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Abstract

Preference alignment in diffusion models has primarily focused on benign human
preferences (e.g., aesthetic). In this paper, we propose a novel perspective: framing
unrestricted adversarial example generation as a problem of aligning with adversary
preferences. Unlike benign alignment, adversarial alignment involves two inher-
ently conflicting preferences: visual consistency and attack effectiveness, which
often lead to unstable optimization and reward hacking (e.g., reducing visual quality
to improve attack success). To address this, we propose APA (Adversary Prefer-
ences Alignment), a two-stage framework that decouples conflicting preferences
and optimizes each with differentiable rewards. In the first stage, APA fine-tunes
LoRA to improve visual consistency using rule-based similarity reward. In the
second stage, APA updates either the image latent or prompt embedding based
on feedback from a substitute classifier, guided by trajectory-level and step-wise
rewards. To enhance black-box transferability, we further incorporate a diffusion
augmentation strategy. Experiments demonstrate that APA achieves significantly
better attack transferability while maintaining high visual consistency, inspiring
further research to approach adversarial attacks from an alignment perspective.
Code is available at https://github.com/deep-kaixun/APA.

1 Introduction
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Figure 1: Comparison of Human Preference Align-
ment and Adversary Preferences Alignment.

Preference alignment, adapting pre-trained dif-
fusion models [60] for diverse human prefer-
ences, is increasingly prominent in image gener-
ation. This typically involves modeling human
preferences with explicit reward models or pair-
wise data [69], then updating model policies
via reinforcement learning [3, 21] or backprop-
agation with differential reward [12, 57, 41].
However, current research largely centers on
benign human preferences like aesthetics and
text-image alignment (Figure 1(a)), malicious
adversary preferences alignment, where security
researchers use diffusion models to create unre-
stricted adversarial examples [10] has received
limited attention. These examples are vital for
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assessing the adversarial robustness of deep learning models. Adversaries, as depicted in Figure 1(b),
primarily seek two preferences: 1) Visual consistency: Ensuring that generated images have mini-
mal, semantically negligible differences from the original. 2) Attack effectiveness: Achieving high
transferable attack performance, where adversarial examples generated from a surrogate model fool
black-box target models [16, 77].

Aligning with such adversarial preferences presents two major challenges. First, preference data is
unavailable. Existing diffusion-based attacks [10, 7] build on the idea of traditional Lp attacks [16, 52],
adapting the strategy of adding optimized perturbations from the pixel space to the latent space.
However, latent spaces in diffusion models are highly sensitive—even slight perturbations can result
in severe semantic drift. This makes it infeasible to obtain stable, preference-consistent adversarial
examples for pairwise data collection, rendering traditional preference optimization techniques like
DPO [69] or unified reward modeling inapplicable. Second, these preferences are inherently in
conflict. Joint optimization with reward weighting often results in reward hacking [22], (e.g., one
shortcut to improving attack success is to reduce visual consistency), leading to unstable or degenerate
solutions (Figure 5(b)).

To address this, we introduce APA (Adversary Preferences Alignment), a novel two-stage framework
that separates and sequentially optimizes the adversary preferences using direct backpropagation with
differentiable rewards. Specifically: 1) Visual Consistency Alignment: We use a differentiable visual
similarity metric as a rule-based reward and perform policy updates by fine-tuning the diffusion
model’s Low-Rank Adaptation (LoRA) parameters [29]. This stage encodes the input image’s
structure into the model’s generation space, forming a visually stable foundation for downstream
attack optimization. 2) Attack Effectiveness Alignment: We optimize either the image latent or
the prompt embedding based on feedback from a white-box surrogate classifier. This process uses
dual-path attack guidance (both trajectory-level and step-wise dense rewards) to align with the
adversary’s attack preference. To prevent overfitting to the surrogate, we introduce a diffusion
augmentation strategy that aggregates gradients from intermediate steps to increase diversity, thereby
improving black-box transferability. Our framework explicitly decouples these conflicting preferences
to mitigate reward hacking, enabling more controllable and scalable adversary preferences alignment.
Our contributions are summarized as follows:

• We are the first to transform unrestricted adversarial attacks into adversary preferences alignment
(APA) and propose an effective two-stage APA framework.

• Our APA framework decouples adversary preferences into two sequential stages which include
LoRA-based visual consistency alignment using a rule-based visual similarity reward and attack
effectiveness alignment guided by dual-path attack guidance and diffusion augmentation.

• APA achieves state-of-the-art transferability against both standard and defense-equipped models
while preserving high visual consistency. Our framework is flexible and scalable, supporting various
diffusion models, optimization parameters, update strategies, and downstream tasks.

2 Related Work
Unrestricted Adversarial Attacks. Unrestricted adversarial attacks address key limitations of tradi-
tional Lp attacks, which apply pixel-level perturbations that are often perceptible due to distribution
shifts from clean images [33] and are increasingly countered by existing defenses [55, 64]. Instead,
unrestricted attacks generate more natural examples by subtly modifying the semantic content of
the original images. Early approaches focused on single-type semantic perturbations, including
shape [75, 1], texture [58, 36], and color [10] manipulations. Shape-based methods use deformation
fields to induce structural changes; texture-based methods modify image texture or style—for exam-
ple, DiffPGD [79] adds Lp perturbations in pixel space followed by diffusion-based translation, thus
falling into this category. Color-based attacks (e.g., SAE [28], ReColorAdv [35], ACE [83]) adjust
hue, saturation, or channels to improve visual naturalness, often at the cost of transferability. However,
these methods typically optimize a single semantic factor, limiting their generality and expressiveness.
Recent efforts leverage the latent space of generative models to produce more flexible adversarial
examples. In particular, diffusion models have been adapted for this purpose [10, 7, 56, 13, 9]. For
instance, ACA [10] employs DDIM inversion and skip gradients to optimize latent representations.
Nonetheless, due to the sensitivity of latent space manipulations, existing approaches often strug-
gle to preserve the visual semantics of the original input. In contrast, our method is the first to
approach unrestricted adversarial attacks from a preference alignment perspective. The key idea lies
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in alignment-driven modeling: we reframe adversarial attack generation as a preference alignment
problem and propose a two-stage framework that decouples the conflicting objectives of visual
consistency and attack effectiveness, enabling more stable and controllable generation.

Alignment of Diffusion Models. Human preference alignment for diffusion models aims to optimize
the pretrained diffusion model based on human reward. Current methods adapted from large language
models (LLMs) include reinforcement learning (RL) [3, 21, 6, 37], direct preference optimization
(DPO) [69], and direct backpropagation using differentiable rewards (DR) [12, 57, 41]. RL approaches
frame the denoising process as a multi-step decision-making process, often using proximal policy
optimization (PPO)[62] for fine-tuning. Although flexible, RL is inefficient and unstable when
managing conflicting rewards like visual consistency and attack effectiveness. DPO, which avoids
reward models by ranking outputs with the Bradley-Terry model, faces challenges in adapting to
adversarial preference alignment (APA), given the difficulty of obtaining high-quality adversarial
examples for ranking. DR is efficient, using gradient-based optimization with differentiable rewards.
To ensure flexibility and stability, we propose a two-stage APA framework built on DR. By decoupling
conflicting objectives into differentiable rewards, it effectively addresses the challenges of multi-
preferences alignment.

3 Preliminary
Unrestricted Adversarial Example (UAE). Given a clean image x, considering both visual consis-
tency and attack effectiveness, the optimization objective for UAE xadv can be expressed as:

max
xadv

fϕ′ (xadv) ̸= y, s.t. xadv is naturally similar to x, (1)

where y denotes the label of x, and fϕ′(·) represents target models for which gradients are inaccessible
for direct optimization. Since natural similarity cannot be enforced via Lp norms as in perturbation-
based attacks [52, 16], unrestricted adversarial attacks must search for optimal adversarial examples
in both conflicting optimization spaces.

