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ABSTRACT

A grand goal in deep learning research is to learn representations capable of gen-
eralizing across distribution shifts. Disentanglement is one promising direction
aimed at aligning a model’s representation with the underlying factors generating
the data (e.g. color or background). Existing disentanglement methods, how-
ever, rely on an often unrealistic assumption: that factors are statistically indepen-
dent. In reality, factors (like object color and shape) are correlated. To address
this limitation, we consider the use of a relaxed disentanglement criterion – the
Hausdorff Factorized Support (HFS) criterion – that encourages only pairwise
factorized support, rather than a factorial distribution, by minimizing a Hausdorff
distance. This allows for arbitrary distributions of the factors over their support,
including correlations between them. We show that the use of HFS consistently
facilitates disentanglement and recovery of ground-truth factors across a variety of
correlation settings and benchmarks, even under severe training correlations and
correlation shifts, with in parts over +60% in relative improvement over existing
disentanglement methods. In addition, we find that leveraging HFS for representa-
tion learning can even facilitate transfer to downstream tasks such as classification
under distribution shifts. We hope our original approach and positive empirical re-
sults inspire further progress on the open problem of robust generalization. Code
available at https://github.com/facebookresearch/disentangling-correlated-factors.

1 INTRODUCTION

Figure 1: Real data exhibits correlations be-
tween generative factors: cows are likely
on grass, camels on sand. This contradicts
disentanglement methods assuming statisti-
cally independent factors. Instead, we show
that merely assuming and aiming for a fac-
torized support can yield robust disentangle-
ment even under correlated factors.

Disentangled representation learning (Bengio et al.,
2013; Higgins et al., 2018) is a promising path to
facilitate reliable generalization to in- and out-of-
distribution downstream tasks (Bengio et al., 2013;
Higgins et al., 2018; Milbich et al., 2020; Dittadi
et al., 2021; Horan et al., 2021), on top of being
more interpretable and fair (Locatello et al., 2019a;
Träuble et al., 2021). While Higgins et al. (2018)
propose a formal definition based on group equiv-
ariance, and various metrics have been proposed to
measure disentanglement (Higgins et al., 2017; Chen
et al., 2018; Eastwood & Williams, 2018) the most
commonly understood definition is as follows:

Definition 1.1 (Disentanglement) Assuming data
generated by a set of unknown ground-truth latent
factors, a representation is said to be disentangled
if there exists a one-to-one correspondence between
each factor and dimension of the representation.

∗Work done during an internship at Meta AI, FAIR.
†Equal contribution
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The method by which to achieve this goal however, remains an open research question. Weak and
semi-supervised settings, e.g. using data pairs or auxiliary variables, can provably offer disentan-
glement (Bouchacourt et al., 2018; Locatello et al., 2020b; Khemakhem et al., 2020; Klindt et al.,
2021). But fully unsupervised disentanglement – our focus in this study – is in theory impossible to
achieve in the general unconstrained nonlinear case (Hyvärinen & Pajunen, 1999; Locatello et al.,
2019b). In practice however the inductive biases embodied in common autoencoder architectures
allow for effective practical disentanglement (Rolinek et al., 2019). Perhaps more problematic, stan-
dard unsupervised disentanglement methods (s.a. Higgins et al. (2017); Kim & Mnih (2018); Chen
et al. (2018)) rely on an unrealistic assumption of statistical independence of ground truth factors.
Real data however contains correlations (Träuble et al., 2021). Even with well defined factors (s.a.
shape, color or background), correlations are pervasive—yellow bananas are more frequent than red
ones; cows more often on grass than sand. In more realistic settings with correlations, prior work
(e.g. Träuble et al. (2021); Dittadi et al. (2021)) has shown existing disentanglement methods to fail.

To address this limitation, we propose to relax the unrealistic assumption of statistical independence
of factors (i.e. that they have a factorial distribution), and only assume the (bounded) support of
the factors’ distribution factorizes – a much weaker but more realistic constraint. For example, in a
dataset of animal images (Fig. 1), background and animal are heavily correlated (camels most likely
on sand, cows on grass), resulting in most datapoints being distributed along the diagonal as opposed
to uniformly. Under the original assumption of factor independence, a model likely learns a shortcut
solution where animal and landscape share the same latent correspondence (Beery et al., 2018).
On the other hand with a factorized support, learned factors should be such that any combination
of their values has some grounding in reality: a cow on sand is an unlikely, yet not impossible
combination. We still rely, just as standard unsupervised disentanglement methods, on the inductive
bias of encoder-decoder architectures to recover factors (Rolinek et al., 2019). However, we expect
our method to facilitate robustness to any distribution shifts within the support (Träuble et al., 2021;
Dittadi et al., 2021), as it makes no assumptions on the distribution beyond its factorized support.
We arrived at this factorized support principle from the perspective of relaxing the independence
assumption to be robust to factor correlations, while remaining agnostic to how they may arise.
Remarkably, the same principle was derived independently in Wang & Jordan (2021) 1 from a causal
perspective and formal definition of causal disentanglement (Suter et al., 2019), that explicits how
factor correlations can arise. To ensure a computationally tractable and efficient criterion even with
many factors, we further relax the full factorized support assumption to that of only a pairwise
factorized support, i.e. factorized support for all pairs of factors. On this basis, we propose a
concrete pairwise Hausdorff Factorized Support (HFS) training criterion to disentangle correlated
factors, by aiming for all pairs of latents to have a factorized support. Specifically we encourage a
factorized support by minimizing a Hausdorff set-distance between the finite sample approximation
of the actual support and its factorization (Huttenlocher et al., 1993; Rockafellar & Wets, 1998).

Across large-scale experiments on standard disentanglement benchmarks and novel extensions with
correlated factors, HFS consistently facilitates disentanglement. We also show that HFS can be
implemented as regularizer for other methods to reliably improve disentanglement, up to +61% in
disentanglement performance over baselines as measured by DCI-D (Eastwood & Williams, 2018)
(§4.1, Tab. 1). On downstream classification tasks, we improve generalization to more severe distri-
bution shifts and sample efficiency (§4.2, Fig. 2). To summarize our contributions:

[1] We motivate and investigate a principle for learning disentangled representations under corre-
lated factors: we relax the assumption of statistically independent factors into that of a factorized
support only (independently also derived in Wang & Jordan (2021) from a causal perspective), and
further relax it to a more practical pairwise factorized support.
[2] We develop a concrete training criterion through a pairwise Hausdorff distance term, which can
also be combined with existing disentanglement methods (§2.3).
[3] Extensive experiments on three main benchmarks and up to 14 increasingly difficult correlations
settings over more than 20k models, show HFS systematically improving disentanglement (as mea-
sured by DCI-D) by up to +61% over standard methods (β/TC/Factor/Annealed-VAE, c.f. §4.1).
[4] We show that HFS improves robustness to factor distribution shifts between train and test over
disentanglement baselines on classification tasks by up to +28%, as well as sample efficiency.

1We were initially not aware of this work, whose preprint predates ours. We consider it a strong positive
sign when the same principle (of support factorization) is arrived at independently from two quite different
angles (causality versus relaxed factor independence assumption).
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2 PROPOSED APPROACH

2.1 DISENTANGLEMENT VERSUS INDEPENDENCE

We are given a dataset D = {xi}Ni=1 (e.g. images), where each xi is a realization of a random
variable, e.g., an image. We consider that each xi is generated by an unknown generative process,
involving a ground truth latent random vector z whose components correspond to the dataset’s un-
derlying factors of variations (s.a. object shape, color, background, . . . ). This process generates an
observation x, by first drawing a realization z = (z1, . . . , zk) from a distribution p(z), i.e. z ∼ p(z).
Observation x is then obtained by drawing x ∼ p(x|z). Given D, the goal of disentangled repre-
sentation learning can be stated as learning a mapping fφ that for any x recovers as best as possible
the associated z i.e. fφ(x) ≈ E[z|x] up to a permutation of elements and elementwise bijective
transformation. In unsupervised disentanglement, the z are unobserved, and both p(z) and p(x|z)
are a priori unknown to us, though we might assume specific properties and functional forms. Most
unsupervised disentanglement methods follow the formalization of VAEs and employ parameterized
probabilistic generative models of the form pθ(x, z) = pθ(z)pθ(x|z) to estimate the ground truth
generative model over z,x. As in VAEs, these methods make the strong assumption that ground
truth factors are statistically independent:

p(z) = p(z1)p(z2) . . . p(zk). (1)

and conflate the goal of learning a disentangled representation with that of learning a representation
with statically independent components. This assumption naturally translates to a factorial model
prior pθ(z). Successful variants of VAE for disentanglement (Higgins et al., 2017; Kim & Mnih,
2018; Chen et al., 2018) further modify the original VAE objective to even more strongly enforce
elementwise independence of the aggregate posterior (i.e. the encoder outputs) than afforded by the
VAE’s optimized evidence lower bound. However, as explained in the introduction, the assumption
of factor independence clearly doesn’t hold for realistic data distributions. Consequently, methods
that enforce this unrealistic assumption suffer from that discrepancy, as shown in Träuble et al.
(2021); Dittadi et al. (2021) and confirmed in our own experiments. To address this shortcoming,
we develop a novel method to relax the unrealistic assumption of factor independence.

2.2 RELAXING THE INDEPENDENCE ASSUMPTION INTO THAT OF FACTORIZED SUPPORT

Instead of assuming independent factors (i.e. a factorial distribution on z as in Eq. 1) we will only
assume that the support of the distribution factorizes. Let us denote by S(p(z)) the support of p(z),
i.e. the set {z ∈ Z | p(z) > 0}. We say that S(p(z)) is factorized if it equals to the Cartesian product
of supports over individual dimensions’ marginals, i.e. if:

S(p(z)) = S(p(z1))× S(p(z2))× ...× S(p(zk))
def
= S×(p(z)) (2)

where × denotes the Cartesian product. Of course, 1 (independence)⇒ 2 (factorized-support) but 2
(factorized-support) ; 1 (independence). Assuming a factorized support is thus a relaxation of the
(unrealistic) assumption of factorial distribution, (i.e. of statistical independence) of disentangled
factors. Refer to the cartoon example in Fig. 1, where the distribution of the two disentangled factors
would not satisfy an independence assumption, but does have a factorized support. Informally the
factorized support assumption is merely stating that whatever values z1 and z2, etc... may take
individually, any combination of these is possible (even when not very likely). In the next section
we will develop a concrete training criterion that encourages the obtained latent representation to
have a factorized support rather than a factorial distribution.

