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ABSTRACT

Latent Diffusion Models (LDMs) have recently shown great potential for image
restoration owing to their powerful generative priors. However, directly applying
them to ultra-high-definition image restoration (UHD-IR) often results in severe
global inconsistencies and loss of fine-grained details, primarily caused by patch-
based inference and the information bottleneck of the VAE. To overcome these
issues, we present FreeAdapt, a plug-and-play framework that unleashes the ca-
pability of diffusion priors for UHD-IR. The core of FreeAdapt is a training-free
Frequency Feature Synergistic Guidance (FFSG) mechanism, which introduces
guidance at each denoising step during inference time. It consists of two modules:
1) Frequency Guidance (FreqG) selectively fuses phase information from a refer-
ence image in the frequency domain to enforce structural consistency across the
entire image; 2) Feature Guidance (FeatG) injects global contextual information
into the self-attention layers of the U-Net, effectively suppressing unrealistic tex-
tures in smooth regions and preserving local detail fidelity. In addition, FreeAdapt
includes an optional VAE fine-tuning module, where skip connection further en-
hances the reconstruction of fine-grained textures. Extensive experiments demon-
strate that our method achieves superior quantitative performance and visual qual-
ity compared to state-of-the-art UHD-IR approaches, and consistently delivers
strong gains across multiple LDM-based backbones.

1 INTRODUCTION

With the rapid advancement of 4K/8K display and imaging technologies, the demand for Ultra-High-
Definition (UHD) images is increasing dramatically (Wang et al., 2025; Li et al., 2023b; Zheng
et al., 2021; Zhao et al., 2025; Liu et al., 2025b). However, in real-world capture, UHD images
inevitably suffer from degradations such as low light, haze, blur, and noise, which are often caused
by insufficient illumination, adverse weather conditions, or equipment limitations (Wang et al., 2025;
2024a). As a result, UHD image restoration (UHD-IR) has become a crucial yet highly challenging
research field in computer vision, characterized by its massive resolution scale and requirements for
preserving fine-grained details (Wang et al., 2025; Yu et al., 2024b).

To address the challenges of UHD-IR, researchers have proposed a variety of solutions (Zhao et al.,
2025; Wang et al., 2024a; Liu et al., 2025b; Su et al., 2024; Liu et al., 2025a; Wu et al., 2024a).
Existing studies primarily enhance restoration performance by designing innovative network ar-
chitectures and developing advanced training paradigms. For instance, UHDformer (Wang et al.,
2024a) employs a dual-path module to balance efficiency and accuracy, while ERR (Zhao et al.,
2025) decomposes the restoration process into multiple stages for refined modeling. Although these
methods have achieved remarkable performance, they unavoidably encounter bottlenecks, as merely
modifying network structures is insufficient to overcome the inherently ill-posed nature of image
restoration (Xu et al., 2024). For UHD-IR, how to leverage powerful diffusion priors to overcome
the bottlenecks remains insufficiently explored.

Recently, Latent Diffusion Models (LDMs) (Rombach et al., 2022) have shown remarkable poten-
tial in low-level vision tasks owing to their powerful generative priors (Lin et al., 2024a; Wu et al.,
2024c;b; Yue et al., 2025; Chen et al., 2025a; Sun et al., 2025). However, directly applying these
pre-trained models to UHD-IR faces several technical bottlenecks. First, due to the high computa-
tional cost and memory demand of self-attention mechanisms, models cannot process an entire UHD
image in a single pass, making patch-based inference unavoidable. As illustrated in Figure 1(b–d),
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Figure 1: Visual comparison of different LDM-based strategies on the UHD-LL (Li et al., 2023a).

this strategy often introduces stripe-like artifacts and color inconsistencies, while naive upsampling
schemes typically cause blurring or structural distortions. Second, the absence of global context in
patch-based inference amplifies the stochasticity of diffusion models, leading to inconsistent high-
frequency details in textureless regions. Finally, the Variational Autoencoder (VAE) (Kingma &
Welling, 2013), as a core component of LDMs, suffers from lossy compression that discards high-
frequency information and thereby limits restoration fidelity.

To enable pre-trained LDMs to overcome these challenges, we introduce FreeAdapt, a unified
framework that combines a plug-and-play, training-free guidance mechanism with an optional VAE
fine-tuning (VAE-FT) module. FreeAdapt provides a cost-efficient way to unleash the potential
of diffusion priors and adapt pre-trained LDMs and their extensions (e.g., ControlNet (Zhang et al.,
2023)) to UHD-IR. The core of our approach is the Frequency Feature Synergistic Guidance (FFSG)
mechanism, which enforces both global consistency and local detail fidelity at each step of patch-
based denoising during inference time. Specifically, FFSG is composed of two complementary
modules: 1) Frequency Guidance (FreqG), which selectively fuses phase information from a low-
resolution reference image in the frequency domain to ensure global structural consistency across
patches; 2) Feature Guidance (FeatG), which incorporates global context into the U-Net self-
attention layers to constrain local detail generation and suppress high-frequency hallucinations. In
addition, the optional VAE-FT module fine-tunes the VAE decoder with skip connection to ease the
information bottleneck and improve the reconstruction of fine textures.

Our main contributions are summarized as follows:

• To the best of our knowledge, FreeAdapt is the first plug-and-play diffusion prior frame-
work for the UHD-IR task, providing an effective and generalizable solution for pre-trained
LDMs and their extensions.

• We propose a training-free, plug-and-play synergistic guidance mechanism that, through
innovative frequency and feature guidance modules, effectively resolves the artifact and
detail hallucination issues in UHD-IR, significantly improving both global consistency and
local fidelity.

• By introducing skip connection and fine-tuning the VAE decoder, we successfully mitigate
the VAE’s information bottleneck and improve the fidelity of reconstructed details.

• Through extensive experiments across three representative LDM-based backbones
(LDM (Rombach et al., 2022), StableSR (Wang et al., 2024b), and DiffBIR (Lin et al.,
2024a)), we show that FreeAdapt consistently delivers strong performance improvements,
achieving PSNR gains typically above 2 dB over patch-based inference. These gains stem
from its ability to correct cross-patch inconsistencies and more effectively exploit pre-
trained diffusion priors.

2 RELATED WORK

Ultra-High-Definition Image Restoration. UHD-IR has gained increasing attention due to the
rapidly growing demand for high-resolution images (Li et al., 2023b; Liu et al., 2025b; Wang et al.,
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2025; Zhao et al., 2025). UHDformer (Wang et al., 2024a) achieved a balance between performance
and efficiency by introducing a dual-path architecture with correlation matching and channel mod-
ulation. DreamUHD (Liu et al., 2025b) employed a frequency-enhanced VAE, integrating Fourier
and wavelet modules to improve detail fidelity. From a spectral perspective, ERR (Zhao et al., 2025)
deconstructed the restoration process into three progressive stages, incorporating multiple structures
for phased modeling. Although these methods achieved notable progress, relying on architectural
innovations and training paradigms alone cannot fundamentally resolve the inherently ill-posed na-
ture of image restoration, leading to inevitable performance bottlenecks (Xu et al., 2024). In the
context of UHD-IR, the potential of leveraging diffusion priors has been overlooked. Therefore, this
study aims to investigate and utilize the powerful generative priors in pre-trained models to enhance
restoration performance for UHD-IR, specifically addressing the persistent issues of insufficient pri-
ors and the loss of fine-grained details.