Latent Diffusion Model (LDM). LDM [60] is a latent variable generative model trained on large-
scale image-text pairs, relying on an iterative denoising mechanism. During training, the denoising
model ϵθ(·) is trained by minimizing the variational lower bound loss function, typically using a
UNet to predict the noise added to the original data:

min
ϵθ

Et∼[1,T ],ϵ∼N (0,I) ∥ϵ− ϵθ (zt, t, c)∥2 , (2)

where t denotes the timestep, T denotes the total number of timesteps, and ϵ is the random noise
sampled from N (0, I). The latent variable zt is generated by adding noise to z0 over t steps, where z0
is the latent representation of the original input x obtained through encoder E(·), i.e., E(x) = z0. The
diffusion process is defined as q(zt|z0) =

√
ᾱt · z0 +

√
1− ᾱt · ϵ, where

√
ᾱt is a hyperparameter

that controls the level of noise added at each timestep t [27]. c denotes the conditioning text. During
inference, we typically sample zT from N (0, I) , and then use the DDIM denoising [65] to iteratively
denoise zT . The iterative denoising process can be expressed as:

zt−1 =
√
ᾱt−1

(
zt−

√
1−ᾱtϵθ(zt,t,c)√

ᾱt

)
+

√
1− ᾱt−1ϵθ (zt, t, c) . (3)

After T steps of DDIM denoising, the resulting z̄0 is decoded into pixel space via a decoder D(·),
generating an image that matches the condition c. For tasks with a given reference image (e.g.
image editing), zT is typically not sampled from random noise, instead, it is obtained through DDIM
Inversion [65] based on the reference image x:

zt =
√
ᾱt

(
zt−1−

√
1−ᾱt−1 ϵθ(zt−1,t,c)√

ᾱt−1

)
+
√
1− ᾱt ϵθ (zt−1, t, c) , (4)

where initial z0 denotes the latent of reference image x. Through whole DDIM inversion, i.e.,
iteratively using Eq. 4 T times, we obtain zT , which preserves information of x.

4 Adversary Preferences Alignment Framework

Existing works [10] leverage the natural image generation capabilities of diffusion models to generate
unrestricted adversarial examples, the adversary optimizes zT (obtained via DDIM Inversion) instead
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Figure 2: Overview of our APA framework. APA first optimizes the LoRA parameters with a visual
consistency reward, storing input image information in LoRA. Then, the input image undergoes
DDIM inversion to obtain zT . After DDIM denoising and attack guidance denoising, APA generates
trajectory-level z̄0 and diffusion augmentation output zt0, mixing them using Eq. 12 and passing to the
substitute classifier to calculate Ra. Finally, zT is iteratively optimized using skip gradient (APA-SG)
or gradient checkpointing (APA-GC).

of directly optimizing x in the pixel space. The mapping from zT to xadv is defined as xadv = D(z̄0),
where z̄0 is obtained by applying T steps of DDIM denoising: z̄0 = De ◦ · · · ◦De︸ ︷︷ ︸

T

(zT ). This

sequential process defines a denoising trajectory. However, these methods attempt to solve Eq. 1
by jointly optimizing zT . Due to the sensitivity of the latent space to noise (shown in Figure 3)
and the mutual exclusivity of the two optimization objectives (shown in Figure 5(b)), the generated
adversarial examples often fall into a suboptimal trade-off between the conflicting objectives.

To address this, we propose a two-stage adversary preferences alignment framework (APA): first,
we reframe unrestricted adversarial attacks as a multi-preference alignment problem and decouple
visual consistency and attack effectiveness to independent reward models. Then we strengthen
visual consistency via LoRA fine-tuning in the first stage and focus on attack effectiveness through
dual-path attack guidance and diffusion augmentation in the second stage. Our APA separates visual
consistency and attack effectiveness by independently modeling and aligning preference rewards. It
then maximizes attack performance within the optimal solution space of visual consistency, achieving
closer Pareto optimality. Figure 2 and Alogrithim 1 present the overall framework of APA.
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Figure 3: Impact of adversarial and random noise on
zT in generated images. VCA denotes visual con-
sistency alignment. Our LoRA-based VCA, demon-
strates improved noise robustness.

Diffusion models derive their capabilities
from training on extensive images [60, 51],
meaning that even minor changes to the latent
or prompt can result in substantially different
generations. As shown in Figure 3, without
perturbations to the zT obtained via DDIM
Inversion, the model nearly reconstructs the
clean image after T denoising steps. However,
minor noise, particularly adversarial noise,
can cause the generated image to lose vi-
sual consistency with the original. To pre-
serve visual consistency during adversarial op-
timization, we aim to strengthen the diffusion
model’s retention of the input image x. A
straightforward approach is to fine-tune the
UNet to overfit the input image, but this risks catastrophic forgetting, degrades image quality, and
is inefficient. Previous research in customized generation [24, 81, 73, 74] suggests that LoRA [29]
efficiently encodes high-dimensional image semantics into the low-rank parameter space. Thus, we
adopt LoRA ∆θ as the policy model during the visual consistency alignment stage. Then, we need to
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determine a reward model or reward function Rs(·) to optimize ∆θ. The straightforward approach is
to compute the visual similarity S(·) between the original input and the output of the diffusion model,
as follows:

max
∆θ

Rs(∆θ) = S(D(z̄0), x), (5)

where z̄0 represents the T -step denoised output, requiring T computations of Eq. 3. To reduce this,
we first shift the similarity metric to the latent space, calculating S(z̄0, z0). We then approximate
trajectory-level similarity by accumulating similarity across all steps. Thus, inspired by Eq. 2, Rs(∆θ)
is reformulated as:

Rs(∆θ) = Et∼[1,T ],ϵ∼N (0,I) − ∥ϵ− ϵθ+∆θ (zt, t, c) ∥2, (6)

Since Eq. 6 is differentiable, we can update ∆θ via the direct backpropagation [12, 57] to maximize
the reward, as follows: ∆θ = ∆θ + α∇∆θRs, where α represents the learning rate. Finally, ∆θ is
integrated into ϵθ, enabling the model to generate visually consistent outputs whether regular noise or
adversarial noise is applied to zT , as illustrated in Figure 3.

4.2 Attack Effectiveness Alignment

In this stage, We use zT obtained via DDIM inversion as the optimization variable (optional prompt
embedding discussed in Section 5.5). Next, we need to model the reward Ra for attack effectiveness
alignment. First, using f

′

ϕ(·) in Eq. 1 directly as the reward model results in sparse rewards of only 1 or
0, significantly increasing optimization difficulty. To address this, we draw inspiration from traditional
transfer attacks [17, 16] and choose a differentiable surrogate model fϕ(·) as the reward model. This
allows optimization via direct backpropagation based on gradients [12, 57] Additionally, to mitigate
the gap between the surrogate model and the target model, we propose diffusion augmentation to
enhance generalization and alleviate potential reward hacking [22]. Thus, the attack effectiveness
reward is formulated as: Ra(zT ) = L(fϕ(xadv), y), L(·) denotes cross-entropy loss.

Dual-path Attack Guidance. We refer to the generation of xadv through T -step denoising from zT
as the generation trajectory. Additionally, to enhance gradient consistency, following ACA [10], we
use a momentum-based gradient update to optimize zT , encouraging the model to higher Ra output.
Thus, our trajectory-level attack optimization can be expressed as:

gtr = ∇zTRa(fϕ(xadv), y), mi
tr = mi−1

tr +
gtr

∥gtr∥1
, zT = Πz0

T+ϵa(zT + µ · sgn(mi
tr)), (7)

where gtr denotes the trajectory-level gradient, mi
tr denotes the momentum of ith trajectory-level

attack iteration, Πz0
T+ϵa keeps zT remain within the ϵa-ball centered at the original latent z0T , sgn(·)

denotes sign function.

