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Abstract001

The safety alignment ability of Vision-002
Language Models (VLMs) is prone to be003
degraded by the integration of the vision004
module compared to its LLM backbone. We005
investigate this phenomenon, dubbed as “safety006
alignment degradation” in this paper, and show007
that the challenge arises from the representation008
gap that emerges when introducing vision009
modality to VLMs. In particular, we show010
that the representations of multi-modal inputs011
shift away from that of text-only inputs012
which represent the distribution that the LLM013
backbone is optimized for. At the same014
time, the safety alignment capabilities, initially015
developed within the textual embedding space,016
do not successfully transfer to this new017
multi-modal representation space. To reduce018
safety alignment degradation, we introduce019
Cross-Modality Representation Manipulation020
(CMRM), an inference time representation021
intervention method for recovering the safety022
alignment ability that is inherent in the LLM023
backbone of VLMs, while simultaneously024
preserving the functional capabilities of VLMs.025
The empirical results show that our framework026
significantly recovers the alignment ability that027
is inherited from the LLM backbone with028
minimal impact on the fluency and linguistic029
capabilities of pre-trained VLMs even without030
additional training. Specifically, the unsafe031
rate of LLaVA-7B on multi-modal input can032
be reduced from 61.53% to as low as 3.15%033
with only inference-time intervention.034

WARNING: This paper contains examples of035
toxic or harmful language.036

1 Introduction037

The development of Vision Language Models038

(VLMs) has marked a significant advancement,039

enabling models to process information from both040

visual and textual modalities and have shown041

promising capabilities across various applications042

(Liu et al., 2024b; Zhu et al., 2024). However,043

the integration of the vision module (as is widely 044

adopted as the default architecture of VLMs (Liu 045

et al., 2024b,a; Dai et al., 2023; Chen et al., 2023a)) 046

degrades the overall alignment ability of a VLM 047

compared to its LLM backbone, and we refer to this 048

phenomenon as safety alignment degradation. 049

For instance, LLaVA, built on the Vicuna-13b 050

LLM, demonstrated a decline in MT-Bench (Zheng 051

et al., 2023) performance from 6.57 to 5.92 (scored 052

by GPT-4), even faring worse than the smaller 053

Vicuna-7B model (Li et al., 2024c). The alignment 054

degradation is even more crucial when it comes 055

to safety-related queries. For example, even the 056

incorporation of a blank image, which may not 057

carry any semantics in most contexts, can break 058

the safety alignment and trigger harmful responses 059

from the VLM (Gou et al., 2024; Li et al., 2024d). 060

Several existing works have explored the 061

phenomenon of safety alignment degradation. 062

For example, (Gou et al., 2024) attempt to 063

transform unsafe images into texts to activate 064

the intrinsic safety mechanism of pre-aligned 065

LLMs in VLMs. However, images often contain 066

fine-grained information that could not be fully 067

captured by texts. On the other hand, (Li et al., 068

2024d) leverage the safety risks posed by the 069

visual modality and propose a jailbreak method 070

that conceals and amplifies the malicious intent 071

within text inputs using carefully crafted images. 072

However, the underlying mechanisms of how 073

images influence alignment remain unexplored. 074

From the aspect of improving VLM safety, a line 075

of work has made successful attempts by training 076

VLMs with deliberately curated dataset (Helff 077

et al., 2024; Zong et al., 2024; Liu et al., 2024c). 078

However, these attempts are annotation-intensive 079

and computationally costly, ignoring the inherent 080

safety alignment of the LLM backbone of a VLM. 081

In this study, we propose to investigate the 082

critical challenge of alignment degradation by 083

examining how the integration of a vision module 084
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intrinsically impacts model behavior, particularly085