High-resolution Adaptation of Diffusion Models. With the rapid advancement of diffusion mod-
els in image generation, high-resolution image synthesis and upscaling have become significant
research hotspots (Tragakis et al., 2024; Huang et al., 2024). Existing approaches fall into two
categories. The first (Ren et al., 2024; Zhang et al., 2025) retrains or fine-tunes models on high-
resolution datasets, which requires substantial data and computational resources. The second (Bar-
Tal et al., 2023; Du et al., 2024; Lin et al., 2024b; Huang et al., 2024; Zhang et al., 2024c; Qiu
et al., 2024; Zhang et al., 2024b) follows a training-free paradigm that improves effective resolution
by optimizing the inference procedure. Representative methods such as MultiDiffusion (Bar-Tal
et al., 2023) generate large images by fusing multiple diffusion trajectories, while DemoFusion (Du
et al., 2024) enhances visual coherence through progressive sampling and skip-residual refinement.
AccDiffusion (Lin et al., 2024b) further emphasizes semantic alignment when guiding patch-level
generation. These techniques are highly effective for high-resolution generation, where outputs only
need to be perceptually plausible. In contrast, UHD restoration requires strict structural fidelity to
the degraded input, and any hallucinated or altered content violates the restoration objective. As a re-
sult, generation-oriented strategies often struggle to maintain input–output consistency in UHD-IR.
Meeting restoration requirements therefore relies on two principles: selective injection of reliable
global information and preservation of structural alignment throughout denoising. Our frequency
and feature guidance modules follow these principles, enabling diffusion priors to maintain global
coherence while faithfully preserving input-consistent details.

Diffusion Prior-Based Image Restoration. In recent years, with the breakthrough development of
LDMs (Rombach et al., 2022) in image and video generation, their capability as powerful genera-
tive priors has gradually been introduced into low-level vision tasks (Wang et al., 2024b; Lin et al.,
2024a; Wu et al., 2024c; Yang et al., 2024; Yu et al., 2024a; Ai et al., 2024; Zhang et al., 2024a; Chen
et al., 2025b; Arora et al., 2025). StableSR (Wang et al., 2024b) fine-tuned the pre-trained model
with a time-aware encoder and feature modulation mechanism to achieve high-quality image super-
resolution. DiffBIR (Lin et al., 2024a) adopted a two-stage strategy to extend the adaptability of
diffusion models to blind image restoration tasks. SeeSR (Wu et al., 2024c) designed a degradation-
aware text prompt generator to guide more refined super-resolution reconstruction. SUPIR (Yu
et al., 2024a) incorporated prompts generated by multimodal large language models and employed
a degradation-robust adapter for prior control. Although these methods have achieved notable ad-
vances in image restoration, they primarily concentrated on optimizing performance within native
resolution. For UHD-IR, directly applying existing models often results in artifacts such as distor-
tions, color inconsistencies, and the loss of fine details caused by the VAE. Therefore, designing a
plug-and-play, artifact-free, and universal image restoration approach for UHD images, remains an
important research direction.

3 METHODOLOGY

Preliminary. LDMs (Rombach et al., 2022) are text-to-image diffusion models that perform de-
noising in a latent space. Specifically, LDMs employ a pre-trained VAE (Kingma & Welling, 2013)
to encode an image into a latent representation z0, followed by training a denoising U-Net ϵθ in the
latent space. The training objective of the LDM is formulated as:

Lldm = Ez,c,t,ϵ[||ϵ− ϵθ(
√
ᾱtz +

√
1− ᾱtϵ, c, t)||22] (1)

where ϵ ∼ N (0, I) denotes the ground-truth noise at timestep t, c represents the conditional infor-
mation, and ᾱt is the diffusion coefficient defined in DDPM (Ho et al., 2020).
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Figure 2: Overview of the proposed FreeAdapt framework. The degraded UHD input Ilq is down-
sampled and passed through a pre-trained LDM to obtain a reference latent zref0 for global structural
guidance. During iterative patch-based denoising of zt, frequency guidance (FreqG) fuses the phase
spectrum of zt and zreft to enforce cross-patch consistency, while feature guidance (FeatG) injects
global context into U-Net attention layers to suppress artifacts. Finally, the latent z′t is decoded
by D, where an optional VAE fine-tuning (VAE-FT) module with skip connection enhances high-
frequency details, producing the restored UHD output Irec.

Objective. To address the challenges of adapting pre-trained LDMs for UHD-IR, we introduce a
novel plug-and-play FreeAdapt framework. Our primary objective is to resolve the prevalent issues
of artifacts, global inconsistencies and detail loss that arise when directly applying pre-trained LDMs
to UHD-IR, without modifying or fine-tuning of the denoising U-Net.

Overview. As shown in Figure 2, the core of FreeAdapt is a training-free guidance mechanism
that operates during the iterative, patch-based denoising process. This mechanism integrates FreqG
and FeatG modules to enforce global consistency and preserve local detail fidelity. Additionally,
to overcome the inherent high-frequency information loss of the VAE, we introduce an optional
VAE-FT module that fine-tunes the VAE decoder with lightweight modifications to further boost the
fidelity of the restored images.

3.1 FREQUENCY FEATURE SYNERGISTIC GUIDANCE

FFSG is a training-free, plug-and-play mechanism compatible with pre-trained LDMs and their ex-
tensions, such as ControlNet (Zhang et al., 2023). It is designed to address the global inconsistencies
and local detail distortions that arise from patch-based inference. As illustrated in Figure 2, within
each denoising step, we employ frequency-domain constraints to stabilize low-frequency structures
and textures, while a feature-level attention module suppresses high-frequency artifacts and pro-
motes cross-patch consistency. The overall mechanism consists of two main stages: Reference
Image Generation and Guided High-Resolution Iterative Denoising.

Reference Image Generation. LDMs are typically trained at a fixed resolution, making their direct
application to UHD images prone to structural distortions and artifacts. To address this, we first
generate a reference image that provides reliable low-frequency structural information by leveraging
the inherent image-to-image capability of the diffusion backbone. Specifically, the degraded UHD
input Ilq is downsampled to the native training resolution (e.g., 512×512), encoded by the VAE to
obtain the conditioning latent, and then used to guide a single standard denoising process of the
pre-trained LDM, producing a clean latent representation zlr0 with coherent content and structure.
This latent is decoded into the pixel domain, upsampled back to the UHD resolution to form Iref ,
and re-encoded by the VAE encoder to obtain zref0 for global guidance. Compared with cascaded
multi-resolution approaches (Du et al., 2024; Lin et al., 2024b), our strategy provides a structurally
reliable reference using only a single denoising process.