Since solving gtr requires computing the gradient across the entire trajectory, direct calculation
would require extensive memory. One solution is skip gradient [10], which approximates gtr as
ρ · ∇z̄0Ra(fϕ(xadv), y) [10], avoiding memory use for T -step denoising. The other is gradient
checkpointing [8], which reduces memory during backpropagation by selectively storing intermediate
activations, enabling direct computation of gtr.

Both skip gradient and gradient checkpointing focus on optimizing zT from a global trajectory level,
where each denoising step uses the same Ra. However, different steps contribute uniquely to the final
output: larger timesteps affect structure, while smaller ones refine details [43]. As a result, using the
same Ra for attack guidance may cause misalignment, reducing attack effectiveness.

To address this issue, we incorporate step-level attack guidance into the denoising steps. Motivated
by class-guided generation [15], we introduce the attack reward Ra during each denoising step to
guide the noise optimization:

ϵθ+∆θ(zt, t, c) = ϵθ+∆θ(zt, t, c)−
√
1− ᾱt∇ztRa(fϕ(D(zt)), y). (8)

Each denoising step adjusts the generation direction based on the current step’s Ra(fϕ(D(zt)), y),
gradually aligning the final image with higher Ra.

Since zt is an intermediate denoising result, directly inputting it to the classifier biases reward
calculation, as classifiers are typically trained on clean samples. A noise-robust classifier could
reduce this bias [15], but it would raise training costs and may introduce inconsistencies between
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substitute and target classifiers, affecting attack performance. To address this, we first replace zt with
the intermediate result zt0 generated by DDIM, which represents the estimated trajectory-level z̄0
based on the current step:

zt0 =
zt −

√
1− ᾱtϵθ+∆θ (zt, t, c)√

ᾱt
. (9)

Furthermore, given that zt0 has a bias that increases with larger t , we further refine zt0 by interpolating
between the original image’s latent z0 and the predicted zt0, as follows:

ztin =
√
1− ᾱtz0 +

(
1−

√
1− ᾱt

)
zt0, (10)

where
√
1− ᾱt decreases as t decreases, allowing z0 to take on a higher weight at larger t values,

making the sample input xt
in = D(ztin) to the classifier progressively cleaner, enhancing reward

accuracy at each denoising step. Additionally, inspired by the trajectory-level momentum update
method, we propose a step-level momentum accumulation:

gst = ∇ztRa(fϕ(x
t
in), y),m

t
st = mt+1

st +
gst

∥gst∥1
, (11)

where gst and mt
st denotes step-level gradient and momentum. We replace ∇ztRa(fϕ(D(zt)), y) in

Eq. 8 with sgn(mt
st). Finally, by combining trajectory-level and step-level dual-path attack guidance,

the generated images are fully aligned with attack effectiveness preference.

Diffusion Augmentation. Our dual-path attack optimization is based on direct backpropagation with
a differentiable reward. Studies on HPA [47] have shown that direct backpropagation often leads to
the diffusion model over-optimizing for the reward model. Similarly, in APA, this causes overfitting
to the substitute classifier, limiting transfer attack performance. To address this, we propose diffusion
augmentation which uses step-level outputs as data augmentation to enhance the generalization of the
trajectory-level gradient gtr. Specifically, we collect the step-level zt0 generated during the denoising
using Eq. 9, and mix them with the trajectory-level final output z̄0:

xt
0 = ϱ((D(zt0) +D(z̄0))/2), (12)

where ϱ(·) denotes differentiable data augmentation including random padding, resizing, and bright-
ness adjustment. Appendix F.3 further shows that stronger data transformations (e.g., [72] used in
Lp attacks) can further boost performance, underscoring the scalability of our method. Finally, the
trajectory-level gradient gtr in Eq. 7 is enhanced to gtr = ∇zT

1
T

∑T
t=0 Ra(fϕ(x

t
0), y).

We collectively refer to step-level attack guidance and diffusion augmentation as the attack guidance
denoise process, as shown in Figure 2. To balance time efficiency and image quality, we apply
attack guidance denoise only in the final Ta steps. Overall, our framework is implemented as a clean
and modular two-stage pipeline. The visual consistency alignment is achieved through lightweight
LoRA fine-tuning, and after merging the LoRA parameters into the UNet, no extra parameters are
introduced in the subsequent attack alignment stage. The attack alignment is seamlessly integrated
into the denoising process by augmenting it with attack guidance. Moreover, our APA framework
is highly flexible, allowing for different gradient propagation strategies (APA-SG for skip gradient
and APA-GC for gradient checkpointing) and different optimization params (APA-GC-P for text
optimization). More details are provided below.

5 Experiments

5.1 Experimental Settings

Datasets and Models. We choose the widely used ImageNet-compatible Dataset [34], consisting of
1,000 images from ImageNet’s validation set [14]. Following [10], we select 6 convolutional neural
networks (CNNs) and 4 vision transformers (ViTs) as target models for the attack.

Attack Methods. We compare with unrestricted attacks including SAE [28], cAdv [2], tAdv [2],
ColorFool [63], and NCF [80], as well as diffusion-based methods ACA [10], DiffAttack [7] and
DiffPGD [79] in Table 1. Following [10], we use attack success rate (ASR, %), the percentage of
misclassified images—as the evaluation metric, reporting both white-box and black-box ASR. Addi-
tional comparisons under different settings are presented in the Appendix: 1) AdvDiffuser [9]
and AdvDiff [13] in Appendix E.3; 2) Lp attacks [16, 79, 17, 45] in Appendix E.2.
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Table 1: Attack performance comparison on normally trained CNNs and ViTs. We report attack
success rates ASR (%) of each method (“*” means white-box ASR), Avg. ASR refers to the average
attack success rate on non-substitute models (black-box ASR).

Substitute
Model Attack

Models

Avg.
ASR (%)

CNNs Transformers

MN-v2
[61]

Inc-v3
[66]

RN-50
[26]

Dense-161
[30]

RN-152
[26]

EF-b7
[67]

MobViT-s
[53]

ViT-B
[18]

Swin-B
[48]

PVT-v2
[71]

- Clean 12.1 4.8 7.0 6.3 5.6 8.7 7.8 8.9 3.5 3.6 6.83

MobViT-s

SAE 60.2 21.2 54.6 42.7 44.9 30.2 82.5* 38.6 21.1 20.2 37.08
cAdv 41.9 25.4 33.2 31.2 28.2 34.7 84.3* 32.6 22.7 22.0 30.21
tAdv 33.6 18.8 22.1 18.7 18.7 15.8 97.4* 15.3 11.2 13.7 18.66

ColorFool 47.1 12.0 40.0 28.1 30.7 19.3 81.7* 24.3 9.7 10.0 24.58
NCF 67.7 31.2 60.3 41.8 52.2 32.2 74.5* 39.1 20.8 23.1 40.93

DiffPGD-MI 59.9 42.4 48.1 44.6 38.5 38.1 95.7* 29.0 24.9 42.5 40.89
ACA 66.2 56.6 60.6 58.1 55.9 55.5 89.8* 51.4 52.7 55.1 56.90

DiffAttack 79.7 67.3 75.5 72.2 72.1 66.0 99.8* 59.1 64.6 73.7 70.02

APA-SG(Ours) 81.3 66.3 73.8 71.5 68.9 65.0 98.1* 51.6 46.1 68.2 65.85
APA-GC(Ours) 88.3 77.1 86.6 81.2 81.2 78.4 99.4* 59.3 61.9 83.4 77.48

MN-v2

SAE 90.8* 22.5 53.2 38.0 41.9 26.9 44.6 33.6 16.8 18.3 32.87
cAdv 96.6* 26.8 39.6 33.9 29.9 32.7 41.9 33.1 20.6 19.7 30.91
tAdv 99.9* 27.2 31.5 24.3 24.5 22.4 40.5 16.1 15.9 15.1 24.17

