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ABSTRACT

Although the volume of literature and public attention on machine learning fair-
ness has been growing significantly in recent years, in practice some tasks as basic
as measuring fairness, which is the first step in studying and promoting fairness,
can be challenging. This is because the sensitive attributes are often unavailable in
a machine learning system due to privacy regulations. The straightforward solu-
tion is to use auxiliary models to predict the missing sensitive attributes. However,
our theoretical analyses show that the estimation error of the directly measured
fairness metrics is proportional to the error rates of auxiliary models’ predictions.
Existing works that attempt to reduce the estimation error often require strong as-
sumptions, e.g. access to the ground-truth sensitive attributes in a subset of sam-
ples, auxiliary models’ training data and the target data are i.i.d, or some form of
conditional independence. In this paper, we drop those assumptions and propose
a framework that uses only off-the-shelf auxiliary models. The main challenge is
how to reduce the negative impact of imperfectly predicted sensitive attributes on
the fairness metrics without knowing the ground-truth sensitive attribute values.
Inspired by the noisy label learning literature, we first derive a closed-form rela-
tionship between the directly measured fairness metrics and their corresponding
ground-truth metrics. And then we estimate some key statistics (most importantly
transition matrix in the noisy label literature), which we use, together with the
derived relationship, to calibrate the fairness metrics. Our framework can be ap-
plied to all popular group fairness definitions as well as multi-class classifiers and
multi-category sensitive attributes. In addition, we theoretically prove the upper
bound of the estimation error in our calibrated metrics and show our method can
substantially decrease the estimation error especially when auxiliary models are
inaccurate or the target model is highly biased. Experiments on COMPAS and
CelebA validate our theoretical analyses and show our method can measure fair-
ness significantly more accurately than baselines under favorable circumstances.

1 INTRODUCTION

Despite numerous literature in machine learning fairness (Corbett-Davies & Goel, 2018), in practice
even measuring fairness, which is the first step in studying and mitigating fairness, can be challeng-
ing as it requires access to sensitive attributes of samples, which are often unavailable due to privacy
regulations (Andrus et al., 2021; Holstein et al., 2019; Veale & Binns, 2017). It is a problem that the
industry is facing, which significantly slows down the progress of studying and promoting fairness.

Existing methods to estimate fairness without access to ground-truth sensitive attributes mostly fall
into two categories. First, some methods assume they have access to the ground-truth sensitive at-
tributes on a subset of samples or they can label them if unavailable, e.g. Youtube asks its creators to
voluntarily provide their demographic information (Wojcicki, 2021). But it either requires labeling
resource or depends on the volunteering willingness, and also the resulting measured fairness can
be inaccurate due to sampling bias. Second, many works assume there exists an auxiliary dataset
that can be used to train models to predict the missing sensitive attributes on the target dataset (i.e.
the dataset that we want to measure the fairness on), e.g. Meta (Alao et al., 2021) and others (Elliott
et al., 2009; Awasthi et al., 2021; Diana et al., 2022). However, they often need to assume the aux-
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iliary dataset and the target dataset are i.i.d., and some form of conditional independence, which are
not realistic. In addition, since the auxiliary dataset also contains sensitive information (i.e. the sen-
sitive labels), it might be more and more difficult to obtain such training data from the open-source
projects given the increasingly stringent privacy regulations today. Note that similar to our work,
some researchers also draw insight from noisy label literature (Lamy et al., 2019; Celis et al., 2021;
Awasthi et al., 2020). But they assume the noise on sensitive attributes follow assumptions such as
conditional independence or known transition probabilities. Furthermore, their goal is to mitigate
bias rather than estimating fairness disparity. We emphasize the value of estimating fairness because
the metric is vital in reporting and studying fairness in real-world systems.

In this work, we drop many commonly made assumptions, i.e. 1) access to labeling resource, 2)
access to auxiliary model’s training data, 3) data i.i.d, and 4) conditional independence. Instead we
only rely on off-the-shelf auxiliary models, which can be easily obtained via various open-source
projects (without their training data). The requirement of the auxiliary model is also flexible. We do
not need the auxiliary model’s input to share the exactly same feature set as the target data. We only
need the auxiliary model’s input features have some overlap with the target dataset’s features1. Our
contributions are summarized as follows.
• We theoretically show that directly using auxiliary models to estimate fairness (by predicting the

missing sensitive attributes) would lead to a fairness metric whose estimation error is proportional
to the prediction error of auxiliary models and the true fairness disparity (Theorem 1, Corollary 1).

• Motivated by the above finding, we propose a general framework (Figure 1, Algorithm 1) to
calibrate the noisy fairness metrics using auxiliary models only. The framework is based on a
derived closed-form relationship between the directly estimated noisy fairness metrics and their
corresponding ground-truth metrics (Theorem 2) in terms of two key statistics: transition matrix
and clean prior probability, which are well-studied in the noisy label literature. To estimate them,
our framework can leverage any existing estimator. We show an example by adapting HOC (Zhu
et al., 2021b) (Algorithm 2). The estimator only assumes that auxiliary models are informative
and different auxiliary models make i.i.d. predictions.

• We prove the error upper bound of our estimation (Theorem 3), and show that, in a simplified case,
our estimated fairness metrics are guaranteed to be closer to the true metrics than the uncalibrated
noisy metrics when auxiliary models are inaccurate or the target model is biased (Corollary 2).

• Experiments on COMPAS and CelebA consolidate our theoretical findings and show our cali-
brated fairness is significantly more accurately than baselines under favorable circumstances.

2 PRELIMINARIES

Consider a K-class classification problem with target dataset D◦ := {(xn, yn)|n ∈ [N ]}, where N
is the number of instances, xn is the feature, and yn is the label. Denote byX the feature space, Y =
[K] := {1, 2, · · · ,K} the label space, and (X,Y ) the random variables of (xn, yn),∀n. The target
model f : X → [K] maps X to a predicted label class f(X) ∈ [K]. We aim at measuring group
fairness conditioned on a sensitive attribute A ∈ [M ] := {1, 2, · · · ,M} which is unavailable in
D◦. Denote the dataset with ground-truth sensitive attributes by D := {(xn, yn, an)|n ∈ [N ]}, the
joint distribution of (X,Y,A) by D. The task is to estimate the fairness metrics of f on D◦ without
sensitive attributes such that the resulting metrics are as close to the fairness metrics evaluated on
D (with ground-truth A) as possible. See Appendix A.1 for a summary of notations. We consider
three group fairness (Wang et al., 2020; Cotter et al., 2019) definitions and their corresponding
measurable metrics: demographic parity (DP) (Calders et al., 2009; Chouldechova, 2017), equalized
odds (EOd) (Woodworth et al., 2017), and equalized opportunity (EOp) (Hardt et al., 2016).

Fairness Definitions. To save space, all our discussions in the main paper are specific to DP. We
include the complete derivations for EOd and EOp in the Appendix. DP metric is defined as:
Definition 1 (Demographic Parity). The demographic parity metric of f on D conditioned on A is:

∆DP(D, f) := 1

M(M − 1)K

∑

a,a′∈[M ],k∈[K]

|P(f(X) = k|A = a)− P(f(X) = k|A = a′)|.

1For example, if the target dataset contains features about user information (name, location, interests etc.),
then our method is applicable as long as the auxiliary model can take any one of those features as input and
predict sensitive attributes, e.g. predicting race from name.
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Matrix-form Metrics. To unify different fairness metrics, we define matrix H as an intermediate
variable. Each column of H denotes the probability needed for evaluating fairness with respect to
f(X) (and Y for EOd and EOp). For DP, H is a M ×K matrix. The a-th row, k-th column, and
(a, k)-th element of H are denoted by H[a],H[:, k], and H[a, k], respectively. We have H[:, k] :=
[P(f(X) = k|A = 1), · · · ,P(f(X) = k|A = M)]⊤. Denote by ψ(H[a],H[a′]) := ∥H[a] −
H[a′]∥1/col(H) the normalized l1 distance between two rows of H , where col(H) is the number
of columns in H . Denote by Ψ(H) :=

∑
a,ã∈[M ] ψ(H[a],H[a′])/(M(M − 1)). We define the

following disparity as a general statistical group fairness metric on distributionD (Chen et al., 2022):
Definition 2 (Group Fairness Metric). The group fairness of model f on data distribution
(X,Y,A) ∼ D writes as ∆(D, f) = Ψ(H).

We can unify Definitions 1, 4, and 5 (in Appendix A.2) using H . Next, we study how the fairness
metrics can be evaluated without A.

Using Auxiliary Models Directly. A direct way to measure fairness is to approximate A with
an auxiliary model g : X → [M ] (Ghazimatin et al., 2022; Awasthi et al., 2021; Chen et al., 2019)
and get Ã := g(X). Note the input of g can be any subsets of feature X , and we write the input of
g as X just for notation simplicity. In practice, there might be C auxiliary models denoted by the
set G := {g1, · · · , gC}. The noisy sensitive attributes can be denoted by Ãc := gc(X),∀c ∈ [C]

and the corresponding target dataset with Ã is D̃ := {(xn, yn, (ã1n, · · · , ãCn ))|n ∈ [N ]} with its
distribution denoted as D̃. Similarly, by replacing A with Ã in H , we can compute H̃ , which is
the corresponding matrix-form fairness metric estimated by the auxiliary model g (or G if multiple
auxiliary models are used). Both notations g and G are used interchangeably in the remainder.
Define the directly measured noisy fairness metric of f on D̃ as follows.
Definition 3 (Noisy Group Fairness Metric). The noisy group fairness of model f on data distribu-
tion (X,Y, Ã) ∼ D̃ directly estimated using g writes as ∆̃(D̃, f) = Ψ(H̃).

From the above definitions, if we can calibrate the direct noisy estimate H̃ back to the ground-truth
fairness matrix H , the estimation error will be greatly reduced. We defer more details to Theorem 2.

Transition Matrix. The relationship between H and H̃ is largely dependent on the relationship
between A and Ã because it is the single changing variable. Define the matrix T to be the transition
probability fromA to Ãwhere (a, ã)-th element is T [a, ã] = P(Ã = ã|A = a). Similarly, denote by
Tk the local transition matrix conditioned on f(X) = k, where the (a, ã)-th element is Tk[a, ã] :=
P(Ã = ã|f(X) = k,A = a). Note T can be seen as a global transition matrix by weighted
averaging Tk. Many prior works (Awasthi et al., 2021; Prost et al., 2021; Fogliato et al., 2020)
assume Ã and f(X) are conditionally independent on A. We drop this assumption in our theoretical
framework. We further define clean (i.e. ground-truth) prior probability of A as p := [P(A =

1), · · · ,P(A =M)]⊤ and the noisy prior probability of Ã as p̃ := [P(Ã = 1), · · · ,P(Ã =M)]⊤.

3 KEY INSIGHT: WHY WE NEED CALIBRATION?

Now we study the error of direct noisy fairness metrics and motivate the necessity of calibration.

Estimation Error Analysis. Intuitively, the estimation error of directly measured noisy fairness
metrics is dependent on the error of the auxiliary model g. Recall p, p̃, T and Tk are clean prior,
noisy prior, global transition matrix, and local transition matrix defined in Sec. 2. Denote by Λp̃ and
Λp the square diagonal matrices constructed from p̃ and p. We formally prove the upper bound of
estimation error in the directly measured metrics in Theorem 1 (See Appendix B.1 for the proof).