Guided High-Resolution Iterative Denoising. To address GPU memory limitations in UHD-IR,
we adopt a patch-based denoising strategy. At each denoising step t, multiple small patches are
cropped from the current high-resolution latent representation and denoised individually. Overlap-
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Figure 3: Visual comparison and ablation study of FreeAdapt on the UHD-LL. (b) Patch-based inference suffers
from color inconsistency; (c) FreqG contains high-frequency noise; (d) FFSG still exhibits detail loss.

ping regions are blended by smooth averaging to maintain consistency across patch boundaries.
Within each denoising step, FreqG and FeatG are integrated into the denoising process, jointly
improving both global structural coherence and local detail fidelity.

Frequency Guidance. To overcome the structural inconsistencies introduced by patch-based de-
noising, as shown in Figure 3(b), we incorporate FreqG into the iterative denoising process. At each
step t, both the current latent representation zt and the noised reference latent zreft are transformed
into the frequency domain using Fast Fourier Transformation (FFT), yielding their respective am-
plitude and phase spectrum:

FFT (zt) = Ate
iϕt (2)

FFT (zreft ) = Aref
t eiϕ

ref
t (3)

To ensure that the global structure of the reference is effectively preserved without interfering with
texture generation, only the phase components are fused. Specifically, a dynamically low-pass filter
K(t) is applied to weight the two phase spectrum:

ϕt = arctan
(
(1−K(t))eiϕt +K(t)eiϕ

ref
t

)
(4)

K(t) =
{

t
T , if |x− w

2 | < w · c · t
T and |y − h

2 | < h · c · t
T

0, otherwise
(5)

where c is a hyperparameter (default 0.15). The filter K(t), defined in Eq. (5), gradually decreases
as the denoising step progresses, adaptively balancing global structural constraints with flexibility
for detail generation. The corrected latent is then reconstructed by combining the original amplitude
spectrum At with the fused phase spectrum ϕt through inverse FFT:

z′t = iFFT (Ate
iϕt) (6)

Feature Guidance. While FreqG enforces global low-frequency consistency, it cannot constrain
high-frequency details generated independently within each patch. As shown in Figure 3(c), in
textureless regions this randomness often introduces spurious details, leading to visual noise or ar-
tifacts. To address this issue, we introduce FeatG module that injects global contextual information
into the self-attention layers of the U-Net. This allows each patch to reference the global semantics
provided by the guidance image, thereby promoting inter-patch coherence and suppressing unreal-
istic artifacts. Specifically, we first compute the Query (Qtile), Key (Ktile), and Value (Vtile) of the
current high-resolution patch to obtain local attention:

Attnlocal = softmax

(
Qtile ·KT

tile√
d

)
Vtile (7)
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where d is the feature dimension. In parallel, we extract the patch-aligned query Qref
tile from the

reference, together with global keys Kref
global and values V ref

global, and compute the global attention:

Attnglobal = softmax

U(Qref
tile) ·K

ref
global

T

√
d

V ref
global (8)

where U denotes an upsampling operation. The final output is obtained by linearly blending the two
attentions:

Attnfinal = (1− α) ·Attnlocal + α ·Attnglobal (9)
where α is set to 0.2 by default. Importantly, this operation is applied to the 3rd–8th decoder layers
of the U-Net.

3.2 VAE FINE-TUNING

In LDMs, VAE is responsible for perceptual compression, but the lossy compression characteristic
causes the loss of high-frequency details such as fine textures and text at high resolutions as illus-
trated in Figure 3(d). This limitation makes the VAE a major bottleneck for UHD-IR. To address
this issue, we introduce an optional VAE-FT module that strengthens the decoder’s ability to recover
fine details while keeping both the encoder and the U-Net frozen, ensuring that the diffusion process
remains fully training-free.

During fine-tuning, both a low-quality image and its high-quality counterpart are passed through
the shared VAE encoder, producing a high-quality latent representation along with residual features
extracted from the degraded input. The decoder receives the high-quality latent together with these
residual features through skip connections, which provide structural cues that help restore informa-
tion lost during encoding. Through this training strategy, VAE-FT learns a task-level prior for detail
reconstruction without learning the restoration task itself. Because this prior is task specific rather
than model specific, the fine-tuned decoder can be applied across different diffusion backbones
without further training, serving as a lightweight auxiliary component that complements rather than
alters the diffusion prior. With this training framework in place, we implement VAE-FT using an
enhanced decoder designed to efficiently integrate these residual cues.

As shown in Figure 2, we enhance the VAE decoder by introducing skip connection combined
with parameter-efficient LoRA (Hu et al., 2022). Encoder features from the degraded input are
first refined through adaptive instance normalization (AdaIN) (Huang & Belongie, 2017), which
suppresses degradation while retaining structural details, and are then injected into the corresponding
upsampling layers of the decoder via Zero-Convolution modules (Zhang et al., 2023). The fine-
tuning is supervised by a composite loss:

L = Ldwt + Llpips + Lssim + Lgan (10)
where Ldwt is an L2 loss in the Discrete Wavelet Transform domain for reconstructing high-
frequency details, Llpips ensures perceptual similarity, Lssim maintains structural consistency, and
Lgan introduces adversarial feedback to improve realism and sharpness.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To comprehensively evaluate the performance of our proposed method on UHD-IR tasks,
we conduct experiments on multiple publicly available benchmark datasets. For low-light enhance-
ment, we use the UHD-LL dataset (Li et al., 2023a). For image dehazing, we evaluate performance
on the UHD-Haze dataset (Wang et al., 2024a). For image deblurring, we adopt the UHD-Blur
dataset (Wang et al., 2024a).

Evaluation Metrics. We employ a combination of reference-based and no-reference metrics to pro-
vide a comprehensive evaluation of restoration results. PSNR and SSIM (Wang et al., 2004) are
used as conventional measures, assessing pixel-level reconstruction accuracy and structural similar-
ity, respectively. LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2020) are adopted as perceptual
metrics to better reflect human visual judgments of image quality. In addition, to further evaluate
perceptual quality in a reference-free setting, we use no-reference image quality assessors including
CLIPIQA (Wang et al., 2023), MUSIQ (Ke et al., 2021), and MANIQA (Yang et al., 2022).
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Figure 4: Visual comparison of the proposed FreeAdapt against state-of-the-art approaches.

Figure 5: Visual comparison of training-free diffusion model adaptation methods based on LDM on
three UHD-IR datasets: UHD-LL (first row), UHD-Haze (second row), and UHD-Blur (third row).