in terms of model representations (§2). Our086

hypothesis is that, since the vision and language087

modules within a typical VLM are trained088

independently, the representations from these089

different modalities tend to cluster in distinct090

regions of the latent space. This separation likely091

results in a distribution shift, deviating from the092

representation space that the LLM backbone is093

optimized for, which further leads to reduced094

alignment ability when the VLM processes multi-095

modal inputs. To verify this hypothesis, we096

evaluate three open-source VLMs of varying scales097

and employ Principal Component Analysis (PCA)098

to visualize their hidden states upon different types099

of input: text-only or a mixture of text and image.100

We find that in models’ representation space,101

different types of input are clearly distinguished,102

suggesting that our hypothesis holds.103

Inspired by these findings, we further investigate104

whether alignment degradation can be mitigated by105

eliminating the representation shift when an image106

is incorporated as input. To justify this assumption,107

we present a method to intervene the hidden108

states of VLMs, named CMRM (Cross-Modality109

Representation Manipulation) (§3). CMRM first110

anchors a VLM’s low-dimensional representation111

space and estimates the “shifting direction” that112

indicates the affect of the incorporation of image113

in the input on the overall hidden states. It then114

calibrates the representation of multi-modal input115

using the estimated direction so that the hidden116

states can be pulled closer to the distribution that117

the LLM component is optimized for.118

Through experiments on two VLM safety bench-119

marks, we demonstrate that CMRM remarkably120

recovers the alignment ability of VLMs even121

without additional training. Furthermore, CMRM122

does not compromise VLMs’ general performance,123

as evaluated on two VLM utility benchmarks.124

We hope our work sheds light on the intrinsic125

influences of the construction of VLMs, and126

inspires future research on VLM alignment. Our127

code will be open-sourced for reproducibility. In128

summary, our main contributions are as follows:129

• We analyze the safety alignment degradation130

phenomenon of VLMs from the perspective131

of model representations. Empirically, we132

demonstrate that the simple concatenation of133

embedding from different modalities leads134

to representation shifting that suppresses the135

alignment ability that is inherent in the LLM 136

backbone. 137

• We introduce CMRM, a representation 138

engineering method that calibrates the rep- 139

resentation of multi-modal inputs, recovering 140

model’s safety alignment ability by moving 141

the representation back to the distribution that 142

the LLM backbone is optimized for. 143

• CMRM significantly recovers the safety 144

alignment from the LLM backbone to VLMs 145

without sacrificing the general ability of 146

VLMs. Empirical results show that CMRM 147

can recover the safety of a VLM to the level of 148

its LLM backbone without additional training: 149

the unsafe rate of LLaVA-7B on multi-modal 150

input can be reduced from 61.53% to as low as 151

3.15% with only inference-time intervention. 152

2 How Vision Modality Affects Model 153

Behavior? 154

We first analyze the alignment degradation 155

challenge by investigating the following question: 156

how does the integration of the vision modality in- 157

trinsically affect model behavior? We hypothesize 158

that since the vision and language modules within 159

a VLM are trained independently, the resulting 160

representations tend to cluster in distinct regions 161

of the latent space, leading to a distribution shift 162

that reduces alignment ability when processing 163

multi-modal inputs, as it deviates from the 164

representation space that the LLM backbone is 165

optimized for. To verify this hypothesis, we 166

investigate how representations of different types 167

of inputs exist in model’s representation space, and 168

how the distinction correlates with the alignment 169

degradation of VLMs. 170

2.1 Experimental Setup 171

Input Variations & Datasets. To investigate 172

the influence of vision modality on the safety 173

alignment of a VLM, we employ 5 variations on the 174

model input: (1) Original Input, where the images 175

and textual queries remain unchanged as model 176

input; (2) Blank Image, where the original image is 177

substituted with a blank image that does not carry 178

any semantic meaning; (3) Gaussian Noise, where 179

we perturb the original images with Gaussian noise 180

in an attempt to destroy their semantic meaning; 181

(4) Text + Caption, where the image is substituted 182

by its caption; and (5) Text Query Only, where 183
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Figure 1: Visualization of three models’ hidden states upon five variations of input using 2-dimensional PCA. The
first and second rows are visualized with the VLSafe dataset and manipulated JailbreakLLMs dataset, respectively.
The representations of pure textual input (text + caption and text query only) and multi-modal input (original, text +
blank image, and gaussian noise) are significantly separable, especially for VLSafe dataset (the first row).

only the textual queries are used as input, and184

the images are discarded. The first three input185

variations are multi-modal input, investigating the186

alignment ability of VLMs under various levels of187

image toxicity. The last two variations are pure text188

inputs, evaluating the backbone LLMs of VLMs189

on harmful instructions.190

We use two safety-related multi-modality191

datasets for model behavior analysis: VLSafe192

(Chen et al., 2024a) and JailbreakLLMs (Shen et al.,193

2023) paired with images from the COCO dataset194

(Lin et al., 2014). VLSafe (Vision-Language195

Safety) dataset contains 1, 110 pairs of malicious196

queries and benign images where the input images197

are auxiliary and the queries can be answered198

without referencing the images. JailbreakLLMs199

dataset includes 390 jailbreak prompts that are200

collected and filtered from Reddit, Discord,201

websites, and open-source datasets covering 14202

topics, including illegal activity, malware, physical203

harm, etc. We filter out two safety-irrelevant topics204

and pair each remaining jailbreak prompt with a205

related image retrieved from the COCO dataset to206

construct a multi-modal dataset composed of 330207

test samples.208

Models & Evaluation Scheme. We analyze 209

three VLMs of different scales: LLaVA-1.5- 210

7B, LLaVA-1.5-13B (Liu et al., 2024b), and 211

ShareGPT4V (Chen et al., 2023a) with Vicuna 212

(Chiang et al., 2023) as their LLM backbone. To 213

investigate the safety alignment ability of VLMs 214

and their backbones, we employ Llama-3.1-8B- 215

Instruct,1 which has been aligned with human 216

preferences for safety, to judge whether a model 217

response is safe (equivalently a refusal) given the 218

harmful query of different modalities. According 219

to the judgment of Llama-3.1, we adopt Unsafe 220

Rate as an evaluation metric, which calculates 221

the percentage of unsafe responses among all 222

generated by the target VLMs on the test datasets. 223

2.2 Results and Visualization Analysis 224

Evaluation Results. We demonstrate the Unsafe 225

Rate of 3 VLMs on 2 datasets under 5 different 226

variations of input in Tab. 1. According to the 227

first two rows of each model on VLSafe and 228

JailbreakLLMs datasets, the unsafe rate of VLMs 229

on multi-modal input (including “Orig.”, “Blank”, 230

1https://huggingface.co/meta-llama/
Meta-Llama-3.1-8B-Instruct
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and “Noise”) are significantly higher than that of231