ColorFool 93.3* 9.5 25.7 15.3 15.4 13.4 15.7 14.2 5.9 6.4 13.50
NCF 93.2* 33.6 65.9 43.5 56.3 33.0 52.6 35.8 21.2 20.6 40.28

DiffPGD-MI 97.4* 54.1 68.2 57.8 56.6 52.1 68.0 28.7 22.9 41.8 50.02
ACA 93.1* 56.8 62.6 55.7 56.0 51.0 59.6 48.7 48.6 50.4 54.38

DiffAttack 98.5* 61.5 75.1 65.4 65.7 59.5 70.9 41.5 37.7 54.2 59.05

APA-SG(Ours) 99.8* 80.4 88.1 83.0 81.7 78.8 78.5 55.9 39.5 63.4 72.14
APA-GC(Ours) 100* 91.4 97.7 95.5 95.0 91.8 93.2 74.3 59.0 85.2 87.01

RN-50

SAE 63.2 25.9 88.0* 41.9 46.5 28.8 45.9 35.3 20.3 19.6 36.38
cAdv 44.2 25.3 97.2* 36.8 37.0 34.9 40.1 30.6 19.3 20.2 32.04
tAdv 43.4 27.0 99.0* 28.8 30.2 21.6 35.9 16.5 15.2 15.1 25.97

ColorFool 41.6 9.8 90.1* 18.6 21.0 15.4 20.4 15.4 5.9 6.8 17.21
NCF 71.2 33.6 91.4* 48.5 60.5 32.4 52.6 36.8 19.8 21.7 41.90

DiffPGD-MI 75.2 60.6 96.8* 75.0 78.9 55.3 67.5 30.3 26.5 48.5 57.53
ACA 69.3 61.6 88.3* 61.9 61.7 60.3 62.6 52.9 51.9 53.2 59.49

DiffAttack 78.5 65.8 97.2* 78.9 83.2 61.3 69.5 45.3 42.8 60.6 65.10

APA-SG(Ours) 89.0 83.4 99.6* 89.6 90.1 77.3 76.7 58.5 45.7 67.6 75.32
APA-GC(Ours) 97.6 93.5 99.7* 97.6 98.4 91.1 90.9 75.6 63.8 83.7 88.02

ViT-B

SAE 54.5 26.9 49.7 38.4 41.4 30.4 46.1 78.4* 19.9 18.1 36.16
cAdv 31.4 27.0 26.1 22.5 19.9 26.1 32.9 96.5* 18.4 16.9 24.58
tAdv 39.5 22.8 25.8 23.2 22.3 20.8 34.1 93.5* 16.3 15.3 24.46

ColorFool 45.3 13.9 35.7 24.3 28.8 19.8 27.0 83.1* 8.9 9.3 23.67
NCF 55.9 25.3 50.6 34.8 42.3 29.9 40.6 81.0* 20.0 19.1 35.39

DiffPGD-MI 59.5 40.9 44.2 41.9 41.3 41.3 52.2 95.4* 42.1 33.8 44.13
ACA 64.6 58.8 60.2 58.1 58.1 57.1 60.8 87.7* 55.5 54.9 58.68

DiffAttack 47.2 44.2 44.3 42.9 44.5 44.8 49.6 94.5* 46.8 41.3 45.06

APA-SG(Ours) 69.3 67.6 67.5 66.8 65.4 70.0 67.6 99.2* 62.5 59.2 66.21
APA-GC(Ours) 77.0 74.8 75.4 75.9 75.4 76.8 74.5 98.4* 73.4 70.2 74.82

Implementation Details. We set attack guidance step Ta = 10 , attack iterations N = 10 , attack
scale ϵa = 0.4 , and attack step size µ = 0.04. APA-SG adopts the entire inversion step of T = 50.
APA-GC adopts T = 10 to improve efficiency. Our work is based on Stable Diffusion V1.5 [60].
During the visual consistency alignment phase, we fine-tune only the projection matrices Q, K, and V
in the attention modules of the UNet with each clean image. With the LoRA rank set to 8, we train
for 200 steps. Experimental results indicate that APA-GC delivers strong attack performance. Thus,
we add visual consistency constraints to APA-GC’s Ra without concerns about impacting attack
performance, setting Ra = Ra − λ∥z0 − z̄0∥2 with λ = 10.

5.2 Attack Performance Comparison

To evaluate the performance of our APA framework, we select 10 models as target models, including
both CNN and transformer architectures. The attack performance comparison is shown in Table 1.

Non-diffusion-based Attacks. Texture-based tAdv achieves a higher white-box ASR but lower
black-box ASR than color-based methods such as NCF and SAE. NCF demonstrates the highest trans-
ferability, achieving an average ASR of 39.6% across four models. Our APA, which modifies multiple
input semantics simultaneously, surpasses single-semantic attacks, with notable improvements and
30.2% (APA-SG) and 42.2% (APA-GC) in black-box ASR across four models than NCF.

Diffusion-based Attacks. DiffPGD-MI generates unrestricted adversarial examples by first applying
Lp norm perturbations, and then performing diffusion-based image translation. ACA and DiffAttack
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Table 2: Attack performance on adversarial defense methods, ViT-B as the substitute model.
Attack HGD R&P NIPS-r3 JPEG Bit-

Red DiffPure Inc-
v3ens3

Inc-
v3ens4

IncRes-
v2ens

Res-De Shape-
Res

ViT-B-
CvSt Avg. ASR (%)

Clean 1.2 1.8 3.2 6.2 17.6 15.4 6.8 8.9 2.6 4.1 6.7 8.4 6.91

SAE 21.4 19.0 25.2 25.7 43.5 39.8 25.7 29.6 20.0 35.1 49.6 38.9 31.13
cAdv 12.2 14.0 17.7 11.1 33.9 32.9 19.9 23.2 14.6 16.2 25.3 20.6 20.13
tAdv 10.9 12.4 14.4 17.8 29.6 21.2 17.7 19.0 12.5 16.4 25.4 11.3 17.38

ColorFool 9.1 9.6 15.3 18.0 37.9 33.8 17.8 21.3 10.5 20.3 35.0 31.2 21.65
NCF 22.8 21.1 25.8 26.8 43.9 39.6 27.4 31.9 21.8 34.4 47.5 35.8 31.57

DiffPGD-MI 25.7 28.3 29.9 32.2 38.8 27.4 32.1 32.9 28.1 40.0 45.5 19.7 31.72
ACA 52.2 53.6 53.9 59.7 63.4 63.7 59.8 62.2 53.6 55.6 60.8 51.1 57.47

DiffAttack 33.3 34.3 33.2 37.9 47.0 38.3 38.0 42.6 35.7 40.6 45.5 19.7 37.17

APA-SG(Ours) 61.5 61.0 63.8 66.7 71.0 63.0 66.8 67.4 63.1 64.5 68.7 45.6 63.59
APA-GC(Ours) 73.5 71.1 72.4 72.4 74.3 71.2 72.5 73.6 71.4 72.4 75.5 42.1 70.20

directly optimize the input image’s latent space, generally achieving higher black-box transferability,
especially across architectures. Our method incorporates dual-path attack guidance and diffusion
augmentation, enabling APA-SG (with the same gradient backpropagation as ACA) to improve
black-box ASR by 12.5%, 10.0% while APA-GC improves black-box performance by 24.4%, 21.9%
over ACA and DiffAttack across four models.

Overall. Our method outperforms existing unrestricted adversarial attacks in terms of black-box
transferability, whether within CNN or transformer architectures or in cross-architecture attacks. Ad-
ditionally, due to its more precise gradient-guided attack, APA-GC achieves an average performance
improvement of 11.9% over APA-SG.

