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Abstract—This paper introduces p-ClustVal, a novel data
transformation technique inspired by p-adic number theory that
significantly enhances cluster discernibility in genomics data,
specifically Single Cell RNA Sequencing (scRNASeq). By lever-
aging p-adic-valuation, p-ClustVal integrates with and augments
widely used clustering algorithms and dimension reduction tech-
niques, amplifying their effectiveness in discovering meaningful
structure from data. The transformation uses a data-centric
heuristic to determine optimal parameters, without relying on
ground truth labels, making it more user-friendly. p-ClustVal
reduces overlap between clusters by employing alternate metric
spaces inspired by p-adic-valuation, a significant shift from
conventional methods. Our comprehensive evaluation spanning
30 experiments and over 1200 observations, shows that p-ClustVal
improves performance in 91% of cases, and boosts the perfor-
mance of classical and state of the art (SOTA) methods. This
work contributes to data analytics and genomics by introducing
a unique data transformation approach, enhancing downstream
clustering algorithms, and providing empirical evidence of p-
ClustVal’s efficacy.

Index Terms—p-Adic Numbers, Data-Centric AI, Single Cell
RNA Sequencing, Unsupervised Learning

I. INTRODUCTION

Clustering is a pivotal technique that organizes data into
meaningful groups, unveiling inherent structures without prior
labeling. It is especially critical in real-world applications, like
biological data interpretation, where it helps in identifying
distinct patterns and groups based on similarities among data
points. In recent times, single cell RNA sequencing (scR-
NASeq) has marked a paradigm shift, enabling an in-depth
exploration of data at an unprecedented single-cell resolution
[1]. A primary challenge in scRNASeq data analysis is iden-
tifying distinct cell groups, akin to unsupervised clustering
in machine learning [2]. Despite its potential, scRNASeq data
processing is beset with challenges, primarily due to the noisy,
low-resolution nature of the raw data, typically represented as
an m×d matrix of cells (samples) and gene counts (features).
The clustering efficacy is further impacted by data’s high
dimensionality, and sparsity [3].

This work introduces p-ClustVal, a novel data transfor-
mation technique for enhancing the clustering of scRNASeq

data [1], [3], [4]. By operating in the transformed p-adic
space [5], the method addresses challenges due to overlapping
clusters, and amplifies the effectiveness of downstream clus-
tering, enabling the discovery of previously obscured patterns
and structures in the data. p-ClustVal is a user-friendly tool
with minimal parameter tuning requirements, employing a
unsupervised heuristic for optimal parameter selection. Our
main contributions are, 1) a novel transformation technique
(p-ClustVal) for enhancing cluster separability, 2) a data-driven
and unsupervised heuristic for learning parameters from data,
3) an intuitive demonstration on synthetic and real-world data,
and 4) empirical validation of p-ClustVal’s effectiveness in
improving classical and state-of-the-art clustering tools.

II. METHODS

We define the notation as follows: let x ∈ Rd represent
a d-dimensional vector over the reals. The dataset D =
{x1,x2, . . . ,xm} comprises m such vectors. We denote the
ith element of x by xi. P -adic numbers were first introduced
by Kurt Hensel in 1897. P -adic numbers are an extension of
rational numbers obtained by completing the rational numbers
with respect to the p-adic metric. p-adic-valuation (Vp(n)) [5],
[6] is a mathematical function that finds the highest power of a
prime number p that divides a given non-zero rational number
n. It is defined as follows:

Vp(n) = max{i ∈ N : pi | n} (1)

We introduce a parametric space discretization technique
inspired by p-adic-valuation. We define a transformation func-
tion θ : R → Z, parameterized by separation (sep) and
cohesion (coh), for any scalar xi ∈ R. For simplicity, here
we denote coh by c, and sep by s. Specifically, our trans-
formation function discretizes data to enhance the separation
between different classes while preserving the proximity of
data points within the same class. This function is given by:

θc,s(xi) = ⌊logc(xs
i )⌋ (2)



Fig. 1: Visualizing the effect of transformation on a simulated data. Orange and Violet points represent two different clusters. C1
and C2 are the respective centroids. (A): actual data, (B): after scaling the data with sep = 3. Figure in the inset highlights the
data within the red region. (C): after discretizing with coh = 2. Dashed lines indicate the distance between cluster centers C1,
C2 and H . Scaling pushes data points apart, but conserves the global spatial structure of data, as seen in plot-(B). Discretizing
with coh brings data points in the same cluster closer, thus increasing the separation between different clusters.

Illustrative examples Fig. 1 illustrates the functioning of
p-ClustVal. Points G, H, and I are equidistant from members
of both clusters. Moreover, H is closer to C1 than C2, and if
the points are assigned based on their proximity to the centers
then H will be misclassified as part of C1. Post transformation
(Fig. 1-(C)), boundary points G, H, and I are relocated closer
to their actual center, thereby improving the chances of correct
clustering. The visualization on a real-world data with known
class labels is shown in Fig. 2. The overlap between clusters,
for instance: PP cell and A cell, is noticeably reduced
in transformed data. Specifically, data points in cluster PP
cell have gotten closer while moving away from neighboring
clusters. Compared to actual data, the transformation has
noticeably improved the chances of clustering A cell, PP
cell, Stellate cell, Acinar cell and Ductal
cell.

Data-centric Search for Optimal Parameters We need
a heuristic to dynamically find parameters in unsupervised
manner, without access to the ground truth. A reasonable
value of coh would be the smallest distance between any two
points within the dataset. This is reasonable, as all the closest
points must be mapped into the same corner of their respective
hypercube. Since, coh ensures that closest points are mapped
to the same corner, hence, we set coh as the average distance
of the data point with it’s k closest neighbors. This is defined
in (3).

coh =

∑m
i=1

∑k
j=1 d(xi, xj)

m
(3)

k denote the number of neighbors and xi ̸= xj .