4.2 EXPERIMENTAL RESULTS

We conduct extensive quantitative and qualitative experiments on multiple UHD-IR tasks to demon-
strate the effectiveness of diffusion priors and that our method more effectively leverages pre-trained
diffusion models in UHD scenarios. For a fair and comprehensive evaluation, we compare our ap-
proach against two categories of methods: (1) task-specific restoration methods, including represen-
tative approaches that achieve leading performance on individual restoration tasks, such as SwinIR
(Liang et al., 2021), Restormer (Zamir et al., 2022), Uformer (Wang et al., 2022), UHDFormer
(Wang et al., 2024a), UHDFour (Li et al., 2023a), Wave-Mamba (Zou et al., 2024), FFTformer
(Kong et al., 2023), 4KDehazing (Xiao et al., 2024), DreamUHD (Liu et al., 2025b), and ERR (Zhao
et al., 2025); (2) training-free diffusion adaptation methods that adapt standard diffusion models to
high-resolution images without additional training, such as MultiDiffusion (Bar-Tal et al., 2023),
DemoFusion (Du et al., 2024), and PixelSmith (Tragakis et al., 2024). Moreover, to further validate
the generality of FreeAdapt under different diffusion architectures, we conduct experiments using
three representative diffusion backbones, including a classical latent diffusion model (LDM) (Rom-
bach et al., 2022), the restoration-oriented DiffBIR (Lin et al., 2024a), and the super-resolution
oriented StableSR (Wang et al., 2024b), and evaluate them under the same UHD-IR setting.

Low-Light Image Enhancement. As shown in Table 1, our method outperforms advanced ap-
proaches on no-reference metrics and the perceptual metrics DISTS. Although it yields lower scores
than non-diffusion methods on full-reference metrics, this is largely because those methods are
trained end-to-end with L2 or perceptual losses that are directly aligned with these metrics. How-
ever, such optimization often sacrifices the realism of generated details, producing overly smoothed
results (Yang et al., 2024; Wang et al., 2024b; Wu et al., 2024c). The visual comparisons in Figure 4
clearly demonstrate that our diffusion prior–based methods restore richer and more realistic details,
whereas competing methods generally produce blurred outputs, which contradicts the core objective
of UHD-IR: recovering fine-grained details.
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Table 1: Quantitative comparison of the proposed method against various state-of-the-art methods.
The symbols ↑ and ↓ respectively represent that higher or lower values indicate better performance.
Bold represents the best and underline represents the second best.

Dataset Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ MUSIQ ↑ MANIQA ↑

UHD-LL

Uformer 22.57 0.904 0.258 0.170 0.335 32.63 0.259
Restormer 23.46 0.906 0.268 0.160 0.402 36.05 0.265

Swinir 22.12 0.905 0.214 0.114 0.385 33.51 0.305
UHDFour 28.59 0.918 0.235 0.140 0.411 28.08 0.280

UHDformer 27.10 0.926 0.232 0.138 0.360 35.83 0.304
Wave-Mamba 29.84 0.941 0.185 0.117 0.410 41.78 0.337
DreamUHD 27.73 0.929 0.220 0.132 0.378 38.52 0.311

ERR 27.57 0.933 0.214 0.148 0.501 42.28 0.344

LDM-Ours 22.21 0.887 0.253 0.101 0.569 49.07 0.372
StableSR-Ours 22.42 0.887 0.244 0.093 0.560 48.35 0.364
DiffBIR-Ours 23.99 0.900 0.233 0.092 0.564 48.37 0.364

UHD-Haze

Uformer 23.38 0.937 0.136 0.069 0.283 31.97 0.267
Restormer 23.10 0.930 0.157 0.076 0.294 33.69 0.264

Swinir 24.09 0.943 0.101 0.038 0.288 32.07 0.285
UHDformer 22.58 0.942 0.118 0.049 0.301 31.72 0.288
4KDehazing 22.50 0.906 0.185 0.145 0.329 35.60 0.281
DreamUHD 24.36 0.945 0.116 0.048 0.282 33.08 0.280

ERR 25.10 0.949 0.119 0.051 0.282 31.17 0.292

LDM-Ours 21.59 0.934 0.104 0.044 0.403 44.38 0.343
StableSR-Ours 22.80 0.945 0.092 0.033 0.393 43.63 0.333
DiffBIR-Ours 25.50 0.953 0.077 0.028 0.404 42.18 0.337

UHD-Blur

Uformer 28.88 0.851 0.205 0.103 0.284 29.21 0.250
Restormer 29.57 0.860 0.210 0.115 0.300 28.86 0.243

Swinir 28.30 0.834 0.190 0.086 0.269 28.10 0.236
FFTformer 26.28 0.825 0.215 0.105 0.288 31.22 0.236
UHDformer 28.81 0.843 0.233 0.127 0.299 27.31 0.233
DreamUHD 27.15 0.808 0.284 0.172 0.265 24.33 0.205

ERR 29.71 0.861 0.206 0.106 0.267 29.28 0.251

LDM-Ours 26.91 0.828 0.166 0.076 0.347 34.39 0.278
StableSR-Ours 27.42 0.831 0.162 0.077 0.364 36.10 0.278
DiffBIR-Ours 28.16 0.851 0.145 0.059 0.378 38.64 0.290

Image Dehazing. In the evaluation on the UHD-Haze dataset, the DiffBIR-Ours model demon-
strates comprehensive superiority. As shown in Table 1, it achieves the best performance on both
reference-based metrics and perceptual metrics. Notably, on the perceptual metric DISTS, our ap-
proach delivers a remarkable improvement of about 26.3% over the second-best method SwinIR.
Furthermore, the visual results in Figure 4 illustrate that our method more effectively restores color
saturation and contrast while avoiding distortions and detail loss, providing strong evidence for the
effectiveness of diffusion priors.

Image Deblurring. As shown in Table 1, our adapted diffusion prior-based model also achieves
strong performance. On the perceptual metric LPIPS, DiffBIR-Ours achieves an improvement of
about 29.6% over ERR, highlighting the effectiveness of diffusion priors. Moreover, the visual
comparisons in Figure 4 demonstrate that our method can effectively handle complex motion blur,
producing images with sharp edges and well-preserved textures. In contrast, competing methods
often suffer from ringing artifacts or fail to completely remove blur.

Comparison with Training-Free Diffusion Adaptation Methods. To further evaluate the gen-
erality of our guidance mechanism, Table 2 compares training-free diffusion adaptation strategies
across three representative backbones: LDM, DiffBIR, and StableSR. Across all UHD-IR tasks, our
FFSG modules consistently yield clear improvements over patch-based inference, as reflected in the
FFSG Gain rows, and outperform MultiDiffusion, DemoFusion, and PixelSmith on PSNR, LPIPS,
and MUSIQ. A key factor behind this performance gap is that existing methods were originally
designed for high-resolution generation, where perceptual plausibility is prioritized, whereas UHD
restoration demands strict consistency with the degraded input. Our FFSG mechanism is explicitly
tailored for restoration, enforcing global structural coherence and input-aligned texture synthesis.
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Table 2: Quantitative comparison of diffusion model adaptation methods using LDM (Rombach
et al., 2022), StableSR (Wang et al., 2024b), and DiffBIR (Lin et al., 2024a). PI indicates patch-
based inference. Bold and underlined entries denote the best and second-best results, respectively.
Green values represent positive gains, while orange values indicate negative gains.