Theorem 1 (Error Upper Bound of Noisy Metrics). Denote by Errraw := |∆̃DP(D̃, f)−∆DP(D, f)|
the estimation error of the directly measured noisy fairness metrics. Its upper bound is the following:

Errraw ≤ 2

K

∑
k∈[K]

(
h̄k ∥Λp̃(T

−1Tk − I)Λ−1
p̃ ∥1︸ ︷︷ ︸

cond. indep. violation

+δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g

)
,

where h̄k := 1
M

∑
a∈[M ]

H[a, k], δk := max
a∈[M ]

|H[a, k]− h̄k|.
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Figure 1: Overview of our framework to estimate fairness without sensitive attribute given auxiliary
models g only. Step 1 (a): Estimate noisy fairness matrix. Step 2 (b): Calibrate the fairness matrix
using the estimated transition matrix and prior probability.

Theorem 1 reveals that the estimation error of directly measured metric depends on:
• h̄k: The average confidence of f(X) on class k over all sensitive groups. For example, if f is a

crime prediction model and A is race, a biased f (Angwin et al., 2016) may predict that the crime
(k = 1) rate for different races are 0.1, 0.2 and 0.6 respectively, then h̄1 = 0.1+0.2+0.6

3 = 0.3,
and it is an approximation (unweighted by sample size) of the average crime rate over the entire
population. The term is dependent on D and f , and independent of any estimation algorithm.

• δk: The maximum disparity between confidence of f(X) on class k and average confidence h̄k
across all sensitive groups. Using the same example, δ1 = max(|0.1 − 0.3|, |0.2 − 0.3|, |0.6 −
0.3|) = 0.3. It is an approximation of the underlying fairness disparity, and larger δk indicates f
is more biased on D. The term is also dependent on D and f (i.e. the true fairness disparity), and
independent of any estimation algorithm.

• Conditional Independence Violation: The term is dependent on the auxiliary model g’s prediction
Ã in terms of the transition matrix (T and Tk) and noisy prior probability (p̃). The term goes to 0
when T = Tk, which implies Ã and f(X) are independent conditioned onA. This is the common
assumption made in the prior work (Awasthi et al., 2021; Prost et al., 2021; Fogliato et al., 2020).
And this term measures how much the conditional independence assumption is violated.

• Error of g: Similarly, this term is dependent on the auxiliary model g. It goes to 0 when Tk = I
which implies the error rates of g’s prediction is 0, i.e. g is perfectly accurate. It measures the
impact of g’s error on the fairness estimation error.

To help better understand the upper bound, we consider a simplified case when f is a binary model
and A is a binary variable. We further assume the conditional independence condition to remove
the third term listed above in Theorem 1. See Appendix A.3 for the formal definition of conditional
independence.2 Corollary 1 summarizes the result.

Corollary 1. For a binary classifier f and a binary sensitive attribute A ∈ {1, 2}, when (Ã ⊥⊥
f(X)|A) holds, Theorem 1 is simplified to Errraw ≤ 2δ(e1 + e2), where e1 and e2 are transition
probabilities from noisy attributes to clean attributes, i.e. e1 = P(A = 1|Ã = 2), e2 = P(A =

2|Ã = 1), δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|/2.

Why Calibrate? Corollary 1 clearly shows the estimation error of the directly measured fairness
is proportional to the true underlying disparity between sensitive groups (i.e. δ) and the auxiliary
model’s error rates (i.e. e1 and e2). In other words, the uncalibrated metrics can be highly inaccurate
when f is highly biased or g has poor performance. Both are practical cases since when we want to
measure f ’s fairness, it has already shown some fairness-related concerns and the fairness disparity
is not negligible. Moreover, the auxiliary model g is usually not highly accurate due to distribution
shift. Hence, in those cases we should calibrate the metrics to get more accurate measurements.

2We only assume it for the purpose of demonstrating a less complicated theoretical result, we do not need
this assumption in our proposed algorithm later.
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4 METHODOLOGY

In this section, we introduce our calibration framework and algorithm (Sec. 4.1), prove the error up-
per bounds for our calibration methods (Sec. 4.2), and elaborate key steps of our algorithm (Sec. 4.3).

4.1 PROPOSED FRAMEWORK

With a given auxiliary model g that labels sensitive attributes, we can anatomize the relationship
between the true disparity and the noisy disparity. We have the following theorem for DP. See
Appendix B.2 for results with respect to EOd and EOp and their proofs.
Theorem 2. [Closed-form Relationship (DP)] The closed-form relationship between the true fair-
ness vector H[:, k] and the corresponding directly measured noisy fairness vector H̃[:, k] is the
following:

H[:, k] = (T⊤
k Λp)

−1Λp̃H̃[:, k],∀k ∈ [K].

Framework Overview. Theorem 2 reveals that the noisy disparity and the corresponding true
disparity are related in terms of three key statistics: noisy prior p̃, clean prior p, and local transition
matrix Tk. Ideally, if we can obtain the ground-truth values of them, then we can calibrate the noisy
fairness vectors to their corresponding ground-truth vectors (and therefore the perfectly accurate
fairness metrics) using the closed-form in Theorem 2. Hence, the most important step is to estimate
Tk, p, and p̃ without knowing the ground-truth values of A. Once we have those estimated key
statistics, we can easily plug them into the above equation as the calibration step. Figure 1 shows
the overview of our framework.

Algorithm. We summarize our framework in Algorithm 1. In Line 4, we use sample mean in
the uncalibrated form to estimate H̃ as H̃[ã, k] = P(f(X) = k|Ã = ã) ≈ 1

N

∑N
n=1 1(f(xn =

k|ãn = ã)) and p̃ as p̃[ã] = P(Ã = ã) ≈ 1
N

∑N
n=1 1(ãn = ã), ∀ã ∈ [M ]. In Line 6, we plug

in an existing transition matrix and prior probability estimator to estimate Tk and p with only mild
adaption that will be introduced in Sec. 4.3. Note that although we choose a specific estimator to
use, our framework is flexible and compatible with any StatEstimator proposed in the noisy
label literature (Liu & Chen, 2017; Zhu et al., 2021b; 2022).

4.2 ESTIMATION ERROR ANALYSIS

We theoretically analyze estimation error on our calibrated metrics in a similar way as in Sec. 3.
The derivation is based on local estimates T̂k, global estimates T̂ would be similar. Denote by
∆̂DP(D̃, f) the calibrated DP disparity evaluated on our calibrated fairness matrix Ĥ . We have:
Theorem 3 (Error Upper Bound of Calibrated Metrics). Denote the estimation error of the cali-
brated fairness metrics by Errcal := |∆̂DP(D̃, f)−∆DP(D, f)|. Its upper bound is the following:

Errcal ≤ 2

K

∑

k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp−I∥1∥TkT̂

−1
k ∥1+∥I−TkT̂

−1
k ∥1 is the error induced by calibration.

With a perfect estimator, i.e. T̂k = Tk and p̂k = pk,∀k ∈ [K], we have Errcal = 0.

Theorem 3 shows the upper bound of estimation error mainly depends on the estimates T̂k and p̂,
i.e., the following two terms in ε(T̂k, p̂): ∥Λ−1

p̂ Λp− I∥1∥TkT̂
−1
k ∥1 and ∥I −TkT̂

−1
k ∥1. When the

estimates are perfect, i.e. T̂k = Tk and p̂ = p, then both terms go to 0 because Λ−1
p̂ Λp = I and

TkT̂
−1
k = I . We now compare the above error upper bound with the exact error (not its upper bond)

in the case of Corollary 1, and summarize the result in Corollary 2.
Corollary 2. When assumptions in Corollary 1 hold, further assume p = [0.5, 0.5]⊤, then the
proposed calibration method is guaranteed to be more accurate than the uncalibrated measurement,
i.e. , Errcal ≤ Errraw, if ε(T̂k, p̂) ≤ γ := max

k′∈{1,2}
e1+e2

1+
∥H[:,k′]∥1
∆DP(D,f)

,∀k ∈ {1, 2}.
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Algorithm 1 Fairness calibration framework (DP)
1: Input: A set of auxiliary models G = {g1, · · · , gC}. Target dataset D◦. Target model f .

Transition matrix and prior probability estimator StatEstimator.
2: ãcn ← gc(xn),∀c ∈ [C], n ∈ [N ] # Predict sensitive attributes using all g ∈ G
3: D̃ ← {(xn, yn, (ã1n, · · · , ãCn ))|n ∈ [N ]} # Build the dataset with noisy sensitive attributes
4: H̃, p̃← DirectEst(D̃, f) # Directly estimate fairness matrix and prior with sample mean
5: # Estimate key statistics: p and Tk

6: {T̂1, · · · , T̂K}, p̂← StatEstimator(D̃, f)

7: ∀k ∈ [K] : Ĥ[:, k]← (T̂⊤
k Λp̂)

−1Λp̃H̃[:, k] # Calibrate each fairness vector with Theorem 2

8: ∆̂(D̃, f)← Ψ(Ĥ) # Calculate the final fairness metric as Definition 2
9: Output: The calibrated fairness metric ∆̂(D̃, f)

Corollary 2 shows when the error ε(T̂k, p̂) that is induced by inaccurate T̂k and p̂ is below the
threshold γ, our method is guaranteed to lead to a smaller estimation error compared to the uncali-
brated measurement under the considered setting. The threshold implies that, adopting our method
rather than the uncalibrated measurement can be greatly beneficial when e1 and e2 are high (i.e.
g is inaccurate) or when the normalized (true) fairness disparity ∆DP(D,f)

∥H[:,k′]∥1
is high (i.e. f is highly

biased).

4.3 ESTIMATING KEY STATISTICS

As mentioned, our framework can plug in any existing estimator of transition matrix and prior
probability. We choose HOC (Zhu et al., 2021b) because it is free of training. Some methods (Liu
& Tao, 2015; Scott, 2015; Patrini et al., 2017) require extra training with target data and auxiliary
model outputs, which introduces extra cost. Moreover, it brings a practical challenge in hyper-
parameter tuning given we have no ground-truth sensitive attributes. HOC decodes Tk by checking
both the agreements and disagreements among noisy attributes (auxiliary model predictions). See
more details in Appendix C.1. For a successful decoding, HOC makes the following assumptions:

Assumption 1 (HOC: Informativeness). The noisy attributes given by each classifier g are infor-
mative, i.e. ∀k ∈ [M ], 1) Tk is non-singular and 2) either Tk[a, a] > P(Ã = a|f(X) = k) or
Tk[a, a] > Tk[a, a

′],∀a′ ̸= a.

Assumption 2 (HOC: Independence). Given three auxiliary models, the noisy attributes predicted
by them are independent and identically distributed (i.i.d.), i.e., g1(X), g2(X), and g3(X) are i.i.d.

Assumption 1 is the prerequisite of getting a feasible and unique estimate of Tk (Zhu et al., 2021b),
where the non-singular assumption ensures the matrix inverse in Theorem 2 exists and the con-
straints on Tk[a, a] describes the worst tolerable performance of g. When M = 2, the constraints
can be simplified as Tk[1, 2]+Tk[2, 1] < 1 (Liu & Chen, 2017; Liu & Guo, 2020). If this assumption
is violated, there might exist more than one feasible estimates of Tk, making the problem insoluble.
Assumption 2 ensures the additional two auxiliary models provide more information than using only
one classifier. Note it has been proved by Liu (2022) that three is the sufficient and necessary num-
ber of auxiliary models to provide sufficient information to identify Tk. If Assumption 2 is violated,
we would still get an estimate but may be inaccurate.

Adapting HOC. Algorithm 2 shows how we adapt HOC as StatEstimator (in Algorithm 1,
Line 6), namely HOCFair. The original HOC uses one auxiliary model and simulates the other
two based on clusterability assumption (Zhu et al., 2021b), which assumes xn and its 2-nearest-
neighbors share the same true sensitive attribute, and therefore their noisy attributes can be used to
simulate the output of auxiliary models. If this assumption does not hold (Zhu et al., 2022), we can
directly use more auxiliary models. With a sufficient number of noisy attributes, we can randomly
select three of them for every sample as Line 6, and then approximate Tk with T̂k in Line 8. In our
experiments, we test both using one auxiliary model and multiple auxiliary models.

