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Abstract
This paper considers the challenging computa-
tional task of estimating nested expectations. Ex-
isting algorithms, such as nested Monte Carlo or
multilevel Monte Carlo, are known to be consis-
tent but require a large number of samples at both
inner and outer levels to converge. Instead, we
propose a novel estimator consisting of nested
kernel quadrature estimators and we prove that
it has a faster convergence rate than all base-
line methods when the integrands have sufficient
smoothness. We then demonstrate empirically
that our proposed method does indeed require
fewer samples to estimate nested expectations on
real-world applications including Bayesian opti-
misation, option pricing, and health economics.

1. Introduction
We consider the computational task of estimating a nested
expectation, which is the expectation of a function that
itself depends on another unknown conditional expecta-
tion. More precisely, let Q be a Borel probability measure
with density q on Θ and Pθ a Borel probability measure
with density pθ on X ⊆ RdX which is parameterized by
θ ∈ Θ ⊆ RdΘ . Given integrable functions f : R → R and
g : X ×Θ → R, we are interested in estimating:

I := Eθ∼Q [f (EX∼Pθ
[g(X, θ)])] (1)

=

∫
Θ

f

( ∫
X
g(x, θ)pθ(x)dx︸ ︷︷ ︸

inner conditional expectation

)
q(θ)dθ

︸ ︷︷ ︸
outer expectation

.

Nested expectations arise within a wide range of tasks, such
as the computation of objectives in Bayesian experimen-
tal design (Beck et al., 2020; Goda et al., 2020; Rainforth
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et al., 2024), of acquisition functions in active learning and
Bayesian optimisation (Ginsbourger and Le Riche, 2010;
Yang et al., 2024), of objectives in distributionally-robust
optimisation (Shapiro et al., 2023; Bariletto and Ho, 2024;
Dellaporta et al., 2024), and of statistical divergences (Song
et al., 2020; Kanagawa et al., 2023). Computing nested
expectations is also a key task beyond machine learning,
including in fields ranging from value of information for
decision making (Giles and Goda, 2019; Mala, 2024) to fi-
nance and insurance (Gordy and Juneja, 2010; Giles and
Haji-Ali, 2019), manufacturing (Andradóttir and Glynn,
2016) and geology (Goda et al., 2018).

The estimation of nested expectations is particularly chal-
lenging since there are two levels of intractability: the in-
ner conditional expectation, and the outer expectation, both
of which must be approximated accurately in order to ap-
proximate the nested expectation I accurately. The most
widely used algorithm for this problem is nested Monte
Carlo (NMC) (Lee and Glynn, 2003; Hong and Juneja,
2009; Rainforth et al., 2018). It approximates the inner and
outer expectations using Monte Carlo estimators with N
and T samples respectively. NMC is consistent under mild
conditions, but has a relatively slow rate of convergence.
Depending on the regularity of the problem, existing results
indicate that we require either O(∆−3) or O(∆−4) evalu-
ations of g to obtain a root mean squared error smaller or
equal to ∆. This tends to be prohibitively expensive; for
example, we would expect in the order of either 1 or 100
million observations to obtain an error of ∆ = 0.01. This is
infeasible for many applications where obtaining samples
or evaluating g is expensive.

This issue has led to the development of a number of meth-
ods aiming to reduce the cost. Bartuska et al. (2023) pro-
posed replacing the Monte Carlo estimators with quasi-
Monte Carlo (QMC) (Dick et al., 2013). This algorithm,
called nested QMC (NQMC), requires only O(∆−2.5)
function evaluations to obtain an error of size ∆ (so that
we only need in the order of 100, 000 observations for an
error of ∆ = 0.01). However, NQMC requires strong regu-
larity assumptions which may not hold in practice (a mono-
tone second and third derivative for f ). Separately, Bujok
et al. (2015); Giles and Haji-Ali (2019); Giles and Goda
(2019) proposed to use multi-level Monte Carlo (MLMC)
and showed that this can further reduce the number of func-
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tion evaluations to O(∆−2) (so that we only need in the
order of 10, 000 observations for an error of ∆ = 0.01).
The algorithm has relatively mild assumptions on f and g,
which makes it broadly applicable but sub-optimal for ap-
plications where f and g are smooth and where we might
therefore expect further reductions in cost.

To fill this gap in the literature, we propose a novel algo-
rithm called nested kernel quadrature (NKQ), which is pre-
sented in Section 3. NKQ replaces the inner and outer MC
estimators of NMC with kernel quadrature (KQ) estimators
(Sommariva and Vianello, 2006). We show in Section 4

that NKQ requires only Õ(∆
− dX

sX
− dΘ

sΘ ) function evalua-
tions to guarantee an error smaller or equal to ∆. Here
Õ denotes O up to logarithmic terms, sX , sΘ are constants
relating to the smoothness of f and g in X and Θ, and
we have sX > dX /2 and sΘ > dΘ/2. In the least fa-
vorable case, we therefore recover the O(∆−4) of NMC,
but when the integrand is smooth and the dimension is not
too large, we are able to have a cost which scales better
than O(∆−2) and the method significantly outperforms all
competitors. In those cases, we may only need in the order
of a few hundred or thousands observations for an error of
∆ = 0.01. This fast rate is demonstrated numerically in
Section 5, where we show that NKQ can provide signifi-
cant accuracy gains in problems from Bayesian optimisa-
tion to option pricing and health economics. Moreover, we
show that NKQ can be combined with QMC and MLMC,
providing an avenue to further accelerate convergence.

2. Background
Notation Let N+ denote the positive integers and N =
N+ ∪ {0}. For h : X ⊆ Rd → R, x1:N and h(x1:N )
are vectorized notation for [x1, . . . , xN ]⊤ ∈ RN×d and
[h(x1), . . . , h(xN )]⊤ ∈ RN×1 respectively. For a vector
a = [a1, . . . , ad]

⊤ ∈ Rd, define ∥a∥b = (
∑d

i=1 a
b
i )

1/b.
For a distribution π supported on X and 0 < p ≤ ∞,
Lp(π) is the space of functions h : X → R such that
∥h∥Lp(π) := EX∼π[|h(X)|p] <∞ andL∞(π) is the space
of functions that are bounded π-almost everywhere. When
π is the Lebesgue measure LX over X , we write Lp(X ) :=
Lp(LX ). For β ∈ N,Cβ(X ) denotes the space of functions
whose partial derivatives of up to and including order β
are continuous. For two positive sequences {an}n∈N+ and
{bn}n∈N+

, an ≍ bn means that limn→∞
an

bn
is a positive

constant, an = O(bn) means that limn→∞
an

bn
< ∞ and

an = Õ(bn) means that an = O(bn(log bn)
r) for some

positive constant r.

Existing Methods for Nested Expectations Standard
Monte Carlo (MC) is an estimator which can be used to ap-
proximate expectations/integrals through samples (Robert
and Casella, 2000). Given an arbitrary function h : X → R

with h ∈ L1(π), and N independent and identically dis-
tributed (i.i.d.) realisations x1:N from π, standard MC ap-
proximates the expectation of h under π as follows:

EX∼π[h(X)] ≈ 1

N

N∑
n=1

h(xn).

For the nested expectation I in (1), the use of a MC esti-
mator for both the inner and outer expectation leads to the
nested Monte Carlo (NMC) estimator (Hong and Juneja,
2009; Rainforth et al., 2018) given by

ÎNMC :=
1

T

T∑
t=1

f

(
1

N

N∑
n=1

g(x(t)n , θt)

)
, (2)

where θ1:T are T i.i.d. realisations from Q and x(t)1:N are N
i.i.d. realisations from Pθt for each t ∈ {1, . . . , T}. The
root mean-squared error of this estimator goes to zero at
rate O(N− 1

2+T− 1
2 ) when f is Lipschitz continuous (Rain-

forth et al., 2018). Hence, taking N = T = O(∆−2)
leads to an algorithm which requires N × T = O(∆−4)
function evaluations to obtain error smaller or equal to
∆. When f has bounded second order derivatives, the
root mean-squared error converges at the improved rate of
O(N−1 + T− 1

2 ) (Rainforth et al., 2018). Taking N =√
T = O(∆−1) therefore leads to an algorithm requiring

N × T = O(∆−3) function evaluations to get an error of
∆ (Gordy and Juneja, 2010; Rainforth et al., 2018). De-
spite its simplicity, NMC therefore requires a large number
of evaluations to reach a given ∆.

As a result, two extensions have been proposed. Firstly,
Bartuska et al. (2023) proposed to use (2), but to replace
the i.i.d. samples with QMC points. QMC points are points
which aim to fill X in a somewhat uniform fashion (Dick
et al., 2013), with well-known examples including Sobol or
Halton sequences. Bartuska et al. (2023) used randomized
QMC points, which removes the bias of standard QMC
by using a randomized low discrepancy sequence (Owen,
2003). For nested expectations, they showed that nesting
randomized QMC estimators can lead to a faster conver-
gence rate and hence a smaller cost of O(∆−2.5). How-
ever, the approach is only applicable when Pθ and Q are
Lebesgue measures on unit cubes (or smooth transforma-
tions thereof), and the rate only holds when f has mono-
tone second and third order derivatives.

Alternatively, Bujok et al. (2015); Giles (2015); Giles and
Haji-Ali (2019); Giles and Goda (2019) proposed to use
multi-level Monte Carlo (MLMC), which decomposes the
nested expectation using a telescoping sum on the outer in-
tegral, then approximates each term with MC. The inte-
grand with the ℓ’th fidelity level is constructed as the com-
position of f with an inner MC estimator based onNℓ sam-
ples. More precisely, the MLMC treatment of nested ex-
pectations consist of using:
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ÎMLMC :=

L∑
l=1

1

Tℓ

Tℓ∑
t=1

(f(Jℓ,t)− f(Jℓ−1,t)) +
1

T0

T0∑
t=1

f(J0,t)

where Jℓ,t :=
1

Nℓ

Nℓ∑
n=1

g(x(t)n , θt) for ℓ ∈ {0, . . . , L}, (3)

Under some regularity conditions, Theorem 1 from Giles
(2015) shows that taking Nℓ = O(2ℓ) and Tℓ =
O(2−2ℓ∆−2) leads to an estimator requiring O(∆−2)
function evaluations to obtain root mean squared error
smaller or equal to ∆. Although MLMC has the best
known efficiency for nested expectations, Nl and Tl need
to grow exponentially with l, and we therefore need a very
large sample size for its theoretical convergence rate to be-
come evident in practice (Giles and Haji-Ali, 2019; Giles
and Goda, 2019). MLMC also requires making several
challenging design choices, including the coarsest level to
use, and the number of samples per level. Most impor-
tantly, MLMC as well as all existing methods fail to ac-
count for the smoothness of the functions f and g.

Kernel Quadrature Kernel quadrature (KQ) (Som-
mariva and Vianello, 2006; Rasmussen and Ghahramani,
2002; Briol et al., 2019) provides an alternative to standard
MC for (non-nested) expectations. Consider an arbitrary
function h : X → R and distribution π on X , and sup-
pose we would like to approximate EX∼π[h(X)]. KQ is
an estimator which can be used when h is sufficiently reg-
ular, in the sense that it belongs to a reproducing kernel
Hilbert space (RKHS) (Berlinet and Thomas-Agnan, 2004)
Hk with kernel k. We recall that for a positive semi-definite
kernel k : X × X → R, the RKHS Hk is a Hilbert space
with inner product ⟨·, ·⟩Hk

and norm ∥ · ∥Hk
(Aronszajn,

1950) such that: (i) k(x, ·) ∈ Hk for all x ∈ X , and (ii)
the reproducing property holds, i.e. for all h ∈ Hk, x ∈ X ,
h(x) = ⟨h, k(x, ·)⟩Hk

. An important example of RKHS is
the Sobolev spaceW s

2 (X ) (s > d
2 ), which consists of func-

tions of certain smoothness encoded through the square in-
tegrability of their weak partial derivatives up to order s,

W s
2 (X ) :=

{
h ∈ L2(X ) : Dβh ∈ L2(X )

for all β ∈ Nd with |β| ≤ s
}
, s ∈ N+ (4)

where Dβf denotes the β-th (weak) partial derivative of f .

Assuming h ∈ Hk and EX∼π[
√
k(X,X)] < ∞, the KQ

estimator ÎKQ =
∑N

n=1 wnh(xn) uses weights obtained by
minimizing an upper bound on the absolute error:∣∣∣I − ÎKQ

∣∣∣ = ∣∣∣EX∼π[h(X)]−
N∑

n=1

wnh(xn)
∣∣∣

≤ ∥h∥Hk

∥∥∥µπ(X)−
N∑

n=1

wnk (xn, ·)
∥∥∥
Hk

,

where µπ(·) = EX∼π[k(X, ·)] is the kernel mean embed-
ding (KME) of π in the RKHS Hk (Smola et al., 2007).
Minimizing the right hand side with an additive regulariser
term λ∥f∥Hk

over the choice of weights leads to the fol-
lowing KQ estimator:

ÎKQ := µπ(x1:N ) (K +NλIN )
−1
h(x1:N ), (5)

where IN is the N × N identity matrix, K =
k(x1:N , x1:N ) ∈ RN×N is the Gram matrix and λ ≥ 0
is a regularisation parameter ensuring the matrix is numer-
ically invertible. The KQ weights are given by w1:N =
µπ(x1:N )(K +NλIN )−1 and are optimal when λ = 0.

KQ takes into account the structural information that h ∈
Hk so the absolute error |I − ÎKQ| goes to 0 at a fast rate
as N → ∞. Specifically, when the RKHS Hk is norm-
equivalent to the Sobolev space W s

2 (X ) (s > d
2 ), KQ

achieves the rate O(N− s
d ) (Kanagawa and Hennig, 2019;

Kanagawa et al., 2020). This is known to be minimax opti-
mal (Novak, 2006; 2016), and significantly faster than the
O(N− 1

2 ) rate of standard MC. Interestingly, existing proof
techniques that obtain this rate take λ = 0 in (5) and re-
quire the Gram matrix K to be invertible, whilst the new
proof technique based on kernel ridge regression in this pa-
per obtains the same optimal rate while allowing a positive
regularization λ ≍ N− 2s

d (logN)
2s+2

d , which improves nu-
merical stability when inverting K. (See Remark B.2)

Despite the optimality of the KQ convergence rate, the rate
constant can be reduced by selecting points x1:N other
than through i.i.d. sampling. Strategies include impor-
tance sampling (Bach, 2017; Briol et al., 2017), QMC point
sets (Briol et al., 2019; R. Jagadeeswaran, 2019; Bharti
et al., 2023; Kaarnioja et al., 2025), realisations from deter-
minental point processes (Belhadji et al., 2019), point sets
with symmetry properties (Karvonen and Särkkä, 2018;
Karvonen et al., 2019) and adaptive designs (Osborne et al.,
2012; Gunter et al., 2014; Briol et al., 2015; Gessner et al.,
2020). Most relevant to our work is the combination of KQ
with MLMC to improve accuracy in multifidelity settings
(Li et al., 2023).

Two main drawbacks of KQ compared to MC are the worst-
case computational cost of O(N3) (due to computation of
the inverse of the Gram matrix), and the need for a closed-
form expression of the KME µπ . Fortunately, numerous
approaches can mitigate these drawbacks. To reduce the
cost, one can use geometric properties of the point set (Kar-
vonen and Särkkä, 2018; Karvonen et al., 2019; Kuo et al.,
2024), Nyström approximations (Hayakawa et al., 2022;
2023), randomly pivoted Cholesky (Epperly and Moreno,
2023), or the fast Fourier transform (Zeng et al., 2009).
To obtain a closed-form KME, KQ users typically refer
to existing derivations (see Table 1 in Briol et al. (2019)
or Wenger et al. (2021)), or use Stein reproducing kernels
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(Oates et al., 2017; 2019; Si et al., 2021; Sun et al., 2023).

In this paper, we tackle both drawbacks through a change
of variable trick. Suppose we can find a continuous trans-
formation map Φ such that x1:N = Φ(u1:N ) where u1:N
are samples from a simpler distribution U of our choice.
A direct application of change of variables theorem (Sec-
tion 8.2 of Stirzaker (2003)) proves that EX∼π h(X) =∫
U h(Φ(u))dU(u), so the integrand changes from h : X →
R to h◦Φ : U → R and the kernel quadrature estimator be-
comes ÎKQ = µU(u1:N ) (KU +NλIN )

−1
(h ◦ Φ)(u1:N ),

where KU = kU (u1:N , u1:N ). The measure U is typically
chosen such that the KME is known in closed-form, and
the KQ weights µU(u1:N ) (KU +NλIN )

−1 can be pre-
computed and stored so that KQ becomes a weighted aver-
age of function evaluations with O(N) computational com-
plexity. The main technical challenge of using the change
of variable trick is to find such transform map Φ. See Ap-
pendix F.1 for further details.