2.3 A PRACTICAL CRITERION FOR FACTORIZED SUPPORT

Based on our relaxed hypothesis, we now define a concrete training criterion that encourages a
factorized support. Let us consider deterministic representations obtained by the encoder z = fφ(x).
We enforce the factorial support criterion on the aggregate distribution q̄φ(z) = Ex[fφ(x)], where
q̄φ(z) is conceptually similar to the aggregate posterior qφ(z) in e.g. TCVAE, though we consider
points produced by a deterministic mapping fφ rather than a stochastic one. To match our factorized
support assumption on the ground truth we want to encourage the support of q̄φ(z) to factorize,
i.e. that S(q̄φ(z)) and the Cartesian product of each dimension support, S×(q̄φ(z)), are equal. For
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clarity we use shorthand notations S and S× to denote S×(q̄φ(z)) and S(q̄φ(z)) respectively when
it is clear from context. To guide the learning, we thus need a divergence or metric to tell us how far
S is from S×. Supports are sets, so it is natural to use a set distance such as the Hausdorff distance.

Hausdorff distance between sets Given a base distance metric d(z, z′) between any two points
in Z (e.g. the Euclidean metric in Z = Rk), the Hausdorff Distance between sets (here, S× and S),
is then defined as

dH(S,S×) = max

(
sup
z∈S×

[
inf
z′∈S

d(z, z′)

]
, sup
z∈S

[
inf

z′∈S×
d(z, z′)

])
= sup

z∈S×

[
inf
z′∈S

d(z, z′)

]
(3)

with the second part of the Hausdorff distance equating to zero since S ⊂ S×.

Monte-Carlo Hausdorff Distance Estimation In practice we only have a finite sample of obser-
vations {x}Ni , and can only estimate the support and Hausdorff distances from the finite number of
representations {fφ(x)}Ni . We thus introduce a practical Monte-Carlo batch-approximation : with
access to a batch of b inputs X yielding b k-dimensional latent representations Z = fφ(X) ∈ Rb×k,
we estimate Hausdorff distances using sample-based approximations to the support: S ≈ Z and
S× ≈ Z:,1 × Z:,2 × ... × Z:,k = {(z1, . . . , zk), z1 ∈ Z:,1, . . . , zk ∈ Z:,k}. Here Z:,j must be
understood as the set (not vector) of all elements in the jth column of Z. Plugging into Eq. 3 yields:

d̂H(Z) = maxz∈Z:,1×Z:,2×...×Z:,k
[minz′∈Z d(z, z′)] (4)

where by noting z′ ∈ Z we consider the matrix Z as a set of rows, over which we find the min2.

Further relaxing the assumption to pairwise factorization In high dimension, with many fac-
tors, the assumption that every combination of all latent values is possible might still be too strong
an assumption. And even if we assumed all to be in principle possible, we can never hope to observe
all in a finite dataset of realistic size due to the combinatorial explosion of conceivable combina-
tions. However, it is statistically reasonable to expect evidence of a factorized support for all pairs
of elements3. To encourage such a pairwise factorized support, we can minimize a sliced/pairwise
Hausdorff estimate with the additional benefit of keeping computation tractable when k is large

d̂
(2)
H (Z) =

∑k−1
i=1

∑k
j=i+1 maxz∈Z:,i×Z:,j

[
minz′∈Z:,(i,j)

d(z, z′)
]

(5)

where Z:,(i,j) denotes the concatenation of column i and column j, yielding a set of rows.

Avoiding collapse and retaining input information We will be learning representations z =
fφ(x) by learning parameters φ that optimize a training objective. Because the Hausdorff distance
builds on a base distance d(z, z′), if we were to minimize only this, it could be trivially minimized to
0 by collapsing all representations to a single point. Avoiding this can be achieved in several ways,
s.a. by including a term that encourages the variance of z:,i to be above 1 (a technique used e.g.
in self-supervised learning method VICReg (Bardes et al., 2022)) or – more in line with traditional
VAE variants for disentanglement – by using a stochastic autoencoder (SAE) reconstruction error:

`SAE(x;φ, θ) = −Eqφ(z|x) [log pθ(x|z)] (6)

where typically qφ(z|x) = N (fφ(x),Σφ(x)) with mean given by our deterministic mapping fφ,
Σφ(x) producing a diagonal covariance parameter, and e.g. log pθ(x|z) = ‖rθ(z) − x‖2 with rθ
a parameterized decoder. The autoencoder term ensures representations fφ(x) retaining as much
information as possible about x for reconstruction, preventing collapse of representations to a single
point. A minimum scale can also be ensured by imposing Σφ(x) to be above a minimal threshold.

2.4 PUTTING IT ALL TOGETHER

Our basic training objective for Hausdorff-based Factored Support (HFS) can thus be formed by
simply combining the stochastic auto-encoder loss of Eq. 6 and our Hausdorff estimate of Eq. 5:

LHFS(D;φ, θ) = E
X
b∼D

[
γd̂

(2)
H (fφ(X)) + 1

b

∑
x∈X `SAE(x;φ, θ)

]
(7)

2One can alternatively use softened max and min operations, as defined in Appendix A.4. In practice, we
saw no robustness benefit to this, likely because we compute d̂H over batches, not the entire dataset.

3Straightforward to generalize to larger tuples, but computational and statistical benefits shrink accordingly.
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where X
b∼ D denotes a batch of b inputs, fφ(X) the batch representations Z, and γ the trade-

off between the Hausdorff and SAE terms. To compare with existing VAE-based disentanglement
methods s.a. β-VAE (Higgins et al., 2017), we can also use Eq. 5 as regularizer on top:

LβVAE
HFS (D;φ, θ) = E

X
b∼D

[
γd̂

(2)
H (Z) +

1

b

∑
x∈X

(
`SAE(x;φ, θ) + βDKL(qφ(z|x)||pθ(z))

)]
(8)

where DKL is the Kullback-Leibler divergence, and pθ(z) the usual VAE factorial unit Gaussian
prior. This hybrid objective recovers the original β-VAE with γ = 0, and LHFS (Eq. 7) with β =
0, showing that the plain HFS objective replaces the β-VAE KL term by our factorized-support-
encouraging Hausdorff term and removes the factorial prior p(z). We can similarly extended other
VAE-based variants (Chen et al., 2018; Kim & Mnih, 2018; Burgess et al., 2018) by adding our
Hausdorff term as regularizer to focus more on its support than a precise factorial distribution.

3 RELATED WORK

Disentangled Representation Learning aims to recover representation spaces where each ground-
truth generative factor is encoded in a unique entry or subspace (Bengio et al., 2013; Higgins et al.,
2018) to benefit subsequent downstream transfer (Bengio et al., 2013; Peters et al., 2017; Tschannen
et al., 2018; Locatello et al., 2019b; Montero et al., 2021; Mancini et al., 2021; Roth et al., 2020;
Funke et al., 2022), interpretability (Chen et al., 2016; Esser et al., 2018; Niemeyer & Geiger, 2021)
and fairness (Locatello et al., 2019a; Träuble et al., 2021; Dullerud et al., 2022) via compositionality
of representations. Methods often rely on Variational AutoEncoders (VAEs) variants (Kingma &
Welling, 2014; Rezende et al., 2014) to constrain the (aggregate) posterior of the encoder, e.g. via
penalties on the bottleneck capacity (β-VAE (Higgins et al., 2017)) with progressive constraints or
network growing (AnnealedVAE (Burgess et al., 2018), ProVAE (Li et al., 2020)), the total corre-
lation (β-TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018)) or the mismatch to some
factorized prior (DIP-VAE (Kumar et al., 2018), DoubleVAE (Mita et al., 2020)). These approaches
assume statistically independent factors, which is invalid for realistic data as motivated in §1.

Disentanglement under correlated factors. Consequently, while most methods have been shown
to perform well on toy datasets and ones with known independent factors such as Shapes3D (Kim
& Mnih, 2018), MPI3D (Gondal et al., 2019), DSprites (Higgins et al., 2017), SmallNorb (LeCun
et al., 2004) or Cars3D (Reed et al., 2015), recent research (Montero et al., 2021; Träuble et al., 2021;
Montero et al., 2022; Funke et al., 2022; Dittadi et al., 2021) has started to connect these setups to
more realistic scenarios with factor correlations: Träuble et al. (2021) introduce artificial correla-
tions between two factors, and Montero et al. (2021) exclude value combinations for recombination
studies. In such settings, Montero et al. (2021; 2022); Träuble et al. (2021); Dittadi et al. (2021)
show that unsupervised disentanglement methods that assume independent factors fail to disentan-
gle, with potentially negative impact to OOD generalization. Suter et al. (2019) propose a causal
metric to evaluate disentanglement when assuming confounders between the ground-truth factors.
Choi et al. (2020) introduce a Gaussian mixture model for dependencies between continuous and
discrete variables in a structured setup with number of mixtures known. By contrast, we investigate a
generic remedy without explicit auxiliary variables or prior models by relaxing the independence as-
sumption to only a pairwise factorized support. Pfau et al. (2020) propose geometrically motivated
non-parametric unsupervised disentanglement following the symmetry-based definition in Higgins
et al. (2018) by leveraging holonomy of manifold geometries as learning signal to find disentangled
subspaces. This does not assume statistical independence, but requires non-trivial holonomy for
each factor manifold, and struggles in high-dimensional spaces and generalization to new data. For
domain adaptation shifts, Tong et al. (2022) propose adversarial support matching, highlighting that
operating on the support can be beneficial for related settings as well. To evaluate disentanglement,
we utilize DCI-D (part of DCI – Disentanglement, Completeness, Informativeness, see Eastwood &
Williams (2018)) as leading metric. As opposed to other metrics s.a. Beta-/FactorVAE scores (Hig-
gins et al., 2017; Kim & Mnih, 2018), MI Gap (Chen et al., 2018), Modularity (Ridgeway & Mozer,
2018) or SAP (Kumar et al., 2018), Locatello et al. (2020a); Dittadi et al. (2021) have indicated DCI-
D as the potentially most suitable disentanglement metric (and as also done e.g. in Locatello et al.
(2019b; 2020b); Träuble et al. (2021)), with generally strong correlation between metrics (Locatello
et al., 2019b). Finally, Wang & Jordan (2021) independently also arrived at the idea of support fac-
torization for disentanglement from a causal perspective, for which they propose a similar Hausdorff
distance objective, providing orthogonal validation to support factorization for disentanglement. On

