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MAP IT TO VISUALIZE REPRESENTATIONS

Robert Jenssen
UiT The Arctic University of Norway & U Copenhagen & Norwegian Computing Center

ABSTRACT

MAP IT visualizes representations by taking a fundamentally different approach
to dimensionality reduction. MAP IT aligns distributions over discrete marginal
probabilities in the input space versus the target space, thus capturing information
in wider local regions, as opposed to current methods which align based on pair-
wise probabilities between states only. The MAP IT theory reveals that alignment
based on a projective divergence avoids normalization of weights (to obtain true
probabilities) entirely, and further reveals a dual viewpoint via continuous den-
sities and kernel smoothing. MAP IT is shown to produce visualizations which
capture class structure better than the current state of the art.

1 INTRODUCTION

Representation learning is key to any machine learning system. For instance for learning to visu-
alize input representations, or for visualizing learned representations obtained e.g. via deep neural
networks trained in a supervised or unsupervised/self-supervised manner in order to gain insight1.

Methods such as t-SNE (Böhm et al., 2023; Tucker et al., 2023; Huang et al., 2022; van der Maaten &
Hinton, 2008; van der Maaten, 2014), the closely related LargeVis (Tang et al., 2016), as well as the
recently proposed UMAP (McInnes et al., 2020), TriMAP (Amid & Warmuth, 2019) and PacMap
(Wang et al., 2021), are tremendously important contributions, spurring numerous theoretical works,
e.g. (Draganov et al., 2023; Damrich & Hamprecht, 2021; Kobak & Linderman, 2021).

However, these dominant dimensionality reduction (DR) methods (further discussed in Appendix A)
take vastly different theoretical approaches, but despite this diversity, none of the theories provide
a framework which explain when normalization of weights is needed and when not. Understanding
the role of normalization in DR has been an important quest (Draganov et al., 2023). Moreover,
all existing methods are based on pairwise comparisons of weights in the input space and the target
space without considering wider information from local regions.

MAP IT represents a major shift. The MAP IT framework is based on information theory (IT)
and statistical divergences, showing that normalization is not needed when the divergence used
is projective. Based on a Cauchy-Schwarz projective divergence, MAP IT aligns distributions of
marginal probabilities which capture information about wider local regions in the data, in essence
aggregating information from pairwise weights in a new manner. A dual viewpoint to MAP IT is
derived via continuous densities enabled by kernel smoothing, revealing the role of neighborhoods
for the gradient-based MAP IT. See Appendix B for all proofs with additional comments.

MAP IT creates overall markedly different embeddings. As an example, Figure 1 shows MAP IT
embeddings of a subset of MNIST (d) compared to t-SNE (a), UMAP (b) and PacMAP (c). MAP IT
separates four of the classes of digits much clearer than any of the other methods. For the challenging
digits 4, 9 and 7 (rectangles, zoomed), MAP IT creates less overlap between 4s and 9s, and much
better separation of 7s (f) compared to e.g. PacMap (e).

The main contributions of this paper are i) Providing a new theory for visualization by dimension-
ality reduction; ii) Showing that normalization of weights to obtain true probabilities is not needed
in MAP IT by the use of a projective divergence; iii) Revealing a dual viewpoint by aligning over
distributions over discrete marginal probabilities or equivalently via continuous densities enabled by
kernel smoothing; iv) Shedding light on the role of local neighborhoods for the MAP IT update rule;
v) Generating markedly different visualizations compared to the current state of the art.

1To prepare the representations for a downstream task can also be of interest but not considered here.
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(a) t-SNE. (b) UMAP. (c) PacMap. (d) MAP IT.

(e) Zoomed PacMap. (f) Zoomed MAP IT.

Figure 1: Visualizing a subset of MNIST. MAP IT separates digits much more distinctly compared to
the alternatives and creates less overlap on difficult classes as shown when zooming in (rectangles).

2 T-SNE FRAMEWORK

t-SNE minimizes the Kullback-Leibler (KL) divergence between a joint probability distribution P
over states given by x1, . . . ,xn ∈ RD in the high-dimensional input space and a joint probability
distribution Q over states (mapped data points) z1, . . . ,zn ∈ Rd in the low-dimensional target space

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

∑
i,j

pij log
pij
qij

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log qij , (1)

where qij =
[
1 + ||zi − zj ||2

]−1
/Zq are joint probabilities in the target space defined by the

t-distribution (Cauchy distribution) and where Zq =
∑

n,m

[
1 + ||zn − zm||2

]−1
is an explicit

normalization factor. Note that for this particular choice, one may write qij = q̃ij/Zq where
q̃ij =

[
1 + ||zi − zj ||2

]−1
is an unnormalized quantity. To better prepare for the theory outlined

in Section 3, the model pij = exp
(
−κi||xi − xj ||2

)
/Zp will be assumed, with the normalization

factor Zp =
∑

n,m exp(−κi||xn − xm||2) (further discussed in Appendix C).

Proposition 1. [Minimizing KL(P ||Q) and the role of normalization]. Let qij = q̃ij/Zq for some
choice of q̃ij where Zq =

∑
n,m

q̃nm. Then

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm. (2)

Comment to Proposition 1. The t-SNE cost function may by this result be expressed both over
probabilities pij and over quantities q̃ij in low dimensional space which are not probabilities as they
are not normalized2. This also carries over to the expression for the gradient of KL(P ||Q):

2Some interesting properties of the t-SNE cost function related to Laplacian eigenmaps may be highlighted
when inserting the explicit form for q̃ij . This is explored in Appendix A.
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Proposition 2. [Gradient of KL(P ||Q)]
∂

∂zi
KL(P ||Q) = −4

∑
j

(pij − qij) q̃ij(zj − zi). (3)

The role of normalization. In t-SNE, gradient descent can only be performed after computing qij
over the entire data set for each iteration or epoch, and can be interpreted as an n-body system of
attractive forces and repulsive forces. Speeding up these computations is the reason for the devel-
opment of the Barnes-Hut tree algorithm (van der Maaten, 2014) or the more recent interpolation-
based t-SNE (Linderman et al., 2019). The requirement for normalization also hampers the utility
of parametric t-SNE (van der Maaten, 2009) as discussed in (Sainburg et al., 2021). Recently, new
algorithms and insight to normalization have been revealed (Artemenkov & Panov, 2020; Damrich
et al., 2023) from the viewpoint of noise contrastive learning (Gutmann & Hyvärinen, 2012), also in
the context of the interplay between attractive and repulsive forces (Böhm et al., 2022).

Brief perspectives on t-SNE, UMAP, PacMap and variants. A number of new dimensionality
reduction methods have been proposed, most being more computationally efficient than t-SNE, usu-
ally ending up as a system of attractive and repulsive forces. UMAP (McInnes et al., 2020) exploits
cross-entropy between simplical sets and invokes a sampling strategy on repulsive forces which has
resemblance to the approach proposed in LargeVis (Tang et al., 2016) (a method inspired by t-SNE).
TriMAP (Amid & Warmuth, 2019) and PacMap (Wang et al., 2021) are heuristic methods where the
former is based on triplet loss and the latter empirically sets up a cost function based on pairwise
distances between near pairs, mid-near pairs, and non-neighbor pairs. These methods are considered
to be leading approaches, elaborated in more detail in the Appendix A3.

3 MAP IT FRAMEWORK

3.1 MAP IT BY THE CAUCHY SCHWARZ DIVERGENCE

SNE is elegantly formulated in terms of the KL divergence. However, the KL divergence requires a
normalization factor since the KL divergence is not projective.
Definition 1 (Projective Divergence). Let pij = p̃ij/Zp and qij = q̃ij/Zq where Zp =

∑
n,m p̃nm

and Zq =
∑

n,m q̃nm are normalizing constants. This means that P = P̃ /Zp and Q = Q̃/Zq . A
projective divergence is such that

D(P ||Q) = D(P̃ ||Q̃) (4)
where D is the divergence measure.

For optimization purposes, the use of a projective divergence4 function may be appealing since
the direct dependence on normalization constants is removed. A divergence measure which has
received widespread attention in recent years is the Cauchy-Schwarz divergence (Yu et al., 2023;
2022; Principe, 2010; Jenssen et al., 2006).