6
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Algorithm 2 StatEstimator: HOCFair

1: Input: Noisy dataset D̃. Target model f .
2: C ← #Attribute(D̃) # Get the number of noisy attributes (i.e. number of aux. models)
3: if C < 3 then # Get 2-Nearest-Neighbors of xn and save their attributes as xn’s attribute
4: D̃ ← {(xn, yn, (ã1n, · · · , ã3Cn ))|n ∈ [N ]} ← Get2NN(D̃)
5: end if
6: {(ã1n, ã2n, ã3n)|n ∈ [N ]} ← Sample(D̃) # Randomly sample 3 noisy attributes for each instance
7: (T̂ , p̂)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ]}) # Use HOC to get global estimates T ≈ T̂ and p ≈ p̂

8: (T̂k,−)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ], f(xn) = k}), ∀k ∈ [K] # Get local estimates Tk ≈ T̂k

9: Output: {T̂1, · · · , T̂K}, p̂ # Return the estimated statistics

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We test the performance of our method on two real-world datasets: COMPAS (Angwin et al., 2016)
and CelabA (Liu et al., 2015). We report results on all three group fairness metrics (DP, EOd,
and EOp) whose true disparities (estimated using the ground-truth sensitive attributes) are denoted
by ∆DP(D, f), ∆EOd(D, f), ∆EOp(D, f) respectively. We train the target model f on the dataset
without using A, and use the auxiliary models downloaded from open-source projects. The detailed
settings are the following:
• COMPAS (Angwin et al., 2016): Recidivism prediction data. Feature X: tabular data. Label Y :

recidivism within two years (binary). Sensitive attribute A: race (black and non-black). Target
models f (trained by us): decision tree, random forest, boosting, SVM, logit model, and neural
network (accuracy range 66%–70% for all models). Three auxiliary models (g1, g2, g3): racial
classifiers given name as input Sood & Laohaprapanon (2018) (average accuracy 68.85%).

• CelabA (Liu et al., 2015): Face dataset. Feature X: facial images. Label Y : smile or not
(binary). Sensitive attribute A: gender (male and female). Target models f : ResNet18 (He et al.,
2016) (accuracy 90.75%, trained by us). We only use one auxiliary model (g1): gender classifier
that takes facial images as input (Serengil & Ozpinar, 2021) (accuracy 92.55%). We then use the
clusterability to simulate the other two auxiliary models as Line 3 in Algorithm 2.

Practical Estimates of Tk: Local vs. Global. According to Theorem 3, when Tks are accurately
estimated, we should always rely on the local estimates as Line 8 of Algorithm 2 to achieve a zero
calibration error. However, in practice, each time when we estimate a local T̂k, the estimator would
introduce certain error on the T̂k (discussed in Sec. 4.3) and the matrix inversion in Theorem 2
might amplify the estimation error on T̂k each time, leading to a large overall error on the metric.
One heuristic is to use a single global transition matrix T̂ estimated once on the full dataset D̃ as
Line 7 of Algorithm 2 to replace all T̂k’s. Intuitively, T̂ can be viewed as the weighted average of all
T̂k’s to stabilize estimation error (variance reduction) on T̂k. Admittedly, the average will introduce
bias since the equation in Theorem 2 would not hold when replacing Tk with T . The justification
is that the error introduced by violating the equality might be smaller than the error introduced by
using severely inaccurately estimates of Tk’s. Therefore, we offer two options for estimating Tk in
practice: locals estimates Tk ≈ T̂k and global estimates Tk ≈ T̂ . Although it is hard to guarantee
which option must be better in reality, we report the experimental results using both options and
provide insights for choosing between both estimates in Sec. 5.2.

Method. We test our proposed framework with global estimates Tk ≈ T̂ (Global) and local esti-
mates Tk ≈ T̂k (Local). We compare with two baselines: the directly estimated metric without any
calibration (Base) and Soft (Chen et al., 2019) which also only uses auxiliary models to calibrate
the measured fairness by re-weighting metric with the soft predicted probability from the auxiliary
model.
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Table 1: Normalized estimation error on COMPAS. Each row represents a different target model f .

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
True disparity: ∼ 0.2 Base Soft Global Local Base Soft Global Local Base Soft Global Local

tree 43.82 61.26 22.29 39.81 45.86 63.96 23.09 42.81 54.36 70.15 13.27 49.49
forest 43.68 60.30 19.65 44.14 45.60 62.85 18.56 44.04 53.83 69.39 17.51 63.62

boosting 43.82 61.26 22.29 44.64 45.86 63.96 23.25 49.08 54.36 70.15 13.11 54.67
SVM 50.61 66.50 30.95 42.00 53.72 69.69 32.46 47.39 59.70 71.12 29.29 51.31
logit 41.54 60.78 16.98 35.69 43.26 63.15 21.42 31.91 50.86 65.04 14.90 26.27
nn 41.69 60.55 19.48 34.22 43.34 62.99 19.30 43.24 54.50 68.50 14.20 59.95

compas score 41.28 58.34 11.24 14.66 42.43 59.79 11.80 18.65 48.78 62.24 5.78 23.80

Table 2: Normalized error on CelebA. Each row represents a different pre-trained model to generate
feature representations that we use to simulate the other two auxiliary models g2, g3 (Line 3, Algo-
rithm 2). Base and Soft are computed on g1 and not changed since they are independent of feature
representations. The ground-truth fairness metrics are DP: 0.13, EOd: 0.03, EOp: 0.05.

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet 15.33 12.54 22.17 10.89 4.11 6.46 7.54 0.26 2.82 0.34 12.22 2.93
Facenet512 15.33 12.54 21.70 7.26 4.11 6.46 4.85 0.52 2.82 0.34 11.80 3.24
OpenFace 15.33 12.54 10.31 9.39 4.11 6.46 10.43 5.03 2.82 0.34 0.56 0.93
ArcFace 15.33 12.54 19.59 9.69 4.11 6.46 5.72 0.23 2.82 0.34 11.16 3.85

Dlib 15.33 12.54 15.09 5.30 4.11 6.46 4.87 4.25 2.82 0.34 9.74 2.32
SFace 15.33 12.54 17.00 4.77 4.11 6.46 4.04 3.91 2.82 0.34 9.36 3.28

Evaluation Metric. Let ∆(D, f) be the ground-truth fairness metric. For a given estimated metric
E, we define three estimation errors: Raw Error(E) := |E −∆(D, f)|, Normalized Error(E) :=
Raw Error(E)

∆(D,f) , and Improvement(E) := 1− Raw Error(E)
Raw Error(Base) where Base is the directly measured metric.

5.2 RESULTS AND ANALYSES

COMPAS Results. Table 1 reports the normalized error on COMPAS (See Table 7 in Ap-
pendix D.1 for the other two evaluation metrics). There are two main observations. First, our
calibrated metrics outperform baselines with a big margin on all three fairness definitions. Com-
pared to Base, our metrics are 39.6%–88.2% more accurate (Improvement). As pointed out by
Corollary 2, this is because the target models f are highly biased (Table 6) and the auxiliary models
g are inaccurate (accuracy 68.9%). As a result, Base has large normalized error (40–60%). Sec-
ond, Global outperforms Local, since with inaccurate auxiliary models, Assumptions 1–2 on HOC
estimator may not hold in local dataset, inducing large estimation errors in local estimates.

CelebA Results. Table 2 reports the normalized error on CelebA where each row represents using
a different pre-trained model to generate feature representations used to simulate the other two aux-
iliary models (See Table 8 in Appendix D.2 for the full results). We have two observations. First,
although our method still outperforms baselines most of time, the margin is smaller and we are un-
derperformed by Soft when estimating EOp. Similarly this is because the conditions in Corollary 2
do not hold, i.e. f is barely biased in EOd and EOp (Table 8) and g is accurate (accuracy 92.6%). As
a result, Base only has a moderate normalized error in DP (15.3%), and small normalized errors in
EOd (4.1%) and EOp (2.8%). Given the highly accurate Base, the benefit of adapting our method
is outweighed by the estimation error introduced by calibration (mostly the key statistic estimator).
Second, contrary to COMPAS, Local outperforms Global. This is because now the auxiliary models
are accurate, Assumption 1 always holds and Assumption 2 is also likely to hold when g2 and g3 are
well-simulated. Consequently, Local is estimated accurately while Global induces extra error due
to violating the equality in Theorem 2. Finally, even though our method is underperformed in EOp,
the raw error of our method is acceptable, which is less than 0.01 as Table 8 in Appendix D.2.

Ablation Study. To better understand when our method can give a clear advantage with different
quality of g, we run an ablation study on CelebA. We randomly flip the predicted sensitive attributes
by g to bring down g’s accuracy and report the results in Table 3 (See Appendix D.2 for the full
results). When g becomes less accurate, our method can outperform baselines, which validates
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Table 3: Normalized error on the CelebA when adding noise by randomly flipping the predicted
attributes to bring down the performance of auxiliary models. Each row represents the noise magni-
tude and accuracy of auxiliary models, e.g. “[0.2, 0.0] (82.44%)” means T [1, 2] = 0.2, T [2, 1] = 0.0
and accuracy is 82.44%.

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
FaceNet512 Base Soft Global Local Base Soft Global Local Base Soft Global Local

[0.2, 0.0] (82.44%) 7.37 11.65 20.58 5.05 25.06 26.99 6.43 0.10 24.69 27.27 11.11 1.07
[0.2, 0.2] (75.54%) 30.21 31.57 24.25 13.10 44.73 46.36 11.26 9.04 37.67 38.77 20.94 27.98
[0.4, 0.2] (65.36%) 51.32 54.56 19.42 10.47 62.90 65.10 11.09 19.15 56.51 58.73 23.86 23.55
[0.4, 0.4] (58.45%) 77.76 78.39 9.41 19.80 79.31 80.10 24.49 8.02 78.35 79.62 10.61 5.71

Corollary 2. In addition, Local still outperforms Global. This is because we add random noise
following Assumption 2 and therefore the estimation error of Local is not increased significantly.

Takeaways. Our experimental results imply two takeaways: 1) our calibration method can give
a clear advantage when the error rates of g are moderate to high (e.g. error ≥ 15%) or f is highly
biased (e.g. fairness disparity≥ 0.1) and 2) we can prefer Local when the auxiliary model is accurate
and Global otherwise. In practice, given no ground-truth A, we can roughly estimate auxiliary
models’ accuracy range from the estimated transition matrix T̂ .

6 RELATED WORK

Fairness with Imperfect Sensitive Attributes. The closest work to ours is (Chen et al., 2019),
which also assumes only auxiliary models. It is only applicable to demographic disparity, and we
compare it in the experiments. In addition, other works focus on how to train auxiliary models
from a given auxiliary dataset (Awasthi et al., 2021; Diana et al., 2022). For example, Awasthi
et al. (2021) propose an active learning scheme and assume there exists an auxiliary dataset that is
i.i.d with the target dataset. In our work, we do not need the auxiliary dataset; nor do we need to
assume the auxiliary model’s training set is i.i.d with the target dataset. Lamy et al. (2019) also
draws insights from noisy label literature. However, the attribute noise is assumed to come from the
mutually contaminated assumption rather than from an auxiliary model. Furthermore, Prost et al.
(2021) and Fogliato et al. (2020) theoretically study the error gap of estimating fairness, but they do
not propose any calibration method. There are other parallel works that aim to mitigate bias without
estimating it (Hashimoto et al., 2018; Lahoti et al., 2020; Wang et al., 2020; Yan et al., 2020). We
emphasize the value of estimating fairness because the metrics themselves are vital in reporting and
studying fairness in real-world systems.