Model UHD-LL UHD-Haze UHD-Blur

PSNR / LPIPS / MUSIQ PSNR / LPIPS / MUSIQ PSNR / LPIPS / MUSIQ

LDM-PI 18.91 / 0.386 / 44.89 19.27 / 0.190 / 42.63 23.61 / 0.213 / 35.37
LDM-Multidiffusion 20.13 / 0.399 / 32.41 18.59 / 0.240 / 38.71 25.16 / 0.364 / 26.49
LDM-Demofusion 21.74 / 0.417 / 23.09 19.40 / 0.292 / 32.17 23.81 / 0.400 / 22.27
LDM-Pixelsmith 20.64 / 0.397 / 31.15 20.64 / 0.224 / 42.97 24.07 / 0.323 / 29.75

LDM-Ours w/o VAE-FT 21.88 / 0.283 / 45.67 21.37 / 0.163 / 44.75 26.58 / 0.198 / 35.52
LDM-Ours 22.21 / 0.253 / 49.07 21.59 / 0.104 / 44.38 26.91 / 0.166 / 34.39

FFSG Gain +2.96 / -0.103 / +0.78 +2.11 / -0.028 / +2.13 +2.97 / -0.015 / +0.15
VAE-FT Gain +0.33 / -0.030 / +3.40 +0.22 / -0.059 / -0.38 +0.33 / -0.032 / -1.13

StableSR-PI 19.14 / 0.369 / 45.34 19.85 / 0.182 / 40.28 24.10 / 0.202 / 35.74
StableSR-Multidiffusion 19.52 / 0.355 / 37.71 20.14 / 0.228 / 40.37 24.80 / 0.259 / 32.47
StableSR-Demofusion 21.59 / 0.393 / 25.65 20.17 / 0.211 / 34.25 25.31 / 0.382 / 23.38
StableSR-Pixelsmith 20.79 / 0.361 / 33.48 20.92 / 0.198 / 41.26 25.65 / 0.297 / 32.62

StableSR-Ours w/o VAE-FT 21.96 / 0.270 / 47.20 22.51 / 0.142 / 44.02 27.07 / 0.195 / 36.80
StableSR-Ours 22.42 / 0.244 / 48.35 22.80 / 0.092 / 43.63 27.42 / 0.162 / 36.10

FFSG Gain +2.82 / -0.098 / +1.86 +2.65 / -0.040 / +3.74 +2.97 / -0.007 / +1.06
VAE-FT Gain +0.46 / -0.026 / +1.14 +0.29 / -0.051 / -0.40 +0.35 / -0.033 / -0.70

DiffBIR-PI 21.61 / 0.280 / 45.38 23.35 / 0.143 / 41.58 26.65 / 0.174 / 38.09
DiffBIR-Multidiffusion 22.18 / 0.285 / 40.24 23.35 / 0.141 / 38.21 24.87 / 0.176 / 32.73
DiffBIR-Demofusion 23.22 / 0.335 / 24.82 23.44 / 0.224 / 32.59 26.06 / 0.280 / 26.74
DiffBIR-Pixelsmith 23.45 / 0.316 / 32.44 23.90 / 0.225 / 40.20 24.79 / 0.291 / 29.11

DiffBIR-Ours w/o VAE-FT 23.66 / 0.252 / 45.85 24.96 / 0.127 / 42.41 27.68 / 0.175 / 38.97
DiffBIR-Ours 23.99 / 0.233 / 48.37 25.50 / 0.077 / 42.18 28.16 / 0.145 / 38.64

FFSG Gain +2.05 / -0.028 / +0.48 +1.61 / -0.017 / +0.82 +1.03 / +0.001 / +0.87
VAE-FT Gain +0.33 / -0.019 / +2.52 +0.54 / -0.050 / -0.22 +0.48 / -0.030 / -0.33

As shown in Figure 5, generation-oriented baselines often introduce blurring, distortions, or incon-
sistent textures. In contrast, diffusion models equipped with FFSG produce sharper details, more
stable structures, and visually coherent results that remain faithful to the input.

4.3 ABLATION STUDY

Table 3: Ablation study of the proposed methods.

FreqG FeatG VAE-FT PSNR ↑ LPIPS↓
× × × 18.91 0.386
✓ × × 21.76 0.314
✓ ✓ × 21.88 0.283
✓ ✓ ✓ 22.21 0.253

Table 4: Comparison of Fusion Methods of LDM.

Fusion method SSIM ↑ DISTS ↓
Patch-based Inference 0.823 0.145

Skip Residual 0.839 0.312
FFT Fusion 0.863 0.187

FeaqG 0.865 0.121

To validate the effectiveness of each proposed component, we conduct a series of comprehensive
ablation experiments. All experiments are performed on the UHD-LL (Li et al., 2023a), with pre-
trained LDM equipped with a standard patch-based denoising strategy serving as the baseline model.

Effectiveness of Frequency Guidance. As shown in Figure 1(b), Figure 3(b) and Figure 6, the
baseline model produces severe stitching artifacts and color inconsistencies when directly applied
with patch-based inference. After incorporating our proposed FreqG, global consistency is signifi-
cantly improved, and Table 3 further shows notable improvements in PSNR and LPIPS. To validate
the superiority of our fusion strategy, we also compare it with alternative designs, including spatial-
domain fusion (skip residual from DemoFusion(Du et al., 2024)) and FFT spectrum fusion (Yang
et al., 2025). As presented in Figure 6, the former fails to distinguish the roles of low- and high-
frequency information during the diffusion process, resulting in blurred outputs, while the latter
leads to severe color distortions. In addition, the quantitative results in Table 4 show that both alter-
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Figure 6: Qualitative comparison of different diffusion fusion methods.

natives substantially degrade perceptual quality, with much worse DISTS scores compared to ours.
These comparisons clearly demonstrate the effectiveness of our phase-only fusion strategy.

Effectiveness of Feature Guidance. Building upon FreqG alone, we further incorporate the pro-
posed FeatG module. As shown in Table 3, this addition yields further improvements on perceptual
metrics such as LPIPS. The visual comparisons in Figure 3 also demonstrate that FeatG effectively
suppresses hallucinated noise and unrealistic textures in smooth regions, producing more faithful
and coherent local details.

Figure 7: Ablation study on the skip connection
in the VAE-FT module.

Effectiveness of VAE Decoder Fine-tuning. Fi-
nally, we validate the effectiveness of the pro-
posed VAE fine-tuning module. Within the full
guidance mechanism, we compare the perfor-
mance of the standard VAE with our fine-tuned
VAE decoder. As shown in Table 2 and Table 3,
the fine-tuned decoder achieves significant im-
provements on PSNR and LPIPS, while the visual
results in Figure 3 further confirm its superiority
in reconstructing fine details. Moreover, to exam-
ine the role of the introduced skip connection, we
conduct additional ablation studies. The compar-
isons in Figure 7 clearly indicate that skip con-
nection effectively alleviates the information bot-
tleneck and enable the recovery of sharper high-
frequency details, whereas removing them leads
to noticeable detail loss.