5.3 Attacks on Adversarial Defense

To evaluate unrestricted adversarial attacks against existing defenses, we select adversarially trained
models (Inc-v3ens3, Inc-v3ens4, Inc-v2ens[68], ViT-B-CvSt[64]) and preprocessing defenses
(HGD [44], R&P [76], NIPS-r3, JPEG [25], Bit-Red [78], DiffPure [55]). Additionally, shape-texture
debiased models (ResNet50-Debiased (Res-De)[42], Shape-ResNet (Shape-Res)[23]) are selected to
counter unrestricted adversarial examples, as shown in Table 2. We use ViT-B as the substitute model
and Inc-v3ens3 as the target model for input preprocessing defenses. Since existing defenses mainly
address Lp attacks, they remain ineffective against unrestricted adversarial attacks. With an advanced
APA framework, our APA-GC achieves a 12.7% improvement on Avg. ASR over SOTA method.

5.4 Visual Quality Comparison

Table 3: Quantitative comparison of image quality.
VCA denotes only using visual consistency alignment.
APA-GC-P denotes prompt-based optimization.

Attack LPIPS↓ SSIM↑ CLIP
Score↑

NIMA-
AVA↑

CNN-
IQA↑

Avg.
ASR↑

Clean 0.00 1.00 1.00 4.99 0.58 6.83
DDIM Inversion 0.19 0.73 0.89 5.03 0.63 22.10

VCA 0.05 0.85 0.97 5.13 0.63 7.60

SAE 0.43 0.79 0.81 5.00 0.53 36.38
cAdv 0.15 0.98 0.88 4.85 0.55 32.04
NCF 0.40 0.83 0.83 4.97 0.57 41.90

DiffPGD-MI 0.29 0.71 0.85 4.69 0.61 57.53
ACA 0.37 0.61 0.79 5.38 0.65 59.49

DiffAttack 0.14 0.68 0.87 5.17 0.66 65.10

APA-SG(Ours) 0.25 0.67 0.86 5.29 0.62 75.32
APA-GC(Ours) 0.23 0.69 0.83 5.39 0.67 88.02

APA-GC-P(Ours) 0.09 0.82 0.91 5.22 0.63 62.08

We compare the visual performance of the
top six attack methods based on attack per-
formance in Table 1, using RN-50 as the sub-
stitute model.

Quantitative Comparison. We use
reference-based metrics (LPIPS, SSIM, CLIP
Score [59]) to evaluate visual similarity
in terms of distribution, structure, and se-
mantics, and no-reference aesthetic metrics
(NIMA-AVA [54], CNN-IQA [5]) to assess
aesthetic quality, as shown in Table 3. 1) Our
visual consistency alignment (VCA) main-
tains strong visual consistency while achiev-
ing a higher aesthetic score compared to clean images and original DDIM Inversion. 2) Our method
achieves higher aesthetic scores compared to non-diffusion-based attacks and DiffPGD owing to
stable diffusion’s strong generative capabilities. 3) Our APA achieves comparable visual similarity
and aesthetic scores to ACA and DiffAttack. 4) Within our framework, APA-GC-P which optimizes
prompt instead of latent (see Section 5.5) has the best visual consistency.

Qualitative Comparison. Due to the inability of quantitative metrics to fully measure visual
consistency, we perform a qualitative analysis in Figure 4. SAE with NCF alters the original style,
DiffPGD-MI introduces noticeable perturbations, and cAdv affects authenticity by changing colors.
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Clean SAE cAdv NCF DiffPGD-MI ACA APA-SG APA-GC APA-GC-PVCA DiffAttack

Figure 4: Qualitative comparison of image quality.

ACA disrupts the original structure, while DiffAttack makes certain parts of the main subject appear
overly sharp and unnatural. In contrast, our APA preserves structure and color, making only subtle,
natural adjustments mainly in the background, resulting in a more visually consistent effect.

5.5 Ablation Studies

The previous section has discussed the ablation of visual consistency alignment (Figure 3) and gradient
backpropagation (Table 1). Here, we focus on analyzing the remaining key modules and design. All
experiments utilize RN-50 as the substitute model. Time analysis is discussed in Appendix A.

Table 4: Ablation studies on key modules. L denotes latent-
based optimization, P denotes prompt-based optimization.

Optimized
Params

Dual-path
Guidance

Diffusion
Augmentation

Backpro-
pagation

White-box
ASR(%)

Black-box
ASR(%)

L SG 96.8 48.28
L ✓ SG 99.7 54.88
L ✓ SG 92.1 62.38
L ✓ ✓ SG 99.6 75.32
L ✓ ✓ GC 99.7 88.02
P ✓ ✓ GC 99.5 62.08

Key Modules. Rows 1 and 2 of Ta-
ble 4 show that the dual-path attack
guidance module improves black-box
attack performance by 6.6% compared
to only trajectory-level guidance. To
further validate the superiority of our
attack guidance, we re-implement class-
guided [15] and Upainting [40] by ap-
plying Ra for adversary preferences alignment. Figure 5(a) shows improved attack performance with
our method, which benefits from more accurate attack reward guidance through clear ztin in Eq. 10
and step-level momentum accumulation in Eq. 11. Rows 1 and 3 of Table 4 demonstrate that diffusion
augmentation mitigates the limitations of direct backpropagation overfitting to the substitute model,
improving black-box performance by 14.1% with only a slight decrease in white-box performance.
Rows 3 and 4 in Table 4 show that diffusion augmentation combined with dual-path attack guidance
effectively improves black-box attack performance.

Two-stage vs. One-stage Alignment. To validate the advantages of our two-stage alignment, we
adapt APA into a single-stage alignment (APA*): replacing LoRA-based visual alignment and
incorporating joint optimization in the second stage, i.e., Ra = Ra − λ∥z0 − z̄0∥2. Experimental
results in Figure 5(b) demonstrate: 1) One-stage alignment (both APA* and ACA) suffer from reward
hacking due to conflicting objectives during joint optimization (as λ increases, Avg. ASR decreases
while SSIM increases). 2) Our two-stage APA maximizes attack performance within the optimal
solution space of visual consistency, achieving closer Pareto optimality.

Optimized Parameters. Row 6 in Table 4 shows the attack performance with prompt-based
optimization (APA-GC-P), which optimizes text features τθ(c) with gradient checkpointing. Com-
pared to the direct correspondence between the latent and image spaces, prompt-based optimization
indirectly guides image generation through ϵθ+∆θ(zt, t, c), resulting in lower attack efficacy than
APA-GC. However, as shown in Table 3, APA-GC-P demonstrates improved visual consistency,
offering attackers greater flexibility depending on the application scenario.

Scalability. To demonstrate the flexibility and scalability of our framework, we extend it to various
diffusion models (e.g., ControlNet [39]) in Appendix F.1 and different tasks including targeted attacks,
visual question answering, and object detection in Appendix F.2.
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(a) (b)

Figure 5: (a) Comparison with different opti-
mization guidance. (b) Comparison of our two-
stage APA-SG and one-stage alignment under
λ-controlled visual consistency.

x1.7

x1.4

x1.3

x1.2

87.14

88.02

84.58

83.46

82.70

Avg ASR Time Increase

(c)

(b)

x1.3

x1.5

69.66

75.32

88.00

Avg ASR Time Increase

Clean
𝑻𝒂 = 𝟓

LPIPS=0.24
𝑻𝒂 = 𝟏𝟎
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𝑻𝒂 = 𝟐𝟎
LPIPS=0.3

(a)

Figure 6: (a) denotes hyper-parameters tuning on
T . (b) and (C) denotes hyper-parameters tuning
on Ta. RN-50 as the substitute model.

5.6 Hyper-parameters tuning

Guidance Step Ta. Figure 6 (b), (c) show the impact of Ta on performance. As Ta increases, attack
performance improves, time cost rises, and image quality deteriorates. Considering these factors, we
choose Ta = 10.