Before concluding, we note that the KQ estimator is of-
ten called Bayesian quadrature (BQ) (Diaconis, 1988;
O’Hagan, 1991; Rasmussen and Ghahramani, 2002; Briol
et al., 2019; Hennig et al., 2022) since it can be derived
as the mean of the pushforward of a Gaussian measure on
h conditioned on h(x1:N ) (Kanagawa et al., 2018). The
advantage of the Bayesian interpretation is that it provides
finite-sample uncertainty quantification, and it also allows
for efficient hyperparameter selection via empirical Bayes.

3. Nested Kernel Quadrature
We can now present our novel algorithm: nested kernel
quadrature (NKQ). To simplify the formulas, we write

J(θ) := EX∼Pθ
[g(X, θ)] , F (θ) := f(J(θ)), (6)

so that the nested expectation in (1) can be written as I =
Eθ∼Q[F (θ)]. We will assume that we have access to

θ1:T := [θ1, . . . , θT ]
⊤ ∈ ΘT ,

x
(t)
1:N :=

[
x
(t)
1 , . . . , x

(t)
N

]
∈ XN ,

g
(
x
(t)
1:N , θt

)
:=
[
g
(
x
(t)
1 , θt

)
, . . . , g

(
x
(t)
N , θt

)]
∈ RN ,

for all t ∈ {1, . . . , T}, and f is a function that can be eval-
uated. We do not specify how the point sets are generated,
although further (mild) assumptions will be imposed for
our theory in Section 4. Using the same number of func-
tion evaluations N per θt is not essential, but we assume
this as it significantly simplifies our notation. Given the
above, we are now ready to define NKQ as the following
two-stage algorithm, which is illustrated in Figure 1.

Stage I For each t ∈ {1, . . . , T}, we estimate the inner
conditional expectation J evaluated at θt with N observa-

Stage I Stage II

𝜽𝟐

𝜽𝟏

𝜽𝑻

…

F (µ) F̂KQ(µt) w£
t

𝜽𝟏 𝜽𝟐 … 𝜽𝑻
g(x

(1)
n , µ1)

wX
n,1

𝒙𝟏
(𝟏) 𝒙𝑵

(𝟏)…

g(x
(2)
n , µ2)

wX
n,2

𝒙𝟏
(𝟐) 𝒙𝑵

(𝟐)…

g(x
(T )
n , µT)

wX
n,T

𝒙𝟏
(𝑻) 𝒙𝑵

(𝑻)…

Figure 1. Illustration of NKQ. In stage I, we estimate J(θt) using
ĴKQ(θt) =

∑N
n=1 w

X
n,tg(x

(t)
n , θt) for all t ∈ {1, . . . , T}. In

stage II, we estimate I with ÎNKQ =
∑T

t=1 w
Θ
t F̂KQ(θt) where

F̂KQ(θt) := f(ĴKQ(θt)). The shaded areas depict Pθ (for stage I)
and Q (for stage II).

tions x(t)1:N and g(x(t)1:N , θt) using a KQ estimator:

ĴKQ(θt) := µPθt

(
x
(t)
1:N

)(
K

(t)
X +NλXIN

)−1
g
(
x
(t)
1:N , θt

)
.

(7)
Here kX is a reproducing kernel on X , µPθt

(·) =

EX∼Pθt
[kX (X, ·)] is the KME of Pθt and K

(t)
X =

kX (x
(t)
1:N , x

(t)
1:N ) is an N × N Gram matrix. Using the

same kernel kX for each t ∈ {1, . . . , T} is not essential,
but we assume this to be the case for simplicity. Given
these KQ estimates, we then we apply the function f to get
F̂KQ(θt) = f(ĴKQ(θt)).

Stage II We use a KQ estimator to approximate the outer
expectation using the output of Stage I:

ÎNKQ := µQ(θ1:T )(KΘ + TλΘIT )
−1F̂KQ(θ1:T ). (8)

Here kΘ is a reproducing kernel on Θ, µQ =
Eθ∼Q[kΘ(θ, ·)] is the embedding of Q and KΘ =
kΘ(θ1:T , θ1:T ) is a T × T Gram matrix.

Combining stage I and II, NKQ can be expressed in a single
equation as a nesting of two quadrature rules:

ÎNKQ =

T∑
t=1

wΘ
t f

(
N∑

n=1

wX
n,tg(x

(t)
n , θt)

)
, (9)

wherewX
1,t, . . . , w

X
N,t are the KQ weights used in stage I for

ĴKQ(θt) and wΘ
1 , . . . , w

Θ
T are the KQ weights used in stage

II. Although these weights are stage-wise optimal when
λX = λΘ = 0 thanks to the optimality of KQ weights, it is
unclear whether they are globally optimal due to the non-
linearity of f . Note that NMC can be recovered by taking
all stage I weights to be 1/N and all stage II weights to be
1/T , which is sub-optimal. In addition to the algorithmic
simplicity of our proposed estimator NKQ, we demonstrate
its superior performance in terms of both rate of conver-
gence (Section 4) and empirical performances (Section 5).
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NKQ inherits the two main drawbacks of KQ. Firstly, solv-
ing the linear systems to obtain the stage I and II weights
has a worst-case computational complexity of O(TN3 +
T 3). Secondly, NKQ requires closed-form KMEs at both
stages: µPθt

for all t ∈ {1, . . . , T} in stage I, and µQ in
stage II. Fortunately, we can often use the approaches dis-
cussed in the previous section to reduce the complexity to
O(TN + T ) and obtain closed-form kernel embeddings.

NKQ requires the selection of hyperparameters, including
for the kernels in both stage I and II. We typically take
kX and kΘ to be Matérn kernels whose orders are deter-
mined by the smoothness of f and g (as justified by The-
orem 1; see Section 4 for details). This leaves us with
a choice of kernel hyperparameters which include length-
scales γX , γΘ > 0 and amplitudes AX , AΘ > 0. The
lengthscales are selected via the median heuristic. The

regularizers are set to λX = λ0,XN
− 2sX

dX (logN)
2sX+2

dX

and λΘ = λ0,ΘT
− 2sΘ

dΘ (log T )
2sΘ+2

dΘ following Theo-
rem 1, where λ0,X , λ0,Θ are selected with grid search over
{0.01, 0.1, 1.0}. Finally, we standardise our function val-
ues (by subtracting the empirical mean then dividing by the
empirical standard deviation), and then set the amplitudes
to AX = AΘ = 1. This last choice could further be im-
proved using a grid search, but we do not do this as we
do not notice significant improvements when doing so in
experiments and this tends to increase the cost.

Before presenting our theoretical results, we briefly com-
ment on the connection with existing KQ methods. If
we could evaluate the exact expression for the inner con-
ditional expectation J(θ) pointwise, then (following (5))
the KQ estimator for I would be ĪKQ = µQ(θ1:T )(KΘ +
TλΘIT )

−1F (θ1:T ). Comparing with (8), NKQ can thus
be seen as KQ with noisy function values F̂KQ(θ1:T ) (re-
placing the exact values F (θ1:T ) in (8)). Although it is
proved in Cai et al. (2023) that noisy observations make
KQ converge at a slower rate, we prove that the stage II
observation noise is of the same order as the stage I error,
and consequently, we can still treat stage II KQ as noiseless
kernel ridge regression and the additional error caused by
the stage II observation noise would be subsumed by the
stage I error (See Remark 4.1). NKQ is also closely related
to a family of regression-based methods for estimating con-
ditional expectations (Longstaff and Schwartz, 2001; Chen
et al., 2024b). Indeed, with a slight modification of Stage
II in (8), we can obtain an estimator of J(θ) that we call
conditional kernel quadrature (CKQ)

ĴCKQ(θ) := kΘ(θ, θ1:T )(KΘ + TλΘIT )
−1ĴKQ(θ1:T ).

(10)

CKQ highly resembles conditional BQ (CBQ) (Chen et al.,
2024b); the difference is in stage II, where CBQ uses het-
eroskedastic Gaussian process regression whilst CKQ uses

kernel ridge regression. Interestingly, the proof in this pa-
per leads to a much better rate for CKQ than the best known
rate for CBQ (see Remark 4.2).

4. Theoretical Results
In this section, we derive a convergence rate for the abso-
lute error |ÎNKQ − I| as the number of samples N,T → ∞.
Before doing so, we recall the connection between RKHSs
and Sobolev spaces. A kernel k on Rd is said to be trans-
lation invariant if k(x, x′) = Ψ(x − x′) for some positive
definite function Ψ whose Fourier transform Ψ̂(ω) is a fi-
nite non-negative measure on Rd (Wendland, 2004, The-
orem 6.6). Suppose X has a Lipschitz boundary, if k is
translation invariant and its Fourier transform Ψ̂(ω) de-
cays as O(1 + ∥ω∥22)−s when ω → ∞ for s > d/2,
then its RKHS Hk is norm equivalent to the Sobolev
space W s

2 (X ) (Wendland, 2004, Corollary 10.48). More
specifically, it means that their set of functions coincide
and there are constants c1, c2 > 0 such that c1∥h∥Hk

≤
∥h∥W s

2 (X ) ≤ c2∥h∥Hk
holds for all h ∈ Hk. In this pa-

per, we call such kernel a Sobolev reproducing kernel of
smoothness s. An important example of Sobolev kernel
is the Matérn kernel— the RKHS of a Matérn-ν kernel is
norm-equivalent to W s

2 (X ) with s = ν+ d/2. All Sobolev
kernels are bounded, i.e. supx∈X k(x, x) ≤ κ for some
positive constant κ. When the context is clear, we use
∥f∥s,2 := ∥f∥W s

2 (X ) to denote the Sobolev space norm.

Theorem 1. Let X = [0, 1]dX and Θ = [0, 1]dΘ . Suppose
θ1:T are i.i.d. samples from Q and x(t)1:N are i.i.d samples
from Pθt for all t ∈ {1, · · · , T}. Suppose further that kX
and kΘ are Sobolev kernels of smoothness sX > dX /2 and
sΘ > dΘ/2, and that the following conditions hold

(1) There exist G0,Θ, G1,Θ, G0,X , G1,X > 0 such that
G0,Θ ≤ q(θ) ≤ G1,Θ and G0,X ≤ pθ(x) ≤ G1,X
for any θ ∈ Θ and x ∈ X .

(2) There exists S1 > 0 such that for any θ ∈ Θ and any
β ∈ NdΘ with |β| ≤ sΘ, ∥Dβ

θ g(·, θ)∥sX ,2 ≤ S1.

(3) There exist S2, S3 > 0 such that for any x ∈ X ,
∥g(x, ·)∥sΘ,2 ≤ S2 and ∥θ 7→ pθ(x)∥sΘ,2 ≤ S3 ≤ 1.

(4) There exists S4 > 0 such that derivatives of f up to and
including order sΘ + 1 are bounded by S4.

Then, there existsN0, T0 ∈ N+ such that forN > N0, T >

T0, we can take λX ≍ N
−2

sX
dX (logN)

2sX+2

dX and λΘ ≍
T

−2
sΘ
dΘ (log T )

2sΘ+2

dΘ to obtain the following bound∣∣∣I − ÎNKQ

∣∣∣
≤ τ

(
C1N

− sX
dX (logN)

sX+1

dX + C2T
− sΘ

dΘ (log T )
sΘ+1

dΘ

)
,

which holds with probability at least 1− 8e−τ . C1, C2 are
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two constants independent of N,T, τ .

Corollary 1. Suppose all assumptions in Theorem 1 hold.

If we set N = Õ(∆
− dX

sX ) and T = Õ(∆
− dΘ

sΘ ), then N ×
T = Õ(∆

− dX
sX

− dΘ
sΘ ) samples are sufficient to guarantee

that |I − ÎNKQ| ≤ ∆ holds with high probability.

To prove these results, we can decompose |I − ÎNKQ|
into the sum of stage I and stage II errors, which can

be bounded by terms of order N− sX
dX (logN)

sX+1

dX and

T
− sΘ

dΘ (log T )
sΘ+1

dΘ respectively; see Appendix C. Interest-
ingly, note that the stage II error does not suffer from the
fact that we are using noisy observations F̂KQ(θ1:T ) and
we maintain the standard KQ rate up to logarithm terms
(see Remark 4.1). We emphasize that our bound indicates
that the tail of |I− ÎNKQ| is sub-exponential. This contrasts
with existing work on Monte Carlo methods, which only
provides upper bounds on the expectation of error with no
constraints on its tails (Giles, 2015; Bartuska et al., 2023).

We now briefly discuss our assumptions. Assumption (1) is
mild and allows L2(Pθ) (resp. L2(Q)) to be norm equiva-
lent toL2(X ) (resp. L2(Θ)), which is widely used in statis-
tical learning theory that involves Sobolev spaces (Fischer
and Steinwart, 2020; Suzuki and Nitanda, 2021). Since
our proof essentially translates quadrature error into gen-
eralization error of kernel ridge regression, Assumptions
(2), (3), (4) ensure that functions f, g and the density p
have enough regularity so that the regression targets in both
stage I and stage II belong to the correct Sobolev spaces.
These are more restrictive, but are essential to obtain our
fast rate and are common assumptions in the KQ literature.
Assumptions (2), (3), (4) can be relaxed if mis-specification
is allowed; see e.g. Fischer and Steinwart (2020); Kana-
gawa et al. (2023); Zhang et al. (2023). Theorem 1 shows
that for NKQ to have a fast convergence rate, one ought
to use Sobolev kernels which are as smooth as possible in
both stages. Furthermore, when sX = sΘ = ∞ (e.g. when
the integrand and kernels belong to Gaussian RKHSs), our
proof could be modified to show an exponential rate of con-
vergence in a similar fashion as Briol (2018, Theorem 10)
or Karvonen et al. (2020).

Remark 4.1 (Noisy observations in Stage II of
NKQ). Note that NKQ employs noisy observations
{θt, F̂KQ(θt)}Tt=1 in stage II KQ rather than the ground
truth observations {θt, F (θt)}Tt=1. Although Cai et al.
(2023) establishes that KQ with noisy observations
converges at a slower rate than KQ with noiseless obser-
vations, a key distinction in our setting is that, as shown
in (C.30), the observation noise in stage II KQ is of order
Õ(N

− sX
dX ), whereas the noise in Cai et al. (2023) remains

at a constant level. As a result, we can still use KQ in
stage II as if the observations {F̂KQ(θt)}Tt=1 are noiseless,
and the additional error it introduces happens to be of the

Method Cost

NMC O(∆−3) or O(∆−4)

NQMC O(∆−2.5)

MLMC O(∆−2)

NKQ (Corollary 1) Õ
(
∆

− dX
sX

− dΘ
sΘ

)
Table 1. Cost of methods for nested expectations, measured
through the number of function evaluations required to ensure
|I − Î| ≤ ∆. NMC rate is taken from Theorem 3 of Rain-
forth et al. (2018), NQMC rate is taken from Proposition 4 of Bar-
tuska et al. (2023), MLMC rate is taken from Section 3.1 of Giles
(2018). Smaller exponents r in ∆−r indicate a cheaper method.

same order as the stage I error Õ(N
− sX

dX ) and is therefore
subsumed by it.

Remark 4.2 (Convergence rate for CKQ). For the CKQ es-
timator ĴCKQ (defined in (10)) that approximates the para-
metric / conditional expectation J(θ) uniformly over all
θ ∈ Θ, the error can be upper bounded in the same way as
NKQ. The stage I error and can be shown to be Õ(N

− sX
dX )

using the same analysis from (C.13) to (C.16); and the
stage II error and can be shown to be Õ(T

− sΘ
dΘ ) using the

same analysis from (C.18) to (C.34). Combining the two er-
ror terms, we have ∥J−ĴCKQ∥L2(Q) = Õ(N

− sX
dX +T

− sΘ
dΘ )

holds with probability at least 1− 8e−τ . The rate is better
than the best known rate O(N

− sX
dX +T− 1

4 ) of CBQ proved
in Theorem 1 of (Chen et al., 2024b) since sΘ

dΘ
> 1

2 >
1
4 .

The intuition behind the faster rate is that CKQ benefits
from the extra flexibility of choose regularization parame-
ters λX , λΘ; while CBQ, as a two stage Gaussian Process
based approach, is limited to choose λΘ equal to the het-
eroskedastic noise from the first stage. It may be possible
to modify the proof of (Chen et al., 2024b) to improve the
rate further, but this has not been explored to date.

In Table 1, we compare the cost of all methods evaluated by
the number of evaluations required to ensure |Î − I| ≤ ∆.
We can see that NKQ is the only method that explicitly
exploits the smoothness of g, p, f in the problem so that it
outperforms all other methods when dX

sX
+ dΘ

sΘ
< 2.