Noisy Label Learning. Label noise may come from various sources, e.g., human annotation
error (Xiao et al., 2015; Wei et al., 2022; Agarwal et al., 2016) and model prediction error (Lee
et al., 2013; Berthelot et al., 2019; Zhu et al., 2021a), which can be characterized by transition
matrix on label (Liu, 2022; Bae et al., 2022; Yang et al., 2021). Applying the noise transition matrix
to ensure fairness is emerging (Wang et al., 2021; Liu & Wang, 2021; Lamy et al., 2019). There exist
two lines of works for estimating transition matrix. The first line relies on anchor points (samples
belonging to a class with high certainty) or their approximations (Liu & Tao, 2015; Scott, 2015;
Patrini et al., 2017; Xia et al., 2019; Northcutt et al., 2021). These works requires training a neural
network on the (X, Ã := g(X)). The second line of work, which we leverage, is data-centric (Liu
& Chen, 2017; Liu et al., 2020; Zhu et al., 2021b; 2022) and training-free. The main idea is to check
the agreements among multiple noisy attributes as discussed in Section 4.3.

7 LIMITATION AND FUTURE WORK

We point out two limitations in our work. First, our method shows limited improvement over directly
measured metrics when auxiliary models are highly accurate and the true fairness disparity is small.
Second, our theoretical guarantee on the superiority of our method (Corollary 2) is only theoretically
proven in a simplified case. One future work is to apply the same method to unfairness mitigation
algorithm in addition to evaluating fairness.
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ETHICS STATEMENT

Our goal is to better study and promote fairness. Without a promising estimation method, given the
increasingly stringent privacy regulations, it would be difficult for academia and industry to measure,
detect, and mitigate bias in many real-world scenarios. However, we need to caution readers that,
needless to say, no estimation algorithm is perfect. Theoretically, in our framework, if the transition
matrix is perfectly estimated, then our method can measure fairness with 100% accuracy. However,
if Assumptions 1–2 required by our estimator in Algorithm 2 do not hold, our calibrated metrics
might have a non-negligible error, and therefore could be misleading. In addition, the example we
use to explain terms in Theorem 1 is based on conclusions from (Angwin et al., 2016). We do not
have any biased opinion on the crime rate across different racial groups. Furthermore, we are fully
aware that many sensitive attributes are not binary, e.g. race and gender. We use the binary sensitive
attributes in experiments because 1) existing works have shown that bias exists in COMPAS between
race “black” and others and 2) the ground-truth gender attribute in CelebA is binary. Finally, all the
data and models we use are from open-source projects, and the bias measured on them do not reflect
our opinions about those projects.

10



Under review as a conference paper at ICLR 2023

REFERENCES

Vibhu Agarwal, Tanya Podchiyska, Juan M Banda, Veena Goel, Tiffany I Leung, Evan P Minty,
Timothy E Sweeney, Elsie Gyang, and Nigam H Shah. Learning statistical models of phenotypes
using noisy labeled training data. Journal of the American Medical Informatics Association, 23
(6):1166–1173, 2016.

Rachad Alao, Miranda Bogen, Jingang Miao, Ilya Mironov, and Jonathan Tannen. How Meta
is working to assess fairness in relation to race in the U.S. across its products and sys-
tems. https://ai.facebook.com/research/publications/how-meta-is-working-to-assess-fairness-in-
relation-to-race-in-the-us-across-its-products-and-systems, 2021. [Online; accessed 15-Sep-
2022].

McKane Andrus, Elena Spitzer, Jeffrey Brown, and Alice Xiang. What we can’t measure, we
can’t understand: Challenges to demographic data procurement in the pursuit of fairness. In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.
249–260, 2021.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of Data and
Analytics, pp. 254–264. Auerbach Publications, 2016.
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Appendix
The Appendix is organized as follows.
• Section A presents a summary of notations, more fairness definitions, and a clear statement of the

assumption that is common in the literature. Note our framework does not rely on this assumption.
• Section B presents the full version of our theorems (for DP, EOd, EOp), corollaries, and the

corresponding proofs.
• Section C shows how HOC works and analyzes why other learning-centric methods in the noisy

label literature may not work in our setting.
• Section D presents more experimental results and takeaways.
The code and data for reproducing our experiments will be released after acceptance.

A MORE DEFINITIONS AND ASSUMPTIONS

A.1 SUMMARY OF NOTATIONS

Table 4: Summary of key notations
Notation Explanation

G := {g1, · · · , gC} C auxiliary models for generating noisy sensitive attributes
X,Y,A, and Ã := g(X) Random variables of feature, label, ground-truth sensitive attribute, and noisy sensitive attributes

xn, yn, an The n-th feature, label, and ground-truth sensitive attribute in a dataset
N,K,M The number of instances, label classes, categories of sensitive attributes

[N ] := {1, · · · , N} A set counting from 1 to N
X , f : X → [K] Space of X , target model

D◦ := {(xn, yn)|n ∈ [N ]} Target dataset
D := {(xn, yn, an)|n ∈ [N ]} D◦ with ground-truth sensitive attributes

D̃ := {(xn, yn, (ã1n, · · · , ãCn ))|n ∈ [N ]} D◦ with noisy sensitive attributes
(X,Y,A) ∼ D, (X,Y, Ã) ∼ D̃ Distribution of D and D̃

u ∈ {DP,EOd,EOp} A unified notation of fairness definitions, e.g., EOd, EOp, EOd
∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on data distributions
∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on datasets

H,H[a],H[:, k],H[a, k] Fairness matrix, its a-th row, k-th column, (a, k)-th element
H̃ Noisy fairness matrix with respect to Ã

T , T [a, ã] := P(Ã = ã|A = a) Global noise transition matrix
Tk, Tk[a, ã] := P(Ã = ã|A = a, f(X) = k) Local noise transition matrix

p := [P(A = 1), · · · ,P(A =M)]⊤ Clean prior probability
p̃ := [P(Ã = 1), · · · ,P(Ã =M)]⊤ Clean prior probability

A.2 MORE FAIRNESS DEFINITIONS

We present the full version of fairness definitions and the corresponding matrix form for DP, EOd,
and EOp as follows.

Fairness Definitions. We consider three group fairness (Wang et al., 2020; Cotter et al., 2019)
definitions and their corresponding measurable metrics: demographic parity (DP) (Calders et al.,
2009; Chouldechova, 2017), equalized odds (EOd) (Woodworth et al., 2017), and equalized oppor-
tunity (EOp) (Hardt et al., 2016).

Definition 1 (Demographic Parity). The demographic parity metric of f on D conditioned on A is:

∆DP(D, f) = 1

M(M − 1)K

∑

a,a′∈[M ]
k∈[K]

|P(f(X) = k|A = a)− P(f(X) = k|A = a′)|.

Definition 4 (Equalized Odds). The equalized odds metric of f on D conditioned on A is:

∆EOd(D, f) = 1

M(M − 1)K2

∑

a,a′∈[M ]
k∈[K],y∈[K]

|P(f(X) = k|Y = y,A = a)−P(f(X) = k|Y = y,A = a′)|.
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Definition 5 (Equalized Opportunity). The equalized opportunity metric of f on D conditioned on
A is:

∆EOp(D, f) = 1

M(M − 1)

∑

a,a′∈[M ]

|P(f(X) = 1|Y = 1, A = a)−P(f(X) = 1|Y = 1, A = a′)|.

Matrix-form Metrics. To unify three fairness metrics in a general form, we represent them with
a matrix H . Each column of H denotes the probability needed for evaluating fairness with respect
to classifier prediction f(X). For DP, H[:, k] denotes the following column vector:

H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A =M)]⊤.

Similarly for EOd and EOp, let k ⊗ y := K(k − 1) + y be the 1-d flattened index that represents
the 2-d coordinate in f(X)× Y , H[:, k ⊗ y] is defined as the following column vector:

H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A =M)]⊤.

The sizes of H for DP, EOd and EOp are M × K, M × K2, and M × 1 respectively. The
noise transition matrix related to EOd and EOp is Tk⊗y , where the (a, ã)-th element is denoted by
Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

A.3 COMMON CONDITIONAL INDEPENDENCE ASSUMPTION IN THE LITERATURE

We present below a common conditional independence assumption in the literature (Awasthi et al.,
2021; Prost et al., 2021; Fogliato et al., 2020). Note out framework successfully drops this assump-
tion.

Assumption 3 (Conditional Independence). Ã and f(X) are conditionally independent given A
(and Y for EOd, EOp):

DP: P(Ã = ã|f(X) = k,A = a) = P(Ã = ã|A = a),∀a, ã ∈ [M ], k ∈ [K].

(i.e.Ã ⊥⊥ f(X)|A).
EOd / EOp: P(Ã = ã|f(X) = k, Y = y,A = a) = P(Ã = ã|Y = y,A = a),∀a, ã ∈ [M ], k, y ∈ [K].

(i.e.Ã ⊥⊥ f(X)|Y,A).

B PROOFS

B.1 FULL VERSION OF THEOREM 1 AND ITS PROOF

Denote by Ty the attribute noise transition matrix with respect to label y, whose (a, ã)-th element
is Ty[a, ã] := P(Ã = ã|A = a, Y = y). Note it is different from Tk. Denote by Tk⊗y the attribute
noise transition matrix when f(X) = k and Y = y, where the (a, ã)-th element is Tk⊗y[a, ã] :=

P(Ã = ã|f(X) = k, Y = y,A = a). Denote by py := [P(A = 1|Y = y), · · · ,P(A = K|Y =

y)]⊤ and p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã = K|Y = y)]⊤ the clean prior probabilities and noisy
prior probability, respectively.

Theorem 1 (Error Upper Bound of Noisy Metrics). Denote by Errraw
u := |∆u(D̃, f) −∆u(D, f)|

the estimation error of the directly measured noisy fairness metrics. Its upper bound is:

• DP:

Errraw
DP ≤

2

K

∑

k∈[K]


h̄k ∥Λp̃(T

−1Tk − I)Λ−1
p̃ ∥1︸ ︷︷ ︸

cond. indep. violation

+δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g


 .

where h̄k := 1
M

∑
a∈[M ]

H[a, k], δk := max
a∈[M ]

|H[a, k]− h̄k|.
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• EOd:

Errraw
EOd ≤

2

K2

∑

k∈[K],y∈[K]


h̄k⊗y ∥Λp̃y

(T−1
y Tk⊗y − I)Λ−1

p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥Λpy
Tk⊗yΛ

−1
p̃y
− I∥1︸ ︷︷ ︸

error of g


 .

where h̄k⊗y := 1
M

∑
a∈[M ]

H[a, k ⊗ y], δk⊗y := max
a∈[M ]

|H[a, k ⊗ y]− h̄k⊗y|.

• EOp: We obtain the result for EOp by simply letting k = 1 and y = 1, i.e.,

Errraw
EOp ≤ 2

∑

k=1,y=1


h̄k⊗y ∥Λp̃y

(T−1
y Tk⊗y − I)Λ−1

p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥Λpy
Tk⊗yΛ

−1
p̃y
− I∥1︸ ︷︷ ︸

error of g


 .

where h̄k⊗y := 1
M

∑
a∈[M ]

H[a, k ⊗ y], δk⊗y := max
a∈[M ]

|H[a, k ⊗ y]− h̄k⊗y|.

Proof. The following proof builds on the relationship derived in the proof for Theorem 2. We
encourage readers to check Appendix B.2 before the following proof.

Recall Ty[a, a
′] := P(Ã = a′|A = a, Y = y). Note

Λp̃y
1 = T⊤

y Λpy
1⇔ (T⊤

y )−1Λp̃y
1 = Λpy

1.

Denote by
H[:, k ⊗ y] = h̄k⊗y1+ vk⊗y,

where h̄k⊗y := 1
M

∑
a∈[M ] P(f(X) = k|A = a, Y = y). We have

Λpy
H[:, k ⊗ y] = h̄k⊗yΛpy

1+Λpy
vk⊗y = h̄k⊗y(T

⊤
y )−1Λp̃y

1+Λpy
vk⊗y.