Figure 7: Effect of attack iterations on
attack performance.

Inversion Step T . APA-GC employs gradient checkpoint-
ing to save memory at the cost of additional time. To
improve efficiency, we investigate the impact of reducing
inversion steps T on performance. Figure 6(a) shows that
setting T below Ta reduces attack performance due to
insufficient guidance, while exceeding Ta also degrades
attack performance due to bias introduced by overly deep
gradient chains. Thus, we set T = Ta = 10.

Attack Iterations N . We analyze the effect of the number
of attack iterations on performance, as shown in Figure 7.
The attack performance of our APA improves rapidly with
increasing iterations, where APA-GC, benefiting from more accurate gradient computation, exhibits
faster improvement and earlier convergence. Together with Table 1, we observe that APA-SG
surpasses ACA within only six iterations, while APA-GC achieves this in just four.

6 Conclusion

In this paper, we broaden the application of preference alignment, reformulating unrestricted adver-
sarial example generation as an adversary preferences alignment problem. However, the inherently
conflicting objectives of visual consistency and attack effectiveness significantly increase the difficulty
of alignment. To address this challenge, we propose Adversary Preferences Alignment (APA), a
two-stage framework that first establishes visual consistency through LoRA-based alignment guided
by a rule-based similarity reward, and then enhances attack effectiveness via dual-path attack guidance
and diffusion-based augmentation. Experimental results demonstrate that APA achieves superior
black-box transferability while preserving high visual consistency. We hope our work serves as
a bridge between preference alignment and adversarial attacks, and inspires further research on
adversarial robustness from an alignment perspective.

Broader Impacts. Our work is centered around unrestricted adversarial examples, aiming to deepen
the understanding of model vulnerability and enhance the robustness and reliability of deep learning
models. The proposed methodology and research results are intended to be used only for academic
and ethical purposes, such as enhancing security protection capabilities as well as facilitating the safe
implementation of AI technologies.

Ackowledgements. This work was supported by National Natural Science Foundation of China
(No.62576109, 62072112).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the main contributions: re-
framing unrestricted adversarial attacks as an adversary preference alignment problem,
proposing the two-stage APA framework, and highlighting its superior performance vali-
dated through experiments. These claims are consistent with the detailed methodology and
results presented in the subsequent sections of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide limitations in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper is primarily an empirical work proposing a novel framework
and algorithmic approach. It does not introduce new theoretical results, theorems, or
mathematical derivations requiring formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental settings and pseudocode in the main text. In
addition, the source code is included in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the supplementary material. The datasets used (e.g.,
ImageNet-compatible dataset) are publicly available, as referenced in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed implementation details in Section 5.1, as well as hyperpa-
rameter tuning experiments in Section 5.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: While we do not explicitly report error bars in the figures or tables, we have
tested our method under different random seeds and across different GPU environments,
and observed negligible performance variation.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss it in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss it in the main body.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release new large-scale pretrained models or datasets that
would inherently pose a high risk for misuse. The primary contribution is algorithmic.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the original creators of existing assets by citing the relevant
publications.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the source code and model implementation as supplementary
material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research presented in this paper does not involve crowdsourcing experi-
ments or direct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:Our method does not involve the use of large language models (LLMs).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix is structured as follows:

• In Appendix A, we provide time analysis of our APA.

• In Appendix B, we provide limitations.

• In Appendix C, we provide pseudo code of our APA.

• In Appendix D, we provide more diagnostic experiments.

• In Appendix E, we provide more attack methods compared with our method, including unre-
stricted attacks (ADef [1], ACE [83], ReColorAdv [35], PPGD [36], LPA [36], AdvDiff [13])
and Lp attacks (MI [16], NI [45], DIM [79], TIM [17]).

• In Appendix F, we conduct extensive experiments to evaluate our method across various
diffusion models (e.g., ControlNet [39]) and downstream tasks, including targeted attacks,
visual question answering, and object detection. Moreover, we further show that stronger
data transformations (e.g., [70, 72] used in Lp attacks) can further boost performance,
underscoring the scalability of our method.

• In Appendix G, we provide more visualizations.

A Time Analysis

Most unrestricted attacks, as well as our method, fall under the image-specific framework. To further
demonstrate the advantages of our proposed APA framework, we conduct a comprehensive time
efficiency analysis. Our empirical evaluation on an NVIDIA A100 GPU shows that visual consistency
alignment requires 38 seconds, while attack effectiveness alignment (APA-SG) takes 58.5 seconds.
When combined, our complete APA framework requires a total execution time of 96.5 seconds. This
represents a significant 16% improvement in computational efficiency compared to the ACA method,
which requires 114.8 seconds on an NVIDIA A100 GPU.

B Discussion & Limitations

Adversarial examples have been a long-standing research hotspot in the field of artificial intelligence.
Previous works have explored various directions to design stronger adversarial examples, such as
gradient-based optimization [52], heuristic optimization [32],diffusion-based methods [10, 11, 55, 31],
and [19], etc. In contrast, our method is the first to approach unrestricted adversarial attacks from a
preference alignment perspective. The key idea lies in alignment-driven modeling, where we define
and quantify malicious preferences (visual consistency and attack effectiveness), select suitable align-
ment strategies (e.g., DPO, RL, or direct backpropagation), and build a stable alignment framework
(joint or decoupled). A two-stage alignment framework is proposed to decouple inherently conflicting
preferences—maximizing attack performance under visual consistency constraints—approaching the
Pareto frontier. To further stabilize training, dual-path optimization and diffusion augmentation are
introduced to mitigate overfitting in direct backpropagation. Extensive experiments demonstrate the
effectiveness, flexibility, and robustness of our approach.

We recognize two primary limitations of our work: 1) While APA achieves greater time efficiency
than previous diffusion-based attacks (e.g., ACA), it is still more computationally expensive than
conventional Lp attacks. One of the costs arises from DDIM sampling; thus, integrating faster
samplers could further enhance efficiency. 2) This work is limited to diffusion models, and does not
explore the applicability of our method to other generative frameworks such as rectified flows [46, 20].
We plan to investigate this in future work.

C Pseudo Code of APA

We provide pseudo code of our APA framework in Algorithm 1 and Symbol Table in Table 5.
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Algorithm 1: Our APA Framework
Input: input image x, prompt c, label y, substitute classifier fϕ, denoising model ϵθ, encoder E ,
decoder D, inversion step T , attack guidance denoising step Ta, mtr = 0.

Output: unrestricted adversarial example xadv

1: ϵθ+∆θ = Visual_Consistency_Alignment(x, c, ϵθ).
2: z0 = E(x).
3: Generate zT using DDIM Inversion, z0T = zT .
4: for i in [1, N + 1] do
5: mst = 0,V = {}.
6: for t in [T, 1] do
7: if t > Ta then
8: Calculate zt−1 using DDIM Denoising.
9: else

10: Calculate ztin using Eq. 11.
11: gst = ∇ztRa(fϕ(D(ztin)), y).
12: mst = mst +

gst
∥gst∥1

.
13: ϵθ+∆θ(zt, t, c)− =

√
1− ᾱt · sgn(mst).

14: zt0 = zt−
√
1−ᾱtϵθ+∆θ(zt,t,c)√

ᾱt
.

15: V = V + {zt0}
16: zt−1 =

√
ᾱt−1z

t
0 +

√
1− ᾱt−1ϵθ+∆θ (zt, t, c).

17: end if
18: end for
19: r = 0.
20: for zt0 in V do
21: xt

0 = ϱ((D(zt0) +D(z̄0))/2).
22: r = r +Ra(fϕ(x

t
0), y).

23: end for
24: if Skip Gradient then
25: gtr = ρ · ∇z̄0

1
Ta

r,mtr = mtr +
gtr

∥gtr∥1
.