Remark 4.3 (Combine NKQ with MLMC and QMC). We
have previously mentioned that KQ could potentially be
combined with other algorithms to further improve effi-
ciency, and studied this for both MLMC and QMC. For
the former (i.e. NKQ+MLMC), we derived a new method
called multi-level NKQ (MLKQ), which closely related to
multilevel BQ algorithm of Li et al. (2023) and for which

we were able to prove a rate of Õ(∆
−1− dX

2sX
− dΘ

2sΘ ). Sim-
ilarly to NKQ, when dX

sX
+ dΘ

sΘ
< 2, the rate for MLKQ

6
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is faster than that of NMC, NQMC and MLMC. However,
the rate we managed to prove is slower than that for NKQ,
and a slower convergence was also observed empirically
(see Figure 6). We speculate that the worse performance is
caused by the accumulation of bias from the KQ estimators
at each level. See Appendix D.2 for details.

We also consider combining NKQ and QMC. In this case,
we expect the same rate as in Theorem 1 can be recovered
by resorting to the fill distance technique in scatter data
approximation (Wendland, 2004). This is confirmed em-
pirically in Section 5, where we observe that using QMC
points can achieve similar or even better performance than
NKQ with i.i.d. samples.

5. Experiments
We now illustrate NKQ over a range of applications, in-
cluding some where the theory does not hold but where
we still observe significant gains in accuracy. The code
to reproduce all experiments is available at https://
github.com/hudsonchen/nest kq.

Synthetic Experiment We start by verifying the bound
in Theorem 1 using the following synthetic example: Q =
U[0, 1], Pθ = U[0, 1], g(x, θ) = x

5
2 + θ

5
2 , and f(z) = z2,

in which case I = 0.4115 can be computed analytically.
We estimate I with i.i.d. samples θ1:T ∼ U[0, 1] and i.i.d.
samples x(t)1:N ∼ U[0, 1] for t ∈ {1, . . . , T}. The assump-
tions from Theorem 1 are satisfied with sX = sΘ = 2 and
dX = dΘ = 1 (see Appendix F.2). Therefore, to reach the
absolute error threshold ∆, we choose N = T = ∆−0.5

for NKQ following Corollary 1. On the other hand, based
on Theorem 3 of Rainforth et al. (2018), the optimal way of
assigning samples for NMC is to chooseN =

√
T = ∆−1.

In Figure 2 Top, we see that the optimal choice of N and
T suggested by the theory indeed results in a faster rate of
convergence for both NMC and NKQ. For this synthetic
problem, we confirm that both the theoretical rates of NKQ
(Cost = ∆−1) and NMC (Cost = ∆−3) from Theorem 1
and Rainforth et al. (2018, Theorem 3) are indeed realized.
We also adapt the synthetic problem to higher dimensions
(dX = dΘ = d) in (F.42) and observe in Figure 2 Bottom
that the performance gap between NKQ and NMC closes
down as dimension grows. Such behaviour is expected be-

cause the cost of NKQ is Õ(∆
− dX

sX
− dΘ

sΘ ) and therefore de-
grades as the dimensions dX and dΘ increase; whilst the
cost of NMC remains the same.

We also conduct ablation studies, which are reserved for
Figure 5 in the appendix. In the left-most plot, we see that
the result are not too sensitive to λ0, although very large
values decrease accuracy whilst very small values cause
numerical issues. In the middle plot, we see that selecting

102 103 104 105 106

Cost= N × T

10−5

10−3

10−1

∆
=
|I
−
Î
|

Synthetic Experiment

NMC (N = T )

NKQ (N = T )

NMC (N =
√
T )

NKQ (N =
√
T )

102 103 104 105 106

Cost

10−6

10−4

10−2

100

∆
=
|I
−
Î
|

d = 1 d = 10 d = 20

Figure 2. Synthetic experiment. Top: Verification of theoretical
results. The thin grey lines are theoretical rates of ∆ = Cost−1

and ∆ = Cost−1/3. Bottom: Comparison of NKQ and NMC as
dimension d increases. Results are averaged over 1000 indepen-
dent runs, while shaded regions give the 25%-75% quantiles.

the kernel lengthscale using the median heuristic provides
very good performance. In the right-most plot, we see that
NKQ with Matérn- 32 kernels outperforms Matérn- 12 kernel,
indicating practitioners should use Sobolev kernels with the
highest order of smoothness permissible by Theorem 1.

Risk Management in Finance We now move beyond
synthetic examples, starting in finance. Financial in-
stitutions often face the challenge of estimating the ex-
pected loss of their portfolios in the presence of poten-
tial economic shocks, which amounts to numerically solv-
ing stochastic differential equations (SDEs) over long time
horizons (Achdou and Pironneau, 2005). Given the high
cost of such simulations, data-efficient methods like NKQ
are particularly desirable.

Suppose a shock occurs at time η and alters the price of an
asset by a factor of 1 + s for some s ≥ 0. Conditioned
on the asset price S(η) = θ at the time of shock, the loss
of an option associated with that asset at maturity ζ with
price S(ζ) = x can be expressed as J(θ) = EX∼Pθ

[g(X)],
where g(x) = ψ(x) − ψ((1 + s)x) measures the shortfall
in option payoff and the distribution Pθ is induced by the
price of the asset which is described by the Black-Scholes
formula. The payoff function we consider is that of a but-
terfly call option: ψ(x) = max(x − K1, 0) + max(x −
K2, 0) − 2max(x − (K1 + K2)/2, 0) for K1,K2 ≥ 0.
Since we incur a loss only if the final shortfall is positive,
the expected loss of the option at maturity can be expressed
as I = Eθ∼Q[max(EX∼Pθ

[g(X)], 0)]. Under this setting,
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NKQ (QMC)
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|
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Cost

101
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Health Economics

Figure 3. Top: Financial risk management. Bottom: Health eco-
nomics. Results are averaged over 100 independent runs, while
shaded regions give the 25%-75% quantiles.

dΘ = dX = 1 and I = 3.077 can be computed analytically.

In this experiment, Assumptions (2)(3) are satisfied with
sΘ = sX = 1, but the max function is not in C2(R) which
violates Assumption (4) (see Appendix F.3). Nevertheless,
we still run NKQ with kX and kΘ being Matérn- 12 kernels
and choose N = T = ∆−1 for NKQ following Corol-
lary 1. For NMC, we follow Gordy and Juneja (2010) and
choose N =

√
T = ∆−1. For MLMC, we use L = 5 lev-

els and allocate samples at each level following Giles and
Goda (2019).

In Figure 3 Top, we present the mean absolute error of
NKQ, NMC and MLMC with increasing cost. We see that
NKQ outperforms both NMC and MLMC as expected. For
each method, we obtain the empirical rate r by linear re-
gression in log-log space, and compare this against the the-
oretical rate in Table 1. For NMC, our estimate of r̂ = 2.97
matches theory (r = 3), but when using QMC samples in-
stead, our estimate of r̂ = 2.74 shows we under-perform
compared to the theoretical rate (r = 2.5). This is likely
because the domains are unbounded and the measures are
not uniform, breaking key assumptions. Finally, for NKQ,
we obtain r̂ = 1.90 for i.i.d samples and r̂ = 1.91 for
QMC samples which match (and even slightly outperform)
the theoretical rate (r = 2).

Value of Information for Healthcare Decision Making
In medical decision-making, a key metric to evaluate the
cost-benefit trade-off of conducting additional tests on pa-
tients is the expected value of partial perfect information
(EVPPI) (Brennan et al., 2007; Heath et al., 2017). For-
mally, let gc denote the patient outcome (such as quality-

adjusted life-years) under treatment c in a set of possible
treatments C, and θ represent the additional variables that
may be measured. Then, Jc(θ) = EX∼Pθ

[gc(X, θ)] repre-
sents the expected patient outcome given the measurement
of θ. The EVPPI is defined as I = I1 − maxc∈C(I2,c),
where I1 = Eθ∼Q [maxc∈C Jc(θ)] and I2,c = Eθ∼Q [Jc(θ)]
and therefore I consists of |C|+ 1 nested expectations.

We follow Section 4.2 of Giles and Goda (2019),
where both Pθ and Q are Gaussians, and g1(x, θ) =
104(θ1x5x6 + x7x8x9) − (x1 + x2x3x4) and g2(x, θ) =
104(θ2x13x14 + x15x16x17)− (x10 + x11x12x4). The ex-
act practical meanings of each dimension of x and θ can
be found in Appendix F.4, but includes quantities such as
‘cost of treatment’ and ‘duration of side effects’. Here we
have dX = 17 and dΘ = 2, the former being relatively high
dimensional. The ground truth EVPPI under this setting is
I = 538 provided in Giles and Goda (2019).

For estimating both I1 and I2,c, Assumptions (2)(3) are sat-
isfied with infinite smoothness sX = sΘ = ∞, but the max
function in I1 is only in C0(R) which violates Assump-
tion (4). As a result, for estimating I1 we take kX to be
a Gaussian kernel and kΘ to be Matérn- 12 kernel (so as to
be conservative about the smoothness in θ). For estimating
I2,c, we select both kX and kΘ to be Gaussian kernels. For
NKQ, we choose N = T = ∆−1 whereas for NMC, we
chooseN =

√
T = ∆−1. For MLMC, we useL = 5 levels

and allocate the samples at each level following Giles and
Goda (2019). We run NKQ and NMC with both i.i.d. sam-
ples and QMC samples. In Figure 3 Bottom, we present
the mean absolute error of NKQ, NMC and MLMC with
increasing cost. We can see that NKQ consistently outper-
forms other baselines.

Bayesian Optimization We conclude with an applica-
tion in Bayesian optimization. Typical acquisition func-
tions are greedy approaches that maximize the immediate
reward, while look-ahead acquisition functions optimize
accumulated reward over a planning horizon, which results
in reduced number of required function evaluations (Gins-
bourger and Le Riche, 2010; González et al., 2016; Wu and
Frazier, 2019; Yang et al., 2024). The utility of a two-step
look ahead acquisition functions can be written as the fol-
lowing nested expectation.

α(z;D) := Ef|D

[
g(f|D, z) + max

z′
Ef|D′

[
g
(
f|D′ , z′

)]]
,

where f|D, f|D′ are the posterior distributions given data D
and D′ := D ∪ (z, f|D(z)). In this experiment, the prior
is a Gaussian process with zero mean and Matérn-0.5 co-
variance so the posterior f|D remain a Gaussian process.
The initial starting data D0 consists of 2 points sampled
uniformly from a prespecified interval. Here, g is the re-
ward function and we use q-expected improvement (Wang
et al., 2020) with q = 2 so z = (z1, z2) and g(f|D, z) =

8
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Figure 4. Bayesian optimization with look ahead acquisition function. The plots are NMSE against accumulative wall clock time. Results
are averaged over 100 independent runs, while shaded regions give the 25%-75% quantiles.

maxj=1,2(f|D(zj) − rmax), 0). The constant rmax is the
maximum reward obtained from previous queries. Al-
though f|D (resp. f|D′ ) is a Gaussian process, we only
ever consider its evaluation on z (resp. z′), and we there-
fore only have to integrate against two-dimensional Gaus-
sians. Notationally speaking, f|D′(z1, z2) correspond to x
and f|D(z1, z2) correspond to θ in (1) (i.e. dX = dΘ = 2),
but we use the notation of f|D′ , f|D to stay consistent with
the GP literature. As a result of the max operation, sX = 1
but we do not have sufficient smoothness in Θ.

We benchmark NKQ, NMC and MLMC on three synthetic
tasks from BoTorch (Balandat et al., 2020). For NKQ,
both kX and kΘ are Matérn- 12 kernels since we want to
be conservative about the smoothness. Although both Q
and Pθ are Gaussian so closed-form KMEs are available,
we use the “change of variable trick” which maps Gaus-
sian distributions to two uniform distributions over [0, 1]d

(see Appendix F.5) to reduce the computational complexity
of NKQ to O(T × N). To reach a specific error threshold
∆ = 0.01, following Table 1, we choose N = T = ∆−2

for NMC and N = T = ∆−1 for NKQ. For MLMC, we
use the same code as Yang et al. (2024). The normalized

mean squared error (NMSE) ∥maxz∈DS fBB(z)−fBB(z
∗)∥2

∥maxz∈D0
fBB(z)−fBB(z∗)∥2 is

used as performance metric, where D0 (resp. DS ) is
queried data at initialization (resp. after S iterations), fBB
is the black box function to be optimized and fBB(z

∗) is the
maximum reward.

In Figure 4, we compare the efficiency of each method
by plotting their NMSE against cumulative computational
time in wall clock. We can see that NKQ achieves the
lowest NMSE among all methods under a fixed amount of
computational time in all three datasets, even though the
assumptions of Theorem 1 are not all satisfied. Since the
Dropwave, Ackley, and Cosine8 functions are syn-
thetic and computationally cheap (see Appendix F.5), we
expect the advantages of NKQ to be more pronounced for
Bayesian optimization on real-world expensive problems.
Furthermore, many other utility functions in Bayesian
optimization—such as predictive entropy search—involve
nested expectations (Balandat et al., 2020). We leave the
empirical evaluation of NKQ on these utility functions to

future work.

6. Conclusion
This paper introduces a novel estimator for nested expec-
tations based on kernel quadrature. We prove in Theo-
rem 1 that our method has a faster rate of convergence than
existing methods provided that the problem has sufficient
smoothness. This theoretical result is consistent with the
empirical evidence in several numerical experiments. Ad-
ditionally, even when the problem is not as smooth as the
theory requires, NKQ can still outperform baseline meth-
ods potentially due to the use of non-equal weights.

Following our work, there remain a number of interest-
ing future problems and we now highlight two main ones.
Firstly, we propose a combination of KQ and MLMC that
we call MLKQ in Appendix D.2. However, we believe our
current theoretical rate for MLKQ is sub-optimal due to the
sub-optimal allocation of samples at each level. Further
work will therefore be needed to determine whether this is
a viable approach in some cases. Secondly, for applica-
tions where function evaluations are extremely expensive,
NKQ could be extended to its Bayesian counterpart. This
would allow us to use the finite sample uncertainty quan-
tification for adaptive selection of samples, which could
further improve performance. Finally, establishing mini-
max lower bounds for nested expectation remains an open
and compelling problem. The main difficulty lies in its
two-stage structure. To the best of our knowledge, exist-
ing minimax lower bounds for two-stage problem typically
reduce the problem to a one-stage problem before deriving
the bound; see, for example, Chen and Reiss (2011, Chap-
ter 3), Meunier et al. (2024, Appendix F.1), and Zhang et al.
(2025). However, it remains unclear how to directly estab-
lish meaningful minimax lower bounds of genuinely two-
stage problems, such as our nested expectation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Additional notations For two normed vector spacesA,B,A ∼= B means thatA andB are norm equivalent, i.e. their sets
coincide and the corresponding norms are equivalent. In other words, there are constants c1, c2 > 0 such that c1∥h∥A ≤
∥h∥B ≤ c2∥h∥A holds for all h ∈ A, written as ∥ · ∥A ∼= ∥ · ∥B . For A ⊆ B, A is said to be continuously embedded in B
if the inclusion map between them is continuous, written as A ↪→ B. ∥T∥ denotes the norm of an operator T : A → B.
For a function f : X ⊆ Rd → R and α ∈ Nd, we use ∂αx f to denote the standard derivative ∂xα1

1 · · · ∂xαn
n f and Dα

xf to
denote the weak derivative. For f ∈ W s

2 (X ), we use ∥f∥s,2 := ∥f∥W s
2 (X ) to denote its Sobolev space norm. ≲ means ≤

up to some positive multiplicative constants.

A. Existing Results on Kernel Ridge Regression
In this section, we present Proposition 1 to 3 which are adaptation of theorems from Fischer and Steinwart (2020) applied
to Sobolev spaces. These propositions are foundations of the proof of Theorem 1 in Appendix C.

In the standard regression setting, we are given N observations {xi, yi}Ni=1 which are i.i.d sampled from an unknown
joint distribution P on X × R. Here, X ⊂ Rd is a compact domain. The marginal distribution of P on X is π, and the
conditional distribution P(· | x) satisfies the Bernstein moment condition (Fischer and Steinwart, 2020). In other words,
there exists constants σ, L > 0 independent of x such that∫

R
|y − h∗(x)|m P(dy | x) ≤ 1

2
m!σ2Lm−2 (A.1)

is satisfied for π-almost all x ∈ X and all m ≥ 2. For example, (A.1) is satisfied with σ = L = σ0 when P(· | x)
is a Gaussian distribution with bounded variance σ0. Additionally, (A.1) is also satisfied when there is no noise in the
observation so σ = L = 0, which will be discussed in Appendix B.

In a regression problem, the target of interest is the Bayes predictor h∗ : X → R, x 7→ E[Y | X = x]. One way of
estimating h∗ is through kernel ridge regression (Fischer and Steinwart, 2020): given a reproducing kernel k : X ×X → R,
the kernel ridge regression estimator ĥλ : X → R is defined as the solution to the following optimization problem (λ > 0):

ĥλ = argmin
h∈Hk

{
λ∥h∥2Hk

+
1

N

N∑
i=1

(yi − h(xi))
2

}
. (A.2)

Hk is the reproducing kernel Hilbert space (RKHS) associated with a kernel k. Fortunately, it has the following closed-form
expression (Gretton, 2013, Section 7)

ĥλ = k(·, x1:N ) (k(x1:N , x1:N ) +NλIN )
−1
y1:N .