5 CONCLUSION

In this paper, we propose FreeAdapt, a plug-and-play framework designed to unleash the poten-
tial of pre-trained diffusion priors for UHD-IR. FreeAdapt integrates FreqG to correct global low-
frequency structures and colors, ensuring cross-patch consistency, while FeatG introduces global
context into the U-Net attention layers to suppress unrealistic high-frequency details in smooth re-
gions. In addition, we design an optional VAE-FT module, where skip connection further enhances
the reconstruction of fine textures. Extensive experiments demonstrate that our method not only
achieves significant improvements in perceptual metrics over state-of-the-art restoration methods
but also consistently outperforms other diffusion adaptation approaches, highlighting its superiority
in fully exploiting diffusion priors.

Limitations and Future Work. Despite its effectiveness, FreeAdapt has limitations. As an iterative
denoising approach, it is time-consuming and computationally heavy. In future work, we will distill
our guidance into one- or few-step generative models for efficiency and extend its applicability
beyond U-Net–based designs to emerging frameworks such as Diffusion Transformers (DiTs).

Practical Applicability. Although iterative diffusion sampling is computationally demanding,
LDMs+FreeAdapt is well suited for offline, quality-oriented UHD restoration workflows where
visual fidelity takes precedence over runtime. Representative scenarios include film and televi-
sion remastering, digital cultural heritage restoration, and large-scale remote sensing analysis, all of
which routinely operate under non–real-time constraints and can therefore benefit from the superior
perceptual fidelity enabled by diffusion priors.
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Ethics Statement. This work aims to enhance the visual quality of ultra-high-definition images,
with primary applications in consumer photography, media content production. The objective is
to mitigate quality degradation caused by hardware limitations or challenging environmental condi-
tions, thereby contributing positively to society. Given the increasing versatility of image restoration
technologies, we explicitly advocate against their misuse, such as fabricating misleading content or
employing them for malicious purposes.

Reproducibility Statement. We state that FreeAdapt is highly reproducible. Complete implemen-
tation details are provided in Appendix A. All critical hyperparameters and algorithmic procedures
necessary for reproducing our results are thoroughly documented in the Methods section and the
supplementary appendix.
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A IMPLEMENTATION DETAILS

We adopt Stable Diffusion 2.1-base as the pre-trained generative prior in our experiments. During
both the fine-tuning of the VAE-FT module and the inference of all compared methods, UHD im-
ages are cropped into 512 × 512 patches with a stride of 256. For the VAE-FT module, we apply
parameter-efficient LoRA to the VAE decoder with a rank of 16. Training is conducted on paired
degraded-clean images from the UHD-LL (Li et al., 2023a), UHD-Haze (Wang et al., 2024a), and
UHD-Blur (Wang et al., 2024a) datasets. The learning rate is set to 2 × 10−5, with a batch size of
8, for a total of 60,000 steps. Notably, we train a single unified VAE-FT module for all restoration
tasks. This module is directly applied across different tasks and even when switching base models
(e.g., from LDM to DiffBIR), without requiring retraining, which demonstrates strong generaliza-
tion ability. All experiments are implemented on four NVIDIA RTX 3090 GPUs.

For the backbone diffusion models, we employ task-specific pre-trained LDM (Rombach et al.,
2022), StableSR (Wang et al., 2024b) and DiffBIR (Lin et al., 2024a) to validate the broad adapt-
ability of the FreeAdapt framework. Across all experiments, the number of denoising steps T is
fixed to 50.

We provide the complete inference pipeline of our proposed FreeAdapt framework in Algorithm 1.
The process begins with the generation of a global reference latent representation zref0 , which pro-
vides reliable low-frequency structural information. Subsequently, during the high-resolution itera-
tive denoising loop, FreqG (Gfreq) and FeatG (Gfeat) modules are jointly integrated at each step to
progressively correct global inconsistencies and suppress unrealistic high-frequency artifacts, lead-
ing to high-fidelity UHD restoration.

Algorithm 1: FreeAdapt Inference Pipeline
Input: Degraded UHD image Ilq, pre-trained LDM (ϵθ,VAE), total denoising steps T
Output: Restored UHD image Irec
// Stage 1: Reference Generation
Ilr ← Downsample(Ilq) ; // Downsample to native resolution
clr ← VAEencode(Ilr) ; // Encode the low-res image as condition
zlrT ∼ N (0, I) ; // Initialize Gaussian noise in latent space
for t = T to 1 do

zlrt−1 ← ϵθ(z
lr
t , t, clr) ; // Iterative denoising with LDM condition

Iref ← Upsample(VAEdecode(z
lr
0 )) ; // Decode and upsample in pixel domain

zref0 ← VAEencode(Iref ) ; // Final clean reference latent
// Stage 2: Guided High-Resolution Denoising
clq ← VAEencode(Ilq) ; // Encode UHD image as the main condition
zT ∼ N (0, I) ; // Initialize high-resolution Gaussian noise
for t = T to 1 do

zreft ← add noise(zref0 , zT , t) ; // Add corresponding noise to reference
Pt ← CropPatches(zt) ; // Crop current latent into patches
Clq ← CropPatches(clq) ; // Crop condition into corresponding
patches

Pt−1 ← ∅ ; // Initialize set for denoised patches
foreach patch (pt, cp) ∈ (Pt, Clq) do

preft ← GetCorrespondingPatch(zreft ) ; // Get reference patch

p′t ← Gfreq(pt, p
ref
t ) ; // Apply Frequency Guidance

pt−1 ← ϵθ(p
′
t, t, cp) ; // Denoise patch with condition and Gfeat

inside U-Net
Pt−1 ← Pt−1 ∪ {pt−1}

zt−1 ← StitchPatches(Pt−1) ; // Stitch patches back with blending

// Stage 3: Reconstruction
Irec ← VAEdecode/VAE-FT(z0) ; // Decode with standard or fine-tuned
VAE

return Irec
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Figure 8: Hyperparameter sensitivity analysis on the UHD-LL dataset.

B HYPERPARAMETER ANALYSIS

To evaluate the sensitivity of the introduced hyperparameters, we conducted a systematic analysis
on the UHD-LL dataset. Our study focuses on the two key parameters governing the proposed syn-
ergistic guidance mechanism: the filter coefficient c in FreqG and the fusion weight α in FeatG. Fig-
ure 8 provides an overview of the evaluation results, from which it can be observed that FreeAdapt
maintains strong robustness across a broad parameter range. The default configuration (c = 0.15,
α = 0.20) achieves consistently favorable performance across different tasks and backbone mod-
els, indicating that these settings fall within a stable operating regime and do not require extensive
tuning.