Without loss of generality, the CS divergence is here defined in terms of marginal probabilities
P (xj) = pj in the input space and P (zj) = qj in the target space, respectively.
Definition 2 (Cauchy-Schwarz (CS) Divergence). Denote Pm = {pj}Nj=1 and Qm = {qj}Nj=1.
Then

CS(Pm||Qm) = − log

∑
j

pjqj(∑
j

p2j

) 1
2
(∑

j

q2j

) 1
2

. (5)

3A plethora of dimensionality reduction variants exist, see e.g. the overview (Wang et al., 2021) or visit the
excellent repository https://jlmelville.github.io/smallvis/. t-SNE and the other methods
mentioned here all use gradient descent but build on many aspects from spectral theory, e.g. (Roweis & Saul,
2000), (Tenenbaum et al., 2000), (Belkin & Niyogi, 2003), (Donoho & Grimes, 2003), (Jenssen, 2010).

4Could equivalently be defined with marginal probabilities qi = q̃i/Zq , Zq =
∑

i q̃i, or continuous proba-
bility functions q(z) = q̃(z)/Zq , Zq =

∫
q̃(z)dz (likewise for p(x)/pi).
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Proposition 3. [CS divergence is projective]. Let pj = p̃j/Zp, Zp =
∑

j′ p̃j′ , and qj = q̃j/Zq ,
Zq =

∑
j′ q̃j′ . Then

CS(Pm||Qm) = CS(P̃m||Q̃m). (6)

The CS divergence will provide the backbone for the MAP IT framework. MAP IT will be derived
both from the viewpoint of marginal probabilities and from the viewpoint of a continuous risk func-
tion. The latter provides a coupling to kernel methods which provides a dual framework. MAP IT’s
cost function lends itself nicely to optimization with gradient descent, explained in the next sections.

3.2 MAP IT VIA MARGINAL PROBABILITIES

By the law of total probability pj =
∑

k pjk and qj =
∑

k qjk. Since pjk and qjk are assumed
normalized (Eq. (1)),

∑
j pj = 1 and

∑
j qj = 1. Note that by this argument one may express

qj = q̃j/Zq , where q̃j =
∑

k q̃jk, Zq =
∑

n,m q̃nm, and likewise for pj .

Definition 3 (MAP IT cost function). Let p̃j =
∑

k p̃jk and q̃j =
∑

k q̃jk. The proposed MAP IT
cost function and optimization problem are

argmin
z1,...,zn∈Rd

CS(Pm||Qm) = argmin
z1,...,zn∈Rd

CS(P̃m||Q̃m). (7)

Comment to Definition 3. A major deviation from the SNE framework is that MAP IT aims
to align distributions over marginal probabilities for states corresponding to data points in the two
spaces, i.e. pj and qj . These probabilities can be interpreted as degrees associated with the nodes
of the underlying similarity graphs in the two spaces, reflecting properties of regions of the data,
as opposed to considering only pairwise local connections. This is associated with the underlying
mapping which may be expressed as zj = m(xj) + εj where m(·) is the mapping function and εj
is some noise random variable. Minimizing CS(Pm||Qm) yields:
Proposition 4. [Minimizing CS(Pm||Qm) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

CS(P̃m||Q̃m) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j . (8)

As a main result of this paper, the gradient of MAP IT, needed in order to perform minimization of
CS(Pm||Qm) over z1, . . . ,zn ∈ Rd, is derived and stated in the following proposition:
Proposition 5. [Gradient of CS(Pm||Qm)]

∂

∂zi
CS(Pm||Qm) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi). (9)

Comment to Proposition 4. The MAP IT update rule zi = zi − η ∂
∂zi

CS(Pm||Qm) yields

zi = zi + η
∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi) (10)

where the factor four has been fused into η. MAP IT thus has easily interpretable gradients, forming
a n-body problem where each zi experiences an attractive force p̃j and a repulsive force q̃j from each
other data point zj . The forces are adaptively weighted by entropy in the sense that − log

∑
j′ q̃

2
j′ is

a Renyi entropy of Qm and − log
∑

j′ p̃j′ q̃j′ is a cross entropy. All quantities are unnormalized.

3.3 MAP IT VIA CONTINUOUS DENSITY FUNCTIONS

This section provides an alternative derivation for MAP IT via kernel smoothing. This reveals the
role of local neighborhoods via derivation, affecting the computation of gradients. The following
definition is provided, referred here to as the map CS divergence:

4



Published as a conference paper at ICLR 2024

Definition 4 (Map CS divergence). Let p(x) be the probability density function over a domain X
and define q(z) to be the probability density function for the stochastic map z = m(x) + ε over Z .
Let f(x, z) be the joint distribution over X × Z . The map CS divergence is defined as

CS(p(x)||q(z)) = − log

∫ ∫
p(x)q(z)f(x, z)dxdz(∫ ∫

p2(x)f(x, z)dxdz
) 1

2
(∫ ∫

q2(z)f(x, z)dxdz
) 1

2

. (11)

Comment to Definition 4. Consider two functions g(x) and h(z) where z is some mapping of
x. Within risk minimization, R = EX×ZL [g(x), h(z)] =

∫ ∫
L [g(x), h(z)] f(x, z)dxdz for

some loss L(·). Empirical risk minimization aims to minimize R̂ =
∑

i L [g(xi), h(zi)] with
respect to some variables or parameters. From this, the map CS divergence may be understood as a
normalized risk function over g(x) = p(x) and h(z) = q(z) with product loss.

Proposition 6. [The map CS divergence is projective]. Let z = m(x) + ε and assume p(x) =
p̃(x)/Zp and q(z) = q̃(z)/Zq where p̃(x) and q̃(z) are unnormalized with Zp =

∫
p̃(x)dx and

Zq =
∫
q̃(z)dz as the respective normalization constants. Then

CS(p(x)||q(z)) = CS(p̃(x)||q̃(z)). (12)

Assume in the following unnormalized functions p̃(x) and q̃(z).

Proposition 7. [Empirical map CS divergence]. Let a sample x1, . . . ,xn ∈ RD be given and
assume the mapping z = m(x) + ε. Then, an empirical map CS divergence is given by

ĈS(p(x)||q(z)) = − log

∑
j

p̃(xj)q̃(zj)(∑
j

p̃2(xj)

) 1
2
(∑

j

q̃2(zj)

) 1
2

. (13)

Proposition 8. [Minimizing ĈS(p(x)||q(z)) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

ĈS(p(x)||q(z)) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃(xj)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (14)

Proposition 9. [Gradient of ĈS(p(x)||q(z))]

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj). (15)

Comment to Proposition 9. Eq. (15) is a more general result compared to Eq. (9). For a particular
choice or estimator of p̃(xj) and q̃(zj), the basic MAP IT update rule zi = zi−η ∂

∂zi
CS(Pm||Qm)

will equal zi = zi − η ∂
∂zi

ĈS(p(x)||q(z)) as is shown next. But this is not true in general, and the
latter result may actually be more flexible.

Consider in the following the choice ˆ̃q(zj) =
∑

k κz(zj − zk) and similarly for ˆ̃p(xj). In this
viewpoint, κ(·) is assumed to be a shift-invariant kernel function and

∑
k κz(zj − zk) is the well-

known kernel smoothing procedure, which is the backbone of reproducing kernel Hilbert space
methods (e.g. (Schrab et al., 2023)) and of utmost importance in machine learning. Note that both
the t-distribution (Cauchy distribution) and the Gaussian are valid kernel functions.

Proposition 10. [Gradient of ĈS(p(x)||q(z)) with kernel smoothing]. Let ˆ̃q(zj) =
∑

k κz(zj −
zk) and ˆ̃p(xj) =

∑
k κp(xj − xk) for shift-invariant kernel functions κz(·) and κp(·). Then

∂

∂zi
ĈS(p(x)||q(z)) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

κ2
z(zj − zi)(zj − zi). (16)
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(a) (b) (c)

Figure 2: Illustrating the role of local neighborhoods in MAP IT.

Comment to Proposition 10. With the notation q̃ji
def
= κz(zj − zi) associated with ˆ̃q(zj) =∑

k κz(zj − zk), this result shows that in this particular situation the MAP IT rule zi = zi −
η ∂
∂zi

CS(Pm||Qm) equals zi = zi − η ∂
∂zi

ĈS(p(x)||q(z)).

MAP IT via marginal probabilities and MAP IT via continuous densities are thus dual viewpoints
enabled by the map CS divergence and the kernel smoothing approach.