text-only input (the second row of each model232

denoted by “Caption / Query”). Specifically,233

LLaVA 7B gives unsafe responses on VLSafe234

dataset under 61.53% of the cases, while its LLM235

backbone, as is evaluated by text-only input, only236

shows the unsafe rate of 5.52% or 1.91% (with237

or without textual caption of the original image).238

The results indicate that VLMs are vulnerable to239

malicious questions when queried with images but240

tend to restore safety when images are excluded.241

Visualization Analysis. We employ Principal242

Component Analysis (PCA) to visualize VLMs’243

representations w.r.t. all 5 variations of input.244

Following (Zheng et al., 2024; Wang et al., 2024b),245

the hidden states of the last input token output by246

the top model layer are selected, which, intuitively,247

gathers all the information about how the model248

understands the query and how it will respond.249

We compute the first two principal components250

using 5 groups of hidden states according to251

distinct types of input. As illustrated in Fig. 1,252

the PCA visualization reveals a clear separation253

between hidden states corresponding to text-254

only inputs and those associated with text-image255

inputs. This distinction holds consistently across256

different datasets and models, suggesting that the257

presence of an image in the input shifts the hidden258

states away from the distribution which the LLM259

backbone is optimized for.260

3 Methods261

Building on insights from §2, we attempt to262

formalize the affected hidden states of current263

VLMs with vision input incorporated (§3.1), based264

on which we propose two variations of CMRM to265

intervene model representations during inference266

time to prevent the alignment degradation (§3.2).267

3.1 Formalization of VLM Representation:268

Shifted from Optimal Distribution269

Inspired by (Favero et al., 2024), we propose270

to formalize the hidden states of multi-modal271

input to VLMs as being shifted from the ideal272

representation that remains within the distribution273

of the LLM backbone while capturing extra visual274

information from the incorporated image in the275

input. Under the shifting assumption, we model the276

representations of a vanilla VLM h(x, img) as an277

interpolation between two scenarios: (1) the VLM278

with only text query as input, without any visual279

information or the impact of vision modality; (2) 280

an ideal VLM that benefits from visual information 281

based on the image input while not being affected 282

by the visual modality. Accordingly, we propose 283

the following formalization: 284

h(x, img) = h∗(x, img)+α[h(x, img′)−h(x)],
(1) 285

where img and x stand for the image input and 286

textual instruction respectively, and img′ is a 287

meaningless image that does not carry any visual 288

information. α ∈ [0, 1] is a mixing coefficient 289

that indicates the level of representation shift. 290

When α is small, the shifting effect is mild 291

and the representation is not pulled much from 292

the backbone LLM’s representation distribution. 293

For higher α, the VLM suffers from severe 294

representation shifting. 295

Given the modality affected original represen- 296

tation ho ≜ h(x, img), the representation of 297

corrupted image as input hc ≜ h(x, img′), and the 298

one of pure text input ht ≜ h(x), our goal is to find 299

an estimate of the ideal representation distribution 300

h∗ that is not affected by vision modality and 301

only benefits from additional visual information. 302

According to our hypothesis, we assume that h∗ 303

could be achieved by calibrating the distribution 304

of original input, h∗ = ho + ∆, where ∆ is the 305

manipulation that we force on the hidden states 306

of multi-modal inputs. Therefore we rewrite our 307

formalization in Eq. 1 as: 308

∆ = α(ht − hc). (2) 309

Hence, we can estimate h∗ with the calibration 310

term ∆, which brings us to the optimal intervention: 311

312

h∗ = ho + α(ht − hc). (3) 313

Note that if the original hidden states ho of multi- 314

modal input is ideal enough (with α close to 0), 315

then our approximated h∗ is equivalent to ho. On 316

the other hand, severely shifted representations 317

(with α close to 1) will be manipulated to be 318

proportional to ho +ht −hc. In this case, ht −hc 319

captures the direction of shifting caused by the 320

incorporation of image modality as input, which 321

is then added back to ho to pull the representation 322

back to the hidden distribution of LLM backbone. 323

3.2 CMRM: Recover Alignment Ability at 324

Inference Time 325

Based on the formalization of VLMs under the 326

affect of representation shifting (1), we further 327
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propose the hypothesis that alignment degradation328

can be mitigated by eliminating representation329

shift when an image is incorporated as input,330

based on which we introduce CMRM (Cross-331

Modality Representation Manipulation) to calibrate332

the shifted representation of multi-modal inputs333

according to Eq. 3. Its core idea is to pull multi-334

modality representations back or closer to the335

distribution that the LLM backbone is optimized for,336

where the safety alignment capability was initially337

developed and fine-tuned for processing purely338

textual inputs.339

Shifting Vector Extraction. CMRM first ex-340

tracts the shifting direction caused by the341

incorporation of visual input, which is, according342

to our assumption, correlated with the alignment343

degradation phenomenon. As defined in the second344

term of Eq. 3, these shifting vectors are obtained345

by contrasting the representations of two types of346

variations on the input: text query only ht and text347

query with corrupted image hc. To systematically348

analyze the shifting direction caused by visual349

input incorporation, we propose two variations for350

shifting vector extraction: dataset-level extraction351

and sample-level extraction. Each method offers352

unique insights into how the model’s internal353

representations are affected by the introduction of354

corrupted visual data.355

The dataset-level extraction. aims to capture356

the overall trend of shifting directions across357

the entire dataset. This approach is particularly358

useful for understanding the general impact of359

visual corruption on the model’s safety alignment360

performance. Mathematically, the dataset-level361

shifting vector for layer l is computed by362

performing a down-projection using PCA on the363

differences between the representations of all364

samples in the target dataset, with and without365

corrupted visual input. The formal definition is366

given by:367

vl
data = PCA

({
h
l(i)
t − hl(i)

