours (middle), and GeoTDM (right) (C) Key collective variable distribution JSD metrics. (D)
C-α RMSF analysis and visualization for selected protein dynamics generation.

ns (validation/test) under all-atom implicit-solvent MD. Models are trained with ∆t = 10 ps and
generate 2.5 ns rollouts conditioned on a reference frame, which are iteratively composed into 10
ns trajectories, with five samples per peptide. We compare EGINTERPOLATOR against GEOTDM,
evaluating all methods against 50 ns reference simulations from the test set. As no conformer dataset
exists for tetrapeptides, we construct one directly from the Timewarp training frames, detailed in
Appendix B.1.1. This yields 1057/200 training and validation peptides (10.5K/2.7K conformers).

5.7.1 RESULTS

As shown in Figure 6C, our method significantly lowers the JSD of both backbone and side-chain
torsions relative to GeoTDM. This advantage is reflected in the free-energy landscapes (Figure 6A),
where EGINTERPOLATOR exhibits sharper, better-resolved basins, while GeoTDM remains diffuse
and unstructured. These gains also carry over to potential-energy metrics reported in Appendix A.7.
Beyond per-frame fidelity, our model attains markedly improved dynamical consistency, achieving
lower JSD in the leading TICA components and MSM occupancies (Figure 6C), as well as well-
aligned de-correlation times (Figure 6B).

5.8 PROTEIN SIMULATION

We extend our framework to protein monomer dynamics using the ATLAS dataset (Meersche et al.,
2024), training a forward-simulation model and following the data splits of Jing et al. (2024a).
Building on Boltz1 (Wohlwend et al., 2024), we incorporate a temporal module—a Boltz1/AF3-style
pair-bias attention layer with sliding-window context, combined with RoPE-based temporal atten-
tion—to enable trajectory generation. During training, we apply random rigid-body augmentations
and superpose trajectories to a zero-reference frame. Our ongoing experiments train on 200 proteins,
with 30/50 for validation/testing, generating 250-frame segments at 100 ps and composing four such
blocks for 100 ns rollouts. Preliminary results on the example protein from (Jing et al., 2024b) are
shown in Figure 6. Using 100 diffusion steps, generations take 0.12 (s) per frame.

6 CONCLUSION

We have introduced a diffusion model for modeling MD distributions by pretraining a structure model
on conformer dataset and then finetuning on trajectory dataset. At the core of our approach is an
module named EGINTERPOLATOR that mixes the output from the pretrained structure model and the
temporal model to captures the temporal dependency. Our approach demonstrates strong performance
in terms of producing realistic MD trajectories on diverse benchmarks and tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. i. general method. The Journal
of Chemical Physics, 31(2):459–466, August 1959. doi: 10.1063/1.1730376. URL https:
//doi.org/10.1063/1.1730376. 1

Andrej Antalı́k, Andrea Levy, Sonata Kvedaravičiūtė, Sophia K. Johnson, David Carrasco-Busturia,
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A EXPERIMENTS CONTINUED

A.1 COMPARISON TO MDGEN ON THE TETRAPEPTIDE DATASET

We benchmark our model against MDGen (Jing et al., 2024b), which parameterizes tetrapeptide
conformations explicitly through backbone and sidechain torsional angles. Using the subsampling
procedure described in Appendix B.1.1, we convert MDGen training trajectories into a peptide
conformer dataset and augment it with a pruned TimeWarp-derived conformer set to avoid data
leakage. We then fine-tune our conformer model on this combined dataset, initializing from GEOM-
DRUGS pretrained weights. As shown in Table 3, our downstream peptide EGINTERPOLATOR
preserves fine-grained structural information and superior fidelity in bond lengths and bond angles,
which are essential for accurate all-heavy-atom molecular dynamics and modeling small molecules.
However, it underperforms MDGen on torsional distributions and torsion-derived dynamical metrics.
This gap suggests that MDGen’s torsion-centric representation confers an advantage in capturing
peptide rotational behavior, where our model’s strengths are geometric consistency at an atomic level.

Table 3: Results on MDGen Tetrapeptide Dataset

Metrics (JSD) EGINTERPOLATOR MDGEN

Bond Angle (↓) 0.092 N/A
Bond Length (↓) 0.056 N/A
Torsion BB (↓) 0.378 0.130
Torsion SC (↓) 0.189 0.093
Torsion All (↓) 0.265 0.109
TICA0 (↓) 0.409 0.230
TICA01 (↓) 0.568 0.316
MSM (↓) 0.312 0.235

A.2 OPTIMIZING FOR CONFORMER PRECISION METRICS

As discussed in Section 5.1, we prioritize precision-based conformer quality metrics when selecting
our base structure model. While this may come at the cost of lower COV/MAT-R scores, we observe
superior fidelity in bond length, bond angle, and torsion angle distributions—an aspect we consider
more critical for a pretrained structure module.

We highlight this point using two checkpoints of the BASICES model trained on QM9. In Table 4 we
can see that while 539 lacks in COV-R, it does substantially better than 99 in COV/MAT-P metrics.
In Figure 10, we then see that 539 reflects high quality bond angle, length, and torsion distributions,
as compared to 99. We select checkpoint 539 for the conformer results reported in Section 5.1 and
for training the downstream trajectory models.
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Table 4: Conformer metrics on QM9 compared between two checkpoints.

Checkpoint COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓

Mean Med. Mean Med. Mean Med. Mean Med.

99 90.18 94.59 0.2969 0.3049 55.23 51.36 0.4932 0.4823
539 87.62 92.03 0.2574 0.2613 58.12 53.24 0.4451 0.4445

A.3 QM9 INTERPOLATION

Figure 7: Statistics evaluating the JSD with the reference trajectories, valid path rate, average path
probability, and valid path probability of our generated trajectories and replicate MD oracles.

For the interpolation task on QM9 dataset, as shown in Figure 7, our 0.52 ns trajectories from CASC
consistently achieve the lowest Jensen-Shannon Divergence (JSD) and the highest average path
probability, outperforming MD oracles of the same duration. It reveals that our method can samples
transition paths between far metastates more efficiently. While the MD oracles exhibit higher valid
path rates in this setting, our model still performs competitively in generating high-probability valid
transitions.

Figure 14 illustrates several free energy surfaces (FES) and corresponding metastate assignments
for representative molecules. We observe that the generated trajectories successfully traverse key
intermediate states and reach the appropriate end states, demonstrating the model’s ability to perform
efficient and meaningful transition path sampling.

Table 5: Performance comparison on Drugs Forward Simulation versus Unconditional Generation.
Reported values are JSD (Mean — Median) ↓.

Method Bond Angle Bond Length Torsion TICA0 TICA0,1

GEOTDM 0.640 0.645 0.643 0.645 0.498 0.503 0.531 0.550 0.712 0.720
EGINTERPOLATOR-SIMPLE 0.208 0.192 0.258 0.244 0.385 0.399 0.462 0.465 0.660 0.662
EGINTERPOLATOR-CASC 0.173 0.153 0.142 0.112 0.377 0.388 0.454 0.441 0.650 0.644
EGINTERPOLATOR-CASC-U 0.220 0.202 0.195 0.168 0.414 0.429 0.499 0.496 0.689 0.697

A.4 DRUGS UNCONDITIONAL GENERATION

Since the molecules in the Drugs dataset are more challenging systems than those in QM9, we
further ablate the reliance on the starting reference frame by conducting an unconditional generation
experiment (U). Specifically, we retain the same experimental set-up but remove conditioning of the
first block on a ground-truth frame, and retrain a new unconditional generation model. As shown
in Table 5, while performance does not match our EGINTERPOLATOR-CASC trained with forward

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

simulation, the unconditional variant still surpasses GEOTDM trained with forward simulation by a
significant margin in terms of bond angle, bond length, and torsion distribution fidelity.