Having derived MAP IT, it is important to make clear that t-SNE based on the Cauchy-Schwarz
divergence, instead of the Kullback-Leibler, appears as a special case of the theory.

Proposition 11. [Cauchy-Schwarz (CS) t-SNE is a special case of MAP IT]. Let pjk′ be the prob-
ability for the joint event xj ∩ xk′ . Let qjk′ be the probability for the joint event zj ∩ zk. If
(xj ∩ xk′) ∩ (zj ∩ zk) ∈ ∅, then

CS(Pm||Qm) = CS(P ||Q). (17)

3.4 MAP IT VIA LOCAL NEIGHBORHOODS

One subtle but very important aspect which affects the MAP IT theory from the previous sections
concerns the role of local neighborhoods. This is best revealed from the starting point of MAP
IT via continuous densities as follows. The aim of MAP IT is to discover z1, . . . ,zn ∈ Rd from
x1, . . . ,xn ∈ RD. This entails derivatives ∂

∂zi
p̃(·)q̃(·) and ∂

∂zi
q̃2(·) which are quantities defined

over neighborhoods. Consider

∂

∂zi
p̃(·)q̃(·) ≈ p̃(zi +∆zi)q̃(zi +∆zi)− p̃(zi)q̃(zi)

∆zi
(18)

where ∆zi defines a neighborhood in the target space around zi. A sketch illustrating this situation
is shown in Fig. (2) (a). However, an assumption is that an unknown transformation exists, z =
m(x)+ε. If the transformation was known, there would be no need for MAP IT and neighborhoods
∆zi around zi would correspond to neighborhoods ∆xi around xi = m−1(zi). However, even if
the transformation is not known, points in the two spaces come in pairs zi = m(xi) + ε, and over
the course of the optimization neighborhood topologies in the two spaces should start to correspond.
During the optimization, since the effect of the underlying mapping function only gradually will be
learned, neighborhood topologies in the two spaces will not initially correspond. For differentiation
with respect to zi one must therefore rely on ∆zi = m(∆xi). This is illustrated in Fig. (2) (b).

The practical consequence of the above analysis is that all marginal probabilities, part of the MAP
IT learning rule, will be computed with respect to a neighborhood m(∆xi) and will be denoted
p̃jNxi

and q̃jNxi
, respectively, where Nxi

refers to the neighborhood around xi, yielding

zi = zi + η
∑
j

 p̃jNxi∑
j′

p̃j′ q̃j′
−

q̃jNxi∑
j′

q̃2j′

 q̃2ij(zj − zi). (19)

One may envision several possibilities for defining Nxi . Here, it is argued that if xj is one of the
nearest neighbors of xi then the nearest neighbors of xj are also i the neighborhood of xi. The
p̃jNxi

and q̃jNxi
are thus computed over the nearest neighbors of xj . Of course, this line of thought
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(a) Run 1. (b) Run 2. (c) Run 3. (d) Run 4.

Figure 3: MAP IT for a subset of MNIST for different initial values (runs) for k = 10.

could have been continued to some degree (neighbors of neighbors), but is not explored further in
this paper. Fig. (2) (c) shows as a filled black square a point xi (zi) and how the nearest neighbors
of xi as well as their neighbors constitute Nxi . This resembles to some degree the use of near pairs
and mid-near pairs in PacMap. For points that are not neightbors of xi one could compute p̃jNxi

and q̃jNxi
in a similar manner. However, since all pij for xj not a neighbor of xi will be relatively

small and constant with respect to points in the vicinity of xi, only pij (qij) is used in that case, as
illustrated in Fig. (2) (c) (solid black circles). This resembles to some degree the use of non-near
pairs in PacMac. Please see Appendix C for additional perspectives. Finding neighbors can be done
in an exact manner, or by vintage trees (Yianilos, 1993), or by approximate search (Dong et al.,
2011) as in LargeVis and UMAP.

Importantly, the MAP IT theory deviates fundamentally from the theory for t-SNE, UMAP, and all
the alternative DR approaches in the literature by not aligning based a pairwise comparison of points,
i.e. individual pij and qij . MAP IT exploits combined information represented by marginal prob-
abilities pj and qj , which are aligned, and which naturally encompass information about multiple
pairs of points simultaneously, using unnormalized quantities. This represents a major shift.

4 MAP IT’S VISUALIZATIONS

General comments to the experimental part. The MAP IT theory has been developed from the
viewpoint of divergence and for that reason the t/Gaussian distributions (and perplexity computation)
as in t-SNE are chosen (see Appendix C for further considerations on these choices.). The UMAP
approach to metrics and weights could have been used, only amounting to design choices. In all
MAP IT experiments, a random initialization is used, a perplexity value of 15 is used, and no gain
or ”trick” are used such as to multiply p̃jk by some constant in the first (say, 100) iterations (widely
done in the t-SNE literature). The common delta-bar-delta rule is used, setting momentum to 0.5
for the first 100 iterations and then 0.8. The learning rate is set to 50 always, over 1000 iterations.
Results are found to be relatively stable with these choices (see Appendix C for more comments
on implementation). For t-SNE the highly optimized Barnes-Hut algorithm is used with its default
parameters. For UMAP, the state-of-the-art implementation from the Herzenberg Lab, Stanford, is
used with default parameters, thus always initialized by Laplacian eigenmaps. The PacMap author’s
Python implementation is used5 with default parameters, thus always initialized by PCA. All meth-
ods return a cost function value used to select the best result out of several runs. MAP IT code is
available at https://github.com/SFI-Visual-Intelligence/.

The focus of this paper is to introduce MAP IT as a fundamentally new way to approach dimension-
ality reduction and not to extensively scale up MAP IT. For that reason, the focus is on a range of
relatively modest sized data sets, to convey the basic properties of MAP IT as a new approach. In
Appendix C, some further considerations on potential upscaling of the method based on sampling of
forces and computation of (entropy) weights (Eq. (19)) are provided. Visualizations below are best
viewed in color. Plots are enlarged and repeated in Appendix C, for the benefit of the reader, where
also more details about data sets are given.

5t-SNE: Barnes-Hut. UMAP: C. Meehan, J. Ebrahimian, W. Moore, and S. Meehan (2022). Uniform Mani-
fold Approximation and Projection (UMAP) (https://www.mathworks.com/matlabcentral/fileexchange/71902).
PacMap: https://github.com/YingfanWang/PaCMAP/tree/master.
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(a) t-SNE. (b) UMAP. (c) PacMap. (d) MAP IT.

Figure 4: Visualizing the Coil-20 dataset.

(a) t-SNE. (b) UMAP. (c) PacMap. (d) MAP IT.

Figure 5: Visualizing visual concepts.

MNIST. A random subset of MNIST consisting of 2000 points is used. Figure 1 has already
illustrated that MAP IT, despite not being heavily optimized and by random initialization, produced
markedly different representation compared to the alternatives, with a clear class structure and with
better separation between classes. Figure 10 in Appendix C shows visualizations using different
values k of nearest neighbors. The value of this hyperparameter will influence results. Based on
MNIST and other data sets it appears as if a value between 5 and 15 produce reasonable results
over a range of data sets. Figure 3 illustrates MAP IT with k = 10 for MNIST over different runs.
The main structure of the mapped data is always the same showing robustness wrt. initialization.
Appendix C provides further quantitative analysis.

Coil 20. It can be seen in Figure 4 that MAP IT separates very well the 20 classes, when compared
to the alternatives. It may be that MAP IT experiences symmetry breaking to a somewhat larger
degree than e.g. PacMap (flattening out ring structures).

Visual Concepts. Images corresponding to three different visual concepts are visualized in Fig. (5
by their SIFT (Lowe, 1999) descriptors (1000-dimensional). The visual concepts used are straw-
berry (blue), lemon (cyan) and australian terrier (yellow). It is evident from all the methods that the
concepts are overlapping. t-SNE splits the australian terrier. PacMap splits the hugely overlapping
groups strawberry and lemon. UMAP doesn’t split groups but indicates little group structure. MAP
IT indicates more of a group structure, without splitting any group.

Newsgroups. A bag of 100 words is created. Randomly, 10% of the documents are selected,
obtaining a total of 1625 documents distributed over the categories comp, rec, sci and talk,
and a document-word matrix is formed and used to visualize the word distribution, Fig. 6 (see
Appendix C for word-clouds). t-SNE and UMAP uniformly spread the words in the plane. PacMap
seems to put words in groups roughly corresponding to topics, which may be natural but which is
too strict (the word ”computer”, for instance, would be expected to not be exclusive to e.g. to group
sci). MAP IT also puts words in groups to some degree, but not exclusively, like PacMap.