c

}N

i=1

)
first component

,

(4)368

where N represents the total number of samples in369

the dataset, hl(i) denotes the representation of the370

last token for the i-th input in the l-th layer. vl
data371

represents the principal direction of the shift in the372

model’s hidden states due to the introduction of373

corrupted visual input, as captured across the entire374

dataset. By performing PCA on the collection of375

these difference vectors across all N samples, the376

first principal component, which is the direction in 377

space along which the data points have the highest 378

or most variance, captures the most significant 379

direction of variation in these shifts, indicating the 380

predominant trend in which the model’s internal 381

representations are influenced by the visual input. 382

As an alternative, the sample-level extraction 383

focuses on capturing the shifting direction at the 384

granularity of individual samples. This approach is 385

crucial for identifying specific instances where the 386

alignment degradation is particularly pronounced 387

or where the visual corruption has an unexpectedly 388

minimal or even beneficial effect. For each 389

individual sample i, the shifting vector for layer 390

l is calculated as: 391

v
l(i)
sample = h

l(i)
t − hl(i)

c , (5) 392

which investigates and captures the nuances of 393

alignment degradation on a case-by-case basis. 394

Representation Manipulation. Based on the 395

analysis in §2 and our assumption, alignment 396

degradation could be mitigated when the hidden 397

states of multi-modal input are pulled closer to 398

the distribution of LLM backbone. Thus, CMRM 399

manipulates model’s hidden states by calibrating 400

the last token representations of all layers using the 401

extracted shifting vector to approximate the ideal 402

distribution: 403

h
l(i)
aligned = hl(i)

o − vl, (6) 404

where h
l(i)
aligned represents the adjusted representa- 405

tion that is better aligned across modalities, and 406

vl can be either vl(i)
sample or vl

data. By performing 407

inference on the adjusted representations hl(i)
aligned, 408

the model is able to capture the additional visual 409

information from the image input while avoiding 410

the detrimental effects of representation shifting 411

due to the visual modality. We will delve 412

deeper into analysis in §4.3, exploring which 413

specific layers of the model are most suitable for 414

representation manipulation to address this issue. 415

4 Experiments and Evaluation 416

In this section, we empirically evaluate the 417

proposed CMRM. First, we introduce the 418

experimental settings in §4.1. Then, we assess 419

CMRM from the following perspectives: (i) How 420

well can CMRM improve the safety of VLMs 421

and recover the alignment ability of the LLM 422
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VLSafe (↓) JailbreakLLMs (↓) L-Bench (↑) S-QA (↑)
Orig. Blank Noise Orig. Blank Noise

LLaVA-v1.5-7B 61.53 56.87 57.21 21.52 23.94 25.76
Caption / Query 5.52 / 1.91 4.85 / 12.73 79.20 68.03

+ VLGuard Mixed 2.03 0.00 0.10 0.76 0.76 0.38 87.80 69.28
+ VLGuard PH 0.23 0.11 0.00 2.27 2.65 2.65 88.10 67.32
+ CMRMdataset 5.41 3.60 3.15 8.33 9.47 7.20 78.70 65.89
+ CMRMsample 3.15 1.24 1.46 4.55 4.17 4.92 77.30 66.14

LLaVA-v1.5-13B 31.80 38.51 32.88 12.42 16.29 14.77
Caption / Query 1.25 / 0.68 1.82 / 3.03 89.70 73.10

+ VLGuard Mixed 1.13 0.00 0.00 0.38 0.00 0.38 90.40 72.84
+ VLGuard PH 0.56 0.56 1.01 0.00 0.38 0.38 87.50 72.15
+ CMRMdataset 4.95 7.21 4.73 4.92 8.71 8.71 90.50 73.20
+ CMRMsample 0.79 2.25 0.90 3.03 6.06 2.27 89.60 72.65

ShareGPT4V 57.09 52.36 55.29 19.32 23.86 24.24
Caption / Query 5.32 / 4.13 8.33 / 10.23 92.30 66.73

+ CMRMdataset 1.91 1.58 1.91 3.79 6.44 8.33 90.10 65.24
+ CMRMsample 1.46 5.52 6.98 1.14 6.06 6.06 91.40 66.13

Table 1: Evaluation of VLMs in terms of safety and utility. Unsafe Rate is reported on VLSafe and manipulated
JailbreakLLMs datasets. Orig. denotes the vanilla input of these datasets with original textual query and image;
Blank and Noise denote two variations on the input where we substitute the vanilla image with a blank image or add
Gaussian noise to it. Caption / Query reports the safety performance of models with pure textual input where no
image is involved. Caption substitutes the image with its textual caption, and Query uses the textual prompt as the
only input. Utility performance is evaluated on LLaVA-Bench-Coco (L-Bench) and ScienceQA (S-QA). Note that
VLGuard Mixed and VLGuard PH are training-time safety alignment methods for reference purposes, which does
not form a fair comparison for our method.