5



Published as a conference paper at ICLR 2023

the contrary, we derive it from relaxing the assumption of factor independence, and propose fur-
ther pairwise relaxation, which performs and scales much better (see Supp. A), alongside a much
more expansive experimental study on the impact on downstream disentanglement, adaptation and
generalization under various correlation shifts.

4 EXPERIMENTS

We start with experimental details listed below, before studying HFS on benchmarks with and
without training correlations (§4.1). These results are extended in §4.2 to evaluate the transfer and
downstream adaptability (§4.3) of learned representations across different correlation shifts and link
HFS during training to various downstream metrics (§4.4). We include variant, qualitative and
hyperparameter robustness studies in appendix §B, §E and §D - all favouring our HFS objective.
Across experiments, we re-implemented baselines (β-VAE (Higgins et al., 2017), FactorVAE (Kim
& Mnih, 2018), AnnealedVAE (Burgess et al., 2018), β-TCVAE (Chen et al., 2018)) as done e.g.,
in Locatello et al. (2019b; 2020b); Träuble et al. (2021). To investigate methods under correlated
ground truth factors, we use and extend the correlation framework introduced in Träuble et al. (2021)
who introduce correlation between pairs of factors as p(z1, z2) ∝ exp

(
−(z1 − f(z2))2/(2σ2)

)
,

where higher σ notes weaker correlation between normalized factors z1 and z2, and f(z) = z or
f(z) = 1 − z for inverted correlations when necessary . We extend this framework to include
correlations between multiple factor pairs (either 1, 2 or 3 pairs) and shared confounders (one factor
correlated to all others). All reported numbers are computed on at least 6 seeds (with ≥ 10 seeds
used for key experiments s.a. Tab. 1 or Fig. 2). Similar to existing literature (Locatello et al., 2019b;
2020b; Träuble et al., 2021; Dittadi et al., 2021) we cover at least 7 hyperparameter settings for each
baseline. Further experimental details are provided in §H.

4.1 FACTORIZATION OF SUPPORTS FOR DISENTANGLEMENT ON STANDARD BENCHMARK

We study the behaviour of HFS and baselines on standard disentanglement learning benchmarks and
correlated variants thereof (see §4) - Shapes3D (Kim & Mnih, 2018), MPI3D Gondal et al. (2019)
and DSprites (Higgins et al., 2017). For each setting, we report results averaged over ≥ 10 seeds
in Tab. 1. Each column denotes the test performance on uncorrelated data for all methods trained
on a particular correlation setting. As DSprites only has five effective factors of variation, no three-
pair setting is possible. Values reported denote median DCI-D with 25th and 75th percentiles in
grey. Our results indicate that a factorization of the support via HFS encourages disentanglement
(as measured via DCI-D) without relying on a factorial distribution objective (s.a. β-VAE and its
variants), consistently matching or outperforming the comparable β-VAE setting - both when no
correlation is encountered during training (”No Corr.”) as well as for much more severe correlations
(”Conf.”). Even more, we find that extending existing disentanglement objectives s.a. β-VAE (or
stronger extensions like β-TCVAE) with explicit factorization of the support (+HFS) can provide
even further, significant improvements. For example, without correlations we find relative improve-
ments of nearly +30%, while for some correlated settings, e.g. with a shared confounder, these go
over +60%! In addition, relative increases of up to +140% on β-TCVAE further highlight both
the general importance of an explicit factorization of the support for disentanglement even under
training correlations, as well as it being a property generally neglected until now.

4.2 OUT-OF-DISTRIBUTION GENERALIZATION UNDER CORRELATION SHIFTS

As β-VAE and β-VAE + HFS models in §4.1 were trained on correlated and evaluated on uncor-
related data, the performance differences provide a first indication that encouraging a factorized
support can benefit transfer under correlation shifts. Such changes in correlation from train to test
data is commonly referred to as “distributional shift” (Quinonero-Candela et al., 2009) as the test
data becomes out-of-distribution for the model, and mark a key issue interfering with generalization
in realistic settings (Arjovsky et al., 2019; Koh et al., 2021; Milbich et al., 2021; Roth et al., 2022;
Funke et al., 2022). While some works point to initial benefits of disentangled representations for
out-of-distribution (OOD) generalization (e.g. Träuble et al. (2021); Dittadi et al. (2021)), some have
raised concerns about the gains from disentanglement e.g. on OOD recombination (Montero et al.,
2022). Conceptually, one way a disentangled representation can benefit a downstream prediction
task is when the true predictor is a function of only a subset of the true factors. Successful recovery
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Table 1: Disentanglement by explicitly factorizing the support using HFS on 3 benchmarks across
various numbers of correlated factors (columns) and correlation increasing from left (no correla-
tion) to right (every factor correlated to one confounder; for DSprites, three pairs are impossible, see
text). Scores denote DCI-D metric computed on uncorrelated test data. (Bold) blue denotes (sec-
ond) best performance per benchmark/correlation. [a, b] indicate 25/75th percentiles. The results
show that relaxing the goal of a factorial latent distribution to a factorized support with standalone
HFS already offers competitive disentanglement. Adding HFS as regularizer over standard meth-
ods (β-VAE/TCVAE) to target a more factorized support yields even higher scores, beating other
approaches with optimally tuned hyperparameters s.a. β. Remarkably on MPI3D, optimal tuning
turned β and other TCVAE terms to 0, leaving only HFS which consistently worked best.

METHOD NO CORR. PAIRS: 1 PAIRS: 2 PAIRS: 3 SHARED CONF.
σ = 0.1 σ = 0.1 σ = 0.1 σ = 0.2

Shapes3D (Kim & Mnih, 2018)

β-VAE 70.7 [65.2, 75.4] 71.6 [60.9, 72.5] 55.6 [45.8, 57.2] 37.1 [32.3, 38.9] 38.0 [35.0, 38.6]
HFS 78.3 [75.1, 83.6] 77.8 [74.4, 78.8] 56.0 [41.0, 57.4] 47.5 [38.0, 49.1] 46.2 [36.3, 47.5]
β-VAE + HFS 91.2 [75.8, 100.0] 80.9 [76.4, 81.4] 67.6 [62.4, 69.3] 47.9 [44.0, 50.8] 63.5 [61.2, 65.5]
β-TCVAE 77.1 [76.6, 78.3] 71.1 [65.5, 72.5] 63.8 [59.1, 65.1] 47.3 [36.7, 50.0] 49.9 [45.8, 55.9]
β-TCVAE + HFS 85.7 [82.5, 97.3] 75.2 [63.1, 76.6] 68.3 [61.0, 71.8] 51.6 [47.7, 52.8] 61.5 [53.8, 64.2]
FactorVAE 66.1 [51.2, 69.1] 70.8 [70.5, 71.2] 57.2 [55.9, 62.0] 46.8 [40.8, 49.0] 31.6 [27.9, 35.1]
AnnealedVAE 62.2 [60.7, 63.2] 57.2 [49.5, 59.3] 31.6 [26.9, 34.1] 33.6 [31.0, 38.0] 23.0 [20.1, 25.9]

DSprites (Higgins et al., 2017)

β-VAE 32.2 [25.3, 37.9] 9.5 [7.9, 10.3] 7.5 [6.7, 8.3] N/A 11.4 [9.9, 13.9]
HFS 34.9 [27.4, 36.0] 13.6 [7.6, 16.7] 11.9 [9.7, 13.8] N/A 15.1 [11.0, 16.0]
β-VAE + HFS 49.9 [30.0, 50.4] 19.7 [17.0, 21.1] 17.3 [6.0, 19.6] N/A 15.8 [12.3, 16.7]
β-TCVAE 30.9 [28.9, 35.2] 24.0 [23.6, 24.4] 11.4 [7.6, 13.6] N/A 20.9 [17.5, 23.6]
β-TCVAE + HFS 53.1 [41.8, 53.2] 26.5 [25.6, 27.2] 27.8 [16.1, 31.6] N/A 24.8 [23.8, 26.3]
FactorVAE 25.7 [20.9, 30.9] 15.1 [11.9, 16.3] 13.4 [12.4, 15.0] N/A 14.7 [13.5, 15.3]
AnnealedVAE 39.4 [38.7, 40.0] 14.8 [14.3, 15.9] 8.5 [6.9, 10.3] N/A 14.3 [14.1, 14.5]

MPI3D (Gondal et al., 2019)