Frey faces. The 1965 (28 × 20) ”Frey faces” are visualized and shown in Fig. 7. Each image is a
frame in a video of the same face varying smoothly over time. t-SNE, UMAP, and PacMap all seem
to predominantly pick up on a ”smile” versus ”no smile” structure in the video. MAP IT creates
smaller local structures but these structures seem more spread out in the space in the sense of for
instance not placing smiling faces very far from other faces.

Sampling over non-neighbors. As mentioned, scaling up MAP IT is not a main focus in this paper.
It is however of interest for future work. As an initial experiment, computation of attractive/repulsive

8
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(a) t-SNE. (b) UMAP. (c) PacMap. (d) MAP IT.

Figure 6: Visualizing word-representations from Newsgroups.

(a) t-SNE. (b) UMAP. (c) PacMAP. (d) MAP IT.

Figure 7: Visualizing the Frey faces.

forces are split on two groups over k neighbors and n − k non-neighbors for each point. The latter
group is sampled, using only some multiple of k, here 3k. For k = 10 and n = 2000, this yields over
98.5 percent reduction in computations. Fig. 8 shows for MNIST that the visualization is basically
unchanged (elaborated more in Appendix C).

5 CONCLUSIONS

Figure 8: MAP IT with sampling of non-neighbor
attractive/repulsive forces.

MAP IT takes a fundamentally different ap-
proach to visualize representations by aligning
distributions over discrete marginal probabili-
ties (node degrees) in the input space versus
the target space, thus capturing information in
wider local regions. This is contrary to current
methods which align based on individual prob-
abilities between pairs of data points (states)
only. The MAP IT theory reveals that align-
ment based on a projective divergence avoids
normalization of weights (to obtain true prob-
abilities) entirely, and further reveals a dual
viewpoint via continuous densities and kernel
smoothing. MAP IT is shown to produce visualizations which capture class structure better than the
current state of the art.
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APPENDIX A: FURTHER PERSPECTIVES ON T-SNE, UMAP, PACMAP, AND
VARIANTS

As mentioned in Section 1 of this paper, a large plethora of dimensionality reduction methods exists
and an excellent repository for more information is e.g. https://jlmelville.github.io/
smallvis/. In this paper, following recent literature, the main algorithms are considered to be
t-SNE (van der Maaten, 2014), and UMAP (McInnes et al., 2020), and we include the empirically
motivated PacMap (Wang et al., 2021). For context, TriMap (Amid & Warmuth, 2019) and LargeVis
(Tang et al., 2016) are discussed below. The t-SNE theory has been outlined in Section 2.

In the paper introducing UMAP, McInnes et al. (2020) argues that t-SNE should be considered the
current state-of-the-art at that time, and mentions computational scalability as a main benefit of
UMAP versus t-SNE. The main aspect with respect to computational scalability for UMAP versus
t-SNE is that the simplical set theory shows that for UMAP normalization over pairwise similarities
(probabilities in t-SNE) is not needed, as opposed to t-SNE. This illustrates the importance of the
sound theoretical foundation of UMAP. As further described in (McInnes et al., 2020), UMAP’s
simplical set cross-entropy cost function resembles in several ways the LargeVis (Tang et al., 2016)
cost function. LargeVis also avoids normalization in the embedding space, albeit from a more
heuristic point of view, but not in the input space where a procedure similar to the one used in
Barnes-Hut t-SNE (van der Maaten, 2014) is used. Avoiding normalization in the embedding space
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is key to the negative sampling strategy employed in LargeVis and which is key to its computational
scalability, also an integral component in the UMAP optimization. LargeVis is not included in
the experimental part of this paper to avoid clutter, but is an influential algorithm in the t-SNE
family. McInnes et al. (2020) and Wang et al. (2021), for instance, have both extensive comparative
experiments sections also involving LargeVis.

A motivation for Wang et al. (2021) is to discuss preservation of local structure versus global struc-
ture. They propose a heuristic method, PacMap, which is intended to strike a balance between
TriMap (Amid & Warmuth, 2019) (better at preserving global structure) and t-SNE/UMAP (local
structure). TriMap is is a triplet loss-based method. Wang et al. (2021) argues that TriMap is the
first successful triplet constraint method (as opposed to (Hadsell et al., 2006; van der Maaten &
Weinberger, 2012; Wilber et al., 2015)) but claims that without PCA initialization ”TriMap’s global
structure is ruined”. PacMap is based on a study of the principles behind attractive and repulsive
forces and finds that forces should be exerted on further points and sets up a heuristically designed
procedure for treating near pairs, mid-near pairs, and non-neighbors.

Understanding t-SNE versus UMAP, in particular, from a theoretical perspective, has gained interest
in the recent years. Damrich & Hamprecht (2021) studies the interplay between attractive and
repulsive forces in UMAP in detail and comes to the conclusion that UMAP is actually not exactly
optimizing the cost function put forth in (McInnes et al., 2020). Böhm et al. (2022) studies the whole
attraction-repulsion spectrum and find cases where UMAP may diverge. Damrich et al. (2023)
provides an entirely new viewpoint relating a fixed normalization constant in UMAP to a smaller
learned normalization constant in t-SNE when considering negative sampling and noise contrastive
learning. Draganov et al. (2023) argues that the normalization aspect is basically the key difference
between t-SNE and UMAP, and suggests a way to toggle between the two approaches.

Kobak & Linderman (2021) show that UMAP’s initialization (Laplacian eigenmaps (Belkin &
Niyogi, 2003)) is very important for UMAP’s results and claims that t-SNE can be improved by
a similar initialization. Wang et al. (2021) also studies initialization, and claim that both UMAP but
also TriMap are very dependent on initialization. Several papers have revealed close connections
between t-SNE and Laplacian eigenmaps (Carreira-Perpinan, 2010; Linderman & Steinerberger,
2019; Böhm et al., 2022). Some further comments on the relationship between t-SNE and Laplacian
eigenmaps are provided in Appendix B. Draganov et al. (2023) argues that the normalization aspect
is basically the key difference between t-SNE and UMAP, and suggests a way to toggle between the
two approaches. Other highly influential papers provide important insight (Kobak & Berens, 2019;
Kobak et al., 2020).

In this paper, sampling is also demonstrated (Figure 8, and Appendix C), sharing some similarity to
the sampling strategies invoked in e.g. LargeVis and UMAP.

It should also be mentioned that dimensionality reduction methods inspired by the t-SNE approach
by alternative divergences to the Kullback-Leibler over joint pairwise probabilities have been stud-
ied to some degree (Bunte et al., 2012; Naryan et al., 2015; Huang et al., 2022). However, these
works have not discussed projective properties of divergence measures and have not contributed to
understanding the aspect of normalization.

APPENDIX B: PROPOSITIONS WITH PROOFS AND COMMENTS

For the benefit of the reader, the well-known Kullback-Leibler-based t-SNE relation from the main
paper, which van der Maaten & Hinton (2008) builds on, is proved:

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

∑
i,j

pij log
pij
qij

= argmin
z1,...,zn∈Rd

∑
i,j

pij log qij . (20)
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Proof.

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

∑
i,j

pij log
pij
qij

(21)

= argmin
z1,...,zn∈Rd

∑
i,j

pij log pij︸ ︷︷ ︸
constant

−
∑
i,j

pij log qij . (22)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log qij . (23)

Proposition 1. [Minimizing KL(P ||Q) and the role of normalization]. Let qij = q̃ij/Zq for some
choice of q̃ij where Zq =

∑
n,m

q̃nm. Then

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm. (24)

Proof.

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

−
∑
i,j

pij log qij (25)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log
q̃ij∑

n,m
q̃nm

(26)

= argmin
z1,...,zn∈Rd

−


∑
i,j

pij log q̃ij −
∑
i,j

pij︸ ︷︷ ︸
=1

log
∑
n,m

q̃nm

 (27)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm. (28)

Comment to Proposition 1. Deriving the t-SNE cost function without first expressing qij
6 in

a particular form (t-distribution (Cauchy distribution) or Gaussian) shows a general property of
the cost function. The t-SNE cost function is by the above result expressed by two terms where
the first term relates the normalized pij to unnormalized q̃ij . The second term only involves the
unnormalized q̃ij .