We further have
H̃[: k ⊗ y]

=
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
H[:, k ⊗ y] +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

T⊤
k⊗y(T

⊤
y )−1Λp̃y

1+Λ−1
p̃y

T⊤
k⊗yΛpy

vk⊗y − h̄k⊗y1− vk⊗y +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

(
T⊤
k⊗y(T

⊤
y )−1 − I

)
Λp̃y

1+
(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y +H[:, k ⊗ y].

Noting |A| − |B| ≤ |A+B| ≤ |A|+ |B|, we have | |A+B| − |B| | ≤ |A|. Therefore,∣∣∣
∣∣∣(eã − eã′)⊤H̃[: k ⊗ y]

∣∣∣−
∣∣(eã − eã′)⊤H[: k ⊗ y]

∣∣
∣∣∣

≤h̄k⊗y

∣∣∣(eã − eã′)⊤Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

1
∣∣∣ (Term 1)

+
∣∣∣(eã − eã′)⊤

(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∣∣∣ . (Term 2)

Term-1 and Term-2 can be upper bounded as follows.

Term 1: With the Hölder’s inequality, we have

h̄k⊗y

∣∣∣(eã − eã′)⊤Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

1
∣∣∣

≤h̄k⊗y ∥eã − eã′∥1
∥∥∥Λ−1

p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

1
∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

∥∥∥
∞

=2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
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Term 2: Denote by δk⊗y := max
a∈[M ]

|H[a, k⊗ y]− h̄k⊗y|, which is the largest absolute offset from

its mean. With the Hölder’s inequality, we have
∣∣∣(eã − eã′)⊤

(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∣∣∣

≤∥eã − eã′∥1
∥∥∥
(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
∞

≤2
∥∥∥
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
∞

≤2δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy − I

∥∥∥
∞

=2δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

Wrap-up:
∣∣∣
∣∣∣(eã − eã′)⊤H̃[: k ⊗ y]

∣∣∣−
∣∣(eã − eã′)⊤H[: k ⊗ y]

∣∣
∣∣∣

≤2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ 2δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1
.

Denote by ∆̃ã,ã′

k⊗y := |H̃[ã, k ⊗ y]− H̃[ã′, k ⊗ y]| the noisy disparity and ∆ã,ã′

k⊗y := |H[ã, k ⊗ y]−
H[ã′, k ⊗ y]| the clean disparity between attributes ã and ã′ in the case when f(X) = k and Y = y.
We have
∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)

∣∣∣

≤ 1

M(M − 1)K2

∑

ã,ã′∈[M ],k,y∈[K]

∣∣∣∆̃ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣

≤ 2

M(M − 1)K2

∑

ã,ã′∈[M ],k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

)

=
2

K2

∑

k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

)
.

The results for DP can be obtained by dropping the dependence on Y = y, and the results for EOp
can be obtained by letting k = 1 and y = 1.

B.2 FULL VERSION OF THEOREM 2 AND ITS PROOF

Recall p, p̃, T and Tk are clean prior, noisy prior, global transition matrix, and local transition
matrix defined in Sec. 2. Denote by Λp̃ and Λp the square diagonal matrices constructed from p̃
and p.

Theorem 2. [Closed-form relationship (DP,EOd,EOp)] The relationship between the true fairness
vector hu and the corresponding noisy fairness vector h̃u writes as

hu = (T u⊤Λpu)−1Λp̃uh̃u, ∀u ∈ {DP,EOd,EOp},

where Λp̃u and Λpu denote the square diagonal matrix constructed from p̃u and pu, u unifies
different fairness metrics. Particularly,

• DP (∀k ∈ [K]): pDP := [P(A = 1), · · · ,P(A = M)]⊤, p̃DP := [P(Ã = 1), · · · ,P(Ã = M)]⊤.
T DP := Tk, where the (a, ã)-th element of Tk is Tk[a, ã] := P(Ã = ã|f(X) = k,A = a).

hDP := H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A =M)]⊤

h̃DP := H̃[:, k] := [P(f(X) = k|Ã = 1), · · · ,P(f(X) = k|Ã =M)]⊤.
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• EOd and EOp (∀k, y ∈ [K], u ∈ {EOd,EOp}): ∀k, y ∈ [K]: k ⊗ y := K(k − 1) + y,
pu := py := [P(A = 1|Y = y), · · · ,P(A = M |Y = y)]⊤, p̃u := p̃y := [P(Ã = 1|Y =

y), · · · ,P(Ã =M |Y = y)]⊤. T u := Tk⊗y , where the (a, ã)-th element of Tk⊗y is Tk⊗y[a, ã] :=

P(Ã = ã|f(X) = k, Y = y,A = a).

hu := H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A =M)]⊤

h̃u := H̃[:, k ⊗ y] := [P(f(X) = k|Y = y, Ã = 1), · · · ,P(f(X) = k|Y = y, Ã =M)]⊤.

Proof. We first prove the theorem for DP, then for EOd and EOp.

Proof for DP. In DP, each element of h̃DP satisfies:

P(f(X) = k|Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

Recall Tk is the attribute noise transition matrix when f(X) = k, where the (a, ã)-th element is
Tk[a, ã] := P(Ã = ã|f(X) = k,A = a). Recall p := [P(A = 1), · · · ,P(A = M)]⊤ and p̃ :=

[P(Ã = 1), · · · ,P(Ã =M)]⊤ the clean prior probabilities and noisy prior probability, respectively.
The above equation can be re-written as a matrix form as

H̃[:, k] = Λ−1
p̃ T⊤

k ΛpH[:, k],

which is equivalent to

H[:, k] = ((T⊤
k )Λp)

−1Λp̃H̃[:, k].

Proof for EOd, EOp. In EOd or EOp, each element of h̃u satisfies:

P(f(X) = k|Y = y, Ã = ã)

=
P(f(X) = k, Y = y, Ã = ã)

P(Y = y, Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Y = y, Ã = ã, A = a)

P(Y = y, Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k, Y = y,A = a) · P(Y = y,A = a) · P(f(X) = k|Y = y,A = a)

P(Y = y, Ã = ã)

Denote by Tk⊗y the attribute noise transition matrix when f(X) = k and Y = y, where the (a, ã)-th
element is Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a). Denote by py := [P(A = 1|Y =

y), · · · ,P(A = K|Y = y)]⊤ and p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã = K|Y = y)]⊤ the clean
prior probabilities and noisy prior probability, respectively. The above equation can be re-written as
a matrix form as

H̃[:, k] = Λ−1
p̃y

T⊤
k⊗yΛpy

H[:, k],

which is equivalent to

H[:, k] = (T⊤
k⊗yΛpy

)−1Λp̃y
H̃[:, k].

Wrap-up. We can conclude the proof by unifying the above two results with u.
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B.3 PROOF FOR COROLLARY 1

Proof. When the conditional independence (Assumption 3)

P(Ã = a′|A = a, Y = y) = P(Ã = a′|A = a, f(X) = k, Y = y),∀a′, a ∈ [M ]

holds, we have Ty = Tk⊗y and Term-1 in Theorem 1 can be dropped. For Term-2, to get a tight
bound in this specific case, we apply the Hölder’s inequality by using l∞ norm on eã − eã′ , i.e.,∣∣∣(eã − eã′)⊤

(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∣∣∣

≤∥eã − eã′∥∞
∥∥∥
(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
1

=
∥∥∥
(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
1

≤K · δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy

− I
∥∥∥
1

=K · δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
∞

Therefore, ∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)
∣∣∣

≤ 1

K

∑

k,y∈[K]

δk⊗y

∥∥∥ΛpyTk⊗yΛ
−1
p̃y
− I

∥∥∥
∞

=
1

K

∑

k,y∈[K]

δk⊗y

∥∥∥ΛpyTyΛ
−1
p̃y
− I

∥∥∥
∞

=
1

K

∑

k,y∈[K]

δk⊗y

∥∥Ťy − I
∥∥
∞ ,

where Ťy[a, ã] = P(A = a|Ã = ã, Y = y).

Special binary case in DP In addition to the conditional independence, when the sensitive at-
tribute is binary and the label class is binary, considering DP, we have∣∣∣∆̃DP(D̃, f)−∆DP(D, f)

∣∣∣ ≤ 2δk
∥∥Ť − I

∥∥
∞ ,

where Ťy[a, ã] = P(A = a|Ã = ã). Let Ťy[1, 2] = e1, Ťy[2, 1] = e2, we know

Ť :=

(
1− e2 e1
e2 1− e1

)

and ∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣ ≤ 2δk · (e1 + e2).

Note the equality in above inequality always holds. To prove it, firstly we note

P(f(X) = k|Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=
∑

a∈[M ]

P(A = a|Ã = ã) · P(f(X) = k|A = a),
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i.e. H̃[:, k] = Ť⊤H[:, k]. Denote by H[:, 1] = [h, h′]⊤. We have (ã ̸= ã′)∣∣∣(eã − eã′)⊤H̃[:, 1]
∣∣∣ = |h− h′| · |1− e1 − e2|,

and ∣∣(eã − eã′)⊤H[:, 1]
∣∣ = |h− h′|.

Therefore, letting ã = 1, ã = 2, we have∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣

=
1

2

∑

k∈{1,2}

∣∣∣
∣∣∣(e1 − e2)

⊤H̃[:, k]
∣∣∣−

∣∣(e1 − e2)
⊤H[:, k]

∣∣
∣∣∣

=
∣∣∣
∣∣∣(e1 − e2)

⊤H̃[:, 1]
∣∣∣−

∣∣(e1 − e2)
⊤H[:, 1]

∣∣
∣∣∣

=|h− h′| · |e1 + e2|
=2δ · (e1 + e2),

where δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|/2. Therefore, the equality holds.

B.4 PROOF FOR THEOREM 3

Theorem 3 (Error upper bound of calibrated metrics). Denote the error of the calibrated fairness
metrics by Errcal

u := |∆̂u(D̃, f)−∆u(D, f)|. It can be upper bounded as:

• DP:

Errcal
DP ≤

2

K

∑

k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp−I∥1∥TkT̂

−1
k ∥1+∥I−TkT̂

−1
k ∥1 is the error induced by calibration.

• EOd:

Errcal
EOd ≤

2

K2

∑

k∈[K],y∈[K]

∥∥∥Λ−1
py

∥∥∥
1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy − I∥1∥Tk⊗yT̂
−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error induced

by calibration.
• EOp:

Errcal
EOp ≤ 2

∑

k=1,y=1

∥∥∥Λ−1
py

∥∥∥
1

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy
− I∥1∥Tk⊗yT̂

−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error induced

by calibration.

Proof. We prove with EOd.

Consider the case when f(X) = k and Y = y. For ease of notations, we use T̂ to denote the
estimated local transition matrix (should be T̂k⊗y). Denote the noisy (clean) fairness vectors with
respect to f(X) = k and Y = y by h̃ (h). The error can be decomposed by∣∣∣∣∣

∣∣∣(ea − ea′)⊤
(
Λ−1

p̂y
(T̂⊤)−1Λp̃y

h̃
)∣∣∣−

∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y

h̃
)∣∣∣

∣∣∣∣∣

=
∣∣∣(ea − ea′)⊤

(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y h̃

)∣∣∣
︸ ︷︷ ︸

Term-1

+

∣∣∣∣∣
∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T̂⊤)−1Λp̃y

h̃
)∣∣∣−

∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y

h̃
)∣∣∣

∣∣∣∣∣
︸ ︷︷ ︸

Term-2

.
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Now we upper bound them respectively.