A.5 DRUGS LONG SIMULATION

To more rigorously evaluate generation quality, we repeat the forward-simulation experiments on
DRUGS using a long 16-block roll-out of 20.8 ns, generating one trajectory per molecule. Although
this extended roll-out exhibits some degradation relative to the parallelized version—likely due to
accumulated error propagation quantified in Section A.7—our method still outperforms all baselines,
including their parallel 4-block configurations, shown in Table 6.

A.6 MULTITASK/MODAL LEARNING

To further demonstrate our framework’s ability to generalize across molecular dynamics regimes,
we first pre-train a conformer model and then train a dynamics interpolator jointly on QM9 and
DRUGs for both forward simulation and unconditional generation. We benchmark this unified model
against single-task counterparts on each dataset. As shown in Table 6, the unified model consistently
outperforms all baselines, and notably achieves improved performance on QM9—indicating that
pretraining on more diverse and chemically complex systems can enhance dynamics generation
quality even on previously unseen molecules.

Table 6: Additional Performance Comparisons on QM9 Unconditional Generation and Drugs Forward
Simulation.

Method JSD (Mean — Median) (↓)

Bond Angle Bond Length Torsion TICA0 TICA0,1

Q
M

9

MD ORACLE 0.042 0.028 0.032 0.031 0.192 0.134 0.318 0.291 0.413 0.394
GEOTDM 0.691 0.690 0.676 0.670 0.489 0.527 0.449 0.453 0.691 0.694
EGINTERPOLATOR 0.305 0.292 0.210 0.188 0.363 0.380 0.417 0.406 0.636 0.642
EGINTERPOLATOR-BOTH 0.231 0.219 0.168 0.158 0.348 0.367 0.393 0.390 0.623 0.631

D
ru

gs

MD ORACLE 0.036 0.023 0.030 0.028 0.215 0.131 0.484 0.494 0.610 0.630
GEOTDM 0.640 0.645 0.643 0.645 0.498 0.503 0.531 0.550 0.712 0.720
EGINTERPOLATOR 0.173 0.153 0.142 0.112 0.377 0.388 0.454 0.441 0.650 0.644
EGINTERPOLATOR-BOTH 0.212 0.197 0.216 0.195 0.417 0.434 0.488 0.506 0.681 0.679
EGINTERPOLATOR-LONG 0.180 0.155 0.147 0.116 0.404 0.411 0.484 0.484 0.685 0.680

A.7 ENERGY-BASED ANALYSIS

In addition to evaluating collective variable distributions and MSM metrics as measures of trajectory
fidelity, we further assess model rigor by examining the energy profiles of generated trajectories.
Per-frame energies are estimated using TorchANI2x (Gao et al., 2020) and reported in Hartrees.
Alongside the results presented in this section, we also provide energy comparisons to ground truth
trajectories for representative molecules from both datasets in Table 17.

A.7.1 OVERALL RESULTS

In Table 7, 8, we report the Wasserstein-1 (W1) distance between the energy distributions of generated
trajectories and the ground-truth (GT) trajectories, averaged across the test sets of all datasets. Our
framework achieves substantially lower W1 distances than the GEOTDM baseline, demonstrating
much closer correspondence to the GT energy profiles.

A.7.2 BLOCK DIFFUSION DETERIORATION

In Tables 7 and 8, we address a central concern in forward roll-outs using block diffusion: the potential
for error accumulation and degradation in sample fidelity over time. To quantify this, we conduct a
block-wise analysis of the generated trajectories and observe that our framework remains well aligned
with ground-truth energy distributions, exhibiting only mild deterioration—most notably between
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Table 7: Top: Average Wasserstein-1 (W1) distance between predicted and ground-truth (GT) energy
profiles for EGINTERPOLATOR-CASC and GEOTDM across dataset test sets. Bottom: Per-block
W1 analysis in forward simulation roll-outs for Drugs.

Dataset EGInterpolator vs GT W1 ↓ GeoTDM vs GT W1 ↓

QM9 0.8127 2.9201
Drugs 0.7728 12.7664

Block EGInterpolator vs GT W1 ↓ GeoTDM vs GT W1 ↓

1 0.2454 11.2398
2 0.3654 12.8999
3 0.3656 13.0270
4 0.3702 13.1235

Table 8: Top: Average Wasserstein-1 (W1) distance between predicted and ground-truth (GT) energy
profiles for EGINTERPOLATOR and GEOTDM across tetrapeptides. Bottom: Per-block W1 analysis
of forward simulation roll-outs.

Metric EGINTERPOLATOR vs GT W1 ↓

Overall Energy W1 0.3806
GEOTDM Energy W1 12.8636

Block 1 2 3 4

EGINTERPOLATOR W1 0.2638 0.3912 0.4196 0.4494
GEOTDM W1 12.4955 12.9417 13.0007 13.0681

Blocks 1 and 2. Extending this analysis to longer roll-outs, we find that unlike GeoTDM, our model
does not collapse to degenerate energy states, though errors begin to compound beyond approximately
8 frames. Mitigating this effect is a promising direction for future work, where incorporating force or
energy-based guidance during training or inference may further improve long-horizon stability.

A.8 TRAJECTORY MODEL ABLATIONS

A.8.1 FROZEN BASICES

As mentioned in Section 5.6, we assess the benefit of fine-tuning the frozen spatial encoder by
training a fully end-to-end version of EGINTERPOLATOR, called EGINTERPOLATOR-F, on the
Drugs forward simulation task. In Figure 8, we see that performance remains largely unchanged
across metrics, indicating that the pretrained spatial model generalizes well without task-specific
tuning, while the temporal layers effectively capture the necessary dynamic information.

A.8.2 GENERALIZATION TO AN EXTENDED TEST SET

To further assess the robustness of our QM9 unconditional generation model, we evaluate performance
on an extended test set of 959 molecules, which includes the original test set from Section 5.2. As
shown in Table 10, we compare GEOTDM (Han et al., 2024), EGINTERPOLATOR-N (without
structure pretraining), and our full EGINTERPOLATOR model. While all models perform comparably
on this larger evaluation set, EGINTERPOLATOR consistently outperforms the baselines, underscoring
its strong generalization and the value of structural pretraining.
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Table 9: Block-wise Wasserstein-1 Progression. Mean W1 error across 250-frame blocks during
forward simulation.

Block Frame Range Mean W1 (↓)

1 1–250 0.2303
2 251–500 0.2778
3 501–750 0.3693
4 751–1000 0.2769
5 1001–1250 0.4541
6 1251–1500 0.3962
7 1501–1750 0.3830
8 1751–2000 0.3805
9 2001–2250 0.5765

10 2251–2500 0.5861
11 2501–2750 0.6666
12 2751–3000 0.3979
13 3001–3250 0.4276
14 3251–3500 0.5328
15 3501–3750 0.4830
16 3751–4000 0.5192

Temporal Region Mean W1 (↓)

Early (Blocks 1–4; Frames 1–1000) 0.3460
Mid (Blocks 5–12; Frames 1001–3000) 0.5568
Late (Blocks 13–16; Frames 3001–4000) 0.4906
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Figure 8: JSD metrics computed for Bond Angles, Bond Lengths, Torsions, and Decorrelation Times.
Compared between EGINTERPOLATOR (green) and EGINTERPOLATOR-F (purple).