From this expression, an interesting aspect of the t-SNE cost function is an intrinsic connection
to Laplacian eigenmaps (Belkin & Niyogi, 2003). Discovery of connections between t-SNE and
Laplacian eigenmaps can be traced back to Carreira-Perpinan (2010). More recently, Böhm et al.
(2022) performed a closer examination of this relationship in terms of eigenvectors of normalized
and unnormalized Laplacian matrices. Linderman & Steinerberger (2019) studied convergence of
clustering with t-SNE from the viewpoint of early exaggeration (an often used optimization ”trick”)
and identified a regime where t-SNE behaves like Laplacian-based spectral clustering.

In Laplacian eigenmaps, the aim is to find a low-dimensional embedding z1, . . . ,zn ∈ Rd from
x1, . . . ,xn ∈ RD. It is assumed that some similarity measure can be defined in the input space,

6In the original SNE paper (Hinton & Roweis, 2002) the Gaussian distribution was used qij =
exp(−κ||zi − zj ||2)/

∑
n,m exp(−κ||zn − zm||2). The argument in (van der Maaten & Hinton, 2008)

was that the t-distribution helps mitigate the so-called crowding problem. It is possible to formulate the joint
probabilities as functions of other distance functions than the Euclidean or in terms of similarity measures.
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pairwise over xi and xj , which can be denoted wij . The Laplacian cost function is essentially∑
i,j wij ||zi−zj ||2 to be minimized over z1, . . . ,zn ∈ Rd, however given orthogonality constraints

on z1, . . . ,zn ∈ Rd to avoid trivial minima. Since for t-SNE, q̃ij is a function of ||zi − zj ||2 for
both the t-distribution (Cauchy distribution) and the Gaussian, there is a close link between t-SNE
and Laplacian eigenmaps. For instance, for q̃ij = [1 + ||zi − zj ||2]−1, the first term becomes∑

i,j wij log ||zi−zj ||2 and for the Gaussian the corresponding term becomes
∑

i,j wij ||zi−zj ||2
up to a proportionality constant (this was also pointed out in (Trosten et al., 2023)). By letting wij =
pij the link becomes obvious. In t-SNE, there are no orthogonality constraints on z1, . . . ,zn ∈ Rd.
Instead, trivial solutions are avoided by the constraint posed by

∑
n,m q̃nm.

Recently, Cai & Ma (2022) provided an elaborate spectral analysis concluding that t-SNE is con-
nected to Laplacian eigenmaps. By the above analysis, and from e.g. (Böhm et al., 2022), this is
evident from the form of the t-SNE cost function itself.

Proposition 2. [Gradient of KL(P ||Q)]

∂

∂zi
KL(P ||Q) = −4

∑
j

(pij − qij) q̃ij(zj − zi). (29)

Proof.

∂

∂zi
KL(P ||Q) =

∂

∂zi
−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm︸ ︷︷ ︸
def
=C

. (30)

The following derivation resembles (van der Maaten & Hinton, 2008). Note that if zi changes, the
only pairwise distances that change are dij and dji where dij = ||zi − zj ||. Hence, the gradient of
the cost function C with respect to zi is given by

∂

∂zi
C =

∑
j

(
∂C

∂dij
+

∂C

∂dji

)
(zi − zj) = 2

∑
j

∂C

∂dij
(zi − zj). (31)

Furthermore

∂C

∂dij
= −

∑
k,l

pkl
∂

∂dij
log q̃kl +

∂

∂dij
log
∑
n,m

q̃nm (32)

= −
∑
k,l

pkl
1

q̃kl

∂

∂dij
q̃kl +

1∑
n,m

q̃nm

∑
n,m

∂

∂dij
q̃nm. (33)

The gradient is only non-zero for k = i, l = j and for n = i, m = j, yielding

∂C

∂dij
= −pij

1

q̃ij

∂

∂dij
q̃ij +

1∑
n,m

q̃nm

∂

∂dij
q̃ij . (34)

Note that for q̃ij =
[

1
1+||zi−zj ||2

]
, which is the t-distribution, or alternatively for q̃ij =

exp(−κ||zi − zj ||2), the Gaussian distribution, we have

∂

∂dij
q̃ij = 2q̃2ij . (35)

Hence,

∂C

∂dij
= 2

−pij q̃ij +
1∑

n,m
q̃nm

q̃2ij

 = 2 (−pij + qij) q̃ij , (36)
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since qij =
q̃ij∑

n,m
q̃nm

. Finally, this yields

∂

∂zi
C =

∂

∂zi
KL(P ||Q) = −4

∑
j

(pij − qij) q̃ij(zj − zi). (37)

Proposition 3. [CS divergence is projective]. Let pj = p̃j/Zp, Zp =
∑

j′ p̃j′ , and qj = q̃j/Zq ,
Zq =

∑
j′ q̃j′ . Then

CS(Pm||Qm) = CS(P̃m||Q̃m). (38)

Proof.

CS(Pm||Qm) = − log

∑
j

pjqj(∑
j

p2j

) 1
2
(∑

j

q2j

) 1
2

(39)

= − log

∑
j

p̃j

Zp

q̃j
Zq(∑

j

(
p̃j

Zp

)2) 1
2
(∑

j

(
q̃j
Zq

)2) 1
2

(40)

= − log

∑
j

p̃j q̃j(∑
j

p̃2j

) 1
2
(∑

j

q̃2j

) 1
2

(41)

= CS(P̃m||Q̃m). (42)

Proposition 4. [Minimizing CS(Pm||Qm) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

CS(P̃m||Q̃m) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j . (43)

Proof.

argmin
z1,...,zn∈Rd

CS(Pm||Qm) (44)

= argmin
z1,...,zn∈Rd

− log

∑
j

p̃j q̃j∑
j

p̃2j

 1
2

︸ ︷︷ ︸
independent of z

(∑
j

q̃2j

) 1
2

(45)

= argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j . (46)

(47)
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Proposition 5. [Gradient of CS(Pm||Qm)]

∂

∂zi
CS(Pm||Qm) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi). (48)

Proof.

argmin
z1,...,zn∈Rd

CS(Pm||Qm) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j (49)

(50)

There are several ways to proceed. Here, it is chosen to start by expressing CS(Pm||Qm) explicitly
into cross-product terms p̃jk′ q̃jk. For convenience, the derivation is split into two parts.

∂

∂zi
− log

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
j

∑
k′,k

p̃jk′ q̃jk. (51)

Look first at the case j ̸= i. Then ∂
∂zi

∑
k′,k

p̃jk′ q̃jk will have non-zero terms for k = i, hence

∂

∂zi

∑
k′,k

p̃jk′ q̃jk =
∑
k′

p̃jk′
∂

∂zi
q̃ji = p̃j

∂

∂zi
q̃ji. (52)

For j = i,

∂

∂zi

∑
k′,k

p̃ik′ q̃ik =
∑
k

(∑
k′

p̃ik′

)
∂

∂zi
q̃ik =

∑
k

p̃k
∂

∂zi
q̃ik. (53)

Hence,

∂

∂zi

∑
j

∑
k′,k

p̃jk′ q̃jk =
∑
j,j ̸=i

2p̃j
∂

∂zi
q̃ij . (54)

Note that for q̃ij =
[

1
1+||zi−zj ||2

]
, which is the t-distribution, or alternatively for q̃ij =

exp(−κ||zi − zj ||2), the Gaussian distribution, we have

∂

∂zi
q̃ij = 2q̃2ij(zj − zi) (55)

Thus

∂

∂zi
− log

∑
j

p̃j q̃j = −4
1∑

j′
p̃j′ q̃j′

∑
j,j ̸=i

p̃j q̃
2
ij(zj − zi). (56)

Alternatively,

∂

∂zi
− log

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
i

p̃iq̃i = − 1∑
j′

p̃j′ q̃j′

∑
j

p̃j
∂

∂zi
q̃j (57)

and then work with q̃j =
∑
k′

q̃jk′ . For the second part, consider

∂

∂zi

1

2
log
∑
j

q̃2j =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
i

q̃2i =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
j

∑
k′,k

q̃jk′ q̃jk. (58)
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and work in a similar fashion as above from there, or express

∂

∂zi

1

2
log
∑
j

q̃2j =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
i

q̃2i =
1

2

1∑
j′

q̃2j′

∑
j

2q̃j
∂

∂zi
q̃j (59)

and insert q̃j =
∑
k′

q̃jk′ . This gives

∂

∂zi

1

2
log
∑
j

q̃2j = 4
1∑

j′
q̃2j′

∑
j,j ̸=i

q̃j q̃
2
ij(zj − zi). (60)

Hence, when taken together:

∂

∂zi
CS(Pm||Qm) = −4

∑
j,j ̸=i

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi). (61)

Proposition 6. [The map CS divergence is projective]. Let z = m(x) + ε and assume p(x) =
p̃(x)/Zp and q(z) = q̃(z)/Zq where p̃(x) and q̃(z) are unnormalized with Zp =

∫
p̃(x)dx and

Zq =
∫
q̃(z)dz as the respective normalization constants. Then

CS(p(x)||q(z)) = CS(p̃(x)||q̃(z)). (62)

Proof.