backbone? (§4.2) (ii) Does CMRM harm general423

performance of VLMs? (§4.2) (iii) How does the424

hyperparameters affect CMRM? (§4.3) (iv) Does425

the extracted shifting direction based on one anchor426

dataset generalize to other datasets? (§4.4) (v)427

What is the impact of CMRM on VLMs’ hidden428

states? (Appx. §A.3)429

4.1 Experimental Settings430

Models and Baseline Method. We evaluate431

CMRM on three VLMs of different scales:432

LLaVA-v1.5-7B, LLaVA-v1.5-13B (Liu et al.,433

2024b) and ShareGPT4V (Chen et al., 2023a),434

which are all constructed with visual encoder of435

CLIP (Radford et al., 2021) and the language436

decoder Vicuna (Chiang et al., 2023). For refer-437

ence, we compare our inference-time intervention438

method with a training-time method, VLGuard439

(Zong et al., 2024), which finetunes VLMs440

on deliberately curated vision-language safety441

instruction-following dataset covering various442

harmful categories. Two scenarios are considered443

for VLGuard: post-hoc finetuning and mixed fine-444

tuning, denoted as VLGuard PH and VLGuard445

Mixed respectively. Post-hoc VLGuard finetunes446

pre-trained VLMs on the curated safety dataset447

with only a minimal amount of helpfulness data to 448

avoid exaggerated safety. Mixed VLGuard trains 449

VLMs by appending the curated dataset to the 450

existing training datasets. More details on evalution 451

metrics, benchmarks and anchor dataset, can be 452

found in Appendix A. 453

4.2 Main Results 454

As shown in Tab. 1, both dataset- and sample- 455

level CMRM remarkably enhance the safety of 456

evaluated models. For LLaVA 7B on the VLSafe 457

dataset, it reduces the unsafe rate from 61.53% to 458

as low as 5.41% and 3.15%. The performance 459

of CMRM approaches the unsafe rate of pure 460

text inputs, demonstrating its effectiveness in 461

reducing safety risks from multi-modal inputs and 462

alleviating alignment degradation to recover the 463

LLM backbone’s alignment ability. Moreover, 464

CMRM’s application doesn’t notably reduce 465

model utility with reasonable computational over- 466

head (see Appendix A.4), and may even increase 467

it in some cases. Intuitively, CMRM sample 468

consistently outperforms CMRM dataset due to 469

its fine-grained shifting vector extraction, despite 470

higher computation consumption. Surprisingly, 471

compared to the training - time baseline VLGuard, 472
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which is expected to outperform CMRM with a473

curated safety dataset and extra computational cost,474

our CMRM achieves a lower unsafe rate in several475

scenarios. For example, CMRM sample for LLaVA476

13B on the VLSafe dataset outperforms VLGuard477

Mixed in the Orig. setting. This indicates the478

potential of improving VLM safety alignment by479

recovering the LLM backbone’s inherent ability,480

saving the effort of tedious fine - tuning.481

4.3 Sensitivity to Alpha Value and482

Manipulated Layers483

As shown in Fig. 2, the unsafe rate of models484

with different alpha values indicates that an alpha485

of 1.0 performs well across models and tasks for486

dataset-level CMRM. The unsafe rate decreases487

as alpha approaches 1.0, with a notable drop in488

unsafe outputs. For example, in VLsafe with489

ShareGPT, the unsafe rate drops sharply from 0.7490

to 0.9 and stabilizes at around 2% when alpha491

is 1.0. Higher alpha values (above 1.0) may492

further cut the unsafe rate in some cases, but they493

often undermine model utility. Extremely high494

alpha values overly suppress model expressiveness,495

reducing overall performance as models become496

too conservative to generate useful outputs. Thus,497

an alpha of 1.0 balances minimizing unsafe content498

and maintaining model utility in the given settings,499

though the optimal alpha may vary for other models500

and datasets and needs case-by-case study.501

Tab. 2 shows that manipulating all layers502

is crucial for the best results. In LLaVA503

and ShareGPT, manipulating 32 encoder layers504

achieves the lowest unsafe rates of 4.32% and505

1.91% respectively. As the number of manipulated506

layers decreases, the unsafe rate surges, like it507

jumps to 16.94% for LLaVA. This implies that508

full-layer manipulation is essential for optimal509

model safety, especially in models like LLaVA,510

where incomplete layer manipulation can severely511

degrade performance.512

4.4 Transferability of Extracted Shifting513

Direction and Anchor Dataset514

We investigate the transferability of the anchor515

dataset to demonstrate the generalization capability516

of our proposed method. Specifically, we aim517

to evaluate whether using VLsafe as the anchor518

dataset can improve model safety not only on the519

VLsafe dataset itself but also when applied to other520

datasets, such as JailbreakLLMs. To achieve this,521

we use the entire VLsafe dataset as the anchor522
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Figure 2: Sensitivity analysis on alpha values for dataset-
level CMRM. We show the safety performance of
LLaVA 7B and ShareGPT on two datasets with varying
coefficients. Generally, an alpha value of 1.0 results in
a lower unsafe rate.