Analysis of Frequency Guidance Filter Coefficient (c). For the Frequency Guidance module,
the coefficient c determines the bandwidth of the low-pass filter responsible for stabilizing global
phase information. In Figure 8(a), the curves illustrate that when c < 0.10, the constraint on low-
frequency structure becomes insufficient, occasionally leading to color shifts or structural inconsis-
tencies across patches. Conversely, values above 0.20 restrict the flexibility of the diffusion process,
resulting in a slight reduction in texture diversity. Within the interval c ∈ [0.10, 0.20], however,
the performance curves remain nearly flat, demonstrating that the frequency-domain guidance is
intrinsically robust to moderate changes in the filter bandwidth.

Analysis of Feature Guidance Fusion Weight (α). For the Feature Guidance module, the fusion
weight α controls the strength of global context injected into local patches. The trend in Figure 8(b)
shows a clear trade-off between artifact suppression and detail preservation as α varies from 0.0
to 0.5. Under-guidance (α < 0.10) fails to adequately suppress high-frequency hallucinations
in smooth regions, which negatively affects perceptual quality despite reasonable PSNR values.
Over-guidance (α > 0.30) places excessive emphasis on low-resolution reference features, lead-
ing to over-smoothing and a noticeable degradation in both PSNR and LPIPS. A stable performance
plateau emerges within α ∈ [0.15, 0.25], where α = 0.20 offers the most balanced trade-off between
structural consistency and texture fidelity.

Correlation with Upscaling Factor. We further examine the relationship between hyperparameter
choices and the upscaling factor. When restoring images upsampled to 8K resolution, patch-based
inference faces increased uncertainty due to larger spatial gaps, and slightly higher values of c and α
help anchor global structure and suppress hallucinations. For smaller upscaling ratios, patches inher-
ently preserve more structural information, and correspondingly smaller settings of these parameters
allow the model to focus more effectively on refining high-frequency details. Despite this correla-
tion, the default configuration (c = 0.15, α = 0.20) proves consistently robust across standard UHD
restoration scenarios, eliminating the need for task-specific tuning.

C LIMITATIONS AND FUTURE WORK

Despite the encouraging results achieved by FreeAdapt, our method still has certain limitations,
which also point to promising directions for future research.
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Computational Efficiency. The primary limitation of our approach lies in its computational and
time cost. As an iterative denoising framework, restoring a UHD image requires performing dozens
of denoising steps, which may become a bottleneck in scenarios demanding fast responses. Although
our method is training-free and therefore saves substantial resources during adaptation, the inference
speed still has room for improvement. A highly promising direction is to distill our synergistic
guidance mechanism into one-step or few-step generative models. Through knowledge distillation,
we expect to retain high restoration quality while improving inference efficiency by an order of
magnitude, making the method more practical for real-world applications.

Practical Applicability and Use Cases. While LDMs+FreeAdapt is not optimized for real-time or
edge-side deployment, it is highly suitable for offline UHD restoration workflows where perceptual
fidelity takes precedence over computational cost. In professional film and television remastering,
for instance, frame-level processing is typically performed offline, and longer runtimes are accept-
able for achieving visually coherent and artifact-free results. In the digital preservation of cultural
heritage, the ability to recover nuanced textures and subtle structural details is far more critical
than processing speed, making LDMs+FreeAdapt a favorable choice. Similarly, large-scale remote
sensing pipelines routinely handle extremely high-resolution satellite imagery in batch mode, where
offline processing and high-quality reconstruction directly benefit downstream tasks. These exam-
ples highlight that, despite its iterative nature, LDMs+FreeAdapt provides clear practical value in
domains where quality-centric restoration is essential, and future acceleration efforts may further
broaden its applicability.

Benchmark Limitations and Generalization to Real-World Data. Current UHD-IR benchmarks
rely on synthetic degradation pipelines because collecting paired real-world UHD data remains ex-
tremely challenging. We acknowledge that this limits the diversity and realism of degradation pat-
terns. As high-quality UHD datasets continue to emerge, we consider extending evaluation to real-
world benchmarks an important direction for future work. This will allow a more comprehensive
assessment of FreeAdapt’s generalization capability beyond synthetic settings and will help validate
its robustness under practical, unconstrained degradations.

Architectural Adaptability. The current FFSG design primarily targets U-Net based latent diffu-
sion models and their extensions such as ControlNet (Zhang et al., 2023). In this setting, FeatG
is integrated into the self-attention layers of the decoder, and FreqG benefits from the hierarchical
multi-scale feature processing of the U-Net. Recent progress in diffusion modeling has, however,
shifted toward Transformer-based architectures, most notably Diffusion Transformers (DiTs), which
now form the backbone of many state-of-the-art diffusion systems. Although the present implemen-
tation is built upon U-Net structures, the underlying principles of FFSG are not inherently tied to this
architecture, and both guidance components can be adapted to DiTs with appropriate modifications.

FreqG is fundamentally architecture-agnostic because it operates directly on the latent representa-
tion before the denoising step. The fused latent can be passed through the standard patchification and
tokenization stages of a DiT model without changes to the backbone, which makes the frequency-
domain guidance naturally compatible with Transformer-based diffusion architectures. FeatG, in
contrast, requires adaptation since its current form relies on U-Net style self-attention. A feasible
extension is to introduce a modified DiT block in which the local self-attention computed on high-
resolution patch tokens is complemented by a global cross-attention mechanism that attends to ref-
erence tokens extracted from the low-resolution guidance image. The outputs of these two attention
paths are subsequently combined using the same linear blending strategy described in Eq. 9, after
which the resulting tokens are processed by the standard feed-forward layers of the DiT block. This
formulation preserves the core objective of FeatG, namely maintaining local detail fidelity while
injecting global contextual cues, yet aligns it with the token-based computation of DiT models.

D COMPUTATIONAL EFFICIENCY ANALYSIS

We provide a quantitative analysis of the computational efficiency of FreeAdapt in Table 5, which
reports parameters, FLOPs, peak GPU memory usage, and inference latency for restoring a single
4K image (3840 × 2160). Although diffusion-based UHD restoration is inherently more computa-
tionally demanding than regression-based architectures, FreeAdapt introduces only a marginal over-
head compared with the baseline patch-based inference pipeline. For example, LDM-Ours increases
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Table 5: Quantitative comparison of computational efficiency for restoring a single 4K image. PI
denotes patch-based inference, and DF denotes DemoFusion.