β-VAE 25.6 [24.7, 26.1] 20.5 [17.7, 20.9] 23.6 [22.6, 24.3] 11.6 [11.1, 11.7] 11.8 [10.0, 12.7]
HFS 32.8 [30.0, 34.3] 28.4 [26.5, 29.5] 28.0 [27.4, 28.2] 14.3 [13.1, 14.8] 16.1 [15.0, 16.6]
β-VAE + HFS 32.8 [30.0, 34.3] 28.4 [26.5, 29.5] 28.0 [27.4, 28.2] 14.3 [13.1, 14.8] 16.1 [15.0, 16.6]
β-TCVAE 26.6 [26.0, 27.4] 20.7 [20.4, 21.3] 23.3 [21.9, 23.8] 11.4 [10.3, 12.6] 14.2 [13.4, 15.4]
β-TCVAE + HFS 32.8 [30.0, 34.3] 28.4 [26.5, 29.5] 28.0 [27.4, 28.2] 14.3 [13.1, 14.8] 16.1 [15.0, 16.6]
FactorVAE 26.0 [24.8, 27.5] 21.9 [20.1, 23.9] 27.8 [27.2, 29.2] 10.9 [10.7, 11.9] 13.6 [12.8, 13.9]
AnnealedVAE 11.8 [10.8, 12.4] 11.7 [10.4, 12.9] 11.8 [11.6, 12.1] 11.6 [10.6, 12.2] 13.4 [12.8, 13.9]

of all factors, disentangled, enables effective subsequent feature selection (e.g. L1-regularized logis-
tic regression or shallow decision trees). A downstream predictor can thus be far more sample
efficient (Ng, 2004) in learning to ignore irrelevant factors, that may be spuriously correlated
with the target, than if they were entangled in the representation. As we showed that explicit sup-
port factorization provides stronger relative disentanglement, we leverage this for further insights
into its benefits on OOD tasks. Given the strong performance of HFS on Shapes3D, we extend our
experiments from §4.1 on this dataset with more training and now also test data correlations. This
gives transfer grids (Fig. 2) across diverse, increasingly severe correlation shifts. For each grid, the
y- and x-axis indicate training and test correlations increasing from top to bottom and left to right,
respectively. Darker colors refer to a score increase. We use these grids to see (1) how different
correlation shifts impact disentanglement, and (2) if improvements in disentanglement via explicitly
aiming for a factorized support impact downstream transferability of the learned representations.

(1) We first evaluate disentanglement of a standard β-VAE (leftmost grid; each square uses optimal
parameters for a given correlation and seed), and find an expected drop with increased correlation on
the training data. The subsequent grid shows changes when adding HFS to β-VAE, with consistent
improvements in disentanglement of test data over β-VAE across all correlation shifts (only positive
changes), and extends our insights from Tab. 1.

(2) To understand the usefulness for practical transfer tasks under correlation shifts, we train a Gra-
dient Boosted Tree (GBT, sklearn (Pedregosa et al., 2011), c.f. Locatello et al. (2019b; 2020b)) to
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Figure 2: Out-of-Distribution Disentanglement and Generalization across large ranges of correla-
tion shifts between train and test data on Shapes3D. We evaluate the impact of encouraging factor-
ized support on disentanglement (DCI-D) and classification performance of test ground truth factors
(DCI-I) via HFS. Y-axis denotes source correlations increasing from top to bottom, x-axis target
correlations (left to right). Darker blue and green mean higher scores and absolute improvements,
respectively. [Leftmost]: DCI-D β-VAE for all shifts, dropping with higher training correlations.
[Left]: Consistent and in parts high improvements in DCI-D when explicitly encouraging factorized
support via β-VAE + HFS across shifts. [Right]: DCI-I using a GBT over embeddings generated by
a β-VAE model trained on respective source correlations. Drop in performance with higher training
correlation or test data variation (bottom left corner). [Rightmost]: Absolute changes in DCI-I with
HFS reveal higher generalization particularly when shifts are large (c.f. bottom-left). This shows
that explicitly encouraging factorized support benefits generalization as shifts become more severe.

Figure 3: Increased accuracy and sample efficiency on downstream classification. We plot relative
improvement (%) in average ground truth factor classification accuracy by using HFS on top of a
β-VAE, as a function of the amount of labeled training data. Classifier is a GBT (for linear probe see
§F.2) receiving either the entire latent vector (black) or only the most expressive entry (blue). The
increased disentanglement through HFS gives consistent improvements in all cases, and gets more
pronounced in the low data regime for full latents, indicating higher sample efficiency, as expected
from better disentanglement. Relative improvements up to +80% in the single entry case across
correlation shifts highlight the better reflection of ground truth factors across correlations.

take representations of the test data and predict the exact ground truth factor values; reflected in the
third grid for β-VAE baseline and measured by the DCI-I metric (Eastwood & Williams, 2018). We
see that the downstream classification performance, while saturated for small shifts, drops notably
both with increased training correlation or more variation in the test data (drop towards bottom-left
corner). If we now measure the change in downstream classification performance with HFS (last
grid), we see that while for small shifts the benefits are small, they increase for larger ones (increase
towards same bottom left corner). This indicates that changes in disentanglement through our sup-
port factorization become increasingly important as distributional shifts increase, and highlight that
benefits for OOD generalization drawn from improvements in disentanglement may be particularly
evident for harder shifts.

4.3 BENEFITS UNDER VARYING DOWNSTREAM ADAPTATION METHODS

This section investigates how generalization improvements hold when the amount of downstream
test data changes, and revisits the recovery of ground truth factors under correlation shifts by looking
at the performance with only the single most important latent entry. We train GBTs (as we care about
relative changes, we use xgboost (Chen & Guestrin, 2016) for faster training) on embeddings ex-
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Figure 4: [Left, orange]: Increased support factorization on train data measured by lower Haus-
dorff estimate d̂(2)H by increasing HFS weight γ (Eq. 7)), improves disentanglement (DCI-D) across
correlations on Shapes3D (more results in Supp. Fig. 9). [Center, black]: Minimizing β-VAE
KL-Divergence by increasing β implicitly encourages a factorized support by pushing towards full
independence, but hurts disentanglement because of the incorrect assumption. [Right]: We find
strong correlation between HFS on train data and standard disentanglement metrics on test data
([%], darker→ higher) even under training correlations (top to bottom). Detailed figure in §F.5.

tracted either from an optimal β-VAE or β-VAE + HFS. For the single-latent-entry training, we first
train a GBT to select the most important entry to predict each respective ground truth factor, and
then use said entry to train a second ground truth factor predictor. See Supp. §F.2 for experiments
with linear probes. In all cases (Fig. 3), explicit support factorization via HFS facilitates downstream
adaptation with particular benefits when only little data is provided at test time. For example in the
standard uncorrelated setting, relative improvements increase from 4% to 45%, with similar trends
across correlation shifts. Finally, our experiments reveal that increased disentanglement expectedly
results in a better reflection of ground truth factors in single latent entries, shown in nearly +80%
relative improvement when training and predicting on the most expressive entry. These insights rein-
force that explicit support factorization via HFS encourages disentanglement also under correlation
shifts, and show potential benefits in downstream generalization especially in the low data regime.

4.4 FACTORIZATION AS A PERFORMANCE METRIC

We now explore the relationship of HFS to existing metrics across correlations. Utilizing Eq. 5 as
separate evaluation metric for the factorization of the support across the whole training data facili-
tated through increased HFS weighting γ, we find that when the factorization of the support across
the training data goes down (Fig. 4 (left, orange)), the disentanglement on the test data consistently
goes up, verifying again the connection between support factorization and disentanglement. Fig. 4
(center, black) shows β-VAE implicitly encouraging a factorized support by pushing towards inde-
pendence, but which hurts disentanglement and generalization, see experiments above. Finally, Fig.
4 (right) shows that support factorization on the training data exhibits correlation with disentangle-
ment metrics, consistent across also stronger training correlations, albeit lower. This is useful, as
HFS neither requires access to ground truth factors nor a specific prior distribution over the support,
and can thus serve as a proxy for development and training evaluation of future works.

5 CONCLUSION

To avoid the unrealistic assumption of factors independence (i.e. factorial distribution) as in tradi-
tional disentanglement, which stands in contrast to realistic data being correlated, we thoroughly
investigate an approach that only aims at recovering a factorized support. Doing so achieves disen-
tanglement by ensuring the model can encode many possible combinations of generative factors in
the learned latent space, while allowing for arbitrary distributions over the support – in particular
those with correlations. Indeed, through a practical criterion using pairwise Hausdorff set-distances
– HFS – we show that encouraging a pairwise factorized support is sufficient to match traditional dis-
entanglement methods. Furthermore we show that HFS can steer existing disentanglement methods
towards a more factorized support, giving large relative improvements of over +60% on common
benchmarks across a large variety of correlation shifts. We find this improvement in disentanglement
across correlation shifts to be also reflected in improved out-of-distribution generalization especially
as these shifts become more severe; tackling a key promise for disentangled representation learning.
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REPRODUCIBILITY STATEMENT

To reproduce the results from this paper and avoid implementational and library-related differences,
we have released our codebase here: https://github.com/facebookresearch/disentangling-correlated-
factors.

To reproduce Tab. 1, we first refer to Tab. 5, which contains all Tab. 1 results with additional details
on the exact correlations used (as well as other correlation settings). For each of the correlation
settings, the associated factor correlation pairs are provided in §H.1, with the training, model as
well as grid-search details all noted in §H. The correlation formula to introduce artificial correla-
tions between respective factors follows the setup described in the experimental details noted at the
beginning of §4.

For the correlation shift transfer experiments used in §4.2, the same training and correlation settings
are used. For our downstream adaptability results, we provide all relevant details in §4.3 and §H.
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Schölkopf, and Olivier Bachem. A sober look at the unsupervised learning of disentangled repre-
sentations and their evaluation. J. Mach. Learn. Res., 21(1), jan 2020a. ISSN 1532-4435.

Francesco Locatello, Ben Poole, Gunnar Raetsch, Bernhard Schölkopf, Olivier Bachem, and
Michael Tschannen. Weakly-supervised disentanglement without compromises. In Hal Daumé
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A ALTERNATE HAUSDORFF VARIANTS

In this section, we introduce various variants to our Hausdorff distance approximation introduced in
§2.3 and particularly Eq. 5, which we then experimentally evaluate in §B.