START. END. LLaVA ShareGPT

1 32 4.32 1.91
2 32 4.50 2.25
3 32 4.68 2.69
1 31 5.41 2.14
1 30 5.77 3.23
5 24 16.94 3.49
4 28 10.18 2.25

Table 2: Sensitivity analysis on manipulated layers. We
report the unsafe rate of LLaVA 7B under different
manipulated layers on VLSafe dataset. “START.” and
“END.” stands for the starting and ending layer index,
respectively. Manipulation of all layers leads to optimal
safety performance.

dataset and fix the alpha value at 1.0, ensuring 523

consistency across all tests without hyperparameter 524

tuning. As shown in Tab. 3, when VLsafe is 525

used as the anchor dataset, we observe notable 526

improvements in safety performance compared 527

to the results shown in Tab. 1. Furthermore, 528

models also perform well in JailbreakLLMs dataset, 529

demonstrating the transferability of the extracted 530

shifting direction based on the anchor dataset. In 531

summary, using VLsafe as the anchor dataset not 532

only improves safety performance on the original 533

VLsafe data but also generalizes effectively, 534

reducing unsafe rates on entirely different datasets 535

such as JailbreakLLMs. 536

5 Related Work 537

Safety Alignment for VLMs. Alignment aims 538

to fine-tune pre-trained models with human- 539

preference annotations to ensure generated re- 540

sponses adhere to the 3H principle (Askell et al., 541

2021). In the LLM domain, RLHF (Christiano 542

7



VLSafe (↓) JailbreakLLMs (↓) L-Bench (↑) S-QA (↑)
Orig. Blank Noise Orig. Blank Noise

LLaVA 7B 2.93 2.48 1.35 6.06 4.55 8.71 82.90 67.77
LLaVA 13B 4.73 4.32 4.83 5.45 4.55 5.68 90.50 73.00
ShareGPT4V 8.90 6.87 6.53 6.82 7.95 9.47 92.20 64.53

Table 3: Transferability analysis. The shifting vector used for dataset-level CMRM is extracted from VLSafe
dataset, and the alpha value is fixed to be 1.0 for a fair evaluation. Compared to Tab. 1, LLaVA models perform
better on the VLSafe dataset with a lower unsafe rate. Further, all of the three models achieve higher or compatible
safety on JailbreakLLMs dataset. Simultaneously, we can even spot an increase in the utility performance of three
models, especially on LLaVA-Bench-Coco.

et al., 2017; Ouyang et al., 2022) has been effective,543

and DPO (Rafailov et al., 2023) further improves its544

efficacy and efficiency by directly optimizing based545

on human preferences. In multi-modal scenarios,546

efforts have been made to adapt alignment methods547

to VLMs. Some focus on creating multi-modal548

preference data (Li et al., 2023; Zhao et al., 2023;549

Zhou et al., 2024; Deng et al., 2024; Pi et al., 2024b;550

Helff et al., 2024), while others design specific551

learning objectives (Wang et al., 2024a; Li et al.,552

2023; Zhao et al., 2023; Zhou et al., 2024; Yu et al.,553

2024; Liu et al., 2024c).554

For enhancing VLM safety alignment, one555

approach is to use red-teaming data (Chen et al.,556

2024b; Li et al., 2024b; Zong et al., 2024).557

However, it’s labor-intensive and may not cover558

all failure cases, and retraining with such data559

is computationally inefficient as it overlooks the560

prior safety alignment of the LLM backbone in561

VLMs. Another approach is to protect VLMs562

during inference time (Wang et al., 2024b; Chen563

et al., 2023b; Pi et al., 2024a; Gou et al., 2024).564

Among them, (Wang et al., 2024b) uses safety565

steering vectors for unsafe inputs. But this may566

miss unsafe intents in images not detectable by text-567

centric vectors. In contrast, our proposed CMRM568

inspects internal representation shifts due to multi-569

modal input and calibrates them to activate the570

LLM backbone’s intrinsic alignment ability.571

Representation Engineering. Representation572

engineering consists of alignment techniques that573

make targeted perturbations to a model’s hidden574

states (Subramani et al., 2022; Hernandez et al.,575

2023; Turner et al., 2023). (Li et al., 2024a)576

introduce inference-time intervention (ITI) to shift577

representations for more truthful outputs. (Zou578

et al., 2023) develop RepE to identify and extract579

high-level concept representations like honesty580

and safety in LLMs, using a “reading vector” 581

for behavior steering. Directed Representation 582

Optimization (DRO) (Zheng et al., 2024) treats 583

safety prompts as trainable embeddings to move 584

query representations based on harmfulness. 585

InferAligner (Wang et al., 2024b) extracts safety- 586

related vectors from aligned LLMs to intervene on 587

harmful inputs. 588

These works mainly identify LLM representa- 589

tion differences based on features like safety or 590

truthfulness. In contrast, we propose that VLMs 591

have distinct representations according to input 592

types (textual or multi - modal), with representation 593

shifts causing alignment ability decline. Our 594

CMRM aims to reverse the shift and recover 595

the LLM module’s inherent alignment ability for 596

VLMs. 597

6 Conclusion 598

We investigate the impact of incorporating visual 599

input on VLMs. We find that multi-modal 600

input drastically degrades the safety alignment 601

mechanism of the LLM backbone in VMLs, while 602

intrinsically shifting the hidden states away from 603

the distribution that the LLM module is optimized 604

for. Drawing this inspiration, our proposed 605

CMRM method intervenes the representations of 606

VLMs upon multi-modal inputs by moving hidden 607

states closer to the trained distribution of its LLM 608

module. CMRM operates at inference time and 609

can be seamlessly integrated with any pre-trained 610

VLMs, which makes CMRM a cost-effective 611

and flexible solution to enhance safety alignment 612

of VLMs without tedious training. We show 613

that CMRM brings remarkable improvement in 614

recovering the safety alignment for VLMs without 615

compromising the model’s general performance. 616
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Limitations617