Model Params FLOPs VRAM Latency

ERR 1.31 M 307.52 G 7.11 GB 0.63 s
UHDformer 0.34 M 399.01 G 12.65 GB 0.60 s
Wave-Mamba 1.26 M 948.76 G 14.54 GB 1.36 s
UHDFour 32.08 M 596.13 G 2.48 GB 0.22 s
SwinIR 15.06 M 2764.31 G 6.85 GB 1.01 s
DreamUHD 1.16 M 496.44 G 14.65 GB 0.56 s
FFTformer-PI 15.79 M 58.93 T 3.60 GB 51.79 s
Restormer-PI 19.94 M 46.60 T 2.51 GB 28.69 s
Uformer-PI 50.88 M 38.43 T 2.31 GB 13.79 s

LDM-PI 1243.19 M 954.62 T 6.23 GB 178.69 s
StableSR-PI 1295.69 M 1112.82 T 7.07 GB 212.32 s
DiffBIR-PI 1596.53 M 1233.20 T 7.27 GB 228.74 s

LDM-DF 1243.19 M 1236.31 T 6.26 GB 231.57 s
StableSR-DF 1295.69 M 1442.54 T 7.10 GB 278.09 s
DiffBIR-DF 1596.53 M 1718.30 T 7.31 GB 298.70 s

LDM-Ours 1243.19 M 1023.10 T 6.33 GB 192.67 s
StableSR-Ours 1295.69 M 1192.62 T 7.21 GB 232.93 s
DiffBIR-Ours 1596.53 M 1408.88 T 7.39 GB 247.03 s

FLOPs by approximately 7% relative to LDM-PI, yet yields substantially improved perceptual qual-
ity. This cost–performance ratio highlights the efficiency of our guidance mechanism.

The overall computational load arises from three inherent properties of diffusion-based UHD
restoration: the iterative nature of diffusion sampling, the substantial parameter count of pre-trained
generative backbones, and the redundancy introduced by patch-based inference, where overlapping
patches must be processed repeatedly to avoid boundary artifacts. Despite these sources of overhead,
FreeAdapt avoids additional multi-scale stages or multi-pass fusion, enabling it to remain more ef-
ficient than methods such as DemoFusion while consistently achieving higher restoration fidelity.

Future work will investigate techniques for further reducing inference complexity, including step
distillation, architectural acceleration, and low-bit quantization, to make high-fidelity UHD restora-
tion increasingly practical in resource-limited environments.

E UHD IMAGE DERAINING RESULTS

To comprehensively evaluate the applicability of our method to UHD-IR tasks, we additionally con-
duct experiments on a UHD image deraining dataset, 4K-Rain13k (Chen et al., 2024). We compare
FreeAdapt-equipped diffusion models (LDM, StableSR, and DiffBIR) against state-of-the-art de-
raining and UHD restoration approaches, including Uformer (Wang et al., 2022), Restormer (Zamir
et al., 2022), SwinIR (Liang et al., 2021), UDR-Mixer (Chen et al., 2024), UDR-S2Former (Chen
et al., 2023), DreamUHD (Liu et al., 2025b), and ERR (Zhao et al., 2025).

Table 6 summarizes the quantitative results on the 4K-Rain13k dataset. Traditional deraining mod-
els (e.g., Uformer and Restormer) achieve strong performance on distortion-oriented metrics, but
diffusion-based variants equipped with FreeAdapt show competitive or superior perceptual qual-
ity. In particular, DiffBIR-Ours achieves the best or second-best scores on LPIPS, DISTS, CLIP-
IQA, MUSIQ, and MANIQA, demonstrating its strong capability in preserving realistic textures
and producing perceptually faithful outputs under heavy rain degradation. In addition, Figure 9
provides qualitative comparisons on UHD rainy images. Existing approaches often produce over-
smoothed regions, residual streak artifacts, or inconsistent textures when encountering complex
rain patterns. In contrast, diffusion backbones equipped with FreeAdapt generate clearer struc-
tures, better-preserved textures, and more coherent details, yielding visually stable restoration results
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Figure 9: Visual comparison between FreeAdapt and state-of-the-art UHD-IR methods on the 4K-
Rain13k dataset.

Table 6: Quantitative comparison on 4K-Rain13k dataset (Chen et al., 2024). The symbols ↑ and ↓
respectively represent that higher or lower values indicate better performance. Bold represents the
best and underline represents the second best.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ MUSIQ ↑ MANIQA ↑
Uformer 34.67 0.953 0.120 0.072 0.319 33.44 0.256

Restormer 34.09 0.955 0.132 0.088 0.304 33.51 0.256
Swinir 31.57 0.940 0.126 0.070 0.229 32.37 0.236

UDR-Mixer 34.28 0.950 0.133 0.086 0.344 33.17 0.255
UDR-S2former 27.43 0.913 0.199 0.105 0.358 29.64 0.228

DreamUHD 29.26 0.912 0.221 0.131 0.241 30.07 0.206
ERR 34.43 0.951 0.120 0.070 0.366 33.60 0.261

LDM-Ours 25.89 0.900 0.174 0.066 0.379 34.73 0.283
StableSR-Ours 28.04 0.912 0.157 0.056 0.379 34.23 0.277
DiffBIR-Ours 29.11 0.937 0.111 0.039 0.384 34.98 0.284

across diverse scenes. These findings confirm that FreeAdapt generalizes well to the UHD deraining
task and maintains high perceptual fidelity across both quantitative and qualitative dimensions.

F MORE EXPERIMENTAL RESULTS

To further demonstrate the superiority of our approach, we provide additional full-resolution quali-
tative comparisons in Figure 10, Figure 11 and Figure 12 on the UHD-LL (Li et al., 2023a), UHD-
Haze (Wang et al., 2024a), and UHD-Blur (Wang et al., 2024a) tasks, respectively. These results
clearly show that, compared with other state-of-the-art methods, our method consistently achieves
advantages in recovering fine textures, suppressing artifacts, and preserving color fidelity.

Figure 13, Figure 14 and Figure 15 present visual comparisons between our FreeAdapt framework
and other diffusion adaptation methods on two different backbones, LDM and DiffBIR, across the
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UHD-LL, UHD-Haze, and UHD-Blur tasks. The results show that methods such as MultiDiffusion
and DemoFusion often produce blurry outputs, repeated contents, or unnatural textures when han-
dling complex scenes. In contrast, our method, through effective synergistic guidance, consistently
generates structurally correct and detail-coherent high-quality images.

G STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we used large language models (LLMs) as an auxiliary tool. The
primary role of LLMs was to assist with language polishing, phrasing improvements, grammar
checking, and enhancing the clarity and fluency of certain sentences, ensuring that our research
ideas and technical details are expressed more accurately and professionally. Importantly, LLMs
were not involved in the core aspects of this work, including research conception, experimental
design, result generation, or data analysis.

Figure 10: Visual comparison between FreeAdapt and state-of-the-art UHD-IR methods on the
UHD-LL dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Visual comparison between FreeAdapt and state-of-the-art UHD-IR methods on the
UHD-Haze dataset.

Figure 12: Visual comparison between FreeAdapt and state-of-the-art UHD-IR methods on the
UHD-Blur dataset.
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Figure 13: Visual comparison of FreeAdapt against training-free diffusion-based adaptation methods
on the UHD-LL dataset.
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Figure 14: Visual comparison of FreeAdapt against training-free diffusion-based adaptation methods
on the UHD-Haze dataset.
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Figure 15: Visual comparison of FreeAdapt against training-free diffusion-based adaptation methods
on the UHD-Blur dataset.
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