We also introduce an auxiliary function hλ : X → Y which is the solution to another optimization problem:

hλ = argmin
f∈Hk

{
λ∥f∥2H +

∫
X×R

(y − f(x))2P(dx, dy)

}
. (A.3)

In regression setting, it is of interest to study the generalization error between the estimator ĥλ and the Bayes optimal
predictor h∗, ∥ĥλ − h∗∥L2(π), and particularly its asymptotic rate of convergence towards 0 as the number of samples N
tend to infinity. The generalization error can be decomposed into two terms, through a triangular inequality,

∥ĥλ − h∗∥L2(π) ≤ ∥ĥλ − hλ∥L2(π) + ∥hλ − h∗∥L2(π)
, (A.4)

where the first term ∥ĥλ − hλ∥L2(π) is known as the estimation error and the second term ∥hλ − h∗∥L2(π)
is known as the

approximation error. Next, we are going to present propositions that study these two terms separately under the following
list of conditions.

(S1) k is a Sobolev reproducing kernel of smoothness s > d
2 .

(S2) π is a probability measure on X with density p : X → R. There exist positive constants G0, G1 such that G0 ≤
p(x) ≤ G1 for any x ∈ X .

(S3) The Bayes predictor h∗ ∈W s
2 (X ).

(S4) There exists universal constants σ, L > 0 such that (A.1) holds.
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Proposition 1 (Approximation error). Under Assumptions (S1)-(S4),

∥hλ − h∗∥L2(π)
≤ ∥h∗∥s,2 λ

1
2 .

Proof. This is direct application of Lemma 14 of (Fischer and Steinwart, 2020) with β = 1 and γ = 0.

Proposition 2 (Estimation error). Suppose Assumptions (S1)-(S4) hold. Let N (λ) be the effective dimension defined in
Lemma 1, and kα be defined in Lemma 2. If N > Aλ,τ , then with probability at least 1− 4e−τ ,

∥hλ − ĥλ∥2L2(π)
≤ 576τ2

N

(
L2Dλ−

d
2s +M2λ1−

d
2s ∥h∗∥2s,2 +M2L

2
λ

N
λ−

d
2s

)
, (A.5)

where D and M are constants independent of N , and gλ, Aλ,τ , Lλ are defined as follows

gλ := log

(
2eN (λ)

∥Σπ∥+ λ

∥Σπ∥

)
, Aλ,τ := 8k2ατgλλ

− d
2s , Lλ := max

{
L, λ

1
2−

d
4s

(
∥h∗∥L∞(π) + kα∥h∗∥s,2

)}
.

Proof. This proposition is a special case of Theorem 16 in Fischer and Steinwart (2020) under the following adaptations
towards our Sobolev space setting: 1) Lemma 1 proves that N (λ) ≤ Dλ−

d
2s and Lemma 2 proves that kα ≤ M for

α = d
2s . 2) ∥h∗−hλ∥L∞(π) is upper bounded by λ

1
2−

d
4s

(
∥h∗∥L∞(π) + kα∥h∗∥s,2

)
proved in Corollary 15 of Fischer and

Steinwart (2020). ∥Σπ∥ is the norm of the covariance operator defined in (E.40).

Proposition 3. Suppose Assumptions (S1)-(S4) hold. For Aλ,τ and Lλ defined above in Proposition 2, if N > Aλ,τ , then
with probability at least 1− 4e−τ ,∥∥∥ĥλ − h∗

∥∥∥2
L2(π)

≤ 576τ2

N

(
L2Dλ−

d
2s +M2λ1−

d
2s ∥h∗∥2s,2 + 2M2L

2
λ

N
λ−

d
2s

)
+ ∥h∗∥2s,2 λ.

Proof. By the triangle inequality in (A.4), combining Proposition 1 and Proposition 2 finishes the proof.

B. Noiseless Kernel Ridge Regression (Kernel Quadrature)

In this section, we present the upper bound on the generalization error ∥h∗ − ĥλ∥L2(π) in Proposition 3 adapted to the
noiseless regression setting, which will be employed in the proof of Theorem 1 in the next section. Our proof follows the
outline of the proof for Theorem 1 in (Fischer and Steinwart, 2020), modified for our choice of regularization parameter λ.
Note that this section is of independent interest to some readers as it presents the first standalone proof on the convergence
rate of kernel quadrature that 1): it allows positive regularization parameter λ > 0 and 2): it provides convergence in
high probability rather than in expectation. The closely-related work is Bach (2017) which requires i.i.d samples from an
intractable distribution; and Long et al. (2024) which provides a more general analysis on noiseless kernel ridge regression
in both well-specified and mis-specified setting.

Suppose we have N observations x1:N which are i.i.d sampled from an unknown distribution π on X along with N
noiseless function evaluations h∗(x1:N ) where h∗ : X ⊂ Rd → R. The setting appears for instance when the measurement
of the output values is very accurate, or when the output values are obtained as a result of computer experiments.
Proposition 4. Let X ⊂ Rd be compact, and x1:N be N i.i.d. samples from π. Define ĥλN

(·) :=

k(·, x1:N ) (k(x1:N , x1:N ) +NλNIN )
−1
h∗(x1:N ), and suppose conditions (S1)-(S4) are satisfied. Then, if λN ≍

N− 2s
d (logN)

2s+2
d , there exists an N0 > 0 such that for all N > N0,

∥h∗ − ĥλN
∥L2(π) ≤ CτN− s

d (logN)
s+1
d ∥h∗∥s,2 (B.6)

holds with probability at least 1− 4e−τ , for a constant C = C(X , G0, G1) that only depends on X , G0, G1.

Proof. Notice that ĥλN
is precisely the solution to the optimization problem defined in (A.2) only with yi replaced by

h∗(xi). Similarly, we define hλN
as the solution to the optimization problem defined in (A.3) only with y replaced by

h∗(x). Note that Assumption (S4) is instantly satisfied with L = 0.

Similar to the proof of Proposition 3, we decompose the generalization error into an estimation error term ∥hλN
−

ĥλN
∥L2(π) and an approximation error term ∥hλN

− h∗∥L2(π).
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Approximation error Take λN ≍ N− 2s
d (logN)

2s+2
d , then from Proposition 1, we have

∥hλN
− h∗∥L2(π)

≤ λ
1
2

N∥h∗∥s,2 ≍ N− s
d (logN)

s+1
d ∥h∗∥s,2.

Estimation error Recall all the constants gλN
, AλN ,τ and LλN

defined in Proposition 2. Since L = 0, we know the

constant LλN
= λ

1
2−

d
4s

N

(
∥h∗∥L∞(π) + kα∥h∗∥s,2

)
. In order to apply Proposition 2, we need to check there indeed exists

N0 such that N ≥ AλN ,τ is satisfied for all N ≥ N0. To this end, we are going to verify that limN→∞AλN ,τ/N → 0.
Notice that

lim
N→∞

AλN ,τ

N
=

8k2ατgλN
λ
− d

2s

N

N
= 8(logN)−

s+1
s k2ατ log

(
2eN (λN )

∥Σπ∥+ λN
∥Σπ∥

)
where N (λN ) and k2α are defined in Lemma 1 and Lemma 2. Since limN→∞ λN = limN→∞N− 2s

d (logN)
2s+2

d = 0,
there exists N ′ such that λN ≤ ∥Σπ∥ for all N ≥ N ′. Therefore, as N tends to infinity,

lim
N→∞

AλN ,τ

N
≤ lim

N→∞
8(logN)−

s+1
s k2ατ log (4eN (λN ))

≤ lim
N→∞

8(logN)−
s+1
s k2ατ log

(
4eDλ

− d
2s

N

)
= lim

N→∞
8(logN)−

s+1
s k2ατ log (4eD) + lim

N→∞
8(logN)−

s+1
s k2ατ log

(
N(logN)−

s+1
s

)
≤ lim

N→∞
16(logN)−

s+1
s k2ατ log (N)

= 0,

(B.7)

where M and D are constants defined in Lemma 1 and Lemma 2. So there exists N ′′ such that N ≥ AλN ,τ for all
N ≥ N ′′. Taking N0 = max{N ′, N ′′}, then we have N ≥ AλN ,τ for all N ≥ N0. From Proposition 2, we know that
with probability at least 1− 4e−τ ,

∥hλN
− ĥλN

∥2L2(π)
≤ 576τ2

N

(
M2λ

1− d
2s

N ∥h∗∥2s,2 +M2λ
1− d

2s

N

(
∥h∗∥L∞(π) +M∥h∗∥s,2

)2 1

N
λ
− d

2s

N

)
≍ 576τ2

N

(
M2N1− 2s

d (logN)
s+1
s

2s−d
d ∥h∗∥2s,2 +M2

(
∥h∗∥L∞(π) +M∥h∗∥s,2

)2
N1− 2s

d (logN)
s+1
2s

4s−d
d

)
≤ 576τ2N− 2s

d (logN)
2s+2

d

(
M2 ∥h∗∥2s,2 +M2

(
∥h∗∥L∞(π) +M∥h∗∥s,2

)2)
.

So we have, with probability at least 1− 4e−τ ,

∥hλN
− ĥλN

∥L2(π) ≤ 24τN− s
d (logN)

s+1
d

(
(M +M2) ∥h∗∥s,2 +M∥h∗∥L∞(π)

)
.

Combine approximation and estimation error Combining the above two inequalities on approximation error ∥hλN
−

h∗∥L2(π) and estimation error ∥hλN
− ĥλN

∥L2(π), we have with probability at least 1− 4e−τ ,

∥h∗ − ĥλN
∥L2(π) ≤ 24τN− s

d (logN)
s+1
d

(
(1 +M +M2) ∥h∗∥s,2 +M∥h∗∥L∞(π)

)
.

Finally, following the arguments of Lemma 2 that the operator norm of W s
2 (X ) ↪→ L∞(X ) is bounded, we have

∥h∗∥L∞(π) ≤ R ∥h∗∥s,2 where R is a constant that depends on X , G0, G1. With probability at least 1− 4e−τ ,

∥h∗ − ĥλN
∥L2(π) ≤ 24τN− s

d (logN)
s+1
d (1 + (1 +R)M +M2) ∥h∗∥s,2 = CτN− s

d (logN)
s+1
d ∥h∗∥s,2,

for C := 24(1 + (1 +R)M +M2), which concludes the proof.

Corollary 2. Let X be a compact domain in Rd and x1:N are N i.i.d samples from π. ÎKQ :=

EX∼π[k(X,x1:N )] (k(x1:N , x1:N ) +NλNIN )
−1
h∗(x1:N ) is the KQ estimator defined in (5). Suppose conditions (A1)-

(A3) are satisfied. Take λN ≍ N− 2s
d (logN)

2s+2
d , then there exists N0 > 0 such that for N > N0,∣∣∣∣ÎKQ −
∫
X
h∗(x)dπ(x)

∣∣∣∣ ≤ CτN− s
d (logN)

s+1
d (B.8)

holds with probability at least 1− 4e−τ . Here C is a constant that is independent of N .

18



Nested Expectations with Kernel Quadrature

The proof of Corollary 2 is a direct application of Proposition 4 after observing the following.∣∣∣∣ÎKQ −
∫
h∗(x)dπ(x)

∣∣∣∣ ≤ ∫
X

∣∣∣ĥλN
(x)− h∗(x)

∣∣∣ dπ(x) = ∥h∗ − ĥλN
∥L1(π) ≤ ∥h∗ − ĥλN

∥L2(π).

Remark B.1. We prove in Proposition 4 that the generalization error of ĥλN
in noiseless regression setting is Õ(N− s

d ),
which is faster than the minimax optimal rate O(N− s

2s+d ) in standard regression setting. The fast rate is expected because
we are in the noiseless regime so “overfitting” is not a problem — hence our choice of regularization parameter λN ≍
N− 2s

d (logN)
2s+2

d decays to 0 at a faster rate than λN ≍ N− 2s
2s+d in standard kernel ridge regression (Fischer and

Steinwart, 2020, Corollary 5). The Õ(N− s
d ) rate is also optimal (up to logarithm terms) and cannot be further improved

because it matches the lower bound of interpolation (Sections 1.3.11 and 1.3.1 of Novak (2006), Section 1.2, Chapter V of
Ritter (2000)).

Remark B.2 (Comparison to existing upper bound of kernel (Bayesian) quadrature). The upper bound in Corollary 2
matches existing analysis based on scattered data approximation in the literature of both kernel quadrature and Bayesian
quadrature (Sommariva and Vianello, 2006; Briol et al., 2019; Wynne et al., 2021) and is known to be minimax opti-
mal (Novak, 2016; 2006). Existing analysis takes λ = 0 and requires the Gram matrix k(x1:N , x1:N ) to be invertible,
in contrast, our result allows a positive regularization parameter λN ≍ N− 2s

d (logN)
2s+2

d which improves numerical
stability of matrix inversion in practice. One closely-related work is Bach (2017), but it requires i.i.d samples from an
intractable distribution.

C. Proof of Theorem 1
Remark C.1. In this section, we use p(x; θ) to denote the density pθ(x) so that we can use p(x; ·) to denote the mapping
θ 7→ pθ(x). Although we introduce a shorthand notation of kernel mean embedding in the main text, µπ = EX∼π[k(X, ·)],
in this section we are going to write it out with its explicit formulation.

For any θ ∈ Θ, F̂KQ : Θ → R and ĴKQ : Θ → R are two functions that generalize the definition of F̂KQ(θt) and ĴKQ(θt)

in (7) to all θ ∈ Θ. To be more specific, for any θ ∈ Θ, given samples x(θ)1:N :=
[
x
(θ)
1 , . . . , x

(θ)
N

]⊤
consisting of N i.i.d.

samples from Pθ,

ĴKQ(θ;x
(θ)
1:N ) :=

(∫
X
kX (x, x

(θ)
1:N )dPθ(x)

)(
kX (x

(θ)
1:N , x

(θ)
1:N ) +NλXIN

)−1

g(x
(θ)
1:N , θ), (C.9)

F̂KQ(θ;x
(θ)
1:N ) := f(ĴKQ(θ;x

(θ)
1:N )), (C.10)

where we explicitly specify the dependence of samples x(θ)1:N on θ in the above two equations. Next, we define

J̄KQ(θ) := E
x
(θ)
1:N∼Pθ

[
ĴKQ(θ;x

(θ)
1:N )

]
=

∫
ĴKQ(θ;x1:N )

N∏
i=1

p(xi; θ)dx1:N ,

F̄KQ(θ) := E
x
(θ)
1:N∼Pθ

[
F̂KQ(θ;x

(θ)
1:N )

]
=

∫
F̂KQ(θ;x1:N )

N∏
i=1

p(xi; θ)dx1:N ,

(C.11)

which marginalize out the dependence on samples x(θ)1:N . We can see that J̄KQ ∈ L2(Q) since g(x, ·) ∈ W sΘ
2 (Θ) ⊂

L2(Θ) ∼= L2(Q) from Assumption (1) and (3); and p(xi; ·) ∈ L2(Q). Also F̄KQ ∈ L2(Q) because f is Lipschitz
continuous from Assumption (4). Therefore, the absolute error |I − ÎNKQ| can be decomposed as follows:∣∣∣I − ÎNKQ

∣∣∣
=

∣∣∣∣∫
Θ

F (θ)q(θ)dθ −
(∫

Θ

kΘ(θ, θ1:T )q(θ)dθ

)
(kΘ(θ1:T , θ1:T ) + TλΘIT )

−1
F̂KQ(θ1:T )

∣∣∣∣
≤
∣∣∣∣∫

Θ

F (θ)q(θ)dθ −
∫
Θ

F̄KQ(θ)q(θ)dθ

∣∣∣∣
+

∣∣∣∣∫
Θ

F̄KQ(θ)q(θ)dθ −
(∫

Θ

kΘ(θ, θ1:T )q(θ)dθ

)
(kΘ(θ1:T , θ1:T ) + TλΘIT )

−1
F̂KQ(θ1:T )

∣∣∣∣
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≤ Eθ∼Q
[∣∣F (θ)− F̄KQ(θ)

∣∣]︸ ︷︷ ︸
Stage I error

+
∥∥∥F̄KQ(·)− k(·, θ1:T )(kΘ(θ1:T , θ1:T ) + TλΘIT )

−1F̂KQ(θ1:T )
∥∥∥
L2(Q)︸ ︷︷ ︸

Stage II error

. (C.12)

The last inequality holds because ∥ · ∥L1(Q) ≤ ∥ · ∥L2(Q). Next, we analyze Stage I error and Stage II error separately.