A.1 AVERAGED HAUSDORFF

First, due to the sensitivity to outliers, one can also utilize the average Hausdorff distance, which
simply gives:

d̂
(2)
H,avg(Z) =

∑k
i=1

∑k
j=i+1

1
|Z:,i×Z:,j |

∑
z∈Z:,i×Z:,j

[
minz′∈Z:,(i,j)

d(z, z′)
]

(9)
using the same pair-based approximation introduced in Eq. 5.

A.2 SUBSAMPLING

One can also operate on the full approximated Ŝ× with S× ≈ Ŝ× = Z:,1×Z:,2× ...×Z:,k instead
of a collection of Ŝ×i,j = Z:,i × Z:,j , by simply utilising a randomly subsampled version of Ŝ×,
denoted Ŝ×sub (through i.i.d. stitching of latent entries sampled from each dimension support):

d̂H,sub = max
z∈Ŝ×sub

[
min
z′∈Z

d(z, z′)

]
(10)

However, in practice (as shown in §B), we found d̂(2)H to work better, as the max-operation over
a collection of 2D subspaces provides a less sparse training signal than a single backpropagated
distance pair in d̂H,sub.

A.3 SAMPLING-BASED SOFTMIN

In addition, as the latent representations and the corresponding support change during training, one
can also encourage some degree of exploration during training instead of relying on the use of
hard max and min operations, for example through a probabilistic selection of the final distance to
minimize for, allowing for a controllable degree of exploration during training:

d̂
(2)
H,prob =

k∑
i=1

k∑
j=i+1

max
z∈Ŝ×(Z)

[
Ez′∼psoftmin(·|z,Z:,(i,j),τ) [d(z, z′)]

]
(11)

with the SoftMin-distribution

psoftmin(z′|z,Z, τ) =
exp(−d(z, z′)/τ)∑

z∗∈Z exp(−d(z, z∗)/τ)
(12)

though as shown in the following experimental section, we found minimal benefits in doing so.

A.4 SOFTENED HAUSDORFF DISTANCE

To potentially better align the Hausdorff distance objective with the differentiable optimization pro-
cess, it may make be beneficial to look into soft variants to relax the hard minimization and maxi-
mization, respectively (note the d̃ instead of d̂):

σmin (z, z′,Z) =
exp(−d(z, z′)/τ1)∑

z∗∈Z exp(−d(z, z∗)/τ1)

dsoft
min(z,Z) =

∑
z′∈Z

σmin (z, z′,Z) d(z, z′)

d̃
(2)
H (Z) =

k∑
i=1

k∑
j=i+1

∑
z∈Z:,(i,j)

exp(dsoft
min(z,Z:,(i,j))/τ2)∑

z∗∈Z:,(i,j)
exp(dsoft

min(z∗,Z:,(i,j))/τ2)
dsoft

min(z,Z:,(i,j))

(13)
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Table 2: Method ablations to d̂
(2)
H . We compare our default pairwise Hausdorff approximation

against a variant using averaging instead of max (d̂(2)H,avg), a probabilistic approximation to min

(d̂(2)H,prob) as well as subsampling of the full-dimensional factorized support without any pairwise
approximations. In all cases, entries are selected with at least 5 seeds and optimal values chosen
from a gridsearch over γ ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10000}.

Setup ↓ No Correlation Correlated Pairs: 1 Correlated Pairs: 3
d̂
(2)
H 76.9 [74.3, 81.4] 55.9 [47.6, 59.9] 48.0 [39.1, 48.9]

d̂
(2)
H,avg (Eq. 9) 61.1 [55.6, 65.5] 33.5 [26.9, 36.0] 42.4 [38.9, 46.3]

d̂
(2)
H,prob (Eq. 11) 74.7 [69.5, 77.4] 56.2 [46.0, 60.4] 46.9 [37.7, 48.0]

d̂subH (Eq. 10), Subs. 80 56.4 [52.6, 61.7] 38.1 [21.2, 42.9] 29.7 [19.7, 32.0]
d̂subH (Eq. 10), Subs. 800 60.0 [55.0, 62.8] 44.5 [25.7, 48.0] 31.6 [24.4, 34.1]
d̂subH (Eq. 10), Subs. 8 · 103 62.2 [59.5, 69.3] 52.1 [48.8, 54.7] 32.1 [27.0, 33.1]
d̂subH (Eq. 10), Subs. 8 · 104 66.9 [61.3, 71.2] 54.5 [49.3, 59.7] 39.2 [31.9, 43.8]
d̂subH (Eq. 10), Subs. 8 · 105 66.6 [62.2, 72.4] 56.8 [50.1, 59.4] 40.9 [37.3, 45.2]

Figure 5: Results for our soft approximation to Eq. 5. Blue horizontal line denotes the default
Eq. 5 objective, while orange denotes a replaced of the max-operation with a mean. We find that
generally, a convergence of the soft approach to our default hard variant performs best, with large
choices in the outer temperature converging towards our mean approximation.

Here, the temperature τ1 controls the translation between putting more weight on the minimal dis-
tance (smaller τ1) versus a more uniform distribution (larger τ1), moving further away from the
corresponding min operation.

A secondary τ2 then controls the transition between the max-operation over our soft distances and
a more uniform weighting over all (non-zero) soft distances, with the limit case τ2 → ∞ approxi-
mating the simple mean over soft distances.

B EVALUATION OF HAUSDORFF DISTANCE APPROXIMATION VARIANTS

As our utilized distance function d̂(2)H only approximates the Hausdorff distance to the factorized
support, we now move to a variant study of other alternative distance measures as described above.

In particular, we investigate (1) a replacement of the max-operation with a corresponding mean over
support samples to address potential outliers better, (2) a probabilistic approximation to our min-
operation over d(z, z′) (see Eq. 11), (3) and a fully soft approximation to both max and min using
a respective Softmax and Softmin formulation (A.4). (4) Finally, we also revisit the impact of exlicit
scale regularization as introduced in §2.3.

Method ablation. Ablation studies across the default as well as two different training correlation
settings can be found in Tab. 2, with each entry computed over at least 6 seeds, and a gridsearch
over γ ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10000}. Our results show that for optimization pur-
poses, approximating the Hausdorff distances in a “sliced”, pairwise fashion as suggested in Eq. 5
is noticeably better than subsampling from the incredibly high-dimensional factorized support, as
instead of a single distance entry that is optimized for (after the max-min selection), we have vari-
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Table 3: Impact of the number of 2D approximations in d̂(2)H . Our experiments reveal that the use of
multiple 2D approximations to the full Hausdorff distances has notable merits up to a certain degree
(change in disentanglement performance from e.g. 64% to 75% in the uncorrelated transfer setting).
Each entry was chosen as the highest value in a gridsearch over γ ∈ {0.01, 0.1, 1, 10, 100}.

Correlation ↓ Num. Pairs: 1 Num. Pairs: 2 Num. Pairs: 5 Num. Pairs: 15 Num. Pairs: 25 Num. Pairs: 35 Num. Pairs: 45
No Correlation 64.0 [58.5, 68.7] 66.3 [63.8, 72.6] 67.9 [66.2, 69.5] 76.6 [63.7, 79.5] 74.1 [73.8, 77.6] 75.5 [72.4, 79.9] 74.5 [71.0, 76.0]
Correlated Pairs: 1 26.3 [21.0, 29.6] 25.0 [23.9, 35.4] 28.7 [24.5, 45.6] 54.2 [44.2, 67.0] 51.4 [42.5, 58.3] 53.6 [48.3, 57.9] 53.5 [51.0, 59.1]
Correlated Pairs: 3 40.9 [38.5, 44.3] 44.3 [41.3, 48.0] 46.8 [44.9, 48.9] 46.5 [45.7, 47.3] 48.7 [47.8, 50.2] 48.8 [46.8, 52.0] 49.2 [45.6, 51.8]

Table 4: Impact of scale regularization (as detailed in §C) using VAE + d̂
(2)
H with

γ = 100. For each setting, we perform a gridsearch over either the weight
scale δ ∈ {0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000} or the L2 Regularization weight ∈
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. Results show that scale regularization, while not neces-
sarily detrimental, does not provide any consistent benefits.

Setup ↓ Correlation→ No Correlation Correlated Pairs: 1 Correlated Pairs: 3
Baseline 74.1 [73.8, 77.6] 51.4 [42.5, 58.3] 48.7 [47.8, 50.2]
Variance 72.4 [65.4, 76.1] 54.4 [53.0, 55.6] 50.1 [49.2, 53.3]
Min. Range 75.0 [67.5, 78.5] 50.6 [38.7, 55.2] 51.5 [44.2, 53.3]
L2 Decoder 73.4 [70.1, 78.2] 56.3 [51.4, 60.0] 52.9 [44.3, 52.2]

ous latent subsets that incur a training gradient, and in two dimensions can cheaply compute the full
factorized support.

Similarly, we also find that replacing the min-selection over latent entries with a probabilistic vari-
ant, as well as the max-selection over factorized support elements, offer no notable benefits. In
particular the replacement of the outer max-operation can severely impact the disentanglement per-
formance.

These insights are additionally supported when utilizing a soft variant (see Eq. A.4 in the appendix),
which replaces both max and min operations with a respective Softmax and Softmin operation, each
with respective temperatures τ1 and τ2. When utilizing this objective, we see that small temperature
choices on both soft approximations are beneficial, and approximate the hard variant. Similarly,
we find a consistent drop in performance when either one of these temperatures is reduced, with
the soft performance converging towards the Mean variant when increasing the outer temperature
τ2. Overall, we don’t see any major benefits in a soft approximation, while also introducing two
additional hyperparameters that would need to be optimized.