Term-1: ∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y

h̃
)∣∣∣

(a)
=

∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
−Λ−1

py
)(Tk⊗yT̂

−1)⊤Λpy
H[:, k ⊗ y]

)∣∣∣
(b)
=

∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
Λpy − I)Λ−1

py
T⊤
δ ΛpyH[:, k ⊗ y]

)∣∣∣

≤2
∥∥∥Λ−1

p̂y
Λpy − I)

∥∥∥
∞

∥∥∥Λ−1
py

∥∥∥
∞
∥Tδ∥1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞
∥Tδ∥1

)
,

where equality (a) holds due to

Λp̃y
H̃[:, k ⊗ y] = T⊤

k⊗yΛpy
H[:, k ⊗ y]

and equality (b) holds because we denote the error matrix by Tδ , i.e.

T̂ = T−1
δ Tk⊗y ⇔ Tδ = Tk⊗yT̂

−1.

Term-2: Before preceeding, we introduce the Woodbury matrix identity:
(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Let A := T⊤
k⊗y , C = I , V := I , U := T̂⊤ − T⊤

k⊗y . By Woodbury matrix identity, we have

(T̂⊤)−1

=(T̂⊤
k⊗y + (T̂⊤ − T⊤

k⊗y))
−1

=(T⊤
k⊗y)

−1 − (T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)

(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1

Term-2 can be upper bounded as:∣∣∣∣∣ ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
(a)
=

∣∣∣∣∣
∣∣∣∣(ea − ea′)⊤

(
Λ−1

py

(
(T⊤

k⊗y)
−1 − (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1

)
Λp̃y h̃

)∣∣∣∣
−

∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
≤
∣∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

)∣∣∣∣
(b)

≤∥ea − ea′∥1
∥∥∥∥Λ−1

py
(T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

≤2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)

(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(I + (T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)− I

)(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥[I −
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

]
(T⊤

k⊗y)
−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(I − Tk⊗yT̂
−1

)⊤
(T⊤

k⊗y)
−1Λp̃y h̃

∥∥∥∥
∞

(c)

≤2
∥∥Λ−1

py

∥∥
∞ ∥I − Tδ∥1

∥∥∥(T⊤
k⊗y)

−1Λp̃y h̃
∥∥∥
∞

(d)
=2

∥∥Λ−1
py

∥∥
∞ ∥I − Tδ∥1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ,

where the key steps are:
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• (a): Woodbury identity.
• (b): Hölder’s inequality.
• (c): T̂ = T−1

δ Tk⊗y and triangle inequality
• (d):

H̃[:, k ⊗ y] = Λ−1
p̃y

T⊤
k⊗yΛpy

H[:, k ⊗ y]

⇔(T⊤
k⊗y)

−1Λp̃yH̃[:, k ⊗ y] = ΛpyH[:, k ⊗ y].

Wrap-up Combining the upper bounds of Term-1 and Term-2, we have (recovering full notations)
∣∣∣∣∣
∣∣∣(ea − ea′)⊤

(
Λ−1

p̂y
(T̂⊤)−1Λp̃y h̃

)∣∣∣−
∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣
∣∣∣∣∣

≤2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞
∥Tδ∥1 + ∥I − Tδ∥1

)

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+

∥∥∥I − Tk⊗yT̂
−1
k⊗y

∥∥∥
1

)
.

Denote by ∆̂ã,ã′

k⊗y := |Ĥ[ã, k ⊗ y] − Ĥ[ã′, k ⊗ y]| the calibrated disparity and ∆ã,ã′

k⊗y :=

|H[ã, k ⊗ y] − H[ã′, k ⊗ y]| the clean disparity between attributes ã and ã′ in the case when
f(X) = k and Y = y. We have
∣∣∣∆̂EOd(D̃, f)−∆EOd(D, f)

∣∣∣

≤ 1

M(M − 1)K2

∑

ã,ã′∈[M ],k,y∈[K]

∣∣∣∆̂ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣

≤ 2

K2

∑

k,y∈[K]

2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+
∥∥∥I − Tk⊗yT̂

−1
k⊗y

∥∥∥
1

)
.

The above inequality can be generalized to DP by dropping dependency on y and to EOp by requir-
ing k = 1 and y = 1.

B.5 PROOF FOR COROLLARY 2

Proof. Consider DP. Denote by H[:, k = 1] = [h, h′]⊤. We know δ = |h−h′|/2 = ∆DP(D, f)/2.
Suppose p ≤ 1/2,

∥∥Λ−1
p

∥∥
∞ = 1/p and

∥ΛpH[:, k]∥∞ = max(ph, (1− p)h′).

Recall
ε(T̂k, p̂) := ∥Λ−1

p̂ Λp − I∥1∥TkT̂
−1
k ∥1 + ∥I − TkT̂

−1
k ∥1.

By requiring the error upper bound in Theorem 3 less than the exact error in Corollary 1, we have
(when k = 1)

2
∥∥Λ−1

p

∥∥
∞ ∥ΛpH[:, k]∥∞ ε(T̂k, p̂)2 ≤ δ · (e1 + e2)

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)∥∥Λ−1

p

∥∥
∞ ∥ΛpH[:, k]∥∞

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)

max(h, (1− p)h′/p)
.

If p = 1/2, noting max(h, h′) = (|h+ h′|+ |h− h′|)/2, we further have (when k = 1)

ε(T̂k, p̂) ≤
|h− h′| · (e1 + e2)

|h− h′|+ |h+ h′|
=

e1 + e2

1 + h+h′

|h−h′|
=

e1 + e2

1 + h+h′

∆DP(D,f)

.

23



Under review as a conference paper at ICLR 2023

To make the above equality holds for all k ∈ {1, 2}, we have

ε(T̂k, p̂) ≤ max
k′∈{1,2}

e1 + e2

1 + ∥H[:,k′]∥1

∆DP(D,f)

,∀k ∈ {1, 2}.

C MORE DISCUSSIONS ON TRANSITION MATRIX ESTIMATORS

C.1 HOC

HOC (Zhu et al., 2021b) relies on checking the agreements and disagreements among three noisy at-
tributes of one feature. For example, given a three-tuple (ã1n, ã

2
n, ã

3
n), each noisy attribute may agree

or disagree with the others. This consensus pattern encodes the information of noise transition ma-
trix T . Suppose (ã1n, ã

2
n, ã

3
n) are drawn from random variables (Ã1, Ã2, Ã3) satisfying Assumption

2. Denote by

e1 = P(Ã1 = 2|A1 = 1) = P(Ã2 = 2|A2 = 1) = P(Ã3 = 2|A3 = 1)

and
e2 = P(Ã1 = 1|A1 = 2) = P(Ã2 = 1|A2 = 2) = P(Ã3 = 1|A3 = 2).

Note A1 = A2 = A3. We have:
• First order equations:

P(Ã1 = 1) = P(A1 = 1) · (1− e1) + P(A1 = 2) · e2
P(Ã1 = 2) = P(A1 = 1) · e1 + P(A1 = 2) · (1− e2)

• Second order equations:

P(Ã1 = 1, Ã2 = 1) = P(Ã1 = 1, Ã2 = 1|A1 = 1) · P(A1 = 1) + P(Ã1 = 1, Ã2 = 1|A1 = 2) · P(A1 = 2)

= (1− e1)2 · P(A1 = 1) + e22 · P(A1 = 2).

Similarly,

P(Ã1 = 1, Ã2 = 2) = (1− e1)e1 · P(A1 = 1) + e2(1− e2) · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1) = (1− e1)e1 · P(A1 = 1) + e2(1− e2) · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2) = e21 · P(A1 = 1) + (1− e2)2 · P(A1 = 2).

• Third order equations:

P(Ã1 = 1, Ã2 = 1, Ã3 = 1) = (1− e1)3 · P(A1 = 1) + e32 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 1, Ã3 = 2) = (1− e1)2e1 · P(A1 = 1) + (1− e2)e22 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 2, Ã3 = 2) = (1− e1)e21 · P(A1 = 1) + (1− e2)2e2 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 2, Ã3 = 1) = (1− e1)2e1 · P(A1 = 1) + (1− e2)e22 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1, Ã3 = 1) = (1− e1)2e1 · P(A1 = 1) + (1− e2)e22 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1, Ã3 = 2) = (1− e1)e21 · P(A1 = 1) + (1− e2)2e2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2, Ã3 = 1) = (1− e1)e21 · P(A1 = 1) + (1− e2)2e2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2, Ã3 = 2) = e31 · P(A1 = 1) + (1− e2)3 · P(A1 = 2).

With the above equations, we can count the frequency of each pattern (LHS) as (ĉ[1], ĉ[2], ĉ[3]) and
solve the equations. See the key steps summarized in Algorithm 3.
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Algorithm 3 Key Steps of HOC
1: Input: A set of three-tuples: {(ã1n, ã2n, ã3n)|n ∈ [N ]}
2: (ĉ[1], ĉ[2], ĉ[3])← CountFreq({(ã1n, ã2n, ã3n)|n ∈ [N ]}) // Count 1st, 2nd, and 3rd-order patterns
3: Find T such that match the counts (ĉ[1], ĉ[2], ĉ[3]) // Solve equations

Table 5: Normalized error (×100) of a learning-centric estimator.

Method DP Global DP Local EOd Global EOd Local EOp Global EOp Local

Base 15.33 / 4.11 / 2.82 /
Northcutt et al. (2021) 15.37 15.49 4.07 4.02 2.86 2.95

Table 6: Disparities in the COMPAS dataset

COMPAS True Uncalibrated Noisy
DP EOd EOp DP EOd EOp

tree 0.2424 0.2013 0.2541 0.1362 0.1090 0.1160
forest 0.2389 0.1947 0.2425 0.1346 0.1059 0.1120

boosting 0.2424 0.2013 0.2541 0.1362 0.1090 0.1160
SVM 0.2535 0.2135 0.2577 0.1252 0.0988 0.1038
logit 0.2000 0.1675 0.2278 0.1169 0.0950 0.1120
nn 0.2318 0.1913 0.2359 0.1352 0.1084 0.1073

compas score 0.2572 0.2217 0.2586 0.1511 0.1276 0.1324

C.2 OTHER ESTIMATORS THAT REQUIRE TRAINING

The other estimators in the noisy label literature mainly focus on training a new model to fit the
noisy data distribution. The intuition is that the new model has the ability to distinguish between
true attributes and wrong attributes. In other words, they believe the prediction of new model is close
to the true attributes. It is useful when the noise in attributes are random. However, this intuitions
is hardly true in our setting since we need to train a new model to learn the noisy attributes given
by an auxiliary model, which are deterministic. One caveat of this approach is that the new model
is likely to fit the auxiliary model when both the capacity of the new model and the amount of data
are sufficient, leading to a trivial transition matrix estimate that is an identity matrix, i.e., T = I . In
this case, the performance is close to Base. We reproduce Northcutt et al. (2021) follow the setting
in Table 2 and summarize the result in Table 5, which verifies that the performance of this kind of
approach is close to Base.

D MORE EXPERIMENTAL RESULTS

D.1 MORE TABLES FOR THE COMPAS DATASET

We have two tables in this subsection.
• Table 6 shows the raw disparities measured on the COMPAS dataset.
• Table 7 is the full version of Table 1.

D.2 MORE TABLES FOR THE CELEBA DATASET

We have three tables in this subsection.
• Table 8 is the full version of Table 2.
• Table 9 is the full version of Table 3.
• Table 10 is similar to Table 9, but the error metric is changed to Improvement defined in Sec-

tion 5.1.
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D.3 MORE DISCUSSIONS

We cross-reference different tables and show several takeaway messages. Note some of them have
been introduced in the main paper.

Uncalibrated measurement is sensitive to noise rates and raw disparity The target models f
trained on the COMPAS dataset are usually biased (details in Table 6), and the auxiliary models g
are inaccurate (accuracy 68.85% in binary classifications), while f is almost not biased in EOd and
EOp (details in Table 8) and g is accurate (accuracy 92.55%). As a result, all the three types of
directly measured fairness metrics (Base) have large normalized errors (∼ 40–60%) as in Table 1, a
moderate normalized error in DP (15.33%), and small normalized errors in EOd (4.11%) and EOp
(2.82%) as in Table 2, which is consistent with our results in Theorem 1 and Corollary 1.