Stage I Error From Assumption (4), f is Lipschitz continuous and the Lipschitz constant is bounded by S4,∣∣F̄KQ(θ)− F (θ)
∣∣ = ∣∣∣Ex

(θ)
1:N∼Pθ

F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣
≤ E

x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣
≤ S4 Ex

(θ)
1:N∼Pθ

∣∣∣ĴKQ(θ;x
(θ)
1:N )− J(θ)

∣∣∣ , (C.13)

where the first inequality holds by Jensen inequality and the last inequality holds by Lipschitz continuity of f . Define

ĝ(x, θ;x
(θ)
1:N ) = kX (x, x

(θ)
1:N )(kX (x

(θ)
1:N , x

(θ)
1:N ) +NλXIN )−1g(x

(θ)
1:N , θ). (C.14)

Here ĝ(·, θ;x(θ)1:N ) ∈ L2(Pθ) because the Sobolev reproducing kernel kX is bounded and measurable; and g(·, θ) ∈ L2(Pθ)
by Assumption (3). Thus,∣∣∣ĴKQ(θ;x

(θ)
1:N )− J(θ)

∣∣∣ = ∣∣∣∣∫ (ĝ(x, θ;x
(θ)
1:N )− g(x, θ))p(x; θ)dx

∣∣∣∣ ≤ ∥∥∥ĝ(·, θ;x(θ)1:N )− g(·, θ)
∥∥∥
L2(Pθ)

. (C.15)

Based on Assumption (2), g(·, θ) ∈ W sX
2 (X ) for any θ ∈ Θ. Therefore, based on Proposition 4, if one takes λX ,N ≍

N
−2

sX
dX (logN)

2sX+2

dX , then there exists N0 such that for N > N0,∥∥∥ĝ(·, θ;x(θ)1:N )− g(·, θ)
∥∥∥
L2(Pθ)

≤ CτN
− sX

dX (logN)
sX+1

dX ∥g(·, θ)∥sX ,2, (C.16)

holds with probability at least 1− 4e−τ . The probability is taken over the distribution of x(θ)1:N , i.e Pθ. Here C is a constant
independent of N . Hence, with Lemma 4, we have

E
x
(θ)
1:N∼Pθ

∥∥∥ĝ(·, θ;x(θ)1:N )− g(·, θ)
∥∥∥
L2(Pθ)

≤ CN
− sX

dX (logN)
sX+1

dX ∥g(·, θ)∥sX ,2. (C.17)

By plugging the above inequality back into (C.15), we obtain

E
x
(θ)
1:N∼Pθ

∣∣∣ĴKQ(θ;x
(θ)
1:N )− J(θ)

∣∣∣ ≤ CN
− sX

dX (logN)
sX+1

dX ∥g(·, θ)∥sX ,2.

Therefore, the Stage I error can be upper bounded by

Eθ∼Q
∣∣F (θ)− F̄KQ(θ)

∣∣ ≤ S4 Ex
(θ)
1:N∼Pθ

∣∣∣ĴKQ(θ;x
(θ)
1:N )− J(θ)

∣∣∣ ∥g(·, θ)∥sX ,2

≤ S4S1CN
− sX

dX (logN)
sX+1

dX

= C3N
− sX

dX (logN)
sX+1

dX , (C.18)

where C3 := S4S1C is a constant independent of N .

Stage II Error The upper bound on the stage II error is done in five steps. In step one, we prove that ĴKQ(·;x(θ)1:N ) ∈
W sΘ

2 (Θ) given fixed samples x(θ)1:N . In step two, we show that J ∈ W sΘ
2 (Θ). In step three, we upper bound

∥ĴKQ(·;x(θ)1:N )∥sΘ,2 through the triangular inequality that ∥ĴKQ(·;x(θ)1:N )∥sΘ,2 ≤ ∥J∥sΘ,2 + ∥J − ĴKQ(·;x(θ)1:N )∥sΘ,2. In

step four, we upper bound F̄KQ(θ) = E
x
(θ)
1:N

[
f
(
ĴKQ(·;x(θ)1:N )

)]
through marginalizing out the samples x(θ)1:N . In the last

step, we use kernel ridge regression bound proved in Proposition 3 to upper bound the stage II error.
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Step One. In this step, we are going to show that ĴKQ lies in the Sobolev space W sΘ
2 (Θ) given fixed samples x(θ)1:N . Notice

that the dependence of ĴKQ(θ) on θ is through two mappings: θ 7→
∫
X kX (x, x

(θ)
1:N )p(x; θ)dx and θ 7→ g(x

(θ)
1:N , θ). We

are going to show that θ 7→
∫
X kX (x, x

(θ)
i )p(x; θ)dx lies in the Sobolev space W sΘ

2 (Θ) for any i ∈ {1, . . . , N}. To
this end, we are going to demonstrate it possesses weak derivatives up to and including order sΘ that lie in L2(Θ). Take
φ : Θ → R to be any infinitely differentiable function with compact support in Θ (commonly denoted as φ ∈ C∞

c (Θ)),
with its standard, non-weak derivative of order β denoted by ∂βφ. Since θ 7→ p(x; θ) ∈ W sΘ

2 (Θ), for any |β| ≤ sΘ it has
a weak derivative θ 7→ Dβ

θ p(x; θ) ∈ L2(Θ). Then,∫
Θ

φ(θ)

∫
X
kX (x, x

(θ)
i )Dβ

θ p(x; θ)dx
(i)
=

∫
X
kX (x, x

(θ)
i )

∫
Θ

φ(θ)Dβ
θ p(x; θ)dθdx

(ii)
= (−1)|β|

∫
X
kX (x, x

(θ)
i )

∫
Θ

∂βφ(θ)p(x; θ)dθdx
(iii)
= (−1)|β|

∫
Θ

∂βφ(θ)

∫
X
kX (x, x

(θ)
i )p(x; θ)dxdθ.

(C.19)

In the above chain of derivations, we are allowed to swap the integration order in (i) by the Fubini theorem (Rudin, 1964)
because kX is bounded and the fact that θ 7→ φ(θ) ·Dβ

θ p(x; θ) ∈ L1(Θ) since Dβ
θ p(x; ·) ∈ L2(Θ) (Assumption (3)) and

φ ∈ L2(Θ); (ii) holds by definition of weak derivatives for Dβ
θ p(x; θ); and (iii) holds again by the Fubini theorem. By

definition of weak derivatives, (C.19) shows that
∫
X kX (x, x

(θ)
i )p(x; θ)dx has a weak derivative of order β of the form

Dβ
θ

[∫
X
kX (x, x

(θ)
i )p(x; θ)dx

]
=

∫
X
kX (x, x

(θ)
i )Dβ

θ p(x; θ)dx

Also, since kX is bounded and θ 7→ Dβ
θ p(x; θ) ∈ L2(Θ), the weak derivative above is in L2(Θ). Consequently, we have

∑
|β|≤sΘ

∫
Θ

∣∣∣∣Dβ
θ

∫
X
kX (x, x

(θ)
i )p(x; θ)dx

∣∣∣∣2 dθ = ∑
|β|≤sΘ

∫
Θ

∣∣∣∣∫
X
kX (x, x

(θ)
i )Dβ

θ p(x; θ)dx

∣∣∣∣2 dθ
(i)

≤ Vol(X )
∑

|β|≤sΘ

∫
Θ

∫
X

∣∣∣kX (x, x
(θ)
i )Dβ

θ p(x; θ)dx
∣∣∣2 dθ

(ii)

≤ Vol(X )
∑

|β|≤sΘ

κ2
∫
Θ

∫
X

∣∣∣Dβ
θ p(x; θ)

∣∣∣2 dxdθ
(iii)
= Vol(X )κ2

∫
X
∥p(x; ·)∥2sΘ,2 dx.

In the above chain of derivations, (i) holds because |
∫
X f(x)dx|2 ≤ Vol(X )

∫
X |f(x)|2dx for compact X , (ii) holds

because kX is upper bounded by κ and
∫
Θ
|Dβ

θ p(x; θ)|2dθ < ∞ from Assumption (3), (iii) holds because p(x; ·) ∈
W sΘ

2 (Θ) for any x ∈ X based on Assumption (3). Also, one can interchange the order of integration in (iii) by the
Fubini’s theorem (Rudin, 1964).

As a result, for any i, j ∈ {1, . . . , N}, we have f1,i : θ 7→
∫
X kX (x, x

(θ)
i )p(x; θ)dx ∈W sΘ

2 (Θ) and f2,j : θ 7→ g(x
(θ)
j , θ) ∈

W sΘ
2 (Θ) from Assumption (3). Therefore, we know from Lemma 3 that their product f1,i · f2,j ∈ W sΘ

2 (Θ) hence ĴKQ as
a linear combination of f1,i · f2,j is in W sΘ

2 (Θ).

Step Two. In this step, we are going to show that J : θ 7→
∫
X g(x, θ)p(x; θ)dx is also in the Sobolev space W sΘ

2 (Θ). Since
both g(x, ·) ∈ W sΘ

2 (Θ) and p(x; ·) ∈ W sΘ
2 (Θ), we know from Lemma 3 that θ 7→ g(x, θ) · p(x, θ) ∈ W sΘ

2 (Θ). By
following the same steps as in (C.19), we obtain that for any |β| ≤ sΘ,

Dβ
θ

∫
X
g(x, θ)p(x; θ)dx =

∫
X
Dβ

θ

(
g(x, θ)p(x; θ)

)
dx. (C.20)

We are now ready to study the Sobolev norm of J ,

∥J∥2sΘ,2 :=
∑

|β|≤sΘ

∫
Θ

∣∣∣∣Dβ
θ

∫
X
p(x; θ)g(x, θ)dx

∣∣∣∣2 dθ
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(i)
=

∑
|β|≤sΘ

∫
Θ

∣∣∣∣∫
X
Dβ

θ

(
p(x; θ)g(x, θ)

)
dx

∣∣∣∣2 dθ
(ii)

≤ Vol(X )

∫
X

∑
|β|≤sΘ

∫
Θ

∣∣∣Dβ
θ

(
p(x; θ)g(x, θ)

)∣∣∣2 dθdx
(iii)
= Vol(X )

∫
X
∥p(x; ·)g(x, ·)∥2sΘ,2 dx

(iv)

≤ Vol(X )2S2
2S

2
3 (C.21)

Here, (i) holds by (C.20), (ii) holds since |
∫
X f(x)dx|2 ≤ Vol(X )

∫
X |f(x)|2dx for compact X , (iii) follows from the

definition of Sobolev norm, and (iv) holds by Lemma 3 and Assumption (3) that ∥g(x, ·)∥sΘ,2 ≤ S2, ∥p(x; ·)∥sΘ,2 ≤ S3.

Step Three. In this step, we study the Sobolev norm of ĴKQ for some fixed x
(θ)
1:N , by upper bounding it with

∥J − ĴKQ(·;x(θ)1:N )∥sΘ,2 + ∥J∥sΘ,2. Since g(x
(θ)
i , ·) ∈ W sΘ

2 (Θ) by Assumption (3), it holds that ĝ(x, ·;x(θ)1:N ) =

kX (x, x
(θ)
1:N )(kX (x

(θ)
1:N , x

(θ)
1:N ) +NλXIN )−1g(x

(θ)
1:N , ·) is in W sΘ

2 (Θ) for any fixed x(θ)1:N . Therefore,∥∥∥p(x; ·)(g(x, ·)− ĝ(x, ·;x(θ)1:N )
)∥∥∥

sΘ,2
≤ ∥p(x; ·)∥sΘ,2

∥∥∥g(x, ·)− ĝ(x, ·;x(θ)1:N )
∥∥∥
sΘ,2

≤ S3

∥∥∥g(x, ·)− ĝ(x, ·;x(θ)1:N )
∥∥∥
sΘ,2

, (C.22)

where the first inequality holds by Lemma 3 and the second inequality holds by Assumption (3) that ∥p(x; ·)∥sΘ,2 ≤ S3.
Now, we consider the Sobolev norm of ĴKQ − J ,∥∥∥ĴKQ(·;x(θ)1:N )− J

∥∥∥2
sΘ,2

=
∑

|β|≤sΘ

∫
Θ

∣∣∣∣Dβ
θ

∫
X
p(x; θ)

(
g(x, θ)− ĝ(x, θ;x

(θ)
1:N )

)
dx

∣∣∣∣2 dθ
(i)
=

∑
|β|≤sΘ

∫
Θ

∣∣∣∣∫
X
Dβ

θ

(
p(x; θ)

(
g(x, θ)− ĝ(x, θ;x

(θ)
1:N )

))
dx

∣∣∣∣2 dθ
(ii)

≤ Vol(X )

∫
X

∑
|β|≤sΘ

∫
Θ

∣∣∣Dβ
θ

(
p(x; θ)

(
g(x, θ)− ĝ(x, θ;x

(θ)
1:N )

))∣∣∣2 dθdx
(iii)
= Vol(X )

∫
X

∥∥∥p(x; ·)(g(x, ·)− ĝ(x, ·;x(θ)1:N )
)∥∥∥2

sΘ,2
dx

(iv)

≤ Vol(X )S2
3

∫
X

∥∥∥g(x, ·)− ĝ(x, ·;x(θ)1:N )
∥∥∥2
sΘ,2

dx, (C.23)

where the above chain of derivations (i) — (iv) follow the exact same reasoning as (C.19) and (C.21). Next, notice that∫
X

∥∥∥g(x, ·)− ĝ(x, ·;x(θ)1:N )
∥∥∥2
sΘ,2

dx =

∫
X

∑
|β|≤sΘ

∫
Θ

∣∣∣Dβ
θ

(
g(x, θ)− ĝ(x, θ;x

(θ)
1:N )

)∣∣∣2 dθdx
=

∑
|β|≤sΘ

∫
Θ

∥∥∥Dβ
θ g(·, θ)−Dβ

θ ĝ(·, θ;x
(θ)
1:N )

∥∥∥2
L2(X )

dθ. (C.24)

By Assumption (2), Dβ
θ g(·, θ) ∈ W sX

2 (X ) for any |β| ≤ sΘ. Therefore, by applying Proposition 4 with h∗(·) :=

Dβ
θ g(·, θ), and ĥλ(·) := Dβ

θ ĝ(·, θ;x
(θ)
1:N ) = kX (·, x(θ)1:N )(kX (x

(θ)
1:N , x

(θ)
1:N ) +NλXIN )−1Dβ

θ g(x
(θ)
1:N , θ;x

(θ)
1:N ), we get that∥∥∥Dβ

θ g(·, θ)−Dβ
θ ĝ(·, θ;x

(θ)
1:N )

∥∥∥
L2(Pθ)

≤ CτN
− sX

dX (logN)
sX+1

dX

∥∥∥Dβ
θ g(·, θ)

∥∥∥
sX ,2

(C.25)

holds with probability at least 1− 4e−τ , for a C that only depends on X , G0,X , G1,X . From Assumption (1), we know that
L2(Pθ) ∼= L2(X ) (they are norm equivalent) and ∥f∥L2(X ) ≤ Vol(X )−1G−1

0,X ∥f∥L2(Pθ) for any f ∈ L2(Pθ). Therefore,
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for any θ ∈ Θ and any |β| ≤ sΘ, with probability at least 1− 4e−τ ,∥∥∥Dβ
θ g(·, θ)−Dβ

θ ĝ(·, θ;x
(θ)
1:N )

∥∥∥
L2(X )

≤ CτVol(X )−1G−1
0,XN

− sX
dX (logN)

sX+1

dX

∥∥∥Dβ
θ g(·, θ)

∥∥∥
sX ,2

≤ CτVol(X )−1G−1
0,XN

− sX
dX (logN)

sX+1

dX S1. (C.26)

By plugging (C.26) into (C.24), and then plugging the result into (C.23), we get that with probability at least 1− 4e−τ ,

∥∥∥ĴKQ(·;x(θ)1:N )− J
∥∥∥
sΘ,2

≤

 ∑
|β|≤sΘ

1

CτG−1
0,X Vol(X )−1S1S3N

− sX
dX (logN)

sX+1

dX

=

(
sΘ + dΘ − 1

dΘ − 1

)
CτG−1

0,X Vol(X )−1S1S3N
− sX

dX (logN)
sX+1

dX . (C.27)

By combining this result with the bound ∥J∥sΘ,2 ≤ Vol(X )S2S3 proven in (C.21), we get that with probability at least
1− 4e−τ and any N > N0 it holds that∥∥∥ĴKQ(·;x(θ)1:N )

∥∥∥
sΘ,2

≤
∥∥∥ĴKQ(·;x(θ)1:N )− J

∥∥∥
sΘ,2

+ ∥J∥sΘ,2

≤
(
sΘ + dΘ − 1

dΘ − 1

)
CτG−1

0,X Vol(X )−1S1S3N
− sX

dX (logN)
sX+1

dX + Vol(X )S2S3

≤ 2Vol(X )S2S3, (C.28)

where N0 is defined as the smallest integer for which the first term is subsumed by the second term.