Table 10: JSD Metric (↓) for QM9 Unconditional Generation. Top: Trained on Standard Train,
evaluated on Enlarged Test. Bottom: Trained on Enlarged Train, evaluated on Standard Test.

Train → Test Method Bond Angle Bond Length Torsion TICA 0 TICA 0,1

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Standard → Enlarged
GEOTDM 0.690 0.690 0.674 0.668 0.488 0.529 0.452 0.451 0.695 0.699
EGINTERPOLATOR-N 0.539 0.538 0.584 0.582 0.447 0.492 0.438 0.440 0.678 0.685
EGINTERPOLATOR 0.307 0.293 0.214 0.194 0.361 0.385 0.416 0.409 0.633 0.639

Enlarged → Standard
GEOTDM 0.757 0.757 0.782 0.793 0.488 0.533 0.454 0.453 0.697 0.703
EGINTERPOLATOR-N 0.470 0.460 0.540 0.544 0.433 0.481 0.443 0.440 0.681 0.691
EGINTERPOLATOR 0.296 0.286 0.261 0.247 0.370 0.388 0.405 0.394 0.636 0.638
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Table 11: JSD metrics for bond angle, bond length, and torsion across QM9 and DRUGS datasets
with and without temporal layers.

Model Bond Angle (↓) Bond Length (↓) Torsion (↓)

EGINTERPOLATOR NORMAL (QM9) 0.305 / 0.292 0.210 / 0.188 0.363 / 0.380
EGINTERPOLATOR α = 1 (QM9) 0.398 / 0.391 0.618 / 0.613 0.358 / 0.372
EGINTERPOLATOR NORMAL (DRUGS) 0.173 / 0.153 0.142 / 0.112 0.377 / 0.388
EGINTERPOLATOR α = 1 (DRUGS) 0.435 / 0.445 0.580 / 0.091 0.378 / 0.382

A.8.3 CONTRIBUTION OF AN EXTENDED TRAIN SET

While our framework is motivated by the scarcity of trajectory data, we also evaluate model per-
formance under increased supervision. We train on an enlarged dataset—4× larger than the orig-
inal—comprising 4437 molecules, with the original split from Section 5.2 as a subset. As shown
in Table 10, while EGINTERPOLATOR-N and EGINTERPOLATOR interestingly do not improve
substantially with more data, the latter maintains a clear advantage. This highlights the continued
value of structural pretraining even in higher-data regimes.

A.8.4 CONTRIBUTIONS OF THE TEMPORAL MODULE TO NON-TRIVIAL DYNAMICS

To assess the contribution of our temporal module in learning non-trivial dynamics—specifically the
fast torsional processes observed in organic small molecules—we compare our framework run with
and without the temporal component. We generate trajectories for both QM9 and Drugs with α = 1
(i.i.d. conformers, i.e., no temporal interpolation). Additionally, we shuffle the frames of both GT
trajectories and our original model generations to establish baselines corresponding to random frame
orderings. We then computed torsional decorrelation times for all conditions. While our method does
not fully match GT torsional decorrelation times on QM9, we see that it clearly avoids the trivial 5.2
ps baseline (the MD frame rate). This supports that the temporal module learns non-trivial dynamical
properties essential for modeling diverse molecule dynamics.

A.8.5 CONTRIBUTION OF THE TEMPORAL MODULE TO STRUCTURE LEARNING

To asses if our temporal module’s spatial update layers refine structural predictions during trajectory
generation, we compare the collective variable JSD distributions between the normal and α = 1
setting. As demonstrated in Table 11, the full interpolator improves bond lengths, bond angles, and
torsions, indicating that the system can correct imperfections in the conformer prior rather than inherit
them.

Table 12: Mean torsional decorrelation times (ps) across test sets, comparing GT MD data, our
original generations, i.i.d. conformer generations (α = 1), and shuffled variants. Shuffled data
collapse to the frame rate of 5.2 ps, reflecting a lack of temporal structure.

Dataset GT MD Original Gen. α = 1 Gen. Shuffled GT Shuffled Gen.

QM9 Test 101.0 13.59 5.2 5.2 5.2
Drugs Test 130.1 185.64 5.2 5.2 5.2

A.9 α MIXING PARAMETERS: INTERPRETATION & CONTRIBUTION

A.9.1 EMPIRICALLY LEARNED VALUES

We analyze the ranges of alpha values learned during training and in order to identify consistent
patterns and interpretable behaviors in Figure 9 and Figures 16, 17. As context: (1) Positive alpha
values assign greater weight to the pretrained spatial model, while negative values emphasize the
temporal component; (2) alpha h/x s correspond to the pretrained spatial layer and the spatial layer
in the temporal module, where h and x denote mixing coefficients for invariant and vector features,
respectively; (3) Layer 5 does not include an alpha h t term, as this output is never used.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Layer

0.20

0.15

0.10

0.05

0.00

Lo
gi

t V
al

ue

denoiser.alpha_h_s

0 1 2 3 4
Layer

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Lo
gi

t V
al

ue

denoiser.alpha_h_t

0 1 2 3 4 5
Layer

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Lo
gi

t V
al

ue

denoiser.alpha_h_t_2

0 1 2 3 4 5
Layer

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Lo
gi

t V
al

ue

denoiser.alpha_x_s

0 1 2 3 4 5
Layer

0.10

0.05

0.00

0.05

0.10

Lo
gi

t V
al

ue

denoiser.alpha_x_t

0 1 2 3 4 5
Layer

0.025

0.020

0.015

0.010

0.005

0.000

Lo
gi

t V
al

ue

denoiser.alpha_x_t_2

Logit Values per Layer for Alpha Parameters

0 1 2 3 4 5
Layer

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Lo
gi

t V
al

ue

denoiser.alpha_h_s

0 1 2 3 4
Layer

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Lo
gi

t V
al

ue

denoiser.alpha_h_t

0 1 2 3 4 5
Layer

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Lo
gi

t V
al

ue

denoiser.alpha_h_t_2

0 1 2 3 4 5
Layer

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Lo
gi

t V
al

ue

denoiser.alpha_x_s

0 1 2 3 4 5
Layer

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Lo
gi

t V
al

ue

denoiser.alpha_x_t

0 1 2 3 4 5
Layer

0.02

0.01

0.00

0.01

Lo
gi

t V
al

ue

denoiser.alpha_x_t_2

Logit Values per Layer for Alpha Parameters

Figure 9: Top: Logits of α for each spatial and temporal layer after convergence on the QM9 uncon-
ditional generation task. Bottom: Logits of α for each spatial and temporal layer after convergence
on the DRUGS forward simulation task. Both: Results obtained with EGINTERPOLATOR-CASC.

Overall, alpha values generally fall within [−0.25, 0.25]. From Figure 9, we observe some exciting
trends: in the first temporal block (alpha x t) and spatial block (alpha x s) of the temporal module,
earlier layers prefer pretrained information, while later layers favor temporal module information.
For the final temporal block (alpha x t 2), the model generally relies on newly trained information
across layers. This supports our design choices: early layers focus on structural integrity, while later
layers prioritize dynamics, with the last temporal block reinforcing dynamic updates.