CS(p(x)||q(z)) (63)

= − log

∫ ∫ p̃(x)
Zp

q̃(z)
Zq

f(x, z)dxdz(∫ ∫ ( p̃(x)
Zp

)2
f(x, z)dxdz

) 1
2
(∫ ∫ ( q̃(z)

Zq

)2
f(x, z)dxdz

) 1
2

(64)

= − log

1
ZpZq

∫ ∫
p̃(x)q̃(z)f(x, z)dxdz(

1
Z2

p

∫ ∫
p̃2(x)f(x, z)dxdz

) 1
2
(

1
Z2

q

∫ ∫
q̃2(z)f(x, z)dxdz

) 1
2

(65)

= − log

∫ ∫
p̃(x)q̃(z)f(x, z)dxdz(∫ ∫

p̃2(x)f(x, z)dxdz
) 1

2
(∫ ∫

q̃2(z)f(x, z)dxdz
) 1

2

(66)

= CS(p̃(x)||q̃(z)). (67)

Proposition 7. [Empirical map CS divergence]. Let a sample x1, . . . ,xn ∈ RD be given and
assume the mapping z = m(x) + ε. Then, an empirical map CS divergence is given by

ĈS(p(x)||q(z)) = − log

∑
j

p̃(xj)q̃(zj)(∑
j

p̃2(xj)

) 1
2
(∑

j

q̃2(zj)

) 1
2

. (68)

Proof. We have CS(p(x)||q(z)) = CS(p̃(x)||q̃(z)). Thus

CS(p̃(x)||q̃(z)) = − log

∫ ∫
p̃(x)q̃(z)f(x, z)dxdz(∫ ∫

p̃2(x)f(x, z)dxdz
) 1

2
(∫ ∫

q̃2(z)f(x, z)dxdz
) 1

2

. (69)
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It suffices to look at the numerator. Since
∫ ∫

p̃(x)q̃(z)f(x, z)dxdz = EX×Z [p̃(x)q̃(z)] and we
have

̂EX×Z [p̃(x)q̃(z)] =
∑
j

p̃(xj)q̃(zj), (70)

we have

ĈS(p(x)||q(z)) = − log

∑
j

p̃(xj)q̃(zj)(∑
j

p̃2(xj)

) 1
2
(∑

j

q̃2(zj)

) 1
2

. (71)

Proposition 8. [Minimizing ĈS(p(x)||q(z)) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

ĈS(p(x)||q(z)) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃(xj)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (72)

Proof.

argmin
z1,...,zn∈Rd

CS(p(x)||q(z)) (73)

= argmin
z1,...,zn∈Rd

− log

∑
j

p̃(xj)q̃(zj)∑
j

p̃2(xj)

 1
2

︸ ︷︷ ︸
independent of z

(∑
j

q̃2(zj)

) 1
2

(74)

= argmin
z1,...,zn∈Rd

− log
∑
j

p̃(x)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (75)

(76)

Proposition 9. [Gradient of ĈS(p(x)||q(z))]

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj). (77)

Proof.

argmin
z1,...,zn∈Rd

CS(p(x)||q(z)) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃(xj)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (78)

The derivation is split into two parts. First,

∂

∂zi
− log

∑
j

p̃(xj)q̃(zj) = − 1∑
j′

p̃(xj′)q̃(zj′)

∑
j

p̃(xj)
∂

∂zi
q̃(zj). (79)

Second,

∂

∂zi

1

2
log
∑
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q̃2(zj) =
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2

1∑
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q̃2(zj′)

∑
j

∂
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q̃2(zj) =

1

2
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q̃2(zj′)

∑
j

2q̃(zj)
∂

∂zi
q̃(zj). (80)
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Taken together, thus

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj). (81)

Proposition 10. [Gradient of ĈS(p(x)||q(z)) with kernel smoothing]. Let ˆ̃q(zj) =
∑

k κz(zj −
zk) and ˆ̃p(xj) =

∑
k κp(xj − xk) for shift-invariant kernel functions κz(·) and κp(·). Then

∂

∂zi
ĈS(p(x)||q(z)) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

κ2
z(zj − zi)(zj − zi). (82)

Proof. A shift-invariant kernel function satisfies κ(zj − zi) = κ(dij) where dij = ||zj − zi||2.
Hence, similar to the derivation for Proposition 2, we will have

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj) (83)

= −
∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

(∂q̃(zj)

∂dij
+

∂q̃(zj)

∂dji

)
(zj − zi) (84)

= −
∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 2
∂q̃(zj)

∂dij
(zj − zi). (85)

Note that ∂q̃(zj)
∂dij

=
∂κz(zj−zi)

∂dij
= 2κ2(zj − zi)) for κz(zj − zi)) =

[
1

1+||zi−zj ||2

]
, which is the

t-distribution, or alternatively for κz(zj − zi)) = exp(−κ||zi − zj ||2), the Gaussian distribution.
Taken together,

∂

∂zi
ĈS(p(x)||q(z)) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

κ2
z(zj − zi)(zj − zi). (86)

Proposition 11. [Cauchy-Schwarz (CS) t-SNE is a special case of MAP IT]. Let pjk′ be the prob-
ability for the joint event xj ∩ xk′ . Let qjk′ be the probability for the joint event zj ∩ zk. If
(xj ∩ xk′) ∩ (zj ∩ zk) ∈ ∅, then

CS(Pm||Qm) = CS(P ||Q). (87)

Proof. We have

CS(Pm||Qm) = − log

∑
j

pjqj(∑
j

p2j

) 1
2
(∑

j

q2j

) 1
2

(88)

= − log

∑
j

∑
k′,k

pjk′qjk(∑
j

∑
k′,k

pjk′pjk

) 1
2
(∑

j

∑
k′,k

qjk′qjk

) 1
2

. (89)
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Figure 9: Illustration of CS t-SNE as a special case of MAP IT.

It suffices to look at the numerator since the terms in the denominator are related normalization
quantities.

If (xj ∩ xk′) ∩ (zj ∩ zk) ∈ ∅ then Prob((xj ∩ xk′) ∩ (zj ∩ zk)) = pjk′qjk = 0 (assuming
independence) for k′ ̸= k. Hence ∑

j

∑
k′,k

pjk′qjk =
∑
j,i

pjiqji (90)

for k′ = k = i.

Comment to Proposition 11. The illustration in Fig. 9 brings further perspective to this result.

The black filled circle denotes node j. Nodes within the stapled circle are assumed to be relatively
near and nodes n outside this circle are assumed to be distant in the sense that pjn is neglible for
each such node n. For MAP IT, pjk′ is also multiplied by probabilities qjk and qjl in addition to qjk′

for nodes k and l close to k′. This is not the case for CS t-SNE. This shows that MAP IT is able to
capture information in wider local neighborhoods compared to CS t-SNE which only captures local
information via pairwise affinities, a property it shares with its KL counterpart t-SNE and methods
such as Laplacian eigenmaps (Belkin & Niyogi, 2003).