Step Four. In this step, we are going to upper bound the Sobolev norm of F̄KQ. From Chapter 5, Exercise 16 of
(Evans, 2022), we have F̂KQ = f ◦ ĴKQ is in W sΘ

2 (Θ) because f has bounded derivatives up to including sΘ + 1 and
∥Ĵ(·;x(θ)1:N )∥sΘ,2 ≤ Vol(X )S2S3 with probability at least 1 − 4e−τ proved in (C.28). Hence, ∥F̂KQ(·;x(θ)1:N )∥sΘ,2 ≤ C6

holds with probability at least 1− 4e−τ . Next, recall the definition of F̄KQ(θ) in (C.11),

F̄KQ(θ) = E
x
(θ)
1:N∼Pθ

[
F̂KQ

(
θ;x

(θ)
1:N

)]
=

∫
X
· · ·
∫
X
F̂KQ(θ;x

(θ)
1:N )p(x

(θ)
1 ; θ)p(x

(θ)
2 ; θ) · · · p(x(θ)N ; θ)dx

(θ)
1 dx

(θ)
2 · · · dx(θ)N .

For any i = 1, . . . , N , we know that ∥p(x(θ)i ; ·)∥sΘ,2 ≤ S3 from Assumption (3) and ∥F̂KQ(·;x(θ)1:N )∥sΘ,2 ≤ C6 proved
above. Therefore, from Lemma 3 we have ∥p(x(θ)i ; ·)F̂KQ(·;x(θ)1:N )∥sΘ,2 is bounded, so x(θ)i 7→ p(x

(θ)
i ; ·)F̂KQ(·;x(θ)1:N ) is

Bochner integrable with respect to the Lebesgue measure LX . From Lemma 5, we have,

∥∥F̄KQ
∥∥
sΘ,2

≤
∫
X
· · ·
∫
X

∥∥∥∥∥F̂KQ(·;x(θ)1:N )

N∏
n=1

p(x(θ)n ; ·)
∥∥∥∥∥
sΘ,2

dx
(θ)
1 dx

(θ)
2 · · · dx(θ)N

≤
∫
X
· · ·
∫
X

∥∥∥F̂KQ(·;x(θ)1:N )
∥∥∥
sΘ,2

(
N∏

n=1

∥p(x(θ)n ; ·)∥sΘ,2

)
dx

(θ)
1 dx

(θ)
2 · · · dx(θ)N

≤ C6S
N
3 Vol(X )N

≤ C6. (C.29)

The last inequality holds by S3 ≤ 1 from Assumption (3) and X = [0, 1]dX so Vol(X ) = 1.

Step Five. We are now ready to upper bound the stage II error, which was defined as

Stage II error =
∥∥∥F̄KQ(·)− k (·, θ1:T ) (kΘ (θ1:T , θ1:T ) + TλΘIT )

−1
F̂KQ (θ1:T )

∥∥∥
L2(Q)

.

The idea is to treat the stage II error as the generalization error of kernel ridge regression—which can be bounded via
Proposition 3. Given i.i.d. observations (θ1, F̂KQ(θ1, x

(θ1)
1:N )), . . . , (θT , F̂KQ(θT , x

(θT )
1:N )), the target of interest in the context
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of regression is the conditional mean, which in our case is precisely F̄KQ(θ) = E
x
(θ)
1:N∼Pθ

F̂KQ(θ;x
(θ)
1:N ) defined in (C.11).

Alternatively, F̂KQ(θ;x
(θ)
1:N ) can be treated as noisy observation of the target function F̄KQ(θ) where the observation noise

is defined as r : Θ → R with r(θ;x(θ)1:N ) = F̂KQ(θ;x
(θ)
1:N ) − F̄KQ(θ). So we automatically have E

x
(θ)
1:N∼Pθ

[r(θ)] = 0. For
any positive integer m ≥ 2,

E
x
(θ)
1:N∼Pθ

[|r(θ)|m] = E
x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F̄KQ(θ)

∣∣∣m
(i)

≤ 2m−1 E
x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m + 2m−1
∣∣F̄KQ(θ)− F (θ)

∣∣m
= 2m−1 E

x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m + 2m−1
∣∣∣Ex

(θ)
1:N∼Pθ

F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m
≤ 2m−1 E

x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m + 2m−1 E
x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m
= 2m E

x
(θ)
1:N∼Pθ

∣∣∣F̂KQ(θ;x
(θ)
1:N )− F (θ)

∣∣∣m
≤ 2mSm

4 E
x
(θ)
1:N∼Pθ

∣∣∣ĴKQ(θ;x
(θ)
1:N )− J(θ)

∣∣∣m
(ii)

≤ 2mm!Sm
4 S

m
1 CmN

−m
sX
dX (logN)

m
sX+1

dX . (C.30)

In the above chain of derivations, (i) holds because (a + b)m ≤ 2m−1(am + bm). (ii) holds because we know from

(C.15) and (C.16) that |ĴKQ(θ;x
(θ)
1:N )− J(θ)| ≤ CτN

− sX
dX (logN)

sX+1

dX S1 holds with probability at least 1− 4e−τ , and so
E
x
(θ)
1:N∼Pθ

|ĴKQ(θ;x
(θ)
1:N ) − J(θ)|m can be bounded via Lemma 4. Therefore, by comparing (C.30) with (A.1), we can see

that the observation noise r indeed satisfy the Bernstein noise moment condition with

σ = L = 2S4S1CN
− sX

dX (logN)
sX+1

dX = C7N
− sX

dX (logN)
sX+1

dX ,

for C7 := 2S4S1C a constant independent of N,T . Before we employ Proposition 3, we need to check the Assumptions
(S1)—(S4). Assumption (S1) is satisfied for our choice of kernel kΘ. Assumption (S2) is satisfied due to Assumption (1).
Assumption (S3) is satisfied due to (C.29). Assumption (S4) is satisfied for the Bernstein noise moment condition verified
above. Next, we compute all the constants in Proposition 3 in the current context. N (λΘ) is the effective dimension defined
in Lemma 1 upper bounded by DΘλ

−dΘ/2sΘ
Θ , kα with α = 2sΘ

dΘ
defined in Lemma 2 is upper bounded by a constant MΘ,

∥ΣQ∥ is the norm of the covariance operator defined in (E.40). Hence

gλΘ
:= log

(
2eN (λΘ)

∥ΣQ∥+ λΘ
∥ΣQ∥

)
, AλΘ,τ := 8k2ατgλΘ

λ
− dΘ

2sΘ

Θ ,

LλΘ
:= max

{
L, λ

1
2−

dΘ
4sΘ

Θ

(
∥F̄KQ∥L∞(Q) + kα∥F̄KQ∥sΘ,2

)}
.

Applying Proposition 3 shows that, for T > AλΘ,τ ,∥∥∥F̄KQ − k (·, θ1:T ) (kΘ (θ1:T , θ1:T ) + TλΘIT )
−1
F̂KQ (θ1:T )

∥∥∥2
L2(Q)

≤ 576τ2

T

(
L2DΘλ

− dΘ
2sΘ

Θ +M2
Θλ

1− dΘ
2sΘ

Θ

∥∥F̄KQ
∥∥2
sΘ,2

+ 2M2
Θ

L2
λΘ

T
λ
− dΘ

2sΘ

Θ

)
+
∥∥F̄KQ

∥∥2
sΘ,2

λΘ, (C.31)

holds with probability at least 1− 4e−τ . We take λΘ ≍ T
−2

sΘ
dΘ (log T )

2sΘ+2

dΘ , then similar to the derivations from (B.7),

lim
T→∞

AλΘ,τ

T
≤ lim

T→∞
16(log T )

− sΘ+1

sΘ k2ατ log (T ) = 0. (C.32)

It means there exists a finite T0 > 0 such that T > AλΘ,τ holds for any T > T0. Notice that, with probability at least
1− 4e−τ ,

∥F̄KQ∥L∞(Q) = ∥F̄KQ∥L∞(Θ) ≤ RΘ∥F̄KQ∥sΘ,2 ≤ RΘC6 (C.33)
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based on (C.29) and the fact that W sΘ
2 (Θ) ↪→ L∞(Θ) with ∥W sΘ

2 (Θ) ↪→ L∞(Θ)∥ ≤ RΘ, we have

LλΘ ≤ max{L, T− sΘ
dΘ

+ 1
2 (log T )

sΘ+1

2sΘ

2sΘ−dΘ
dΘ (RΘ +MΘ)C6}

= max{C7N
− sX

dX (logN)
sX+1

dX , T
− sΘ

dΘ
+ 1

2 (log T )
sΘ+1

2sΘ

2sΘ−dΘ
dΘ (RΘ +MΘ)C6}.

So the above (C.31) can be further upper bounded by

≤ 576τ2

T

(
C2

7N
−2

sX
dX (logN)

2sX+2

dX DΘT (log T )
− sΘ+1

sΘ +M2
ΘT

− 2sΘ
dΘ

+1
(log T )

sΘ+1

sΘ

2sΘ−dΘ
dΘ C2

6

)

+
576τ2

T
· 2M2

Θ

max

{
C2

7N
−2

sX
dX (logN)

2sX+2

dX , T
−2

sΘ
dΘ

+1
(log T )

sΘ+1

sΘ

2sΘ−dΘ
dΘ (RΘ +MΘ)

2
C2

6

}
T

T (log T )
− sΘ+1

sΘ

+ C2
6T

−2
sΘ
dΘ (log T )

2sΘ+2

dΘ

= 576τ2
(
C2

7N
−2

sX
dX (logN)

2sX+2

dX DΘ(log T )
− sΘ+1

sΘ +M2
ΘT

− 2sΘ
dΘ (log T )

sΘ+1

sΘ

2sΘ−dΘ
dΘ C2

6

)
+ 576τ2 · 2M2

Θ max

{
C2

7N
−2

sX
dX (logN)

2sX+2

dX T−1, T
− 2sΘ

dΘ (log T )
sΘ+1

sΘ

2sΘ−dΘ
dΘ (RΘ +MΘ)

2
C2

6

}
· (log T )−

sΘ+1

sΘ

+ C2
6T

−2
sΘ
dΘ (log T )

2sΘ+2

dΘ

(i)

≤ 576τ2C2
7N

−2
sX
dX (logN)

2sX+2

dX DΘ + 576τ2M2
ΘT

− 2sΘ
dΘ (log T )

2sΘ+2

dΘ C2
6

+ 576τ2 · 2M2
ΘC

2
7N

−2
sX
dX (logN)

2sX+2

dX + 576τ2 · 2M2
ΘT

− 2sΘ
dΘ (log T )

2sΘ+2

dΘ (RΘ +MΘ)
2
C2

6 + C2
6T

−2
sΘ
dΘ (log T )

2sΘ+2

dΘ

=: τ2
(
C2

8N
− 2sX

dX (logN)
2sX+2

dX + C2
9T

− 2sΘ
dΘ (log T )

2sΘ+2

dΘ

)
.

C8, C9 are two constants independent of N,T . In (i), we use max{a1, a2} ≤ a1 + a2, we also use the following

(log T )
sΘ+1

sΘ

2sΘ−dΘ
dΘ ≤ (log T )

2sΘ+2

dΘ , (log T )
− sΘ+1

sΘ ≤ 1.

Therefore, we have that,

Stage II error :=
∥∥∥F̄KQ − k(·, θ1:T )(kΘ(θ1:T , θ1:T ) + TλΘIT )

−1F̂KQ(θ1:T )
∥∥∥
L2(Q)

≤ τ
(
C8N

− sX
dX (logN)

sX+1

dX + C9T
− sΘ

dΘ (log T )
sΘ+1

dΘ

)
, (C.34)

holds with probability at least 1− 8e−τ .

Combine stage I and stage II error Combining the stage I error of (C.18) and the stage II error of (C.34), we obtain∣∣∣I − ÎNKQ

∣∣∣ ≤ Stage I error + Stage II error

≤ C3N
− sX

dX (logN)
sX+1

dX + τ
(
C8N

− sX
dX (logN)

sX+1

dX + C9T
− sΘ

dΘ (log T )
sΘ+1

dΘ

)
≤ τ

(
(C8 + C3)N

− sX
dX (logN)

sX+1

dX + C9T
− sΘ

dΘ (log T )
sΘ+1

dΘ

)
=: τ

(
C1N

− sX
dX (logN)

sX+1

dX + C2T
− sΘ

dΘ (log T )
sΘ+1

dΘ

)
,

holds with probability at least 1− 8e−τ . Here C1, C2 are two constants independent of N,T so the proof concludes here.

D. Multi-Level Nested Kernel Quadrature
In this section, we are going to introduce a novel method that combines nested kernel quadrature (NKQ) with multi-level
construction as mentioned in Section 4.
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D.1. Multi-Level Monte Carlo for Nested Expectation

First, we briefly review multi-level Monte Carlo (MLMC) applied to nested expectations I = Eθ∼Q[f(EX∼Pθ
[g(X, θ)])]

introduced in Section 9 of Giles (2015) and Giles and Goda (2019). At each level ℓ, we are given Tℓ samples θ1:Tℓ
sampled

i.i.d from Q and we have Nℓ samples x(θt)1:Nℓ
sampled i.i.d from Pθt for each t = 1, . . . , Tℓ. The MLMC implementation is

to construct an estimator Pℓ at each level ℓ such that I can be decomposed into the sum of Pℓ.

I ≈ Eθ∼Q[PL] = Eθ∼Q [P0] +

L∑
ℓ=1

Eθ∼Q [Pℓ − Pℓ−1] , Pℓ := f

(
1

Nℓ

Nℓ∑
n=1

g
(
x(θ)n , θ

))
.

The estimator Yℓ for Eθ∼Q[Pℓ − Pℓ−1] is

Yℓ =
1

Tℓ

Tℓ∑
t=1

f
(

1

Nℓ

Nℓ∑
n=1

g
(
x(t)n , θt

))
− 1

2
f

 1

Nℓ−1

Nℓ−1∑
n=1

g
(
x(t)n , θt

)− 1

2
f

 1

Nℓ−1

Nℓ∑
n=Nℓ−1+1

g
(
x(t)n , θt

) ,

Y0 :=
1

T0

T0∑
t=1

f

(
1

N0

N0∑
n=1

g
(
x(t)n , θt

))
.

Compared with (3) in the main text, notice that here we use the ‘antithetic’ approach which further improves the perfor-
mance of MLMC (Giles, 2015, Section 9). The MLMC estimator for nested expectation can be written as

ÎMLMC :=

L∑
ℓ=0

Yℓ. (D.35)

At each level ℓ, the cost of Yℓ is O(Nℓ×Tℓ) and the expected squared error E[(Yℓ−Eθ∼Q[Pℓ−Pℓ−1])
2] = O(N−2

ℓ ×T−1
ℓ )

provided that f has bounded second order derivative (Giles, 2015, Section 9)1. Here the expectation is taken over the
randomness of samples. So the total cost and expected absolute error of MLMC for nested expectation can be written as

Cost = O
(

L∑
ℓ=0

Nℓ × Tℓ

)
, E |I − ÎMLMC| = O

(
L∑

ℓ=0

N−1
ℓ × T

− 1
2

ℓ

)
. (D.36)

Theorem 1 of (Giles, 2015) shows that, in order to reach error threshold ∆, one can take Nℓ ∝ 2ℓ and Tℓ ∝ 2−2ℓ∆−2.
Therefore, one has E |I − ÎMLMC| = O(∆) along with Cost = O(∆−2).

D.2. Multi-Level Kernel Quadrature for Nested Expectation (MLKQ)

In this section, we present multi-level kernel quadrature applied to nested expectation (MLKQ). Note that MLKQ is
different from the multi-level Bayesian quadrature proposed in Li et al. (2023) because our MLKQ is designed specifically
for nested expectations. At each level ℓ, we have Tℓ samples θ1:Tℓ

sampled i.i.d from Q and we have Nℓ samples x(θt)1:Nℓ

sampled i.i.d from Pθt for each t = 1, . . . , Tℓ. Different from MLMC above, we define

I ≈ Eθ∼Q[PNKQ,L] = Eθ∼Q [PNKQ,0] +

L∑
ℓ=1

Eθ∼Q [PNKQ,ℓ − PNKQ,ℓ−1] , PNKQ,ℓ := E
x
(θ)
1:Nℓ

∼Pθ
f
(
ĴKQ

(
θ;x

(θ)
1:Nℓ

))
.

The estimator YNKQ,ℓ for Eθ∼Q[PNKQ,ℓ−PNKQ,ℓ−1] when ℓ ≥ 1 is the difference of two nested kernel quadrature estimator
defined in (8).