A.9.2 CONTRIBUTION TO CONFORMER GENERATION

Although the endpoints α = 0 and α = 1 yield straightforward and well-defined inference dynamics,
we also investigate the inference-time flexibility of this parameter by running EGINTERPOLATOR as
a conformer generator on QM9 while perturbing α. Specifically, we linearly interpolate the mixing
parameter logits between 1 and the learned value α⋆ by introducing a new variable λ ∈ [0, 1], such
that α′ = λα+ (1− λ).

Across both the SIMPLE and CASC variants, we observe a trade-off between precision and diversity
metrics as summarized in Table 13. Notably, varying λ allows us to recover and surpass the COV-R di-
versity scores reported by GeoDiff. The SIMPLE variant exhibits a more favorable precision–diversity
trade-off curve with respect to λ, which we attribute to its closer alignment with our theoretical
formulation in Theorem 4.1. More broadly, these findings indicate that the temporal module captures
aspects of conformational diversity beyond those provided by the pretrained conformer model, and
that the α parameters offer a natural mechanism for controlling the balance between precision and
conformational dynamics in the generated trajectories.
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Table 13: QM9 results across λ for CASC and SIMPLE.

λ COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓

Mean Med. Mean Med. Mean Med. Mean Med.

CASC
0.000 87.99 91.98 0.2539 0.2600 58.30 53.62 0.4430 0.4397
0.025 87.82 92.98 0.2570 0.2598 57.70 53.17 0.4470 0.4396
0.050 88.34 92.84 0.2568 0.2556 58.29 53.78 0.4460 0.4439
0.075 88.16 93.61 0.2577 0.2610 57.38 52.86 0.4490 0.4467
0.100 88.47 92.66 0.2588 0.2654 57.14 52.51 0.4531 0.4523
0.125 89.09 94.36 0.2579 0.2589 56.67 52.21 0.4581 0.4549
0.150 89.55 93.39 0.2580 0.2637 56.37 50.83 0.4618 0.4580
0.175 89.06 94.46 0.2621 0.2612 55.88 51.06 0.4669 0.4670
0.200 89.27 94.56 0.2633 0.2604 55.23 50.95 0.4697 0.4653

SIMPLE
0.000 88.11 92.47 0.2557 0.2553 59.03 54.52 0.4413 0.4439
0.025 88.54 91.28 0.2546 0.2540 58.27 53.72 0.4472 0.4419
0.050 89.71 94.13 0.2518 0.2577 58.20 54.24 0.4492 0.4397
0.075 90.34 94.20 0.2536 0.2589 57.79 53.51 0.4539 0.4496
0.100 91.11 95.36 0.2542 0.2589 57.14 52.23 0.4598 0.4542
0.125 92.11 96.36 0.2558 0.2638 57.19 53.04 0.4647 0.4582
0.150 92.05 96.07 0.2618 0.2665 57.14 54.30 0.4681 0.4630
0.175 92.21 96.39 0.2678 0.2737 55.58 51.75 0.4795 0.4675
0.200 92.63 96.08 0.2713 0.2783 54.94 50.63 0.4885 0.4850

GeoDiff-A
– 90.54 94.61 0.2104 0.2021 52.35 50.10 0.4539 0.4399

B EXPERIMENTAL DETAILS

B.1 CONFORMER PRETRAINING

B.1.1 DATA PREPROCESSING

The datasets obtained from the (Xu et al., 2022; Shi et al., 2021a) codebase are provided as pickle
files, each containing a list of PyTorch Geometric data objects representing individual conformers.
We apply the following filtering steps to ensure data quality. First, we verify that the saved RDMol
objects can be successfully sanitized using RDKit. Next, we remove any conformers exhibiting
fragmentation in their RDMol representations. Following Ganea et al. (2021), we also account for
conformers that may have reacted in the original data generation process. Namely, we compare the
canonical SMILES strings derived from both the saved SMILES and the corresponding RDMol, and
discard any conformers where the two do not match. We also exclude any molecules whose saved
SMILES cannot be converted into a valid RDMol by RDKit. Lastly, specific to our method, we
remove hydrogens from the molecules according to rdkit.Chem.RemoveHs 2 and retain heavy
atoms. For QM9, this leaves [C, N, O, F]. For Drugs, we have [C, N, O, S, P, F, Cl, Br, I, B, Si].

For each peptide in the Timewarp and MDen train/validation sets (Klein et al., 2023) (Jing et al.,
2024b), we compute per-residue ϕ/ψ dihedral features, subsample up to 10,000 frames, cluster
them in dihedral space using K-medoids, and select the lowest-energy member of each cluster as a
representative conformer, yielding 10 / 20 conformers per peptide.

B.1.2 TRAINING DETAILS

We train both the QM9, Drugs, and Tetrapeptide conformer models using 4 NVIDIA RTX A4000
GPUs, with an effective batch size of 128 (32 samples per GPU) and a learning rate of 1 × 10−4.

2Note that RemoveHs does not eliminate all hydrogen atoms and may retain chemically relevant ones (see
the RDKit documentation). Our method explicitly incorporates and models such retained hydrogens.
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Training is carried out until convergence, typically around 800K steps. As described in Section 5.1,
all models are trained using 1000 diffusion steps. We adopt a DDPM framework (Ho et al., 2020b)
with a linear noise schedule. Additionally, we employ an equivariant loss function that leverages
optimal Kabsch alignment (Kabsch, 1976), with more details in Section C.4.

B.1.3 EVALUATION DETAILS

We evaluate the quality of generated conformers using Coverage (COV-P) and Matching (MAT-P),
both based on the root mean square deviation (RMSD) computed after Kabsch alignment (Kabsch,
1976).

Let Sg and Sr denote the sets of generated and reference conformers, respectively. The metrics are
defined as:

COV-P(Sg, Sr) =
1

|Sg|

∣∣∣∣{Ĉ ∈ Sg

∣∣∣∣ min
C∈Sr

RMSD(Ĉ, C) ≤ δ

}∣∣∣∣ , (6)

MAT-P(Sg, Sr) =
1

|Sg|
∑
Ĉ∈Sg

min
C∈Sr

RMSD(Ĉ, C), (7)

where δ is a predefined threshold. COV-R and MAT-R, inspired by Recall, are defined analogously
by swapping Sg and Sr.

Following Xu et al. (2022), we set |Sg| = 2× |Sr| per molecule. The results reported in Section 5.1
correspond to the average COV-*/MAT-* scores across all test molecules. COV-P reflects precision
by measuring the fraction of generated conformers that are sufficiently close to the reference set
(within threshold δ), while MAT-P captures the mean deviation of each generated conformer from its
closest reference match. High COV and low MAT scores indicate greater fidelity and precision in
conformer generation.

B.2 MOLECULAR DYNAMICS FOR SMALL MOLECULES

B.2.1 PARAMETERIZATION

We run all-atom molecular dynamics simulations, including hydrogens, using OpenMM (Eastman
et al., 2017) and employ openmmforcefields to apply small molecule force field parameter-
izations developed by the Open Force Field Initiative (OpenFF) (Boothroyd et al., 2023). We
follow the setup guidelines provided in the openmmforcefields GitHub repository. Specifi-
cally, we adopt the openff-2.2.1 (Sage) (McIsaac et al., 2024) small molecule force field in
conjunction with a base amber/protein.ff14SB.xml protein force field and a combination
of amber/tip3p standard.xml and amber/tip3p HFE multivalent.xml for explicit
solvent and ion parameters. Continuing with standard hyperparameters, we set the nonbonded cutoff
to 0.9 nm and the switch distance to 0.8 nm. Hydrogen mass repartitioning (HMR) is applied with a
mass of 1.5 amu, along with constraints on all hydrogen bonds. Long-range electrostatic interactions
are computed using the Particle Mesh Ewald (PME) method under periodic boundary conditions. A
padding of 1.5 nm is used for the explicit solvent box.