In practise, this means that MAP IT models that the event (xj∩xk′) could induce the event (zj∩zk)
if k′ and k are close.
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APPENDIX C: ADDITIONAL RESULTS AND ANALYSIS

Defining probabilities in the input space. The projective property of the CS divergence has been
shown to avoid the need for direct normalization of probabilities if the probabilities come in a form
qj = q̃j/Zq , where Zq is as explained in Section 3.2 and where one has access to q̃j , and similarly
for pj . However, for optimization purposes, normalization Zp =

∑
j′ p̃j′ is not as critical since

this is a procedure done only once. In any case, it has recently been shown that dimensionality
reduction methods are quite robust to the choice of input space pairwise similarity function, and
even binary affinities seem to give good results for many algorithms (Böhm et al., 2022). Note
that it is easy to show that even if the input space pairwise similarities do not come in the form
assumed in Eq. (1), that is, pij = p̃ij/Zp, Zp =

∑
n,m p̃nm, but the target space similarities do,

then DCS(Pm||Qm) = DCS(Pm||Q̃m) (Proposition 3). In order for MAP IT to use the exact same
input similarities as t-SNE commonly does, so-called symmetrized similarities are here used in the

input space. These are given by pij =
pi|j+pj|i

2n with pj|i =
exp(−κi||xi−xj ||2)∑

n ̸=i exp(−κi||xi−xn||2) and likewise for
pi|j . Note that the parameter κi is chosen to yield a pre-specified value of the so-called perplexity
of the probability distribution (see e.g. (Böhm et al., 2022)), a function of its entropy.

MNIST. MNIST7 is a data set of 28×28 pixel grayscale images of handwritten digits. There are 10
digit classes (0 through 9) and a total of 70000 images. Here, 2000 images are randomly sampled.
Each image is represented by a 784-dimensional vector. Figure 1 and Figure 3 in the main paper
show that MAP IT produces a MNIST visualization with much better separation between classes
compared to alternatives and that the embedding is robust with respect to initial conditions.

MAP IT’s free parameter is the number of nearest neighbors k to go into the computation of p̃jNxi

and q̃jNxi
. Figure 10 shows representative embedding results for the subset of MNIST for different

values of k. As in all dimensionality reduction methods, the visualization results depend on k. For
MNIST, for k = 7 and for k = 10, the class structure appears and is relatively stable also for k = 12.
For most data sets, a value for k between 5 and 15 seem to yield reasonable results. However, the
impact of this hyperparameter should be further studied in future work.

Quantitative analysis. For dimensionality reduction methods, various methods for quantifying
neighborhood structure may provide insight. For instance, relatively low knn recall may illustrate
better capturing of cluster structure at the potential expense of capturing manifold structures, as
studied by (Böhm et al., 2022). For the embeddings shown in Figure 1, the fraction of k nearest
neighbors in the input space that remain among the nearest neightbors in the target space (”knn
recall”) is computed and shown in Table 1 for several values of k. For low values of k, PacMap and
MAP IT have lower recall values, indicating that these methods better capture cluster structure and
may sacrifice some ability to capture manifold structure. For k ca equal to 60 and above the knn
recall settles to similar values (slowly diminishing for larger k, not shown here).

MNIST
knn t-SNE UMAP PacMap MAP IT

15 0.48 0.42 0.37 0.35
30 0.49 0.47 0.43 0.41
45 0.50 0.49 0.47 0.45
60 0.51 0.50 0.49 0.48

Frey
15 0.09 0.08 0.08 0.09
30 0.11 0.11 0.1 0.1
45 0.13 0.13 0.12 0.13
60 0.15 0.16 0.15 0.15

Table 1: Illustration of knn recall.

7MNIST, Newsgroups, ”Frey faces” are obtained from http://cs.nyu.edu/∼roweis/data.html.
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(a) k = 5. (b) k = 7. (c) k = 10. (d) k = 12.

Figure 10: MAP IT for a subset of MNIST for different values of k.

Figure 11: Class-wise knn recall.

Figure 11 shows an alternative way to quantify this effect. Here, the class-wise knn recall in the
target space is shown. For each data point, the fraction of nearest neighbors in the low-dimensional
space sharing class label with the point in question (Thornton, 1998) is plotted as a curve for various
values of k. Here, the known labels for the MNIST are used. It can be observed that as k increases,
t-SNE and UMAP have lower class-wise knn recall compared to PacMap and MAP IT. This makes
intuitive sense when compared to the visualizations provided in Figure 1.

Further comments on MAP IT’s potential for upscaling. Figure 8 in the main paper shows
the result of an initial experiment to potentially scale up MAP IT by a certain sampling procedure.
The proposed sampling procedure is not the same as the one employed in LargeVis and UMAP.
In those methods, attractive forces and repulsive forces are separated. The number of points to
go into the computation of repulsive forces are then sampled, so-called negative sampling. When
creating Figure 8 in the main paper, forces have been separated into attractive/repulsive forces result-
ing from nearest neighbors versus attractive/repulsive forces coming from non-neighbors. Hence,
the proposed MAP IT sampling is different. Experimentally, it was observed that if the number
of non-neighbor forces were downsampled for instance to 50 percent, then a multiplication of the
attractive/repulsive forces for non-neighbors by a factor two basically reproduced the original em-
bedding. A downsampling of non-neighbor forces to 25 percent followed by a multiplication factor
of four reproduced the original embedding. Similarly, downsampling of non-neighbor forces to 12.5
percent followed by a multiplication factor of eight reproduced the original embedding. This is
illustrated in Figure 12 for MNIST with k = 10. In (a)-(c), the sampling is down to 50, 25, and
12.5 percent, respectively, and each of the four subfigures show the embedding after invoking a
multiplication factor of 1, 2, 4 and 8 over the non-neighbor forces, respectively. The boxes indicate
that the original embedding is in essence recreated (compare e.g. to Figure 10 (c)). For Figure
8 in the main paper, where only 3k non-neighbor forces are sampled, which means that ca 1.52
percent of non-neighbors are used in the sampling, the factor used is 66 (ca 1/0.0152). The effect
that downsampling of attractive/repulsive forces for non-neighbors seems to have, requiring an in-
versely proportional multiplication factor as shown above, may be related to the observations made
in (Böhm et al., 2022) on the effects of non-negative sampling in UMAP. Here, it was shown that
negative sampling increased attraction in UMAP, and it was argued that without the negative sam-
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(a) 50 percent downsampling. (b) 25 percent downsampling. (c) 12.5 percent downsampling.

Figure 12: Each subfigure (a)-(c) show the visualization/embedding for different subsampling sce-
narios and for a factor 1, 2, 4, and 8, respectively, on non-neighbor attractive/repulsive forces in the
MAP IT calculation.

Figure 13: Illustration of MAP IT learning rates and number of iterations for a subset of USPS.

pling, UMAP may provide embeddings with less cluster structure. Obviously, for MAP IT, there are
many aspects that warrant future analysis along these lines. The example provided here is meant to
show that in this controlled setting, sampling of MAP IT’s non-neighbor attractive/repulsive forces
(Figure 8) could reproduce the original embedding (Figure 1 (d)). Please see the end of this Ap-
pendix for some further comments on implementation.

Learning rates (USPS). In all experiments the MAP IT learning rate has been set to 50 over 1000
iterations. Of course, changing these choices will to some degree change the embedding. These
choices have however been observed to result in quite stable MAP IT results over a range of diverse
data sets. Figure 13 shows the MAP IT cost as a function of iterations for different values of learning
rates performed over a subset of the USPS data set (Hull, 1994). A random subset of the digits 3,
6, and 9 constitute the classes. For each learning rate η of 25, 50 and 100 three runs of MAP IT are
performed and in each case the curve of cost versus iterations is shown. For this particular data set,
low cost function values are obtained quicker for η = 100 (leftmost group of curves), compared to
η = 50 (middle group of curves) and η = 25 (rightmost group of curves). When approaching 1000
iterations all curves have settled at low cost function values. Further studies of the interplay between
learning rate, iterations, and various design choices for the MAP IT optimization are left for future
work.

Coil 20. This data set (Nene et al., 1996) consists of 1440 greyscale images consisting of 20
objects under 72 different rotations spanning 360 degrees. Each image is a 128x128 image which we
treat as a single 16384 dimensional vector for the purposes of computing distance between images.
Visualizations of Coil-20 were shown in the main paper in Figure 4. Enlarged visualizations of Coil
20 are shown in Figures 15, 16, 17 and 18.