26: else
gtr = ∇zT

1
Ta

r,mtr = mtr +
gtr

∥gtr∥1
.

27: end if
28: zT = Πz0

T+ϵa(zT + µ · sgn(mtr)).
29: end for
30: return D(z̄0)

Table 5: Symbol Table

Symbol Description
zT The latent updated at each iteration, initialized as z0T
z0T Latent representation obtained by applying DDIM inversion to the original image latent for T steps
z0 VAE-encoded latent of the original image
z̄0 Reconstructed z0 obtained by DDIM denoising for T steps
zt0 Reconstructed latent based on zt, as defined in Eq. 9; z00 = z̄0
ztin Interpolation between z0 and zt0
gtr Gradient at the trajectory level
mtr Momentum at the trajectory level
gst Gradient at the step level
mst Momentum at the step level

D More Diagnostic Experiments

D.1 LoRA Rank

Regarding the LoRA insertion strategy, we adhered to the default configuration for LoRA fine-tuning
on UNet. Additionally, we investigated the impact of the LoRA rank on VCA performance. Using 50
randomly sampled images (source model: RN-50), we evaluated two aspects: (1) the effect of rank
on reconstruction quality in a non-adversarial setting, and (2) the effect of rank on performance under
attack (see Table 6). Overall, the results are consistent with intuition: higher ranks improve visual
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Table 6: The effect of LoRA rank on APA.

Rank w/o Attack w/ Attack

CLIP Score Avg ASR CLIP Score Avg ASR

0 0.88 21.1 0.62 96.2
4 0.97 7.2 0.87 79.2
8 0.97 6.0 0.89 74.5

16 0.97 5.0 0.91 71.2

Table 8: More attack performance comparison on normally trained CNNs and ViTs. We report attack
success rates ASR (%) of each method (“*” means white-box ASR), Avg. ASR refers to the average
attack success rate on non-substitute models (black-box ASR).

Substitute
Model Attack

Models
Avg.

ASR (%)
CNNs Transformers

MN-v2 Inc-v3 RN-50 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

- Clean 12.1 4.8 7.0 6.3 5.6 8.7 7.8 8.9 3.5 3.6 6.83

MobViT-s

ADef 14.5 6.6 9.0 8.0 7.1 9.8 80.8* 9.7 5.1 4.6 8.27
ReColorAdv 37.4 14.7 26.7 22.4 21.0 20.8 96.1* 21.5 16.3 16.7 21.94

PPGD 15.7 7.0 9.4 8.8 7.2 10.5 100.0* 9.6 5.8 5.5 8.83
LPA 29.5 15.0 18.7 17.6 15.5 17.1 100.0* 12.5 14.1 17.5 17.50
ACE 30.7 9.7 20.3 16.3 14.4 13.8 99.2* 16.5 6.8 5.8 14.92

APA-SG(Ours) 81.3 66.3 73.8 71.5 68.9 65.0 98.1* 51.6 46.1 68.2 65.85
APA-GC(Ours) 88.3 77.1 86.6 81.2 81.2 78.4 99.4* 59.3 61.9 83.4 77.48

MN-v2

ADer 56.6* 7.6 8.4 7.7 7.1 10.9 11.7 9.5 4.5 4.5 7.99
ReColorAdv 97.7* 18.6 33.7 24.7 26.4 20.7 31.8 17.7 12.2 12.6 22.04

PPGD 99.9* 10.4 14.0 11.9 11.9 13.5 14.9 10.1 6.7 6.6 11.11
LPA 100.0* 21.2 27.5 23.1 21.4 21.9 29.3 12.2 10.6 12.6 19.98
ACE 99.1* 9.5 17.9 12.4 12.6 11.7 16.3 12.1 5.4 5.6 11.50

APA-SG(Ours) 99.8* 80.4 88.1 83.0 81.7 78.8 78.5 55.9 39.5 63.4 72.14
APA-GC(Ours) 100* 91.4 97.7 95.5 95.0 91.8 93.2 74.3 59.0 85.2 87.01

RN-50

ADer 15.5 7.7 55.7* 8.4 7.8 11.4 12.3 9.2 4.6 4.9 9.09
ReColorAdv 40.6 17.7 96.4* 28.3 33.3 19.2 29.3 18.8 12.9 13.4 23.72

PPGD 23.1 12.3 99.7* 16.6 18.0 13.3 14.9 10.6 6.3 6.9 13.56
LPA 37.6 24.0 100.0* 34.4 38.0 22.0 29.2 13.5 12.2 14.3 25.02
ACE 32.8 9.4 99.1* 16.1 15.2 12.7 20.5 13.1 6.1 5.3 14.58

APA-SG(Ours) 89.0 83.4 99.6* 89.6 90.1 77.3 76.7 58.5 45.7 67.6 75.32
APA-GC(Ours) 97.6 93.5 99.7* 97.6 98.4 91.1 90.9 75.6 63.8 83.7 88.02

ViT-B

ADer 15.3 8.3 9.9 8.4 7.6 12.0 12.4 81.5* 5.3 5.5 9.41
ReColorAdv 25.5 12.1 17.5 13.9 14.4 15.4 22.9 97.7* 10.9 8.6 15.69

PPGD 15.9 7.5 8.9 8.3 7.9 10.3 10.9 99.7* 5.6 3.9 8.80
LPA 21.4 10.4 13.9 12.5 11.6 14.5 16.6 100.0* 9.1 7.8 13.09
ACE 30.9 11.4 22.0 15.5 15.2 13.0 17.0 98.6* 6.5 6.3 15.31

APA-SG(Ours) 69.3 67.6 67.5 66.8 65.4 70.0 67.6 99.2* 62.5 59.2 66.21
APA-GC(Ours) 77.0 74.8 75.4 75.9 75.4 76.8 74.5 98.4* 73.4 70.2 74.82

fidelity but reduce attack success rates and increase both computational and training costs due to a
larger number of tunable parameters. Considering this trade-off, we find that a rank of 8 achieves a
favorable balance.

D.2 Visual Consistency Alignment

Table 7: Performance comparison of APA-SG with
and without VCA.

Method LPIPS SSIM CLIP Score Avg. ASR

w/o VCA 0.55 0.46 0.62 95.43
w/ VCA 0.25 0.67 0.86 75.32

Figure 3 qualitatively illustrates the importance
of VCA in maintaining visual consistency. The
first three rows of Table 3 demonstrate that VCA
improves the reconstruction quality of clean
samples. We also evaluated the image quality
when only attack effectiveness alignment was
applied (i.e., without VCA) in Table 7. The noticeable degradation in visual quality in this setting
underscores the essential role of VCA in preserving visual consistency during attack alignment.

.
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Figure 8: Attack performance comparison with Lp attacks. RN-50 and ViT-B as substitute models.
Average ASR refers to the average attack success rate on non-substitute models.

E More Attack Performance Comparison

E.1 More Unrestricted Attacks

As a supplement to Table 1 in the main body, we include a comparison of the attack performance
of four additional methods in Table 8: ADef [1], ACE [83], ReColorAdv [35], PPGD [36], and
LPA [36], against our APA. Our findings demonstrate that, regardless of whether a CNN or ViT
model is used as the substitute model, the transfer attack performance of our method significantly
surpasses these four methods.

E.2 Lp Attacks.

To further validate the robustness of our method, we compare our method with classical transfer
attacks with Lp attacks (L∞ = 16/255): gradient optimization attacks (MI [16], NI [45]) and input
transformations attacks (DIM [77], and TIM [17]), as shown in Figure 8. Although this comparison
is inherently unfair for ours (as unrestricted adversarial examples are more natural), our methods
consistently achieve superior black-box transferability, especially when using ViT as the substitute
model.