B.2.2 SIMULATION

All molecular dynamics simulations are performed using a friction coefficient of 1 ps−1, a temperature
of 300 K, and an integration timestep of 4 fs, employing the LangevinMiddleIntegrator
(Zhang et al., 2019). As described in Section 5.2, five independent trajectories are generated per
molecule, each initialized from a conformer assigned to that molecule in the selected data subset.
Each trajectory simulation begins with energy minimization, followed by 5000 steps of equilibration
under constant volume and temperature (NVT) conditions. This is followed by a 5 ns production run
under constant pressure and temperature (NPT) conditions, comprising a total of 1.25M integration
steps. Trajectory simulation is parallelized across 32 NVIDIA RTX A4000 GPUs and saved with a
frame rate of 400 fs/0.4 ps.
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B.3 TRAJECTORY FINETUNING

B.3.1 DATASET PREPARATION

As mentioned in Section 5.2, we randomly sample a subset of the molecules from the GEOM-QM9
and Drugs conformer data to generate trajectory data from. As this is quite costly, for Drugs we
generate simulations for the standard train/validation/test splits mentioned in Section 5.2. For QM9,
we generate data for enlarged train/test sets along with the standard validation set. We then subsample
25% of the enlarged splits to be the standard train/test sets. A summary of the dataset splits is
provided below:

• Drugs:

– Standard splits: 1137/1044/100 train/validation/test molecules
(5682/5209/496 associated trajectories)

• QM9:

– Standard splits: 1109/1018/240 train/validation/test molecules
(5534/5080/1193 associated trajectories)

– Enlarged sets: 4437/959 train/test molecules
(22132/4793 associated trajectories)

As a note, out of the test trajectories, we select 1 out of 5 per molecule to be the MD ORACLE
baseline. Moreover, we filter out any molecules over 60 atoms in the Drugs dataset to reduce memory
usage variance. Finally, the test set for the interpolation is a subset of the standard test sets mentioned
above. We further define this process of selection in Section B.6 and B.3.3.

B.3.2 TRAINING PROTOCOL

While the compute setup and batch size vary across datasets and generation settings, we consistently
employ a DDPM framework with a linear noise schedule and train all models using 1000 diffusion
steps. A fixed learning rate of 1 × 10−4 is used and training is performed until convergence.
Additionally, we adopt an equivariant loss function based on optimal global Kabsch alignment
of trajectories, as detailed in Section C.4. Setting-specific training configurations are provided in
Sections B.4-B.6.

B.3.3 EVALUATION METRICS

Jensen-Shannon Divergence. We compute the JSD as implemented in scipy, where m =
(p+ q)/2: √

D(p || m) +D(q || m)

2
(8)

• Torsions: The 1D JSD is computed over a 100-bin histogram discretized across [−π, π].
• Bond Angles: The 1D JSD is computed over a 100-bin histogram discretized across [0, π].

• Bond Lengths: The 1D JSD is computed over a 100-bin histogram discretized across
[100, 220] pm.

• Torsion decorrelation: The 1D JSD is computed over 275-bin histogram discretized across
[5, 1380] ps, which are corresponding to the minimum and maximum torsion decorrelation
time of molecules across the dataset.

• TICA-0 and TICA-0,1: We reduce the dimensionality of the trajectory by time-lagged
independent component analysis (TICA). Then 1D, 2D JSDs are computed over 100-bin
histograms on the first TICA component (TICA-0) and the first two components (TICA-0,1),
respectively. Since different molecules have totally different TICA projections and values,
we use the minimum and maximum values from each molecule as its unique discretization
range for TICA-0 and TICA-0,1. We use 10.4 ps (2 steps) lag time for QM9 and 20.8 ps (4
steps) for drugs.
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Markov State Models. We intensively use Markov State Models (MSM) for interpolation tasks.
We featurize reference trajectories with all torsion angles except for those within an aromatic ring.
Then TICA is performed on the torsion-based trajectories. After dimensionality reduction, a k-means
clustering algorithm is used to discretize the trajectories to 100 clusters. An MSM analysis is
performed on the trajectories of 100 states and PCCA+ spectral clustering from PyEMMA package
(Scherer et al., 2015) is used to aggregate clusters to 10 coarse metastates. A second MSM analysis is
done on the coarse trajectories. We use 52 ps (10 steps) lag time for QM9 and 104 ps (20 steps) for
drugs.

To sample the start and end frames used in the interpolation task, we compute the flux matrix over
the 10 metastates. To construct a high barrier and rare transition probability, we choose the two
states with least flux between them as start and end states. Then we randomly sample 900 start
and end frames from the corresponding states, and those frames are used as the conditions in the
interpolation inference process. The generated trajectories undergo the same featurization process,
and then projected on the TICA components defined by the reference trajectories. They are further
discretized according to the reference metastate assignments, and a new MSM is performed on the
discretized generation trajectories.

To compare the generation with reference trajectories, we compute the JSD over the metastate
occupancy probabilites. To evaluate interpolation sampling quality, we compute the average path
probability, valid path rate, and valid path probability as described in Jing et al. (2024c). The average
path probability is the average of all paths’ likelihood for transitioning from the start to the end. The
valid path rate is the fraction of paths that successfully traverse from the start to the end. The valid
path probability is the average of all valid paths’ likelihood (excluding zero-probability paths). To
fairly compare the generation and MD oracle, we truncate the MD oracle trajectories to varying time
length, and sample 900 transition paths based on the MSM constructed from the metastates. With the
sampled transition paths, we can compute the JSD over metastates, average path probability, valid
path rate, and valid path probability of MD oracles.

B.4 UNCONDITIONAL GENERATION DETAILS

Training. Training is conducted by denoising randomly sampled 2.6 ns segments (500 frames) from
the training trajectories. For QM9, we utilize 8 NVIDIA RTX A4000 GPUs with an effective batch
size of 32 (4 samples per GPU), training the models for 400 epochs.

Evaluation. For each molecule in the test set, we generate ten independent 2.6 ns segments (500
frames each). Distributional histograms are then computed from these generated trajectories and
compared against those derived from four reference 5 ns molecular dynamics (MD) trajectories.
Results reported for this model setting for QM9 include both the standard test in Section 5.3 and
enlarged test set in Section A.3.2-A.3.3.

B.5 FORWARD SIMULATION DETAILS

Training. Training is conducted by randomly sampling 251-frame segments at a 5.2 ps frame rate
and denoising the subsequent 250 frames (corresponding to 1.3 ns), conditioned on the initial frame-0.
For the Drugs and Timewarp dataset, we utilize 8 NVIDIA RTX A4000 GPUs with an effective
batch size of 32 (2 samples per GPU with 2 gradient accumulation steps), training the models for 400
epochs.

Evaluation. For each molecule in the test set, we generate five forward roll-outs of 5.2 ns (1,000
frames total), each conditioned on the first frame of a reference trajectory. Distributional histograms
are then computed from the generated trajectories and compared against those obtained from four
reference 5 ns molecular dynamics (MD) trajectories. For a fair comparison, we truncate our
generation trajectories to the same length as the reference trajectories in evaluation. Results reported
for this model setting for Drugs are based on the standard test set in Section 5.4.