Our proposed method, CMRM, has its limitations.618

Firstly, although it effectively enhances the safety619

alignment of VLMs, it does slightly increase the620

computational overhead during model inference,621

which may pose challenges in resource-constrained622

environments. Secondly, this work is narrowly623

focused on the safety aspect of VLMs. There are624

likely degradation phenomena in other important625

aspects such as reasoning ability and faithfulness,626

which remain unaddressed. Moreover, the current627

study does not explore the features of an optimal628

anchor dataset for shifting vector extraction in629

depth, leaving room for improvement in this area.630

References631

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,632
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas633
Joseph, Ben Mann, Nova DasSarma, et al. 2021.634
A general language assistant as a laboratory for635
alignment. arXiv preprint arXiv:2112.00861.636

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang,637
Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.638
2023a. Sharegpt4v: Improving large multi-modal639
models with better captions. CoRR.640

Yang Chen, Ethan Mendes, Sauvik Das, Wei Xu,641
and Alan Ritter. 2023b. Can language models be642
instructed to protect personal information? arXiv643
preprint arXiv:2310.02224.644

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng645
Ji, and Ajay Divakaran. 2024a. Dress: Instructing646
large vision-language models to align and interact647
with humans via natural language feedback. In648
Proceedings of the IEEE/CVF Conference on649
Computer Vision and Pattern Recognition, pages650
14239–14250.651

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng652
Ji, and Ajay Divakaran. 2024b. Dress: Instructing653
large vision-language models to align and interact654
with humans via natural language feedback. In655
Proceedings of the IEEE/CVF Conference on656
Computer Vision and Pattern Recognition (CVPR),657
pages 14239–14250.658

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,659
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan660
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.661
2023. Vicuna: An open-source chatbot impressing662
gpt-4 with 90%* chatgpt quality. See https://vicuna.663
lmsys. org (accessed 14 April 2023), 2(3):6.664

Paul F Christiano, Jan Leike, Tom Brown, Miljan665
Martic, Shane Legg, and Dario Amodei. 2017. Deep666
reinforcement learning from human preferences.667
Advances in neural information processing systems,668
30.669

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 670
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 671
Boyang Li, Pascale Fung, and Steven Hoi. 672
2023. Instructblip: Towards general-purpose vision- 673
language models with instruction tuning. Preprint, 674
arXiv:2305.06500. 675

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, 676
James Zou, Kai-Wei Chang, and Wei Wang. 2024. 677
Enhancing large vision language models with self- 678
training on image comprehension. arXiv preprint 679
arXiv:2405.19716. 680

Alessandro Favero, Luca Zancato, Matthew Trager, 681
Siddharth Choudhary, Pramuditha Perera, Alessandro 682
Achille, Ashwin Swaminathan, and Stefano Soatto. 683
2024. Multi-modal hallucination control by visual 684
information grounding. In Proceedings of the 685
IEEE/CVF Conference on Computer Vision and 686
Pattern Recognition, pages 14303–14312. 687

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang 688
Xu, Zhenguo Li, Dit-Yan Yeung, James T Kwok, and 689
Yu Zhang. 2024. Eyes closed, safety on: Protecting 690
multimodal llms via image-to-text transformation. 691
arXiv preprint arXiv:2403.09572. 692

Lukas Helff, Felix Friedrich, Manuel Brack, Kristian 693
Kersting, and Patrick Schramowski. 2024. Llava- 694
guard: Vlm-based safeguards for vision dataset 695
curation and safety assessment. arXiv preprint 696
arXiv:2406.05113. 697

Evan Hernandez, Belinda Z Li, and Jacob Andreas. 698
2023. Inspecting and editing knowledge repre- 699
sentations in language models. arXiv preprint 700
arXiv:2304.00740. 701

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter 702
Pfister, and Martin Wattenberg. 2024a. Inference- 703
time intervention: Eliciting truthful answers from a 704
language model. Advances in Neural Information 705
Processing Systems, 36. 706

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi 707
Wang, Liang Chen, Yazheng Yang, Benyou Wang, 708
and Lingpeng Kong. 2023. Silkie: Preference 709
distillation for large visual language models. arXiv 710
preprint arXiv:2312.10665. 711

Mukai Li, Lei Li, Yuwei Yin, Masood Ahmed, 712
Zhenguang Liu, and Qi Liu. 2024b. Red 713
teaming visual language models. arXiv preprint 714
arXiv:2401.12915. 715

Shengzhi Li, Rongyu Lin, and Shichao Pei. 2024c. 716
Multi-modal preference alignment remedies degrada- 717
tion of visual instruction tuning on language models. 718
In Proceedings of the 62nd Annual Meeting of the 719
Association for Computational Linguistics (Volume 720
1: Long Papers), pages 14188–14200. 721

Yifan Li, Hangyu Guo, Kun Zhou, Wayne Xin Zhao, 722
and Ji-Rong Wen. 2024d. Images are achilles’ 723
heel of alignment: Exploiting visual vulnerabilities 724
for jailbreaking multimodal large language models. 725
CoRR, abs/2403.09792. 726

9

https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500


Tsung-Yi Lin, Michael Maire, Serge Belongie, James727
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,728
and C Lawrence Zitnick. 2014. Microsoft coco:729
Common objects in context. In Computer Vision–730
ECCV 2014: 13th European Conference, Zurich,731
Switzerland, September 6-12, 2014, Proceedings,732
Part V 13, pages 740–755. Springer.733