Finally, we ablate the key parameter for our Hausdorff distance approximation of choice, d̂(2)H (Eq. 5
- the number of pairs over which we compute a sliced 2D variant. Given a total latent dimensionality
k, we are given

(
k
2

)
usable combinations, which we can choose to subsample all the way down to

a single pair of latent entries, which is what we do in Tab. 3. The results showcase that while a
minimal number of latent pairs is crucial, not all combinations are needed, with diminishing returns
for more pairs included. For practical purposes, we therefore choose 25 pairs as our default setting
to strike a balance between performance and compute cost, which however can be easily increased
if needed. On the latter note, we also highlight that while the addition of LHFS does incur a higher
epoch training time (60s for a standard VAE as used in Locatello et al. (2020b) on a NVIDIA Quadro
GV100) than β-VAE (52s), it still compares favourably when compared to e.g. β-TCVAE (70s) or
FactorVAE (96s). In addition, the impact on the training time diminishes when larger backbone
networks are utilized.

C REGULARIZING SCALE TO AVOID COLLAPSE

In the limit case, the standard Hausdorff matching problem is solved by collapsing all representations
into a singular point. In addition to that, the actual scale of the latent entries directly impacts the
distance scale. One can therefore provide additional regularization on top to ensure both a scale-
invariant measure as well as work against a potential collapse, for example by enforcing a minimal
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standard deviation ρ on each factor4

Lscale =

d∑
i=1

max

[
0, 1−

√
Var [z:,i]

]
(14)

or simply enforcing a minimal range [a, b] of the support:

Lscale =

d∑
i=1

max [0, b−max(z:,i)] + max [0,min(z:,i)− a] (15)

In real setups however, we have found regularization of scale to not be necessary in the ma-
jority of cases, as the use of the additional autoencoding term alongside the Hausdorff Support
Factorization is sufficient to avoid collapse (see part in §2.3 on collapse), as shown in Tab. 4.
For Tab. 4, we also investigate what happens if we apply L2 regularization on the decoder.

Figure 6: Robustness to factorized sup-
port weighting γ - much less detrimen-
tal to overall training dynamics.

In all cases, we perform a grid-search over an addi-
tional scale regularization weight parameter δ (with
δ ∈ {0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000})
or the L2 Regularization weight (∈
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1}). Our results
show no improvements that are both significant and
consistent across correlation settings. And while these
regularization may become relevant for future variants
and extensions, in this work we choose to forego a
scale regularizer with the benefits of having one less
hyperparameter to tune for.

D HYPERPARAMETER EVALUATION

To understand to what extent the factorization of support
parameter γ impacts the learning and performance of the
model, we also compare grid searches over γ and the stan-
dard β-VAE prior matching weight β. The results in Fig.
6 indicate that a factorization of support is much less de-
pendent on the exact choice of weighting γ as opposed to the standard KL-Divergence to the normal
prior used in β-VAE frameworks (notice the logarithmic value grid). This stands to reason, as a fac-
torization of the support instead of distributions is both a more realistic property as well as a much
weaker constraint on the overall training dynamics.

E SAMPLE RECONSTRUCTIONS AND QUALITATIVE EVALUATION

We also provide some qualitative impression of the impact an explicit factorization has on the overall
disentanglement across different correlations. In particular, Figure 7 visuals latent traversals both
for the β-VAE baseline (top)as well as the HFS-augmented variant (bottom) for the latent entry
most expressive for the first mentioned latent entry in (”Correlations addressed”). To generate these
figures, we select the best performing seed for each setup, and report the respective DCI-D score
within each subplot. As can be seen, beyond the increase in maximally achievable DCI-D, an explicit
factorization of the support helps the disentangling method separate factors it initially struggled with
- both when correlations exists in the training data as well as for generally failure modes when the
β-VAE fails to fully disentangle in the uncorrelated setting.

4Though this enforces an implicit assumption on the density within each latent factor.
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Figure 7: Sample traversals for the Shapes3D benchmark Kim & Mnih (2018) in latent space for
latent entry most closely associated with various ground truth factors of variations across different
correlation shifts. In all cases, the best seed (out of 10) was selected to perform these qualitative
studies. Each image also reports the associated overall DCI-D score of each respective best seed for
β-VAE and β-VAE + HFS.
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Method No Corr. Pair: 1 Pair: 1 Pair: 1 Pair: 1 Pair: 1 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 3 Pairs: 3 Conf. Conf.
[V1, σ = 0.1] [V2, σ = 0.1] [V3, σ = 0.1] [V4, σ = 0.1] [V4-inv, σ = 0.1] [V1, σ = 0.4] [V2, σ = 0.4] [V1, σ = 0.1] [V2, σ = 0.1] [V3, σ = 0.1] [V3-inv, σ = 0.1] [V1, σ = 0.1] [V2, σ = 0.1] [V1, σ = 0.2] [V2, σ = 0.2]

β-VAE 70.7 [65.2, 75.4] 55.9 [53.8, 59.0] 71.6 [60.9, 72.5] 66.1 [62.8, 67.0] 64.8 [62.0, 66.4] 64.5 [62.6, 66.1] 68.5 [56.8, 76.9] 71.5 [68.1, 75.1] 58.7 [57.1, 62.9] 55.6 [45.8, 57.2] 60.2 [54.8, 61.6] 55.5 [52.8, 56.2] 37.1 [32.3, 38.9] 40.0 [33.8, 47.5] 46.8 [42.0, 50.7] 38.0 [35.0, 38.6]
HFS 78.3 [75.1, 83.6] 56.4 [46.6, 60.2] 77.8 [74.4, 78.8] 68.1 [61.2, 69.4] 71.0 [65.8, 73.6] 69.6 [68.2, 71.0] 73.9 [65.5, 80.0] 76.7 [69.7, 81.2] 62.6 [61.2, 64.3] 56.0 [41.0, 57.4] 64.4 [62.3, 65.3] 61.5 [55.3, 62.6] 47.5 [38.0, 49.1] 41.1 [31.7, 42.7] 51.3 [46.2, 52.5] 46.2 [36.3, 47.5]
β-VAE + HFS 91.2 [75.8, 100.0] 67.3 [59.5, 72.3] 80.9 [76.4, 81.4] 76.1 [72.2, 79.5] 75.8 [67.1, 78.9] 74.0 [71.8, 78.9] 89.1 [78.2, 98.5] 83.3 [79.0, 86.5] 65.5 [62.0, 66.6] 67.6 [62.4, 69.3] 65.8 [63.2, 68.4] 63.8 [57.7, 65.4] 47.9 [44.0, 50.8] 52.0 [48.7, 54.5] 59.7 [58.6, 62.1] 63.5 [61.2, 65.5]
β-TCVAE 77.1 [76.6, 78.3] 62.0 [56.6, 64.5] 71.1 [65.5, 72.5] 69.8 [67.3, 70.8] 63.2 [61.7, 66.6] 66.4 [65.1, 66.7] 75.8 [73.0, 79.1] 75.2 [69.0, 75.9] 65.7 [62.9, 70.0] 63.8 [59.1, 65.1] 60.1 [53.6, 62.7] 54.3 [50.8, 54.8] 47.3 [36.7, 50.0] 58.1 [56.2, 61.1] 55.9 [52.7, 59.9] 49.9 [45.8, 55.9]
FactorVAE 66.1 [51.2, 69.1] 52.2 [44.7, 54.8] 70.8 [70.5, 71.2] 65.9 [64.2, 67.8] 64.6 [63.7, 64.8] 63.5 [61.9, 64.4] 70.2 [64.8, 75.0] 71.2 [63.0, 77.7] 62.0 [60.7, 64.5] 57.2 [55.9, 62.0] 60.3 [52.9, 60.9] 56.8 [53.3, 57.6] 46.8 [40.8, 49.0] 40.2 [35.2, 44.6] 39.2 [34.2, 47.8] 31.6 [27.9, 35.1]
AnnealedVAE 62.2 [60.7, 63.2] 39.6 [29.6, 41.6] 57.2 [49.5, 59.3] 56.3 [53.0, 57.2] 58.0 [49.9, 60.7] 58.9 [57.6, 61.2] 60.4 [59.3, 64.9] 48.5 [39.7, 49.1] 50.9 [46.0, 52.9] 31.6 [26.9, 34.1] 50.7 [48.5, 53.4] 51.3 [49.5, 52.3] 33.6 [31.0, 38.0] 30.2 [27.1, 30.8] 26.2 [22.0, 26.8] 23.0 [20.1, 25.9]

(a) Shapes3D
Method No Corr. Pair: 1 Pair: 1 Pair: 1 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 3 Pairs: 3 Conf. Conf.