Fig. 2: Effect of p-ClustVal on Muraro data. Overlap between
clusters has lessened driven by the reduction in spread of data,
and separation between clusters have increased.



III. EXPERIMENTS & RESULTS

Experiments are conducted on 10 high dimensional and
sparse scRNASeq datasets, varying in size, dimensions, cluster
number, and amount of sparsity. Performance is measured via
Adjusted Rand Index (ARI), that measure the extent of simi-
larity between clustering labels and ground truth. Higher ARI
indicate better alignment between ground truth and clustering
labels. Performance is compared across three benchmarks.

a) p-ClustVal enhances classical clustering: The results
are reported in Table I, and highlight the significance of p-
ClustVal in enhancing clustering performance, as evidenced
by the ARI scores. On majority of datasets, applying the
transformation consistently improved the ARI of clustering
algorithms, demonstrating the complementary nature of p-
ClustVal.

b) Benchmarking with dimenionality reduction: Di-
mension reduction is commonly used either as a pre-
processing step to filter noise or to obtain a lower dimen-
sional representation of data before clustering [7]–[9]. Results
(Table II) demonstrate that applying dimension reduction on
transformed data reasonably improves the clustering accuracy.

c) Benchmarking SOTA clustering tools: We compare
popular scRNASeq clustering packages [10]–[13]. Table III
provide the results. Notably, no single method unanimously
outperform others. On most datasets, p-ClustVal either im-
proves the performance significantly or achieve similar per-
formance as raw data.

TABLE I: Benchmarking classical clustering

Adjusted Rand Index (ARI)

Dataset k-means FZKM EM WAC

R T R T R T R T
Pollen 0.60 0.79 0.09 0.35 0.28 0.61 0.76 0.95
Darmanis 0.52 0.72 0.27 0.25 0.24 0.30 0.49 0.65
Usoskin 0.09 0.45 0.10 0.12 0.07 0.47 0.02 0.69
Mouse Pan. 0.29 0.56 0.15 0.54 0.37 0.45 0.21 0.48
Muraro 0.56 0.74 0.40 0.79 0.36 0.44 0.62 0.92
Limb 0.14 0.66 0.05 0.74 0.10 0.53 0.008 0.57
Trachea 0.11 0.58 0.02 0.59 0.05 0.43 0.23 0.45
Lung 0.21 0.49 0.12 0.71 0.11 0.53 0.19 0.42
Diaphragm 0.25 0.83 0.09 0.55 0.15 0.63 0.25 0.97
Spleen 0.31 0.48 0.21 0.27 0.41 0.23 0.35 0.77

‘R’ and ‘T’ indicate raw and transformed data. Bold indicate better results.

TABLE II: Comparing the clustering with dimension reduction

Adjusted Rand Index (ARI)

Dataset PCA tSNE UMAP

R T R T R T
Pollen 0.66 0.74 0.73 0.74 0.64 0.67
Darmanis 0.57 0.74 0.50 0.60 0.44 0.62
Usoskin 0.12 0.55 0.06 0.60 0.04 0.54
Mouse pan. 0.21 0.48 0.31 0.36 0.36 0.40
Muraro 0.51 0.83 0.63 0.62 0.63 0.76
Limb 0.08 0.62 0.35 0.51 0.34 0.51
Trachea 0.12 0.55 0.31 0.55 0.72 0.51
Lung 0.20 0.40 30 0.33 0.31 0.37
Diaphragm 0.25 0.81 0.38 0.53 0.40 0.62
Spleen 0.30 0.52 0.25 0.25 0.31 0.28

Blue indicate either similar performance or when difference is less than 0.01.

TABLE III: Benchmarking SOTA scRNASeq clustering tools

Adjusted Rand Index (ARI)

Dataset Seurat RaceID SIMLR SC3 ADClust

R T R T R T R T R T
Pollen 0.77 0.8 0.58 0.82 0.09 0.5 0.97 0.97 0.10 0.68
Darmanis 0.61 0.66 0.46 0.51 0.59 0.84 0.95 0.84 0.23 0.84
Usoskin 0.64 0.57 NA NA NA NA 0.88 0.88 0.18 0.27
Mouse pan. 0.46 0.46 0.31 0.25 0.29 0.47 0.41 0.36 0.54 0.58
Muraro 0.93 0.93 0.83 0.78 NA NA 0.94 0.93 0.39 0.93
Limb 0.66 0.67 0.5 0.56 0.24 0.52 0.64 0.94 0.04 0.58
Trachea 0.95 0.93 0.49 0.54 0.31 0.51 0.48 0.49 0.18 0.90
Lung 0.6 0.6 0.17 0.41 0.16 0.76 0.48 0.49 0.16 0.59
Diaphragm 0.98 0.98 0.13 0.97 0.31 0.65 0.99 0.99 0.02 0.98
Spleen 0.89 0.88 0.40 0.44 0.22 0.5 NA NA 0.63 0.30

NA indicate method failed to run on the specific dataset.

IV. CONCLUSION

We introduced p-ClustVal, an innovative approach towards
creating alternate representations of high dimensional ge-
nomics data. Drawing inspiration from the mathematical the-
ory of p-adic numbers, p-ClustVal leverages metric spaces
based on p-adic-valuation to enhance cluster separation and
discernibility. p-ClustVal combined with an unsupervised
heuristic for parameter estimation, is validated on downstream
clustering, and dimension reduction methods, minimizes tun-
ing requirements and shows remarkable adaptability across
various datasets.
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