YNKQ,ℓ := Eθ∼Q [kΘ (θ, θ1:Tℓ
)] (KΘ,Tℓ

+ TℓλΘ,ℓITℓ
)
−1
(
F̂KQ

(
θ1:Tℓ

;x
(θ1:Tℓ

)

1:Nℓ

)
− F̂KQ

(
θ1:Tℓ

;x
(θ1:Tℓ

)

1:Nℓ−1

))
where F̂KQ(θ1:Tℓ

;x
(θ1:Tℓ

)

1:Nℓ
) is a vectorized notation for [F̂KQ(θ1;x

(θ1)
1:Nℓ

), . . . , F̂KQ(θTℓ
;x

(θTℓ
)

1:Nℓ
)] ∈ RTℓ and similarly for

F̂KQ(θ1:Tℓ
;x

(θ1:Tℓ
)

1:Nℓ−1
). At level 0, YNKQ,0 := Eθ∼Q [kΘ (θ, θ1:T0)] (KΘ,T0 + T0λΘ,0IT0)

−1
F̂KQ (θ1:T0). The multi-level

1Section 9 of (Giles, 2015) uses variance E[Y 2
ℓ ], which is equivalent to the expected square error since Yℓ is an unbiased estimate of

Eθ∼Q[Pℓ − Pℓ−1].
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nested kernel quadrature estimator is constructed as

ÎMLKQ :=

L∑
ℓ=0

YNKQ,ℓ.

Same as MLMC above, the cost of YNKQ,ℓ is O(Nℓ×Tℓ). The following theorem studies the error |YNKQ,ℓ−Eθ∼Q[PNKQ,ℓ−
PNKQ,ℓ−1]|.
Theorem 2. Let X = [0, 1]dX and Θ = [0, 1]dΘ . At level ℓ ≥ 1, θ1, . . . , θTℓ

are Tℓ i.i.d. samples from Q and x(t)1 , . . . , x
(t)
Nℓ

are Nℓ i.i.d. samples from Pθt for all t ∈ {1, · · · , Tℓ}. Both kernels kX and kΘ are Sobolev reproducing kernels of
smoothness sX > dX /2 and sΘ > dΘ/2. Suppose the Assumptions (1), (2), (3), (4) in Theorem 1 hold. Suppose

2
dX
sX Nℓ−1 > Nℓ > Nℓ−1. Then, for sufficiently large Nℓ ≥ 1 and Tℓ ≥ 1, with λX ,ℓ ≍ N

−2
sX
dX

ℓ · (logNℓ)
2sX+2

dX and

λΘ,ℓ ≍ T
− 2sΘ

2sΘ+dΘ

ℓ , ∣∣∣YNKQ,ℓ − Eθ∼Q[PNKQ,ℓ − PNKQ,ℓ−1]
∣∣∣ ≲ τ

(
N

− sX
dX

ℓ (logN)
sX+1

dX × T
− sΘ

2sΘ+dΘ

ℓ

)
holds with probability at least 1− 12e−τ .

The proof of the theorem is relegated to Appendix D.3.

Under Theorem 2, the expected error E[YNKQ,ℓ−Eθ∼Q[PNKQ,ℓ−PNKQ,ℓ−1]] = Õ(N
− sX

dX
ℓ ×T− sΘ

2sΘ+dΘ

ℓ ) based on Lemma 4,
up to logarithm terms. Here, the expectation is taken over the randomness of samples. Therefore, similarly to (D.36), the
total cost and expected absolute error of multi-level nested kernel quadrature can be written as

Cost = O
(

L∑
ℓ=0

Nℓ × Tℓ

)
, E |I − ÎMLKQ| = Õ

(
L∑

ℓ=0

N
− sX

dX
ℓ × T

− sΘ
2sΘ+dΘ

ℓ

)
. (D.37)

If we take Nℓ ∝ 2
dX
sX

ℓ
∆

− dX
2sX , Tℓ ∝ 2

− 2sΘ+dΘ
sΘ

ℓ
∆

− 2sΘ+dΘ
2sΘ , then the error E |I − ÎMLKQ| = Õ(∆) and the cost is

L∑
ℓ=0

Nℓ × Tℓ =

(
L∑

ℓ=0

2
dX
sX

ℓ− 2sΘ+dΘ
sΘ

ℓ

)
·∆−1− dX

2sX
− dΘ

2sΘ ≤
(

L∑
ℓ=0

2

(
dX
sX

−2
)
ℓ

)
·∆−1− dX

2sX
− dΘ

2sΘ = O(∆
−1− dX

2sX
− dΘ

2sΘ ).

Equivalently, to reach error O(∆), the cost is Õ(∆
−1− dX

2sX
− dΘ

2sΘ ).

Remark D.1 (Comparison of MLKQ and MLMC). To reach a given threshold ∆, the cost of MLKQ is Õ(∆
−1− dX

2sX
− dΘ

2sΘ ),
which is smaller than the cost of MLMC O(∆−2) when the problem has sufficient smoothness, i.e. when dX

sX
+ dΘ

sΘ
< 2.

If we compare (D.36) and (D.37), the superior performance of MLKQ can be explained by the faster rate of convergence
in terms of Nℓ at each level when dX

sX
≤ 1. Nevertheless, we can see in (D.37) that the MLKQ rate at each level in terms

of Tℓ is O(T
− sΘ

2sΘ+dΘ

ℓ ) which is slower than the MLMC rate O(T
− 1

2

ℓ ) in (D.36). An empirical study of MLKQ is included
in Figure 6 which shows that MLKQ is better than MLMC in some settings but both are outperformed by NKQ by a huge
margin. A more refined analysis of MLKQ is reserved for future work.

D.3. Proof of Theorem 2

The proof uses essentially the same analysis as in Step Five of Appendix C which translates |Yℓ − Eθ∼Q[Pℓ − Pℓ−1]| into
the generalization error of kernel ridge regression. First, we know that by following the same derivations as in (C.29) that

F̄KQ,ℓ(θ) := E
x
(θ)
1:Nℓ

∼Pθ

[
F̂KQ

(
θ;x

(θ)
1:Nℓ

)]
, F̄KQ,ℓ ∈W sΘ

2 (Θ) and
∥∥F̄KQ,ℓ

∥∥
sΘ

≤ C6,

F̄KQ,ℓ−1(θ) := E
x
(θ)
1:Nℓ−1

∼Pθ

[
F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)]
, F̄KQ,ℓ−1 ∈W sΘ

2 (Θ) and
∥∥F̄KQ,ℓ−1

∥∥
sΘ

≤ C6.
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Given i.i.d. observations (θ1, F̂KQ(θ1, x
(θ1)
1:Nℓ

) − F̂KQ(θ1, x
(θ1)
1:Nℓ−1

)), . . . , (θTℓ
, F̂KQ(θTℓ

, x
(θTℓ

)

1:Nℓ
) − F̂KQ(θTℓ

, x
(θTℓ

)

1:Nℓ−1
)), the

target of interest in the context of regression is the conditional mean, which in our case is precisely

θ 7→ F̄KQ,ℓ(θ)− F̄KQ,ℓ−1(θ) = E
x
(θ)
1:Nℓ

∼Pθ

[
F̂KQ

(
θ;x

(θ)
1:Nℓ

)]
− E

x
(θ)
1:Nℓ−1

∼Pθ

[
F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)]
.

Alternatively, F̂KQ(θ, x
(θ)
1:Nℓ

)− F̂KQ(θ, x
(θ)
1:Nℓ−1

)) can be viewed as noisy observation of the true function F̄KQ,ℓ − F̄KQ,ℓ−1

where the noise satisfied the following condition. For each θ ∈ Θ and positive integer m ≥ 2, similar to (C.30) we have,

E
∣∣∣∣[F̂KQ

(
θ;x

(θ)
1:Nℓ

)
− F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)]
−
[
E
x
(θ)
1:Nℓ

∼Pθ
F̂KQ

(
θ;x

(θ)
1:Nℓ

)
− E

x
(θ)
1:Nℓ−1

∼Pθ
F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)]∣∣∣∣m
≤ 2m E

∣∣∣∣F̂KQ

(
θ;x

(θ)
1:Nℓ

)
− E

x
(θ)
1:Nℓ

∼Pθ
F̂KQ

(
θ;x

(θ)
1:Nℓ

)∣∣∣∣m
+ 2m E

∣∣∣∣F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)
− E

x
(θ)
1:Nℓ−1

∼Pθ
F̂KQ

(
θ;x

(θ)
1:Nℓ−1

)∣∣∣∣m
≲ N

−m
sX
dX

ℓ (logNℓ)
m

sX+1

dX +N
−m

sX
dX

ℓ−1 (logNℓ−1)
m

sX+1

dX

≲ N
−m

sX
dX

ℓ (logNℓ)
m

sX+1

dX ,

where the second last inequality follows by replicating the same steps in (C.30), and the last inequality is true because
2dX /sXNℓ−1 > Nℓ > Nℓ−1. As a result, by replicating the steps for (C.31), we have

|YNKQ,ℓ − Eθ∼Q[PNKQ,ℓ − PNKQ,ℓ−1]|2

≤
∥∥∥(F̄KQ,ℓ − F̄KQ,ℓ−1

)
− kΘ (·, θ1:Tℓ

) (KΘ,Tℓ
+ TℓλΘ,ℓITℓ

)
−1
(
F̂KQ

(
θ1:Tℓ

;x
(θ1:Tℓ

)

1:Nℓ

)
− F̂KQ

(
θ1:Tℓ

;x
(θ1:Tℓ

)

1:Nℓ−1

))∥∥∥2
L2(Q)

≲ τ2
(
T−1
ℓ λ

− dΘ
2sΘ

Θ,ℓ N
− 2sX

dX
ℓ (logNℓ)

2sX+2

dX + λ
1− dΘ

2sΘ

Θ,ℓ T−1
ℓ

∥∥F̄KQ,ℓ − F̄KQ,ℓ−1

∥∥2
sΘ

+ λ
− dΘ

2sΘ

Θ,ℓ T
−1− 2sΘ

dΘ

ℓ

∥∥F̄KQ,ℓ − F̄KQ,ℓ−1

∥∥2
sΘ

)
+
∥∥F̄KQ,ℓ − F̄KQ,ℓ−1

∥∥2
sΘ
λΘ,ℓ, (D.38)

holds with probability at least 1− 4e−τ . Next, we are going to upper bound
∥∥F̄KQ,ℓ − F̄KQ,ℓ−1

∥∥
sΘ

. To this end, notice that∥∥F̄KQ,ℓ − F̄KQ,ℓ−1

∥∥2
sΘ

≤ 2
∥∥F̄KQ,ℓ − F

∥∥2
sΘ

+ 2
∥∥F̄KQ,ℓ−1 − F

∥∥2
sΘ
.

Using the same steps in (C.29) and (C.27) subsequently, we have∥∥F̄KQ,ℓ − F
∥∥
sΘ

≤
∥∥∥F̂KQ

(
·;x(θ)1:Nℓ

)
− F

∥∥∥
sΘ

· SNℓ
3 · Vol(X )Nℓ ≲

∥∥∥ĴKQ

(
·;x(θ)1:Nℓ

)
− J

∥∥∥
sΘ

≲ N
− sX

dX
ℓ (logNℓ)

sX+1

dX ,

holds with probability at least 1 − 4e−τ . Similarly, we have
∥∥F̄KQ,ℓ−1 − F

∥∥
sΘ

≲ N
− sX

dX
ℓ−1 (logNℓ−1)

sX+1

dX holds with

probability at least 1− 4e−τ . Consequently, we have ∥F̄KQ,ℓ − F̄KQ,ℓ−1∥sΘ ≲ N
− sX

dX
ℓ (logNℓ)

sX+1

dX holds with probability
at least 1− 8e−τ . Therefore, plugging it back to (D.38), we obtain

|YNKQ,ℓ − Eθ∼Q[PNKQ,ℓ − PNKQ,ℓ−1]|2

≲ τ2
(
T−1
ℓ λ

− dΘ
2sΘ

Θ,ℓ N
− 2sX

dX
ℓ (logNℓ)

2sX+2

dX + λ
1− dΘ

2sΘ

Θ,ℓ T−1
ℓ N

− 2sX
dX

ℓ (logNℓ)
2sX+2

dX

+λ
− dΘ

2sΘ

Θ,ℓ T
−1− 2sΘ

dΘ

ℓ N
− 2sX

dX
ℓ (logNℓ)

2sX+2

dX +N
− 2sX

dX
ℓ (logNℓ)

2sX+2

dX λΘ,ℓ

)
,

holds with probability at least 1 − 12e−τ . Therefore, by taking λΘ,ℓ ≍ T
− 2sΘ

2sΘ+dΘ

ℓ , we obtain with probability at least
1− 8e−τ ,

|YNKQ,ℓ − Eθ∼Q[PNKQ,ℓ − PNKQ,ℓ−1]| ≲ τT
− sΘ

2sΘ+dΘ

ℓ ×N
− sX

dX
ℓ (logNℓ)

sX+1

dX .

The proof is concluded.
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E. Further Background and Auxiliary Lemmas
All the results in this section are existing results in the literature. We provide them here and prove some of them in the
specific context of Sobolev spaces explicitly for the convenience of the reader.

More technical notions of Sobolev spaces and the Sobolev embedding theorem In the main text, we provide in (4)
the standard definition of Sobolev spaces W s

2 (X ) when s ∈ N. Actually, Sobolev spaces W s
2 (X ) can be extended to s that

are positive real numbers. Such extension could be realized through real interpolation spaces (see (Bennett and Sharpley,
1988, Definition 1.7)), W s

2 (X ) := [W k
2 (X ),W k+1

2 (X )]r,2 where k ∈ N, s ∈ (k, k + 1), r = s − ⌊s⌋.2 Actually, such
interpolation relations hold for any 0 ≤ s, t and 0 < r < 1 (Adams and Fournier, 2003, Section 7.32),

W k
2 (X ) =

[
W s

2 (X ),W t
2(X )

]
r,2
, k = (1− r)s+ rt. (E.39)

A special case of the above relation is W s
2 (X ) = [L2(X ),W t

2(X )]s/t,2.

The Sobolev embedding theorem (Adams and Fournier, 2003), when applied to W s
2 (X ), states that if s > d

2 (where d
is the dimension of X ), then W s

2 (X ) can be continuously embedded into C0(X ), the space of continuous and bounded
functions. In other words, for every equivalence class [f ] ∈ W s

2 (X ), there exists a unique continuous and bounded
representative f ∈ C0(X ), and the embedding map I : W s

2 (X ) → C0(X ), defined by I([f ]) = f , is continuous. This
continuous embedding I can be written as W s

2 (X ) ↪→ C0(X ). Since every continuous linear operator is bounded, we have
∥W s

2 (X ) ↪→ C0(X )∥ bounded by a constant that only depends on s,X .

More technical notions of reproducing kernel Hilbert spaces (RKHSs) For bounded kernels, supx∈X k(x, x) ≤ κ,
its associated RKHS H can be canonically injected into L2(π) using the operator ιπ : H → L2(π), f 7→ f with its
adjoint ι∗π : L2(π) → H given by ι∗πf(·) =

∫
k(x, ·)f(x)dπ(x). ιπ and its adjoint can be composed to form a L2(π)

endomorphism Tπ := ιπι
∗
π called the integral operator, and a H endomorphism

Σπ := ι∗πιπ =

∫
k(·, x)⊗ k(·, x)dπ(x), (E.40)

(where ⊗ denotes the tensor product such that (a ⊗ b)c := ⟨b, c⟩Ha for a, b, c ∈ H) called the covariance operator. Both
Σπ and Tπ are compact, positive, self-adjoint, and they have the same eigenvalues ϱ1 ≥ · · · ϱi ≥ · · · ≥ 0. Please refer to
Section 2 of Chen et al. (2024a) for more details.
Lemma 1 (Effective dimension N (λ)). Let X ⊂ Rd be a compact domain, π be a probability measure on X with density
p : X → R. k : X ×X → R is a Sobolev reproducing kernel of order s > d

2 . {ϱm}m≥0 are the eigenvalues of the integral
operator Tπ . Define the effective dimension N : (0,∞) → [0,∞) as N (λ) :=

∑
m≥1

ϱm

ϱm+λ . If p(x) ≥ G > 0 for any

x ∈ X , then N (λ) ≤ Dλ−
d
2s with constant D that only depends on G and X .

Proof. First, we study the asymptotic behavior of the eigenvalues (ϱm)m≥1 of the integral operator Tπ . Theorem 15 of
(Steinwart et al., 2009) shows that the eigenvalues ϱm share the same asymptotic decay rate as the squares of the entropy
number e2m (Iπ) of the embedding Iπ : W s

2 (X ) → L2(π). Denote LX as the Lebesgue measure on X . Since p(x) ≥ G
for any x ∈ X , we know dLX

dπ ≤ G−1Vol(X )−1 so ∥L2(π) ↪→ L2(X )∥ ≤ G−1Vol(X )−1, and consequently we have from
Equation (A.38) of Steinwart (2008) that

em (Iπ) ≤ em (ILX ) ∥L2(π) ↪→ L2(X )∥ ≤ G−1Vol(X )−1em (ILX ) .