[V1, σ = 0.1] [V2, σ = 0.1] [V3, σ = 0.1] [V1, σ = 0.4] [V2, σ = 0.4] [V1, σ = 0.1] [V2, σ = 0.1] [V1, σ = 0.1] [V2, σ = 0.1] [V1, σ = 0.2] [V2, σ = 0.2]
β-VAE 25.6 [24.7, 26.1] 15.7 [13.9, 17.0] 20.5 [17.7, 20.9] 23.5 [22.5, 24.4] 23.6 [21.3, 24.7] 24.8 [24.5, 25.9] 21.2 [19.5, 21.7] 23.6 [22.6, 24.3] 11.6 [11.1, 11.7] 11.1 [10.9, 11.3] 15.1 [14.5, 15.8] 11.8 [10.0, 12.7]
HFS 32.8 [30.0, 34.3] 20.7 [19.5, 21.2] 28.4 [26.5, 29.5] 26.9 [24.7, 28.0] 30.1 [29.7, 31.0] 30.2 [29.5, 30.5] 25.6 [24.0, 26.2] 28.0 [27.4, 28.2] 14.3 [13.1, 14.8] 19.0 [17.8, 19.3] 18.9 [14.4, 19.2] 16.1 [15.0, 16.6]
β-VAE + HFS 32.8 [30.0, 34.3] 20.7 [19.5, 21.2] 28.4 [26.5, 29.5] 26.9 [24.7, 28.0] 30.1 [29.7, 31.0] 30.2 [29.5, 30.5] 25.6 [24.0, 26.2] 28.0 [27.4, 28.2] 14.3 [13.1, 14.8] 19.0 [17.8, 19.3] 18.9 [14.4, 19.2] 16.1 [15.0, 16.6]
β-TCVAE 26.6 [26.0, 27.4] 21.6 [20.4, 23.8] 20.7 [20.4, 21.3] 23.7 [23.5, 24.2] 25.6 [25.1, 25.9] 25.6 [25.4, 26.2] 21.6 [19.9, 23.2] 23.3 [21.9, 23.8] 11.4 [10.3, 12.6] 16.5 [15.4, 18.2] 16.7 [16.0, 17.1] 14.2 [13.4, 15.4]
FactorVAE 26.0 [24.8, 27.5] 20.1 [15.5, 22.7] 21.9 [20.1, 23.9] 24.6 [23.8, 26.2] 25.0 [24.0, 25.9] 27.8 [27.2, 29.2] 21.9 [18.6, 24.0] 21.6 [17.6, 24.4] 10.9 [10.7, 11.9] 15.4 [14.8, 16.4] 15.5 [15.0, 16.5] 13.6 [12.8, 13.9]
AnnealedVAE 11.8 [10.8, 12.4] 10.8 [9.6, 11.9] 11.7 [10.4, 12.9] 10.6 [10.3, 11.9] 12.9 [11.0, 14.8] 11.8 [11.6, 12.1] 10.8 [9.8, 11.6] 12.5 [10.1, 13.5] 11.6 [10.6, 12.2] 10.1 [9.8, 11.0] 13.3 [11.4, 13.8] 13.4 [12.8, 13.9]

(b) MPI3D
Method No Corr. Pair: 1 Pair: 1 Pair: 1 Pairs: 2 Pairs: 2 Pairs: 2 Pairs: 2 Conf. Conf.

[V1, σ = 0.1] [V2, σ = 0.1] [V3, σ = 0.1] [V1, σ = 0.4] [V1, σ = 0.1] [V2, σ = 0.4] [V2, σ = 0.1] [V1, σ = 0.2] [V2, σ = 0.2]
β-VAE 32.2 [25.3, 37.9] 17.9 [10.4, 23.0] 9.5 [7.9, 10.3] 13.5 [9.8, 16.1] 20.5 [18.7, 27.6] 7.5 [6.7, 8.3] 24.8 [11.0, 27.6] 10.0 [6.8, 12.3] 14.0 [10.4, 18.5] 11.4 [9.9, 13.9]
HFS 34.9 [27.4, 36.0] 22.7 [14.4, 25.6] 13.6 [7.6, 16.7] 23.3 [13.8, 28.4] 24.1 [13.3, 30.3] 11.9 [9.7, 13.8] 24.3 [21.7, 25.6] 11.1 [9.8, 11.3] 15.8 [5.4, 18.9] 15.1 [11.0, 16.0]
β-VAE + HFS 49.9 [30.0, 50.4] 32.9 [21.3, 39.0] 19.7 [17.0, 21.1] 37.5 [25.9, 39.1] 38.2 [21.9, 41.7] 17.3 [6.0, 19.6] 32.7 [23.1, 33.0] 14.6 [14.3, 14.9] 22.1 [17.7, 24.4] 15.8 [12.3, 16.7]
β-TCVAE 35.3 [29.5, 38.8] 35.1 [32.3, 38.4] 24.0 [23.6, 24.4] 25.0 [19.0, 30.9] 30.2 [27.9, 42.2] 11.4 [7.6, 13.6] 33.0 [24.3, 37.8] 20.7 [16.5, 21.9] 29.4 [28.7, 30.9] 20.9 [17.5, 23.6]
FactorVAE 25.7 [20.9, 30.9] 22.6 [20.8, 25.4] 15.1 [11.9, 16.3] 21.2 [19.2, 24.6] 21.2 [13.5, 22.9] 13.4 [12.4, 15.0] 23.4 [22.3, 26.1] 13.0 [6.5, 14.4] 18.3 [17.5, 19.2] 14.7 [13.5, 15.3]
AnnealedVAE 39.4 [38.7, 40.0] 40.8 [39.4, 41.3] 14.8 [14.3, 15.9] 29.0 [26.6, 29.9] 30.3 [28.3, 31.4] 8.5 [6.9, 10.3] 28.3 [27.6, 28.5] 10.1 [9.3, 10.6] 19.1 [18.2, 19.2] 14.3 [14.1, 14.5]

(c) DSprites

Table 5: Full table for Tab. 1 with detailed and extended correlation settings. To understand the
exact factors correlated, please check the associated pairings from §H.

Figure 8: This figure shows adaptation behaviour across different amounts of test data for a L1-
optimal linear probe (i.e. for each seed and entry, we selected the optimal L1-regularization values).
Reported values show relative improvement in average ground truth factor classification perfor-
mance of β-VAE + HFS versus standard β-VAE. As can be seen, the increased disentanglement
through an explicitly factorized support gives expected improvements increasing with the severity
of training correlations encountered.

F DETAILED FIGURES AND TABLES

In this section, we provide detailed variants of figures and tables utilised in the main paper.

F.1 ADDITIONAL DISENTANGLEMENT RESULTS

For Tab. 1 studying the impact of HFS both as a standalone objective and as a regularizer on
disentanglement of test data across varying degrees of training correlations, we include a more
detailed variant highlighting the exact splits utilised in Tab. 5, as well as additional correlation
settings.

F.2 FURTHER ADAPTATIONS

Extending our adaptation experiments done in §4.3, we also investigate the average classification
performance of ground truth factors of a weaker, L1-regularized linear probe in Fig. 8. Similar to
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Figure 9: This is the full figure for Fig. 4, showcasing that a factorization of the support on the
training data is consistently linked to improved downstream disentanglement (top), and that a mini-
mization of the standard β-VAE KLD-objective for a factorial distribution implicitly minimizes for
a factorized support across settings.

Figure 10: This is the detailed correlation shift transfer grid utilized in Fig. 2, indicating the exact
correlation settings used for training and test data.

our transfer results, we again find that the increased disentanglement through an explicitly factorized
support gives expected improvements which increasing with the severity of training correlations.

F.3 FURTHER PROGRESSIONS

Fig. 9 provides visualization of the relations between training support factorization and disentan-
glement performance on test data (top), as well the KL-Divergence loss in the standard β-VAE for
more training correlation settings as shown in the main paper figure 4(orange and black graphs),
with insights transferring from the main paper.

F.4 DETAILED CORRELATION SHIFT TRANSFER GRID

For replicability, we provide a copy of Fig. 2 with the exact utilised correlation settings in Fig. 10.

F.5 DETAILED METRIC GRID

Finally, we also provide a more detailed copy of the metric transfer grid in Fig. 4(right, blue) with
the exact correlation settings investigated.
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Figure 11: Correlation of Hausdorff distance to factorized support on the training data to various
disentanglement metrics (in particular DCI and MIG) across correlation shifts. We find factoriza-
tion of supports on the training data to strongly relate to downstream disentanglement even when
experiencing strong correlation during training.

G DISENTANGLEMENT METRICS

In this section, we will provide a brief introduction into various disentanglement metrics, with par-
ticular emphasis on the DCI-D metric (Eastwood & Williams, 2018) used as our leading measure of
disentanglement.

G.1 DCI-D AND DCI-I

DCI-Disentanglement was introduced in Eastwood & Williams (2018) as part of a three-property
description of learned representation spaces, alongside Completeness and Informativeness. In this
work, we primarily utilize DCI-D as a measure of disentanglement, and DCI-I as a measure of
generalization performance. In particular, each submetric utilizes multiple classification models
(e.g. logistic regressor (Eastwood & Williams, 2018) or a boosted decision tree (Locatello et al.,
2019b)), which are trained to predict each underlying ground-truth factors from representations
extracted from the dataset of interest, respectively. DCI-I is then simply computed as the average
prediction error (on a test-split). To compute DCI-D, for each ground-truth factor and consequently
each prediction model, predictive importance scores for each dimension of the representation space
are extracted from the classification model, given as R ∈ Rd×k with representation dimensionality
d and number of factors k. For each row, the entropy value is then computed and subtracted from 1
- being high if a dimension is predictive for only one factor, and low if it is used to predict multiple
factors. Finally, each entropy score is weighted with the relative overall importance of the respective
dimension to predict any of the ground-truth factors, giving

DCI-D =

d∑
i

(1−H(Norm(Ri,:))

k∑
j

Ri,j∑
i∗
∑
j∗ Ri∗,j∗

G.2 MUTUAL INFORMATION GAP (MIG)

The Mutual Information Gap (MIG) was introduced in Kim & Mnih (2018) to measure the mutual
information difference of the two representation entries that have the highest mutual information
with a respective ground-truth factor normalized by the respective entropy, which is then averaged
for all ground-truth factors. For our work, we follow the particular formulation and implementation
introduced in Locatello et al. (2019b), by taking the mean representations produced by the encoder
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network, and estimating a discrete mutual information score, such that the overall MIG can be
computed as

MIG =
1

k

k∑
i=1

I(z̃m̃(k,1), zk)− I(z̃m̃(k,2), zk)

H(zk)

where k denotes the number of ground-truth factors of variation zk, H(zk) the respective entropy
of zk, z̃i the i-th entry of the generated latent space, and m̃(k, n) a function that returns the repre-
sentation index with the n-th highest mutual information to ground-truth factor k. To compute the
discrete mutual information, we get distribution estimates by binning representation values for each
dimensions across 20 bins, doing so over 10000 samples.