Local vs. Global Table 1 also shows our Global method works consistently better than the
Local method, while Table 2 has the reversed result. Intuitively, when the auxiliary models are
highly inaccurate (accuracy 68.85%), Assumptions 1–2 for implementing HOC may not hold well in
every local dataset, inducing large estimation errors in local estimates and unstable calibrations. On
the contrary, when the auxiliary models are accurate (92.55% accuracy in Table 2), Assumption 1
always hold and most instances will satisfy Assumption 2 if we carefully choose the other two
auxiliary models g2 and g3 given g1, then Local will outperform since it can achieve 0 error if
both assumptions perfectly hold and Global induces extra error due to approximation. Note Table 3
shows Local is still statistically better than Global when the noise rate is high. This is because
the extra random flipping follows Assumption 2 and the estimation error of Local is not improved
significantly. Therefore, we prefer Local when the original auxiliary model is accurate and Global
to stabilize the calibration otherwise.

When our method is better Both Table 1, DP in Table 2, and Table 3 show our method is
significantly better than both baselines, where the noise rates of g are moderate to high (e.g.,≥ 15%)
or f is biased (e.g., ≥ 0.1). This observation is also consistent with our result in Corollary 2. In
other cases when both the noise rate and original disparity are low, our calibration may not be perfect
compared with others without calibration, e.g., EOp in Table 2. However, the raw error of EOp is
sufficiently small (< 0.01) for all approaches, indicating the absolute performance of our method is
not bad although it fails to be better than others.
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Table 7: Performance on the COMPAS dataset. The method with minimal normalized error is bold.

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

tree 43.82 61.26 22.29 39.81 45.86 63.96 23.09 42.81 54.36 70.15 13.27 49.49
forest 43.68 60.30 19.65 44.14 45.60 62.85 18.56 44.04 53.83 69.39 17.51 63.62

boosting 43.82 61.26 22.29 44.64 45.86 63.96 23.25 49.08 54.36 70.15 13.11 54.67
SVM 50.61 66.50 30.95 42.00 53.72 69.69 32.46 47.39 59.70 71.12 29.29 51.31
logit 41.54 60.78 16.98 35.69 43.26 63.15 21.42 31.91 50.86 65.04 14.90 26.27
nn 41.69 60.55 19.48 34.22 43.34 62.99 19.30 43.24 54.50 68.50 14.20 59.95

compas score 41.28 58.34 11.24 14.66 42.43 59.79 11.80 18.65 48.78 62.24 5.78 23.80

DP Raw Disparity ↓ EOd Raw Disparity ↓ EOp Raw Disparity ↓
tree 0.1362 0.0939 0.1884 0.1459 0.1090 0.0726 0.1548 0.1151 0.1160 0.0759 0.2204 0.1283

forest 0.1345 0.0948 0.1919 0.1334 0.1059 0.0723 0.1586 0.1090 0.1120 0.0743 0.2001 0.0882
boosting 0.1362 0.0939 0.1884 0.1342 0.1090 0.0726 0.1545 0.1025 0.1160 0.0759 0.2208 0.1152

SVM 0.1252 0.0849 0.1750 0.1470 0.0988 0.0647 0.1442 0.1123 0.1038 0.0744 0.1822 0.1255
logit 0.1169 0.0784 0.1660 0.1286 0.0950 0.0617 0.1316 0.1140 0.1120 0.0797 0.1939 0.1680
nn 0.1352 0.0915 0.1867 0.1525 0.1084 0.0708 0.1544 0.1086 0.1073 0.0743 0.2024 0.0945

compas score 0.1510 0.1072 0.2283 0.2195 0.1276 0.0891 0.1955 0.1803 0.1324 0.0976 0.2436 0.1970

DP Raw Error ↓ EOd Raw Error ↓ EOp Raw Error ↓
tree 0.1062 0.1485 0.0540 0.0965 0.0923 0.1288 0.0465 0.0862 0.1381 0.1782 0.0337 0.1257

forest 0.1043 0.1440 0.0469 0.1054 0.0888 0.1224 0.0361 0.0858 0.1306 0.1683 0.0425 0.1543
boosting 0.1062 0.1485 0.0540 0.1082 0.0923 0.1288 0.0468 0.0988 0.1381 0.1782 0.0333 0.1389

SVM 0.1283 0.1685 0.0785 0.1064 0.1147 0.1488 0.0693 0.1012 0.1538 0.1833 0.0755 0.1322
logit 0.0831 0.1215 0.0340 0.0714 0.0724 0.1057 0.0359 0.0534 0.1159 0.1482 0.0339 0.0598
nn 0.0966 0.1404 0.0452 0.0793 0.0829 0.1205 0.0369 0.0827 0.1286 0.1616 0.0335 0.1414

compas score 0.1062 0.1500 0.0289 0.0377 0.0941 0.1325 0.0261 0.0413 0.1261 0.1609 0.0150 0.0615

DP Improvement (%) ↑ EOd Improvement (%) ↑ EOp Improvement (%) ↑
tree 0.00 -39.79 49.15 9.15 0.00 -39.48 49.65 6.64 0.00 -29.05 75.60 8.96

forest 0.00 -38.05 55.01 -1.06 0.00 -37.83 59.30 3.42 0.00 -28.89 67.47 -18.18
boosting 0.00 -39.79 49.15 -1.87 0.00 -39.48 49.30 -7.04 0.00 -29.05 75.89 -0.57

SVM 0.00 -31.40 38.83 17.02 0.00 -29.72 39.57 11.78 0.00 -19.12 50.93 14.05
logit 0.00 -46.30 59.12 14.08 0.00 -45.98 50.47 26.24 0.00 -27.87 70.70 48.35
nn 0.00 -45.23 53.27 17.93 0.00 -45.34 55.47 0.23 0.00 -25.69 73.94 -10.01

compas score 0.00 -41.33 72.77 64.48 0.00 -40.92 72.20 56.04 0.00 -27.59 88.15 51.21

Table 8: Performance on the CelebA dataset. The method with minimal normalized error is bold.

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet 15.33 12.54 22.17 10.89 4.11 6.46 7.54 0.26 2.82 0.34 12.22 2.93
Facenet512 15.33 12.54 21.70 7.26 4.11 6.46 4.85 0.52 2.82 0.34 11.80 3.24
OpenFace 15.33 12.54 10.31 9.39 4.11 6.46 10.43 5.03 2.82 0.34 0.56 0.93
ArcFace 15.33 12.54 19.59 9.69 4.11 6.46 5.72 0.23 2.82 0.34 11.16 3.85

Dlib 15.33 12.54 15.09 5.30 4.11 6.46 4.87 4.25 2.82 0.34 9.74 2.32
SFace 15.33 12.54 17.00 4.77 4.11 6.46 4.04 3.91 2.82 0.34 9.36 3.28

DP Raw Disparity ↓ EOd Raw Disparity ↓ EOp Raw Disparity ↓
Facenet 0.1522 0.1485 0.1612 0.1464 0.0316 0.0309 0.0355 0.0331 0.0573 0.0559 0.0625 0.0573

Facenet512 0.1522 0.1485 0.1606 0.1416 0.0316 0.0309 0.0346 0.0328 0.0573 0.0559 0.0623 0.0575
OpenFace 0.1522 0.1485 0.1456 0.1444 0.0316 0.0309 0.0295 0.0313 0.0573 0.0559 0.0554 0.0552
ArcFace 0.1522 0.1485 0.1578 0.1448 0.0316 0.0309 0.0349 0.0329 0.0573 0.0559 0.0619 0.0578

Dlib 0.1522 0.1485 0.1519 0.1390 0.0316 0.0309 0.0346 0.0316 0.0573 0.0559 0.0611 0.0544
SFace 0.1522 0.1485 0.1544 0.1383 0.0316 0.0309 0.0343 0.0317 0.0573 0.0559 0.0609 0.0539

DP Raw Error ↓ EOd Raw Error ↓ EOp Raw Error ↓
Facenet 0.0202 0.0165 0.0293 0.0144 0.0014 0.0021 0.0025 0.0001 0.0016 0.0002 0.0068 0.0016

Facenet512 0.0202 0.0165 0.0286 0.0096 0.0014 0.0021 0.0016 0.0002 0.0016 0.0002 0.0066 0.0018
OpenFace 0.0202 0.0165 0.0136 0.0124 0.0014 0.0021 0.0034 0.0017 0.0016 0.0002 0.0003 0.0005
ArcFace 0.0202 0.0165 0.0259 0.0128 0.0014 0.0021 0.0019 0.0001 0.0016 0.0002 0.0062 0.0021

Dlib 0.0202 0.0165 0.0199 0.0070 0.0014 0.0021 0.0016 0.0014 0.0016 0.0002 0.0054 0.0013
SFace 0.0202 0.0165 0.0224 0.0063 0.0014 0.0021 0.0013 0.0013 0.0016 0.0002 0.0052 0.0018

DP Improvement (%) ↑ EOd Improvement (%) ↑ EOp Improvement (%) ↑
Facenet 0.00 18.22 -44.58 28.99 0.00 -57.38 -83.62 93.64 0.00 88.05 -333.85 -3.97

Facenet512 0.00 18.22 -41.50 52.65 0.00 -57.38 -18.15 87.29 0.00 88.05 -319.18 -15.09
OpenFace 0.00 18.22 32.76 38.75 0.00 -57.38 -154.12 -22.45 0.00 88.05 80.03 67.15
ArcFace 0.00 18.22 -27.78 36.78 0.00 -57.38 -39.45 94.31 0.00 88.05 -296.25 -36.65

Dlib 0.00 18.22 1.56 65.46 0.00 -57.38 -18.55 -3.43 0.00 88.05 -245.95 17.61
SFace 0.00 18.22 -10.87 68.87 0.00 -57.38 1.61 4.85 0.00 88.05 -232.48 -16.46
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Table 9: Normalized Error on CelebA with different noise rates

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet [0.0, 0.0] 15.33 12.54 22.17 10.89 4.11 6.46 7.54 0.26 2.82 0.34 12.22 2.93
Facenet [0.2, 0.0] 7.39 11.65 20.75 10.82 25.05 26.99 9.87 6.63 24.69 27.27 11.55 2.77
Facenet [0.2, 0.2] 30.24 31.57 24.27 8.45 44.71 46.36 15.10 3.99 37.67 38.77 21.79 16.73
Facenet [0.4, 0.2] 51.37 54.56 20.12 20.66 62.94 65.10 3.45 3.67 56.53 58.73 15.75 2.70
Facenet [0.4, 0.4] 77.82 78.39 8.76 21.94 79.36 80.10 51.32 148.05 78.39 79.62 71.38 146.20