Moreover, (Edmunds and Triebel, 1996, Equation 4 on p. 119) shows that the entropy number em (ILX ) ≤ c̃m−s/d

for some constant c̃, so we have em (Iπ) ≤ G−1Vol(X )−1c̃m−s/d and consequently we have ϱm ≍ e2m (Iπ) ≤
G−2Vol(X )−2c̃2m−2s/d =: c2m

−2s/d.

Next, we have∑
m≥1

ϱm
ϱm + λ

≤
∑
m≥1

1

1 + λc−1
2 m2s/d

≤
∫ ∞

0

c2
c2 + λt2s/d

dt = λ−
d
2s

∫ ∞

0

c2
c2 + τ2s/d

dτ

2Strictly speaking, the definition of (4) extended to real numbers s actually corresponds to the complex interpolation space of
Sobolev spaces. Fortunately, complex interpolation spaces and real interpolation spaces coincide under Hilbert spaces (Hytonen et al.,
2016, Corollary C.4.2), which is precisely our setting since p = 2.
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= λ−
d
2s

∫ ∞

0

1

1 +
(
τc

− d
2s

2

) 2s
d

dτ = λ−
d
2s

∫ ∞

0

1

1 + u
2s
d

c2
d
2s du = λ−

d
2s c2

d
2s

πd
2s

sin
(
πd
2s

) =: Dλ−
d
2s ,

where D is a constant that depends on the domain X and G.

Lemma 2. Let X ⊂ Rd be a compact domain, π be a probability measure on X with density p : X → R. k : X ×X → R
is a Sobolev reproducing kernel of order s > d

2 . {ϱm, em}m≥0 are the eigenvalues and eigenfunctions of the integral
operator Tπ . If there exists G0, G1 > 0 such that G0 ≤ p(x) ≤ G1 for any x ∈ X , then

kα := sup
x∈X

∑
m≥1

ϱαme
2
m(x) ≤M, (E.41)

holds for any d
2s < α. Here, M is a constant that depends on X and G1, G0.

Proof. If t > d
2 ,W t

2(X ) can be continuously embedded into L∞(X ) the space of bounded functions (Adams and Fournier,
2003, Case A, Theorem 4.12). Hence, the operatorW s

2 (X ) ↪→ L∞(X ) is a continuous linear operator between two normed
vector spaces, hence a bounded operator. AndL2(π) is norm equivalent toL2(X ) becauseG0 ≤ p(x) ≤ G1 for any x ∈ X .
Notice that kα defined here is exactly ∥kαν ∥∞ defined in Equation 16 of (Fischer and Steinwart, 2020), so we know from
Theorem 9 of Fischer and Steinwart (2020) that

sup
x∈X

∑
m≥1

ϱαme
2
i (x) =

∥∥∥[L2(π),W
s
2 (X )]α,2 ↪→ L∞(X )

∥∥∥ .
Notice that [L2(π),W

s
2 (X )]α,2

∼= [L2(X ),W s
2 (X )]α,2

∼= W sα
2 (X ), and notice the fact that W sα

2 (X ) ↪→ L∞(X ) for any
sα > d

2 , the right hand side of the above equation is bounded. Therefore, we have (E.41) holds for any d
2s < α.

Lemma 3. Let X ⊂ Rd be a bounded domain with Lipschitz continuous boundary and W s
2 (X ) be a Sobolev space with

s > d
2 . If functions f : X → R and g : X → R lie in W s

2 (X ), then their product f · g also lies in W s
2 (X ) and satisfies

∥f · g∥s ≤ ∥f∥s∥g∥s.

Proof. This is Theorem 7.4 of Behzadan and Holst (2021) with s1 = s2 = s and p1 = p2 = 2.

Lemma 4. For a positive valued random variable R, and c > 0 such that P(R ≤ cτ) ≥ 1− exp(−τ) for any positive τ ,
it holds that E[Rm] ≤ com! for all integers m ≥ 1. co is some constant that only depends on c,m.

Proof. Notice that R is essentially a sub-exponential random variable. Since a sub-exponential random variable is
equivalent to the square root of a sub-Gaussian random variable, from Proposition 2.5.2 of Vershynin (2018), we have
E[Rm] = E[

√
R

2m
] ≤ 2coΓ(m + 1) = 2com!. Here Γ denotes the gamma function and co is some constant that only

depends on c,m.

Lemma 5. For a mapping F from a compact domain X ⊂ Rd to a Hilbert space H , given a measure µ on X , if F is
µ-Bochner integrable, then

∫
F (x)dµ(x) ∈ H and additionally ∥

∫
F (x)dµ(x)∥H ≤

∫
∥F (x)∥Hdµ(x).

Proof. This is Definition A.5.20 of Steinwart (2008).

F. Additional Experimental Details
F.1. “Change of Variable” Trick for Kernel Quadrature

In the main text, we have shown that the two major bottlenecks of KQ/NKQ are:

• The closed-form KME EX∼P[k(X,x)].
• The O(N3) computational cost of inverting the Gram matrix k(x1:N , x1:N ).
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Figure 5. Further ablation studies in the synthetic experiment. Left: NKQ with different proportionality coefficients λ0 for regularization
parameter λX , λΘ. Middle: NKQ with different kernel lengthscales γ in both stages. Right: NKQ with different kernels in both stages.
The nested Monte Carlo (NMC) in blue is presented as a benchmark in all figures.

Fortunately, both two challenges can be solved with the “change of variable” trick. Here, we only present the idea for KQ
but the same holds for NKQ in both stages.

The integral of interest is I =
∫
X h(x)P(dx). Suppose we can find a continuous transformation Φ such that X = Φ(U),

where U ∼ U is another random variable which is easy to sample from. Then the integral I can be equivalently expressed
as I =

∫
U h(Φ(u))dU(u), by a direct application of change of variables theorem (Section 8.2 of (Stirzaker, 2003). Now

the integrand changes from h : X → R to h ◦ Φ : U → R and the kernel quadrature estimator becomes

ÎKQ = EU∼U[kU (U, u1:N )] (kU (u1:N , u1:N ) +NλIN )
−1

(h ◦ Φ)(u1:N ).

Here kU is a reproducing kernel on U . Since U is a simple probability distribution, we can find its closed-form KME
in Table 1 in Briol et al. (2019) or the ProbNum package (Wenger et al., 2021), which addresses the first challenge.
Additionally, notice that both the Gram matrix k(u1:N , u1:N ) and the KME EU∼U[k(U, u1:N )] are independent of h and
Φ, so the KQ weights wKQ

1:N = EU∼U[k(U, u1:N )] (k(u1:N , u1:N ) +NλIN )
−1 can be pre-computed and stored. As a

result, KQ becomes a simple weighted average of function evaluations
∑N

i=1 w
KQ
i h(xi). Therefore, the computational cost

reduces to linear cost O(N) and hence the second challenge is addressed. The downside of the “change of variable” trick
is that the Sobolev smoothness of h ◦ Φ : U → R is unclear when Φ is not smooth, so we lose the theoretical convergence
rate from Theorem 1.

F.2. Synthetic Experiment

Assumptions from Theorem 1 We would like to check whether the assumptions made in Theorem 1 hold in this syn-
thetic experiment. Recall that we use both kX and kΘ to be Matérn-3/2 kernels so we need to verify Assumptions (1) —
(4) with sΘ = sX = 2.

1. Both distributions Pθ and Q are uniform distributions over [0, 1], so Assumption (1) is satisfied.
2. Dβ

θ g(·, θ) ∈W 2
2 (X ) and Dβ

θ p(·, θ) ∈ L2(X ) for β = 0, 1, 2 so Assumption (2) is satisfied.
3. Both g(x, ·), p(x, ·) ∈W 2

2 (Θ) so Assumption (3) is satisfied.
4. f ∈ C3(R) so Assumption (4) is satisfied.

The synthetic problem can be modified to have higher dimensions d. In this synthetic experiment, we set both dX = dΘ =

d. For a = [a1, . . . , ad]
⊤ ∈ Rd, define ∥a∥b = (

∑d
i=1 a

b
i )

1/b.

x ∼ U[0, 1]d, θ ∼ U[0, 1]d, g(x, θ) = ∥x∥2.52s + ∥θ∥2.52 , f(z) = z2, (F.42)

The true value of the nested expectation can be computed in closed-form: I = 16
49d

2 + 25
294d. In Figure 2, we study the

mean absolute error of NMC and NKQ as dimension d grows. We see that NKQ outperforms NMC by a huge margin in
low dimensions, but the performance gap closes down in higher dimensions, which is expected because the rate proved in
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Corollary 1 is O(∆
− dX

sX
− dΘ

sΘ ) which becomes larger when dimension increases yet the smoothness of the problem remains
the same.

In Figure 5, we conduct a series of ablation studies on the hyperparameter of NKQ in the synthetic experiment. Although
Theorem 1 suggests choosing the regularization parameters λX , λΘ that are proportionate to N−2

sX
dX and T−2

sΘ
dΘ respec-

tively, it is unclear in practice how to pick the exact proportionality coefficients λ0. Figure 5 Left shows that λ0 = 1.0 and
λ0 = 0.1 give the best performances, while using λ0 too big (λ0 = 10.0) suffers from slower convergence rate and using
λ0 too small (λ0 = 0.01, 0.001) causes numerical issues when N,T become large. Figure 5 Middle shows that kernel
lengthscale, if too big (γ = 10.0) or too small (γ = 1.0), would result in worse performance for NKQ and that the widely-
used median heuristic is good enough to select a satisfying lengthscale. Figure 5 Right shows that NKQ with Matérn-3/2
kernels has better performance than with Matérn-1/2 kernels, which agrees with Theorem 1 indicating that it is preferable
to use Sobolev kernels with the highest permissible orders of smoothness. Interestingly, we see that NKQ with Gaussian
kernels has similar performance as with Matérn-3/2 kernels. Similar phenomenon have been shown both theoretically and
empirically that kernel ridge regression with Gaussian kernels are optimal in learning Sobolev space functions when the
lengthscales are chosen appropriately (Hang and Steinwart, 2021; Eberts and Steinwart, 2013).

F.3. Risk Management in Finance

In this experiment, we consider specifically an asset whose price S(τ) at time τ follows the Black-Scholes formula S(τ) =
S0 exp

(
σW (τ)− σ2τ/2

)
for τ ≥ 0, where σ is the underlying volatility, S0 is the initial price and W is the standard

Brownian motion. The financial derivative we are interested in is a butterfly call option whose payoff at time τ can be
expressed as ψ(S(τ)) = max(S(τ) −K1, 0) + max(S(τ) −K2, 0) − 2max(S(τ) − (K1 +K2)/2, 0). We follow the
setting in (Alfonsi et al., 2021; 2022; Chen et al., 2024b) assuming that a shock occur at time η, at which time the option
price is S(η) = θ, and this shock multiplies the option price by 1 + s. The option price at maturity time ζ is denoted as
S(ζ) = x. To summarize, the expected loss caused by the shock can be expressed as the following nested expectation:

I = E[f(J(θ))], f(J(θ)) = max(J(θ), 0), J(θ) =

∫ ∞

0

g(x)Pθ(dx), g(x) = ψ(x)− ψ((1 + s)x).

Following the setting in (Alfonsi et al., 2021; 2022; Chen et al., 2024b), we consider the initial price S0 = 100, the
volatility σ = 0.3, the strikesK1 = 50,K2 = 150, the option maturity ζ = 2 and the shock happens at η = 1 with strength
s = 0.2. The option price at which the shock occurs are θ1:T sampled from the log normal distribution deduced from the
Black-Scholes formula θ1:T ∼ Q = Lognormal(logS0 − σ2

2 η, σ
2η). Then x(t)1:N are sampled from another log normal

distribution also deduced from the Black-Scholes formula x(t)1:N ∼ Pθt = Lognormal(log θt − σ2

2 (ζ − η), σ2(ζ − η)) for
t = 1, . . . , T .

In this experimental setting, although both g only depends on x and it is a combination of piece-wise linear functions so
g ∈W 1

2 (X ). The probability density function of Pθ is infinitely times differentiable

Notice that log normal distribution LogNormal(m̄, σ̄2) can be expressed as the following transformation from uniform
distribution over [0, 1].

u ∼ U [0, 1], exp(Ψ−1(u)σ̄ + m̄) ∼ LogNormal(m̄, σ̄2).

Here, Ψ−1 is the inverse cumulative distribution function of a standard normal distribution. Therefore, we can use the
“change of variables” trick from Appendix F.1 such that we have closed-form KME against uniform distribution from
Probnum (Wenger et al., 2021), and also the computational complexity of NKQ becomes O(N × T ). Although Ψ−1 is
infinitely times differentiable, we still use Matérn-1/2 kernels in both stages to be conservative of the smoothness of the
integrand after applying the “change of variables” trick.

F.4. Health Economics

In the medical world, it is important to compare the cost and the relative advantages of conducting extra medical exper-
iments. The expected value of partial perfect information (EVPPI) quantifies the expected gain from conducting extra
experiments to obtain precise knowledge of some unknown variables (Brennan et al., 2007):

EVPPI = E
[
max

c
Jc(θ)

]
−max

c
E
[
Jc(θ)

]
, Jc(θ) =

∫
X
gc(x, θ)Pθ(dx)
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Figure 6. Comparison of all the methods including MLKQ on the synthetic experiment (Left), risk management in finance (Middle) and
health economics (Right).

where c ∈ C is a set of potential treatments and gc measures the potential outcome of treatment c. EVPPI consists of |C|+1
nested expectations.

We adopt the same experimental setup as delineated in (Giles and Haji-Ali, 2019), wherein x and θ have a joint 19-
dimensional Gaussian distribution, meaning that the conditional distribution Pθ is also Gaussian. The specific meanings of
all x and θ are outlined in Table 2. All these variables are independent except that θ1, θ2, x6, x14 are pairwise correlated with
a correlation coefficient 0.6. We are interested in estimating the EVPPI of a binary decision-making problem (C = {1, 2})
with g1(x, θ) = 104(θ1x5x6+x7x8x9)− (x1+x2x3x4) and g2(x, θ) = 104(θ2x13x14+x15x16x17)− (x10+x11x12x4).
The ground truth EVPPI under this setting is I = 538 provided in (Giles and Goda, 2019).

For estimating I1 with NKQ, we select kX to be Gaussian kernel and kΘ to be Matérn-1/2 kernel, because I1 contains a
max function which breaks the smoothness so we use Matérn-1/2 kernel to be conservative. For estimating I2,c with NKQ,
we select both to be Gaussian kernels because both g1, g2 and the probability densities are all infinitely times continuously
differentiable. We have access to the closed-form KME for both Matérn-1/2 and Gaussian kernels under a Gaussian
distribution from Probnum (Wenger et al., 2021).

F.5. Bayesian Optimization

For NKQ, we use the change of variable trick such that the Gaussian distribution of f|DS (z1, z2) after S iterations can
be expressed as the pushforward of a fixed uniform distribution U over [0, 1]2 through a continuous mapping ΦS . As a
result, the KQ weights EU∼U[kU (U, u1:N )] (kU (u1:N , u1:N ) +NλIN )

−1 become independent of S , and can therefore be
precomputed and stored in advance. We apply this change-of-variable trick to both Stage I and Stage II KQ steps in our
NKQ algorithm, resulting in an overall O(N × T ) computational cost at each iteration, matching that of NMC.

The formulas of the synthetic Dropwave, Ackley, and Cosine8 functions are provided below:

fDropwave (x, y) = −
1 + cos

(
12
√
x2 + y2

)
0.5 (x2 + y2) + 2

, (x, y) ∈ [−5.12, 5.12]2,

fAckley (x) = −20 exp (−0.2∥x∥)− exp

(
1

2

2∑
i=1

cos (2πxi)

)
+ 20 + exp(1), x ∈ [−32.768, 32.768]2

fCosine 8(x) =

8∑
i=1

cos (5πxi) , x ∈ [−1, 1]8.
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Variables Mean Std Meaning

X1 1000 1.0 Cost of treatment
X2 0.1 0.02 Probability of admissions
X3 5.2 1.0 Days of hospital
X4 400 200 Cost per day
X5 0.3 0.1 Utility change if response
X6 3.0 0.5 Duration of response
X7 0.25 0.1 Probability of side effects
X8 -0.1 0.02 Change in utility if side effect
X9 0.5 0.2 Duration of side effects
X10 1500 1.0 Cost of treatment
X11 0.08 0.02 Probability of admissions
X12 6.1 1.0 Days of hospital
X13 0.3 0.05 Utility change if response
X14 3.0 1.0 Duration of response
X15 0.2 0.05 Probability of side effects
X16 -0.1 0.02 Change in utility if side effect
X17 0.5 0.2 Duration of side effects
θ1 0.7 0.1 Probability of responding
θ2 0.8 0.1 Probability of responding

Table 2. Variables in the health economics experiment.
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