B.6 INTERPOLATION DETAILS

Training. Training is conducted by randomly sampling 101-frame segments at a 5.2 ps frame rate and
denoising the middle 99 frames (corresponding to ≈0.52 ns), conditioned on frame-0 and frame-100.
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For the QM9 dataset, we utilize 2 NVIDIA A100 GPUs with an effective batch size of 128 (64
samples per GPU), training the models for 300 epochs. For the Drugs dataset, we utilize 4 NVIDIA
A100 GPUs with an effective batch size of 32 (8 samples per GPU), training the models for 400
epochs.

Evaluation. For each molecule in the test set, we perform featurization, dimensionality reduction,
and clustering on the reference trajectories. We then construct an MSM on the discretized trajectories
and retain only those test molecules for which all microstates from clustering are represented in
the MSM. After filtering, this yields 124 QM9 and 36 Drug test molecules. Due to computational
constraints, we subsample 80 QM9 molecules while using all 36 Drug molecules for inference and
evaluation. For each selected test molecule, we generate 900 interpolation trajectories conditioned on
900 sampled start and end states. For each MD oracle length, we also sample 900 transition paths.
We report the average results across all molecules successfully modeled by the MSM, as shown in
Section 5.5, Figure 5, as well as Section A.2, Figure 6 (see details in Section B.3.3).

C METHOD DETAILS

C.1 MOLECULE INPUT REPRESENTATION

Throughout our framework, input molecules are represented as 2D heterogeneous graphs. The
bonding network includes both the original bond types present in the molecule and additional higher-
order edges that we incorporate. Specifically, we include edges up to third-order for both the QM9
and Drug datasets. Following the approach of Shi et al. (2021b), this augmentation is designed to
facilitate more effective information transfer between atoms involved in bond angle and torsion angle
interactions.

Table 14: Atom and bond embedding specifications.

Embedding Type Input Dimension

Atom Embedding Atomic Number 30
Bond Embedding No Bond, Bond Type, 2nd/3rd-order edge 4

We defined learned embeddings for atom type as well as bond type. Moreover, we also provide input
node features per atom, largely based on Ganea et al. (2021). Below, we provide a table with these
details. These two information sources, the learned embedding and input features, as combined in
our embedding module as described in Section C.2.

Table 15: Node feature vector based on atom-level properties.

Atom Features

Indices Description Options Type

0–1 Aromaticity true, false One-hot
2–7 Hybridization sp, sp2, sp3, sp3d, sp3d2, other One-hot
8 Partial charge R Value
9–16 Implicit valence 0, 1, 2, 3, 4, 5, 6, other One-hot
17–24 Degree 0, 1, 2, 3, 4, 5, 6, other One-hot
25–28 Formal charge -1, 0, 1, other One-hot
29–35 In ring of size x 3, 4, 5, 6, 7, 8, other k-hot
36–39 Number of rings 0, 1, 2, 3+ One-hot
40–42 Chirality CHI TETRAHEDRAL CW,

CHI TETRAHEDRAL CCW, unspecified/other
One-hot
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C.2 ARCHITECTURES

Embeddings. Across all of our models—both conformer and trajectory—we use a hidden dimension
of 128 and a diffusion timestep embedding dimension of 32. For molecular embeddings, we combine
atom type embeddings and atom-level features via a single linear projection: Rnode dim+ft dim →
Rnode dim.

BASICES. As introduced in Section 4.3, our BASICES architecture consists of 6 Equivariant Graph
Convolution (EGCL) layers, following the formulation in Satorras et al. (2021b). To promote
interaction between invariant and equivariant representations, we insert a Geometric Vector Per-
ceptron (GVP) (Jing et al., 2021) transition layer after each EGCL block. The full model contains
approximately 918K parameters.

EGINTERPOLATOR. As described in Section 4.3, EGINTERPOLATOR extends BASICES by
introducing temporal attention to model dependencies across trajectory frames. Specifically, we
incorporate the Equivariant Temporal Attention Layer (ETLayer) from Han et al. (2024) to capture
temporal structure through attention mechanisms. The architecture is constructed by stacking an
additional sequence of ETLayer + EGCL + ETLayer on top of each pretrained EGCL layer from
BASICES, as illustrated in Figure 2. We retain the use of GVP-based transition layers and introduce
LayerNorm (Ba et al., 2016) at key interpolation steps to improve numerical stability. The resulting
model comprises 6 layers and contains 3.3M parameters in total, with 2.3M trained during trajectory
finetuning in the EGINTERPOLATOR framework.

C.3 CONDITIONAL GENERATION

We control conditional generation by setting appropriate entries of a conditioning mask m to either 1
or 0. Let m[t, a] denote the conditioning status for frame t and atom a. We define mask:

• Forward simulation:

m[t, :] =

{
1 t = 0

0 otherwise

• Interpolation:

m[t, :] =

{
1 t ∈ {0,M} (M is index of the final frame)
0 otherwise

.

In the unconditional setting, we default to m[:, :] = 0. To incorporate this conditioning information,
we use a condition state embedding added to the invariant node features, with the same hidden
dimension as the main model. The conditioning mask is also used to restrict the denoising process
and loss computation to frames where m[t′, :] = 0.

C.4 KABSCH ALIGNMENT

Inspired by Xu et al. (2022), we propose to use trajectory-level Kabsch alignment to find the optimal
rotation and translation between the noisy trajectory x

[T ]
τ and the input trajectory x

[T ]
0 at diffusion

step τ . This corresponds to the following optimization problem:

R∗, t∗ = argmin
R,t

∥Rx[T ]
τ + t− x

[T ]
0 ∥2. (9)

In practice, this can be realized by extending the original Kabsch algorithm (Kabsch, 1976) on the set
of points with the temporal dimension T combined into the number of points dimensionN , that forms
a point cloud with effective number of points T ×N . Afterwards, we re-compute the target noise ϵ̄

based on the aligned x̄
[T ]
τ = R∗x

[T ]
τ + t∗ and the clean data x

[T ]
0 by the forward diffusion process,

and then match the output of EGINTERPOLATOR towards re-computed noise ϵ̄ after alignment.

C.5 BASELINES

Autoregressive Models. In the autoregressive baseline setup, molecular dynamics trajectories
are modeled under the Markov assumption, where the model—EGNN (Satorras et al., 2021b),
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Equivariant Transformer (Thölke & Fabritiis, 2022), or GeoTDM (Han et al., 2024)—learns the
transition distribution p(xt+1, |, xt). To ensure fair comparison, we keep timestep intervals and frame
counts consistent across all datasets during both training and inference, matching the settings used in
our proposed methods. For EGNN and ET, we adopt identical configurations with six stacked EGCL
or Equivariant Transformer blocks, respectively, to maintain experimental parity. For AR+GeoTDM,
the model is trained as a two-frame diffusion process, with the first frame serving as conditioning,
effectively reducing it to a next-step forward simulation model.

GEOTDM. The training setup and embedding configurations for our implementation of GEOTDM
are aligned with those used in our proposed framework. Following the architecture described in Han
et al. (2024), the model consists of 6 stacked layers of EGCL and ETLayer blocks, resulting in a total
of 1.4M parameters.

D PROOFS

D.1 PROOF OF THEOREM 4.1

For better readability we restate Theorem 4.1 below.

Theorem 4.1. Suppose ϵcfθ perfectly models pcf(x) and ϵmd
θ,ϕ perfectly models pmd(x[T ]), then the

interpolation in Eq. 3 implicitly induces the distribution p̃md(x[T ]) ∝ pmd(x[T ])β p̂md(x[T ])1−β for
ϵϕ, where β = 1

1−α and p̂md =
∏T−1

t=0 pcf(x(t)).