Visual Concepts. Images corresponding to three different visual concepts are visualized. SIFT
(Lowe, 1999) descriptors represented by a 1000-dimensional codebook for each visual concept are
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Figure 14: Preliminary experiment using the neighborhood structure in the input space when com-
puting entropy weights for attractive and repulsive forces for MAP IT.

downloaded from the ImageNet data base (image-net.org) (Deng et al., 2009). The visual con-
cepts used are strawberry, lemon and australian terrier. The concepts are represented by 1478, 1292
and 1079 images, respectively. The images within each category differ very much, as can be seen
e.g. for australian terrier at image-net.org/synset?wnid=n02096294. A crude approach
is taken here. Each image is represented by the overall frequency of codewords present for the SIFT
descriptors contained in the image. Hence, each image is represented as a 1000-dimensional vector.
The local modeling strength of the SIFT descriptors are lost this way, and one cannot expect the
resulting data set to contain very discriminative features between the concepts. Visualizations of the
visual concepts were shown in the main paper in Figure 5. Enlarged visualizations of Coil 20 are
shown in Figures 19, 20, 21 and 22.

Newsgroups. Visualizations of words from Newsgroups were shown in the main paper in Figure 6.
Enlarged visualizations of Newsgroups as word clouds are shown in Figures 23, 24, 25 and 26.

Frey faces. Visualizations of the Frey faces were shown in the main paper in Figure 7. Enlarged
visualizations of the Frey faces are shown in Figures 27, 28, 29 and 30.

Further comments on implementation and potential scaling. Previously, sampling of attrac-
tive/repulsive forces associated with non-neighbors was illustrated on the recurring MNIST exam-
ple and it was shown that inclusion of only a few non-neighbors in the computations can reproduce
the original embedding, given the use of an appropriate multiplication factor. In the current imple-
mentation, gradients are computed directly by a matrix operation (D − M)X where M encodes
attractive and repulsive forces according to Eq. (19) where D is the diagonal degree matrix of M
and X stores all data points as rows. Neighborhood structure is encoded into M . For the sam-
pling procedure to potentially truly scale up MAP IT, more efficient knn graph implementations are
needed to avoid memory issues associated with the current very basic approach. This can be done
by building on efficient implementations for t-SNE and UMAP, e.g. (Böhm et al., 2022).

In the t-SNE and related literature, a problematic issue is the normalization factor Zq =
∑

n,m q̃nm
which needs to be recomputed over the optimization. For the CS divergence underlying MAP IT, the
need for direct normalization is avoided. However, seemingly similar terms (

∑
j′ p̃j′ q̃j′ and

∑
j′ q̃

2
j′)

appear in the weighting of the attractive and repulsive forces, Eq. (19). The impact of these terms
needs to be further studied. As a preliminary experiment, the terms are computed using only points
in Nxj′ -neighborhoods both in the input space and the target space for MNIST, and the embedding
is shown in Figure 14. It can be seen that the main structure of the embedding is preserved.

Further comments on parameter choices. Note that (Belkina et al., 2019) provided advice for
tailoring the early exaggeration and overall number of gradient descent iterations for t-SNE in a
dataset-specific manner and argued that this may be especially important for large-scale data sets
such as cytometry and transcriptomics data sets. Data sets used in this study are more traditional
(MNIST etc), and available software used in this paper for t-SNE, UMAP, PacMap are already well-
tested for such data sets. However, further parameter tuning as discussed in (Belkina et al., 2019)
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could potentially improve results for t-SNE. Note that MAP IT uses no early exaggeration and there
is much room for investigating the effect of for instance step size and the number of iterations, which
may affect results also for MAP IT.

Perspectives on MAP IT via local neighborhoods. Section 3.4 discussed the very important role
that local neighborhoods play for MAP IP, revealed via differentiation of the MAP IT cost function.
The following main points were observed:

• Differentiation must be done with respect to the input space neighborhoods for all quan-
tities. For instance, neighborhood structure in the target space ∆zi will be given by
∆zi = m(∆xi), where m is the (unknown) mapping function.

• The practical consequence of this is stated in Eq. (19), which is expressed as a sum over all
points j. Here, the attractive force for the gradient vector zj −zi depends on p̃jNxi

and the
repulsive force depends on q̃jNxi

, where Nxi
denotes a neighborhood around xi. It was

further argued that for points xj that are neighbors of point xi, they would already be in
the neighborhood of xi such that for those nearest neighbors of xi the MAP IT update rule
Eq. (19) uses p̃jNxj

for the attractive force and q̃jNxj
for the repulsive force. For points xj

not neighbors of xi, it was argued that p̃jNxi
simplifies to p̃ij for the attractive force and

likewise q̃jNxi
simplifies to q̃ij for the repulsive force.

It is important to note that p̃jNxj
=
∑knn

k=1 p̃jk. It has here been emphasized that knn denotes the
k’th nearest neighbor of xj (see Section 3.2). If the p̃jk’s are interpreted as weights on edges from
node j to the nodes k = 1, . . . , knn, then it becomes clear that p̃jNxj

captures local properties in a
region around xj . All of these considerations stem from the MAP IT cost function turned into an
update rule for zi via differentiation.

However, this analysis reveals a new perspective to MAP IT. If we instead of aligning the distribu-
tions over the marginal probabilities pj and qj for all j by the CS divergence focus on the contri-
bution to the marginal probabilities from the local region around point xj and zj , respectively, i.e.
p̃jNxj

and q̃jNxj
by

argmin
z1,...,zn∈Rd

− log
∑
j

p̃jNxj
q̃jNxj

+
1

2
log
∑
j

q̃2jNxj
(91)

then Eq. (19) would be obtained by the same arguments as in Section 3.4 and above. This shows that
MAP IT is effectively aligning the degree of a node in the input space, locally in a neighborhood,
with the degree of the corresponding node locally in the target space, but where neighborhoods are
defined with respect to the input space in both cases.

To some degree, this perspective resembles the local neighhborhood perspective in Locally Linear
Embedding (LLE) (Roweis & Saul, 2000). Also here, local neighborhoods are reconstructed in
the target space versus the input space via an eigenvector operation. LLE and many other spectral
methods (as mentioned in the Introduction of this paper) have inspired much of the research in visu-
alization and neighbor embedding methods but as stated in (Wang et al., 2021) in their section Local
structure preservation methods before t-SNE (page 6) ”the field mainly moved away” from these
types of methods. In the future, it would be interesting to investigate closer links and differences
between the fundamental LLE idea and MAP IT.

This is an important aspect to point out for the following reason. When basing the input space
similarities on symmetrized pij , which is done in this paper in the experimental part in order to use
similarities which are comparable to what t-SNE usually process, an apparent paradox appears8. In
that case, the form of the similarities are such that the pj’s become uniform. In that case it would
appear as if MAP IT is data independent, always trying to make the qj’s uniform no matter what the
input is. However, the above analysis highlights that via differentiation, MAP IT effectively focus
on the contribution to the marginal probabilities from local regions, which will in general differ for
the different nodes.

Map KL Divergence?. An interesting question for future research could be to investigate whether
the introduction of a map KL divergence similar to the map CS divergence (Definition 4), would

8As kindly pointed out by one of the reviewers of this paper.
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provide a KL-based MAP IT framework via kernel smoothing. Since the KL divergence is not pro-
jective, direct normalization of probabilities would not be avoided, but a similar-in-spirit alignment
of marginal probabilities seems to be possible.

Concluding remarks. Together with the experiments and analysis in the main paper, these addi-
tional MAP IT results and analysis illustrate the potential of this new method to provide visualiza-
tions which in many cases are markedly different from the current state-of-the-art alternative with
better class discrimination and reasonable embeddings overall, from a theoretical approach which
is fundamentally different and which highlights both a viewpoint from the perspective of alignment
of marginal probabilities as well as a dual viewpoint via continuous densities enabled by kernel
smoothing. The role of normalization for divergences to be used as dimensionality reduction meth-
ods follows directly from the MAP IT theory.
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Figure 15: t-SNE embedding of Coil 20.

Figure 16: UMAP embedding of Coil 20.

28



Published as a conference paper at ICLR 2024

Figure 17: PacMap embedding of Coil 20.

Figure 18: MAP IT embedding of Coil 20.
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Figure 19: t-SNE embedding of visual concepts.

Figure 20: UMAP embedding of visual concepts..
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Figure 21: PacMap embedding of visual concepts..

Figure 22: MAP IT embedding of visual concepts..
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Figure 23: t-SNE embedding of words from Newsgroups.

Figure 24: UMAP embedding of words from Newsgroups.
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Figure 25: PacMap embedding of words from Newsgroups.

Figure 26: MAP IT embedding of words from Newsgroups..
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Figure 27: t-SNE embedding of Frey faces.

Figure 28: UMAP embedding of Frey faces.
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Figure 29: PacMap embedding of Frey faces.

Figure 30: MAP IT embedding of Frey faces.
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