Facenet512 [0.0, 0.0] 15.33 12.54 21.70 7.26 4.11 6.46 4.85 0.52 2.82 0.34 11.80 3.24
Facenet512 [0.2, 0.0] 7.37 11.65 20.58 5.05 25.06 26.99 6.43 0.10 24.69 27.27 11.11 1.07
Facenet512 [0.2, 0.2] 30.21 31.57 24.25 13.10 44.73 46.36 11.26 9.04 37.67 38.77 20.94 27.98
Facenet512 [0.4, 0.2] 51.32 54.56 19.42 10.47 62.90 65.10 11.09 19.15 56.51 58.73 23.86 23.55
Facenet512 [0.4, 0.4] 77.76 78.39 9.41 19.80 79.31 80.10 24.49 8.02 78.35 79.62 10.61 5.71
OpenFace [0.0, 0.0] 15.33 12.54 10.31 9.39 4.11 6.46 10.43 5.03 2.82 0.34 0.56 0.93
OpenFace [0.2, 0.0] 7.39 11.65 8.93 6.60 25.05 26.99 9.86 13.01 24.69 27.27 1.08 10.96
OpenFace [0.2, 0.2] 30.24 31.57 13.32 21.46 44.74 46.36 7.56 15.88 37.69 38.77 5.90 7.40
OpenFace [0.4, 0.2] 51.39 54.56 10.66 25.16 62.96 65.10 6.47 24.94 56.55 58.73 6.11 47.12
OpenFace [0.4, 0.4] 77.84 78.39 1.60 117.27 79.38 80.10 34.00 19.47 78.41 79.62 37.42 31.99
ArcFace [0.0, 0.0] 15.33 12.54 19.59 9.69 4.11 6.46 5.72 0.23 2.82 0.34 11.16 3.85
ArcFace [0.2, 0.0] 7.39 11.65 17.74 7.74 25.05 26.99 6.18 1.82 24.69 27.27 8.81 3.37
ArcFace [0.2, 0.2] 30.19 31.57 21.77 8.97 44.77 46.36 12.12 18.91 37.69 38.77 21.19 17.99
ArcFace [0.4, 0.2] 51.32 54.56 17.33 44.52 62.91 65.10 14.66 29.74 56.53 58.73 24.39 4.92
ArcFace [0.4, 0.4] 77.79 78.39 8.38 84.37 79.34 80.10 8.31 165.03 78.39 79.62 16.98 62.34

Dlib [0.0, 0.0] 15.33 12.54 15.09 5.30 4.11 6.46 4.87 4.25 2.82 0.34 9.74 2.32
Dlib [0.2, 0.0] 7.35 11.65 14.39 1.06 25.07 26.99 3.78 2.63 24.69 27.27 7.09 2.36
Dlib [0.2, 0.2] 30.23 31.57 16.78 1.95 44.77 46.36 9.50 11.28 37.72 38.77 15.88 22.43
Dlib [0.4, 0.2] 51.40 54.56 12.83 17.69 62.96 65.10 10.34 11.47 56.57 58.73 18.90 11.17
Dlib [0.4, 0.4] 77.84 78.39 0.46 96.58 79.38 80.10 7.99 86.36 78.41 79.62 8.45 14.78

SFace [0.0, 0.0] 15.33 12.54 17.00 4.77 4.11 6.46 4.04 3.91 2.82 0.34 9.36 3.28
SFace [0.2, 0.0] 7.41 11.65 15.18 1.94 25.04 26.99 3.31 8.82 24.69 27.27 7.24 13.05
SFace [0.2, 0.2] 30.22 31.57 18.16 20.95 44.72 46.36 4.58 20.93 37.67 38.77 11.55 34.72
SFace [0.4, 0.2] 51.35 54.56 14.72 48.96 62.92 65.10 2.95 68.93 56.51 58.73 15.22 68.85
SFace [0.4, 0.4] 77.78 78.39 3.37 31.25 79.33 80.10 21.56 178.21 78.37 79.62 20.03 86.59

Table 10: Improvement on CelebA with different noise rates

CelebA DP Improvement (%) ↑ EOd Improvement (%) ↑ EOp Improvement (%) ↑
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet [0.0, 0.0] 0.00 18.22 -44.58 28.99 0.00 -57.38 -83.62 93.64 0.00 88.05 -333.85 -3.97
Facenet [0.2, 0.0] 0.00 -57.70 -180.88 -46.45 0.00 -7.75 60.60 73.52 0.00 -10.44 53.24 88.80
Facenet [0.2, 0.2] 0.00 -4.39 19.75 72.05 0.00 -3.69 66.22 91.07 0.00 -2.92 42.17 55.58
Facenet [0.4, 0.2] 0.00 -6.20 60.83 59.79 0.00 -3.44 94.51 94.17 0.00 -3.90 72.13 95.23
Facenet [0.4, 0.4] 0.00 -0.73 88.74 71.81 0.00 -0.94 35.33 -86.56 0.00 -1.57 8.94 -86.50

Facenet512 [0.0, 0.0] 0.00 18.22 -41.50 52.65 0.00 -57.38 -18.15 87.29 0.00 88.05 -319.18 -15.09
Facenet512 [0.2, 0.0] 0.00 -58.10 -179.28 31.43 0.00 -7.70 74.32 99.58 0.00 -10.44 54.98 95.68
Facenet512 [0.2, 0.2] 0.00 -4.51 19.72 56.64 0.00 -3.64 74.81 79.78 0.00 -2.92 44.40 25.73
Facenet512 [0.4, 0.2] 0.00 -6.32 62.17 79.60 0.00 -3.50 82.37 69.55 0.00 -3.94 57.78 58.33
Facenet512 [0.4, 0.4] 0.00 -0.81 87.90 74.54 0.00 -1.00 69.12 89.89 0.00 -1.63 86.45 92.71
OpenFace [0.0, 0.0] 0.00 18.22 32.76 38.75 0.00 -57.38 -154.12 -22.45 0.00 88.05 80.03 67.15
OpenFace [0.2, 0.0] 0.00 -57.70 -20.83 10.69 0.00 -7.75 60.65 48.05 0.00 -10.44 95.64 55.62
OpenFace [0.2, 0.2] 0.00 -4.38 55.97 29.06 0.00 -3.62 83.11 64.51 0.00 -2.86 84.35 80.38
OpenFace [0.4, 0.2] 0.00 -6.16 79.25 51.05 0.00 -3.41 89.72 60.39 0.00 -3.86 89.19 16.67
OpenFace [0.4, 0.4] 0.00 -0.71 97.94 -50.65 0.00 -0.92 57.17 75.47 0.00 -1.54 52.28 59.20
ArcFace [0.0, 0.0] 0.00 18.22 -27.78 36.78 0.00 -57.38 -39.45 94.31 0.00 88.05 -296.25 -36.65
ArcFace [0.2, 0.0] 0.00 -57.70 -140.07 -4.72 0.00 -7.75 75.31 92.72 0.00 -10.44 64.32 86.37
ArcFace [0.2, 0.2] 0.00 -4.56 27.91 70.28 0.00 -3.55 72.94 57.76 0.00 -2.86 43.79 52.27
ArcFace [0.4, 0.2] 0.00 -6.31 66.22 13.25 0.00 -3.49 76.69 52.72 0.00 -3.90 56.85 91.29
ArcFace [0.4, 0.4] 0.00 -0.78 89.23 -8.47 0.00 -0.97 89.53 -108.01 0.00 -1.57 78.34 20.47

Dlib [0.0, 0.0] 0.00 18.22 1.56 65.46 0.00 -57.38 -18.55 -3.43 0.00 88.05 -245.95 17.61
Dlib [0.2, 0.0] 0.00 -58.50 -95.79 85.62 0.00 -7.66 84.90 89.53 0.00 -10.44 71.30 90.42
Dlib [0.2, 0.2] 0.00 -4.43 44.49 93.54 0.00 -3.53 78.78 74.80 0.00 -2.80 57.89 40.54
Dlib [0.4, 0.2] 0.00 -6.15 75.03 65.59 0.00 -3.39 83.58 81.78 0.00 -3.82 66.59 80.25
Dlib [0.4, 0.4] 0.00 -0.71 99.41 -24.07 0.00 -0.92 89.94 -8.80 0.00 -1.54 89.22 81.15

SFace [0.0, 0.0] 0.00 18.22 -10.87 68.87 0.00 -57.38 1.61 4.85 0.00 88.05 -232.48 -16.46
SFace [0.2, 0.0] 0.00 -57.31 -104.91 73.84 0.00 -7.79 86.78 64.75 0.00 -10.44 70.66 47.12
SFace [0.2, 0.2] 0.00 -4.45 39.93 30.68 0.00 -3.67 89.76 53.18 0.00 -2.92 69.34 7.82
SFace [0.4, 0.2] 0.00 -6.24 71.34 4.66 0.00 -3.47 95.32 -9.55 0.00 -3.94 73.06 -21.85
SFace [0.4, 0.4] 0.00 -0.78 95.67 59.82 0.00 -0.98 72.82 -124.64 0.00 -1.60 74.44 -10.49
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D.4 EXPERIMENTS ON COMPAS WITH THREE-CLASS SENSITIVE ATTRIBUTES

We experiment with three categories of sensitive attributes: black, white, and others, and show the
result in Table 11. Note EOp is not defined in the case with more than two categories. Table 11
shows our proposed framework with global estimates is consistently and significantly better than the
baselines, which is also consistent with the results from Table 1.

Table 11: Normalized estimation error on COMPAS. Each row is a different target model f .

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓
True disparity: ∼ 0.2 Base Soft Global Local Base Soft Global Local

tree 24.87 64.91 13.84 25.16 30.15 67.30 13.11 27.84
forest 23.94 63.61 10.00 26.64 29.19 65.73 11.61 33.85

boosting 24.87 64.91 13.84 25.44 30.15 67.30 15.74 33.20
SVM 40.37 66.97 25.96 34.73 49.57 70.58 29.33 42.91
logit 16.71 64.18 7.39 22.17 17.23 66.47 7.02 25.38
nn 18.60 62.92 5.38 16.58 22.91 65.51 5.90 22.63

compas score 29.00 63.33 10.02 31.32 33.43 65.82 12.15 36.03

D.5 PRELIMINARY RESULTS ON DISPARITY MITIGATION WITH OUR CALIBRATION
FRAMEWORK

We apply our calibration framework to mitigate disparity during training. Specifically, the local
method is applied on the CelebA dataset. The preprocess of the dataset and generation of noisy
sensitive attributes are the same as the experiments in Table 2. The backbone network is ViT-B 8
(Dosovitskiy et al., 2020). The aim is to improve the classification accuracy while ensuring DP,
where ∆̂(D̃, f) = 0 is the constraint during training. Specifically, the optimization problem is

min
f

N∑

n=1

ℓ(f(xn), yn)

s.t . ∆̂(D̃, f) = 0,

where ℓ is the cross-entropy loss. Recall ∆̂(D̃, f) is obtained from our Algorithm 1 (Line 8), and
D̃ := {(xn, yn, ãn)|n ∈ [N ]}. Noting the constraint is not differentiable since it depends on the
sample counts, i.e.,

H̃[ã, k] = P(f(X) = k|Ã = ã) ≈ 1

N

N∑

n=1

1(f(xn = k|ãn = ã)).

To make it differentiable, we use a relaxed measure (Madras et al., 2018; Wang et al., 2022) as
follows:

H̃[ã, k] = P(f(X) = k|Ã = ã) ≈ 1

Nã

N∑

n=1,ãn=ã

fxn
[k],

where fxn
[k] is the model’s prediction probability on class k, and Nã is the number of samples

that have noisy attribute ã. The standard method of multipliers is employed to train with constraints
(Boyd et al., 2011). We train the model for 20 epochs with a stepsize of 256. Table 12 shows the
accuracy and DP disparity on the test data averaged with results from the last 5 epochs of training.
From the table, we conclude that, with any selected pre-trained model, the mitigation based on our
calibration results significantly outperforms the direct mitigation with noisy attributes in terms of
both accuracy improvement and disparity mitigation.
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Table 12: Disparity mitigation with our calibration framework. Results are averaged with results
from the last 5 epochs. DP is the considered fairness metric. Base: Direct mitigation with noisy
sensitive attributes. Facenet, Facenet 512, etc.: Pre-trained models to generate feature representa-
tions used to simulate the other two auxiliary models.

CelebA ∆DP(Dtext, f) ↓ Accuracy ↑

Base 0.0578 0.8422
Facenet 0.0453 0.8466

Facenet512 0.0273 0.8557
OpenFace 0.0153 0.8600
ArcFace 0.0435 0.8491

Dlib 0.0265 0.8522
SFace 0.0315 0.8568
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