Proof. Upon perfect optimization, we have the connection between the denoiser and the score of the
underlying distribution (Song & Ermon, 2019; Song et al., 2021):

ϵcfθ (x
(t)
τ , τ) = −

√
1− ᾱτ∇ log pcf(x(t)), ∀0 ≤ t ≤ T − 1, 0 ≤ τ ≤ T , (10)

and similarly,

ϵmd
θ,ϕ(x

[T ]
τ , τ) = −

√
1− ᾱτ∇ log pmd(x[T ]), ∀0 ≤ τ ≤ T . (11)

By leveraging Eq 10 for all frames 0 ≤ t ≤ T − 1, we have

ϵ̂md = [ϵcfθ (x
(t)
τ , τ)]T−1

t=0 = −
√
1− ᾱτ∇ log p̂md(x[T ]), (12)

where p̂md(x[T ]) is the joint of i.i.d. framewise distributions p(x). Combining with the interpolation
rule in Eq. 3, we have

ϵϕ =
1

1− α
ϵmd
θ,ϕ − α

1− α
ϵ̂md, (13)

= (−
√
1− ᾱτ )

(
1

1− α
∇ log pmd(x[T ])− α

1− α
∇ log p̂md(x[T ])

)
, (14)

= (−
√
1− ᾱτ )

(
β∇ log pmd(x[T ]) + (1− β)∇ log p̂md(x[T ])

)
, (15)

where β = 1
1−α . Now, consider the distribution p̃md(x[T ]) ∝ pmd(x[T ])β p̂md(x[T ])1−β , we have

∇ log p̃md(x[T ]) = β∇ log pmd(x[T ]) + (1− β)∇ log p̂md(x[T ]). (16)

Therefore, ϵϕ = −
√
1− ᾱτ∇ log p̃md(x[T ]). This verifies that the interpolation rule implicitly

induces the distribution p̃md(x[T ]) with ϵϕ as its score network. Furthermore, the induction is
unique, since for any distribution q(x[T ]) satisfying ϵϕ = −

√
1− ᾱτ∇ log q(x[T ]), we have that

∇ log p̃md(x[T ]) = ∇ log q(x[T ]), which gives us q(x[T ]) = p̃(x[T ]) due to the property of Stein
score as demonstrated in Hyvärinen & Dayan (2005); Song & Ermon (2019).
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D.2 PROOF OF EQUIVARIANCE

Theorem D.2. EGINTERPOLATOR is SO(3)-equivariant and translation-invariant. Namely,
RfEGI(x

[T ]) = fEGI(Rx[T ] + t), for all rotations R and translations t where fEGI is the mapping
defined per EGINTERPOLATOR.

Proof. Recall the definition of the interpolator:

ϵmd
θ,ϕ(x

[T ]
τ , τ) = αϵ̂md + (1− α)ϵtpϕ (x[T ]

τ , ϵ̂md, τ), s.t. ϵ̂md = [ϵcfθ (x
(t)
τ , τ)]T−1

t=0 , (17)

with the parameterization ϵtpϕ (x
[T ]
τ , ϵ̂md, τ) = stpϕ (x

[T ]
τ + ϵ̂md, τ) − x

[T ]
τ . It suffices to show that

the temporal interpolator is rotation-equivariant and translation-invariant, since the equivariance
of the structure model ϵcfθ directly follows the original work of Satorras et al. (2021b). For any
g := (R, t) ∈ SE(3), we have [ϵcfθ (Rx

(t)
τ + t, τ)]T−1

t=0 = R[ϵcfθ (x
(t)
τ , τ)]T−1

t=0 = Rϵ̂md. By the proof
in Han et al. (2024), we have that the temporal network stpϕ is SE(3)-equivariant, i.e.,

stpϕ (R(x[T ]
τ + ϵ̂md) + t, τ) = Rstpϕ (x[T ]

τ + ϵ̂md, τ) + t. (18)

Therefore, we have

ϵmd
θ,ϕ(Rx[T ]

τ + t, τ) = αRϵ̂md + (1− α)
(
stpϕ (R(x[T ]

τ + ϵ̂md) + t, τ)−RxT
τ − t

)
, (19)

= αRϵ̂md + (1− α)Rϵtpϕ (x[T ]
τ , ϵ̂md, τ), (20)

= Rϵmd
θ,ϕ(x

[T ]
τ , τ), (21)

which concludes the proof.
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E ADDITIONAL RESULTS

E.1 CONFORMER PRETRAINING: QM9

Figure 10: Distributions computed from reference conformers shown in red, Checkpoint 539 in green,
and Checkpoint 99 in purple. We see that 539 aligns more closely with reference distributions across
all collective variables and shows improved discretization of torsional states.

Above we show the additional plot associated with Section 5.1 and A.1. The plots above correspond
to the following molecules (left to right):

N#C[C@](O)(CO)CCO, C[C@@H](O)[C@@H](CO)CC#N,
C[C@@H](O)CCOCCO, CC[C@@H](CC=O)[C@@H](C)O

E.2 SPEEDUP ANALYSIS

Table 16: Average time (s) taken to generate trajectory

Dataset & Duration OpenMM MD 4x Block Diffusion Full Diffusion

Drugs (5.2 ns) 584.52 201.70 161.08
QM9 (2.6 ns) 151.38 - 60.08
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E.3 UNCONDITIONAL GENERATION: QM9

Figure 11: Distributions computed from reference QM9 trajectories (red), EGINTERPOLATOR
(green), and GeoTDM (purple). Across all examples, our framework more closely matches the
reference distributions across all collective variables and better captures torsional state discretizations
than GeoTDM.

The figure above provides additional examples corresponding to the distributional analysis in Sec-
tion 5.3. The molecule featured in the main paper in Figure 4A and 4B is:

CC[C@H](C#CC=O)CO

The plots above correspond to the following molecules (left to right):

C#CCCC[C@@H](C)CO, CC[C@@](C#N)(CO)OC,
COCCCO, CC[C@H](C#CC=O)CO
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E.4 FORWARD SIMULATION: DRUGS

Figure 12: Autocorrelations of individual torsion angles for an example molecule, comparing
reference trajectories with generations from EGINTERPOLATOR and GeoTDM. For the challenging
task of capturing temporal de-correlation behavior, EGINTERPOLATOR closely follows the reference
dynamics, whereas GeoTDM fails to model frame-to-frame correlations effectively.

The figure above provides additional examples corresponding to the dynamical analysis in Section 5.4.
The molecule featured in the main paper in Figure 4E-G is:

O=C(O)c1[nH]c2ccc(Cl)cc2c1CC(=O)N1CCN(c2ccccc2)CC1

The plots above correspond to the following molecules (left to right):

Cc1ccc(C)c(CN2C(=O)NC3(CCCCC3)C2=O)c1,
COc1ccc(NS(=O)(=O)c2ccc3c(c2)Cc2ccccc2-3)cn1,

COc1ccc(S(=O)(=O)Nc2c(C(=O)O)[nH]c3ccccc23)c(OC)c1
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Figure 13: Distributions computed from reference Drugs trajectories (red), EGINTERPOLATOR
(green), and GeoTDM (purple). Across all examples, our framework aligns closely with reference
distributions across all collective variables and exhibits improved torsional state discretization com-
pared to GeoTDM.