E.3 AdvDiff

AdvDiff [13] explores a non-traditional form of unrestricted adversarial examples, which cannot
specify a reference image and instead generates adversarial examples starting from random noise.
(AdvDiffuser [9] adopts a similar approach; however, AdvDiff has demonstrated superior perfor-
mance compared to AdvDiffuser, and since the code for AdvDiffuser is not publicly available, we
include comparisons exclusively with AdvDiff, considering both the AdvDiff and AdvDiff-Untarget
versions [13].) To highlight the advantages of our method, we follow the experimental setup of
AdvDiff for comparison. Specifically, we first run AdvDiff without adversarial optimization to
generate clean, original images. These images are then used as reference images. The results are
presented in Table 9. We find that our method demonstrates robust attack performance regardless
of whether RN-50 or ViT is used as the substitute model. In contrast, AdvDiff shows significant
performance discrepancies between RN-50 and ViT. Overall, our method achieves superior attack
performance.

Figure 9 shows the visualizations including our method and AdvDiff. We observe that while AdvDiff-
Untarget shows improved attack performance compared to AdvDiff, its image generation quality is
significantly lower. In contrast, our method achieves superior performance in both image generation
quality and attack effectiveness.
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Clean AdvDiff
AdvDiff-
Untarget APA-SG APA-GC

Figure 9: Visual quality comparison with AdvDiff using RN-50 as the substitute model.

Table 9: Attack performance comparison with AdvDiff and AdvDiff-Untarget.

Substitute
Model Attack

Models
Avg.

ASR (%)
CNNs Transformers

MN-v2 Inc-v3 RN-50 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

- Clean 6.2 7.6 7.3 6.5 6.5 7.2 7.4 6.2 5.7 4.8 6.54

RN-50

AdvDiff 9.3 9.9 100.0* 9.3 8.8 10.5 9.0 9.6 6.5 7.2 8.9
AdvDiff-Untarget 73.1 70.1 74.9* 73.1 73.9 69.6 71.2 64.9 68.0 71.5 70.6
APA-SG(Ours) 75.3 70.8 99.2* 80.4 80.5 65.0 63.0 48.1 42.9 56.3 64.70
APA-GC(Ours) 76.6 77.3 90.2* 82.9 84.0 70.0 69.7 53.6 49.5 63.9 69.72

ViT-B

AdvDiff 8.7 9.5 8.1 7.6 6.7 10.0 9.3 100.0* 8.2 6.9 8.33
AdvDiff-Untarget 15.3 17.5 16.1 17.4 15.6 19.3 21.3 57.7* 22.1 17.6 18.02

APA-SG(Ours) 49.7 52.9 51.1 52.7 52.6 56.0 54.2 98.9* 59.3 47.2 52.86
APA-GC(Ours) 56.3 59.7 59.5 60.4 59.3 63.5 62.0 89.8* 68.0 56.9 60.62

F Flexibility and Scalability

F.1 ControlNet

To evaluate the flexibility of our framework, we utilize the Canny and Hed versions of
ControlNet++[39]. As shown in Figure 10, under the constraints imposed by ControlNet, our
attack optimization primarily targets texture information outside the contour regions, leaving the
overall outline intact. Additionally, Table 10 highlights that adversarial examples generated using
diffusion models with ControlNet maintain strong transfer attack performance.

F.2 Extend to Other Tasks

To assess the flexibility of our method, we evaluate APA’s performance across various tasks. Thanks
to its high adaptability, transferring APA to new tasks requires only adjusting the corresponding Ra.

Targeted Attacks. We evaluate the feasibility of targeted attacks by specifying a target class during
attack optimization. Our findings indicate that the explicit designation of the target class in the
optimization process leads the generated unrestricted adversarial examples to subtly incorporate
features of the target class. For instance, as shown in the right panel of Figure 11(a), when the target
class is set to “hen,” the generated image preserves the overall structure of the original input (ensured
by our visual consistency alignment) while discreetly embedding patterns resembling hen feathers
into the texture of a rock. Overall, the targeted adversarial examples generated by our method bear a
resemblance to camouflaged representations of the target class.
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Table 10: Attack performance on ControlNet, RN-50 as the substitute model. APA-GC-C denotes that
APA utilizes a diffusion model equipped with ControlNet, with gradient propagation implemented
through gradient checkpointing.

Attack

Models
Avg.

ASR (%)
CNNs Transformers

MN-v2 Inc-v3 RN-50 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

APA-GC-C (Hed) 96.4 92.0 100.0* 97.3 97.9 88.6 88.3 71.8 59.6 81.8 85.96
APA-GC-C (Canny) 97.6 92.7 100.0* 97.5 97.6 90.4 90.4 75.5 62.5 84.1 87.58

Clean Hed Canny
Adversarial

 (Hed)
Adversarial 

(Canny)

Figure 10: Visualization of adversarial examples generated by ControlNet++. Adversarial examples
generated under the constraints of ControlNet can preserve the complex structures of clean images,
such as text.

Object Detection. We further evaluate the attack effectiveness on object detection tasks, as illustrated
in Figure 11(b), using Ra defined as the loss function from [4]. Our results demonstrate that
unrestricted adversarial examples can effectively compromise object detectors by either completely
preventing object detection or inducing misclassification of detected objects.

Visual Question Answering. We also investigate targeted attacks on Vision-Language Models
(VLMs) [50, 49]. The goal of this task is to ensure that, given a specified target text, the model
generates the content of the target text when presented with adversarial examples. Figure 11(c)
presents examples of unrestricted adversarial images for VLMs generated using APA. The design
of Ra is based on [82], where an image is first synthesized from the target text, and the cosine
similarity between the features of the synthesized image and the adversarial example is computed
using the BLIP-2 image encoder [38]. Our findings indicate that, consistent with the observations for
targeted attacks, the generated unrestricted adversarial examples guide the diffusion model to subtly
incorporate visual features corresponding to the target text into non-salient regions of the image.
This enables the VLM to output the target text while disregarding the primary original objects in the
image.

F.3 Integration with different ϱ(·)

We further investigate whether stronger data augmentation strategies can enhance the performance of
our diffusion augmentation. Specifically, we adopt the data transformation methods used in SIA [72]
as augmentation strategies ϱ(·), while keeping all other components unchanged. As shown in Table 11,
the results are consistent with our findings under Lp attacks: stronger data transformations further
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marmot Target: hengiant panda Target: sea lion

(a) Targeted  Attack

Clean Adversarial AdversarialClean

(b) Attack Object Detector

Target: two butterflies are on a thistle plant

two butterflies are sitting 
on a flower

a bald eagle with 
its wings spread

Target: a coffee cup with a heart shape in the foam

a coffee cup with a 
heart design on it

(c) Attack VLM

a belt with a buckle 
with a flower on it

Figure 11: (a) shows targeted attacks on the classification task based on RN-50 model. (b) shows
untargeted attacks on the object detect task based on DETR. (c) shows targeted attacks on the visual
question answering task based on VLM model BLIP-2.

Table 11: Attack performance on different ϱ(·). RN-50 as the substitute model.

Attack

Models
Avg.

ASR (%)
CNNs Transformers

MN-v2 Inc-v3 RN-50 Dense-161 RN-152 EF-b7 MobViT-s ViT-B Swin-B PVT-v2

APA-SG 89.0 83.4 99.6* 89.6 90.1 77.3 76.7 58.5 45.7 67.6 75.32
APA-SG-SIA 90.8 83.4 99.9* 91.2 92.6 80.3 82.9 62.9 52.7 72.9 78.86

improve the transferability of our framework. This demonstrates the scalability and extensibility of
our framework.

G Visualization

We select the top six attack methods based on their performance in Table 8 and Table 1 of the main
body for further visual comparison experiments, as shown in Figure 12.
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Figure 12: Qualitative comparison of image quality. Images are generated by RN-50.
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