G.3 MODULARITY

Ridgeway & Mozer (2018) introduce the notions of Modularity and Expressiveness as key com-
ponents of a disentangled representation - with the former evaluating whether each representation
dimension depends on at most a single ground-truth factor of variation, and the latter the predictive-
ness of the overall representation to predict ground-truth factor values. Similarly to Locatello et al.
(2019b), we mainly focus on the property of Modularity, which Ridgeway & Mozer (2018) define
for a d-dimensional representation space with k ground-truth factors as

Modularity =
1

d

d∑
i

∑
j(mi,j · Ij=argmaxgmi,g )2

(maxgmi,g)2(k − 1)
(16)

which, per latent dimension i measures the average normalized squared mutual information scores
between the factors that do not share the highest mutual information with the latent entry i. Here,
mi,j denotes the discretized mutual information between latent entry i and factor j similar to our
implementation of the Mutual Information Gap and Locatello et al. (2019b), where we utilize a
discretized approximation by binning each latent entry into 20 bins over 10000 samples to compute
the discretized mutual information scores.

G.4 SAP SCORE

The Separated Attribute Predictability (SAP) score was introduced in Kumar et al. (2018) as another
disentanglement measure, in which the authors suggest to train a linear regressor (in the case of
Locatello et al. (2019b)a linear SVM with C = 0.01 and again 10000 training samples and 5000 test
points) to predict each ground-truth factor from each dimension of the learned representation space,
and then taking the average difference in prediction errors between the two most predictive latent
entries for each respective ground-truth factor.

G.5 BETA- AND FACTORVAE SCORES

The FactorVAE Score (Kim & Mnih, 2018) is an extension of the BetaVAE Score introduced in
Higgins et al. (2017). In both cases, a ground-truth factor of variation is fixed, and two sets of obser-
vations are then sampled. The BetaVAE score then measures disentanglement as the classification
accuracy of a linear classifier to predict the index of the fixed factor based on the average absolute
differences between set pairs. In Locatello et al. (2019b), this process is repeated 10000 times to
train a logistic regressor, and evaluated on 5000 test pairs. The FactorVAE score improves on this
metric through the use of a majority vote classifier that instead predicts based on the index of the
representation entry with least variance.

24



Published as a conference paper at ICLR 2023

Method Parameter Values
β-VAE β [1, 2, 3, 4, 6, 8, 10, 12, 16]
β-TCVAE β [1, 2, 3, 4, 6, 8, 10, 12, 16]

AnnealedVAE cmax [2, 5, 10, 25, 50, 75, 100, 150]
FactorVAE β [2, 5, 10, 25, 50, 75, 100, 150]

HFS γ [20, 40, 80, 100, 200, 400, 800, 1000, 2000, 4000]
β-VAE + HFS γ [30, 60, 100, 300, 600, 1000, 3000, 6000]

Table 6: Hyperparameter grid searches for different baseline methods as well as our factorized
support objective.

H FURTHER EXPERIMENTAL DETAILS

Study design. We implement all our experiments using the PyTorch framework Paszke
et al. (2019). For exact and fair comparability, we re-implement all baseline meth-
ods based on Tensorflow implementation provided through Locatello et al. (2019b)
(https://github.com/google-research/disentanglement_lib), as well as the
following public repositories: https://github.com/YannDubs/disentangling-vae,
https://github.com/nmichlo/disent/blob/main, https://github.com/
ubisoft/ubisoft-laforge-disentanglement-metrics/blob/main/src/
metrics/dci.py and https://github.com/AntixK/PyTorch-VAE.

For the implementation of the disentanglement metrics, we follow the implementation used in Lo-
catello et al. (2019b), which for the computation of the DCI metrics leverages a gradient boosted
tree from the scikit-learn package. The VAE architecture used throughout our experiments
follows the one utilized in Locatello et al. (2020b), which leverages the following architecture, as-
suming input image sizes of 64 × 64 × nc with nc the number of input channels, usually 3, and a
latent dimensionality of 10:

• Encoder: [conv(32, 4× 4, stride 2) + ReLU] × 2, [conv(64, 4× 4, stride 2) + ReLU] × 2,
MLP(256), MLP(2 × 10)

• Decoder: MLP(256), [upconv(64, 4× 4, stride 2) + ReLU] × 2, [upconv(32, 4× 4, stride
2) + ReLU], [upconv(nc, 4× 4, stride 2) + ReLU]

The training details are as follows:

• Optimization: Batchsize = 64, Optimizer = Adam (β1 = 0.9, β2 = 0.999, ε = 10−8),
Learning rate = 10−4.

• Training: Decoder distribution = Bernoulli, Training steps = 300000

Note that FactorVAE Kim & Mnih (2018) introduces a separately trained discriminator, we we again
utilize the setting described in Locatello et al. (2020b):

• Architecture: [MLP(1000), leakyReLU] x 6, MLP(2)
• Optimization: Batchsize = 64, Optimizer = Adam (β1 = 0.5, β2 = 0.9, ε = 10−8)

Finally, we provide the hyperparameter gridsearches performed for every baseline method which
mostly follow Locatello et al. (2020b), as well as for HFS (though for some ablation studies more
coarse-grained grids very utilised) and β-VAE + HFS: Note that for AnnealedVAE, we also leverage
an iteration threshold of 105 and γ = 103.

H.1 CORRELATION SETTINGS

We now provide more detailed information regarding the specific abbrevations used throughout
the main text and for the following appendix to denote various correlation setups during training.
We note that to introduce multiple correlated factors pairs, we simply multiply respective p(ci, cj)
entries.

For Shapes3D (Kim & Mnih, 2018), we introduce the following correlations:
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• No Corr.: No Correlation during training. This constitutes the default evaluation setting.
• Pair: 1 [V1]: floorCol and wallCol.
• Pair: 1 [V2]: objType and objSize.
• Pair: 1 [V3]: objType and wallCol.
• Pair: 1 [V4]: objType and objCol.
• Pair: 1 [inv, V4]: objType and objCol, but inverse correlation.
• Pairs: 2 [V1]: objSize and floorCol as well as objType and wallCol.
• Pairs: 2 [V2]: objSize and objType as well as floorCol and wallCol.
• Pairs: 2 [V3]: objType and objCol as well as objType and objSize.
• Pairs: 2 [inv, V3]: objType and objCol as well as objType and
objSize, but with inverse correlation.

• Pairs: 3 [V1]: objSize and objAzimuth as well as objType and wallCol,
and objCol and floorCol.

• Pairs: 3 [V2]: objCol and objAzimuth as well as objType and objSize,
and wallCol and floorCol.

• Shared Conf. [V1]: We correlate (confound) objType against all other factors.
• Shared Conf. [V2]: We correlate (confound) wallCol against all other factors.

For MPI3D (Gondal et al., 2019), we introduce the following correlations:

• No Corr.: No Correlation during training. This constitutes the default evaluation setting.
• Pair: 1 [V1]: cameraHeight and backgroundCol.
• Pair: 1 [V2]: objCol and objSize.
• Pair: 1 [V3]: posX and posY.
• Pairs: 2 [V1]: objCol and objShape as well as posX and posY.
• Pairs: 2 [V2]: objCol and posX as well as objShape and posY.
• Pairs: 3 [V1]: objCol and backgroundCol as well as cameraHeight and
posX, and objShape and posY.

• Pairs: 3 [V2]: objCol and posX as well as objShape and posY, and
backgroundCol and cameraHeight.

• Shared Conf. [V1]: We correlate (confound) objShape against all other factors.
• Shared Conf. [V2]: We correlate (confound) posX against all other factors.

For DSprites (Higgins et al., 2017), we introduce the following correlations:

• No Corr.: No Correlation during training. This constitutes the default evaluation setting.
• Pair: 1 [V1]: shape and scale.
• Pair: 1 [V2]: posX and posY.
• Pair: 1 [V3]: shape and posY.
• Pairs: 2 [V1]: shape and scale as well as posX and posY.
• Pairs: 2 [V2]: shape and posX as well as scale and posY.
• Shared Conf. [V1]: We correlate (confound) shape against all other factors.
• Shared Conf. [V2]: We correlate (confound) posX against all other factors.
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I PSEUDOCODE

Finally, we provide a PyTorch-style pseudocode to quickly re-implement and apply the factorization
objective following Eq. 5.

1 # Inputs:
2 # * Batch of latents <z> [bs x dim]
3 # * Number of latent pairs to use for approximation <n_pairs_to_use>.
4

5 import itertools as it
6 import numpy as np
7 import torch
8

9 # Get available latent pairs.
10 pairs = np.array(list(it.combinations(range(dim), 2)))
11 n_pairs = len(pairs)
12 pairs = pairs[np.random.choice(n_pairs, n_pairs_to_use, replace=False)]
13

14 # Subsample batch <z> [bs x latent_dim] into <s_z> [bs x num_latent_pairs
x 2]

15 s_z = z[..., pairs]
16

17 # ixs_a = [0, ..., bs-1, 0, 1, ...., bs-1]
18 ref_range = torch.arange(len(z), device=z.device)
19 ixs_a = torch.tile(ref_range, dims=(len(z),))
20 # ixs_b = [0, 0, 0, ..., 1, 1, ..., bs-1]
21 ixs_b = torch.repeat_interleave(ref_range, len(z))
22

23 # Aggregate factorized support:
24 # For every latent pair, we select all possible batch pairwise
25 # combinations, giving our factorized support <fact_z>:
26 # dim(fact_z) = bs **2 x num_latent_pairs x 2
27 fact_z = torch.cat([s_z[ixs_a, :, 0:1], s_z[ixs_b, :, 1:2]], dim=-1)
28

29 # Compute distance between factorized support and 2D batch embeddings:
30 # dim(dists) = bs ** 2 x bs x num_pairs
31 dists = ((fact_z.unsqueeze(1) - s_z.unsqueeze(0)) ** 2).sum(-1)
32

33 # Compute Hausdorff distance for each pair, then sum up each pair
contribution.

34 hfs_distance = dists.min(1)[0].max(0)[0].sum()

Listing 1: Sample PyTorch Implementation of d̂(2)H (Eq. 5)
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