The figure above provides additional examples related to the distributional analysis in Section 5.4.

The plots above correspond to the following molecules (left to right):

NS(=O)(=O)c1ccc(CCNC(=O)COC(=O)CN2C(=O)[C@H]3CCCC[C@H]3C2=O)cc1,
COc1ccc(C(=O)N2CCc3cc(OC)c(OC)cc3C2)cc1OC,

Cc1ccc2c(c1)C(=O)N(CCCCO)C2=O,
COC(=O)C1CCN(Cc2cc(=O)oc3cc(OC)ccc23)CC1,

CCOC(=O)CSC1=Nc2ccccc2C2=N[C@H](CC(=O)NCc3ccc(OC)cc3)C(=O)N12
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E.5 ENERGY EXAMPLES: QM9 AND DRUGS

Table 17: Top: Mean and standard deviation (Hartrees) of energies for selected QM9 test molecules,
comparing ground-truth (GT), EGINTERPOLATOR, and GEOTDM. Bottom: Block-wise energy
means and standard deviations for selected Drugs test molecules, showing how EGINTERPOLATOR
tracks GT distributions across successive diffusion blocks.

SMILES GT EGInterpolator GeoTDM

CC(CO)(CO)CC#N −440.287± 0.005 −440.249± 0.036 −438.206± 1.813

COC[C@@]1(CO)N[C@H]1C −441.428± 0.008 −441.364± 0.075 −439.407± 3.932

C#CCCC@HOCC −388.299± 0.006 −388.225± 0.117 −385.743± 2.259

CCOCCCN1CC1 −405.525± 0.007 −405.387± 0.426 −402.751± 3.424

CC(=O)C@HCCO −460.165± 0.007 −460.140± 0.021 −458.121± 1.225

CCCC@@(CC)OC −390.780± 0.006 −390.753± 0.026 −387.954± 3.434

CCC[C@@H]1C@HC[C@@H]1O −425.413± 0.009 −425.372± 0.066 −423.323± 5.039

CCO[C@H]1C@@H[C@H]1CO −425.364± 0.008 −425.326± 0.045 −423.153± 4.070

COCCC[C@H]1CN1C −405.507± 0.008 −405.463± 0.047 −403.101± 4.087

CCC@HCC(C)C −389.583± 0.007 −389.547± 0.035 −386.846± 2.405

SMILES EGInterpolator Block Energy (Hartrees)

Cc1ccc(C)c(CN2C(=O)NC3(CCCCCC3)C2=O)c1

GT −960.102± 0.010

Block 1 −960.062± 0.020

Block 2 −960.027± 0.167

Block 3 −959.940± 0.307

Block 4 −960.037± 0.044

Cc1ccc(N[C@H]2CCCN(C(=O)c3ccc(-n4ccnc4)cc3)C2)cc1C

GT −1185.987± 0.012

Block 1 −1185.837± 0.241

Block 2 −1185.846± 0.168

Block 3 −1185.785± 0.324

Block 4 −1185.854± 0.133

CCOC(=O)[C@H]1C@HNC(=O)N[C@@]1(O)C(F)(F)F

GT −2171.285± 0.013

Block 1 −2171.224± 0.062

Block 2 −2171.212± 0.058

Block 3 −2171.195± 0.060

Block 4 −2171.167± 0.105
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E.6 INTERPOLATION: QM9

Figure 14: Generated QM9 interpolation trajectories from EGINTERPOLATOR, projected on the
reference surface. The red point denotes the start frame, and the orange point denotes the end frame.
The reference surface is colored by metastate assignment. Each row corresponds to a different
molecule, and each column shows a generated interpolation. These examples illustrate the model’s
ability to generate efficient and meaningful transition paths.

The figure above provides additional examples related to the analysis in Section A.2.

The trajectories correspond to the following QM9 molecules (top to bottom):

C#C[C@@](O)(CC)COC, N#CC[C@H](O)CCCO,
C[C@H](C=O)NCC=O, CCC[C@@H](O)CC#N
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E.7 INTERPOLATION: DRUGS

Figure 15: Generated Drug interpolation trajectories from EGINTERPOLATOR, projected onto the
reference surface. The red point indicates the start frame, and the orange point indicates the end
frame. The reference surface is colored by metastate assignment. Each row corresponds to a different
molecule, and each column shows a generated interpolation. These examples highlight the model’s
ability to generate efficient and meaningful transition paths.

The figure above provides additional examples related to the analysis in Section 5.5. The molecule
featured in the main paper in Figure 5B is:

O=C(CCCSc1nc2ccccc2[nH]1)NCc1ccccc1F

The trajectories above correspond to the following Drug molecules (top to bottom):

COc1ccc(S(=O)(=O)Nc2c(C(=O)O)[nH]c3ccccc23)c(OC)c1,
Cn1c(C(=O)NCCN2CCOCC2)cc2c(=O)n(C)c3ccccc3c21,

O=C(c1ccc(Br)o1)N1CCN(c2ccccc2F)CC1,
CCOC(=O)c1c(C)[nH]c(C)c1C(=O)CSc1ncccn1
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E.8 α MIXING PARAMETERS: INTERPOLATION RESULTS & EGINTERPOLATOR-SIMPLE
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Figure 16: Top: Logits of α for each spatial and temporal layer after convergence on QM9. Bottom:
Logits of α for each spatial and temporal layer after convergence on DRUGS. Both: Results obtained
with EGINTERPOLATOR-CASC for the interpolation task.
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Figure 17: Results obtained with EGINTERPOLATOR-SIMPLE.
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F STATEMENTS AND DISCUSSIONS

F.1 LIMITATIONS CONT. AND FUTURE OPPORTUNITIES

Our results demonstrate that structural pretraining significantly enhances all-atom diffusion models
for simulating small molecule molecular dynamics trajectories, a generally chemically diverse set of
molecular systems. Nonetheless, our work has limitations that highlight directions for future research.
As noted in Section 6, machine learning methods still lag behind ground-truth MD simulations
in terms of physical accuracy. Future work may therefore explore improved learning objectives,
molecular parameterizations, and the incorporation of physics-based regularization to help bridge
this gap.

While our focus is on the challenging domain of organic small molecules and addresses generalize-
ability in this chemical space, molecular dynamics is broadly applicable to larger N -body systems,
such as peptides and protein–ligand complexes. Future work may extend our framework to these
more complex settings, leveraging structural pretraining to enable generative modeling of larger
biomolecular simulations. Moreover, while we have shown promising results, current models in our
work are trained per dataset and task. A challenging future task may be to unify the unique dynamics
of small and large systems, as well as span multiple tasks.

Additionally, although our approach effectively reproduces distributions and dynamics consistent
with classical mechanics, it remains subject to the inherent biases of molecular dynamics simulations.
Future research may explore aligning both conformer and trajectory generation more closely with
Boltzmann-distributed energy landscapes to improve thermodynamic fidelity.

F.2 ETHICS AND IMPACTS STATEMENT

This work develops generative models for molecular dynamics to advance efficient, accurate sim-
ulation in chemistry and biology. While such models can accelerate scientific discovery, they also
raise concerns around AI safety and dual-use risks, particularly in the design of harmful chemical or
biological agents.

Our goal is to support beneficial applications in drug discovery, materials science, and molecular
understanding through data-efficient and physically grounded modeling. All models are trained on
publicly available, non-sensitive data and are released under open licenses to promote transparency
and responsible use. We encourage continued dialogue on the safe development and deployment of
generative AI in the physical and natural sciences.
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