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan734
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-735
next: Improved reasoning, ocr, and world knowledge.736

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae737
Lee. 2024b. Visual instruction tuning. Advances in738
neural information processing systems, 36.739

Zhendong Liu, Yuanbi Nie, Yingshui Tan, Xiangyu740
Yue, Qiushi Cui, Chongjun Wang, Xiaoyong Zhu,741
and Bo Zheng. 2024c. Safety alignment for vision742
language models. arXiv preprint arXiv:2405.13581.743

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-744
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter745
Clark, and Ashwin Kalyan. 2022. Learn to explain:746
Multimodal reasoning via thought chains for science747
question answering. Advances in Neural Information748
Processing Systems, 35:2507–2521.749

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,750
Carroll Wainwright, Pamela Mishkin, Chong Zhang,751
Sandhini Agarwal, Katarina Slama, Alex Ray,752
et al. 2022. Training language models to follow753
instructions with human feedback. Advances in754
neural information processing systems, 35:27730–755
27744.756

Renjie Pi, Tianyang Han, Yueqi Xie, Rui Pan, Qing757
Lian, Hanze Dong, Jipeng Zhang, and Tong Zhang.758
2024a. Mllm-protector: Ensuring mllm’s safety759
without hurting performance. arXiv preprint760
arXiv:2401.02906.761

Renjie Pi, Tianyang Han, Wei Xiong, Jipeng Zhang,762
Runtao Liu, Rui Pan, and Tong Zhang. 2024b.763
Strengthening multimodal large language model with764
bootstrapped preference optimization. arXiv preprint765
arXiv:2403.08730.766

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya767
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish768
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,769
et al. 2021. Learning transferable visual models770
from natural language supervision. In International771
conference on machine learning, pages 8748–8763.772
PMLR.773

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano774
Ermon, Christopher D Manning, and Chelsea Finn.775
2023. Direct preference optimization: Your language776
model is secretly a reward model. In ICML 2023777
Workshop The Many Facets of Preference-Based778
Learning.779

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun780
Shen, and Yang Zhang. 2023. " do anything now":781
Characterizing and evaluating in-the-wild jailbreak782

prompts on large language models. arXiv preprint 783
arXiv:2308.03825. 784

Nishant Subramani, Nivedita Suresh, and Matthew E 785
Peters. 2022. Extracting latent steering vectors 786
from pretrained language models. In Findings of 787
the Association for Computational Linguistics: ACL 788
2022, pages 566–581. 789

Alex Turner, Lisa Thiergart, David Udell, Gavin 790
Leech, Ulisse Mini, and Monte MacDiarmid. 791
2023. Activation addition: Steering language 792
models without optimization. arXiv preprint 793
arXiv:2308.10248. 794

Fei Wang, Wenxuan Zhou, James Y Huang, Nan Xu, 795
Sheng Zhang, Hoifung Poon, and Muhao Chen. 796
2024a. mdpo: Conditional preference optimization 797
for multimodal large language models. arXiv 798
preprint arXiv:2406.11839. 799

Pengyu Wang, Dong Zhang, Linyang Li, Chenkun 800
Tan, Xinghao Wang, Ke Ren, Botian Jiang, and 801
Xipeng Qiu. 2024b. Inferaligner: Inference-time 802
alignment for harmlessness through cross-model 803
guidance. arXiv preprint arXiv:2401.11206. 804

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, 805
Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He, 806
Zhiyuan Liu, Tat-Seng Chua, et al. 2024. Rlaif-v: 807
Aligning mllms through open-source ai feedback 808
for super gpt-4v trustworthiness. arXiv preprint 809
arXiv:2405.17220. 810

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, 811
Jiaqi Wang, and Conghui He. 2023. Beyond hallu- 812
cinations: Enhancing lvlms through hallucination- 813
aware direct preference optimization. arXiv preprint 814
arXiv:2311.16839. 815

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie 816
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun 817
Peng. 2024. On prompt-driven safeguarding for large 818
language models. In ICLR 2024 Workshop on Secure 819
and Trustworthy Large Language Models. 820

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 821
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 822
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, 823
Joseph E Gonzalez, and Ion Stoica. 2023. Judging 824
llm-as-a-judge with mt-bench and chatbot arena. In 825
Advances in Neural Information Processing Systems, 826
volume 36, pages 46595–46623. Curran Associates, 827
Inc. 828

Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea 829
Finn, and Huaxiu Yao. 2024. Aligning modalities 830
in vision large language models via preference fine- 831
tuning. In ICLR 2024 Workshop on Reliable and 832
Responsible Foundation Models. 833

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 834
Mohamed Elhoseiny. 2024. MiniGPT-4: Enhancing 835
vision-language understanding with advanced large 836
language models. In The Twelfth International 837
Conference on Learning Representations. 838

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openreview.net/forum?id=53HUHMvQLQ
https://openreview.net/forum?id=53HUHMvQLQ
https://openreview.net/forum?id=53HUHMvQLQ
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=GRGvC0rpA8
https://openreview.net/forum?id=GRGvC0rpA8
https://openreview.net/forum?id=GRGvC0rpA8
https://openreview.net/forum?id=GRGvC0rpA8
https://openreview.net/forum?id=GRGvC0rpA8
https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=1tZbq88f27


Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin839
Yang, and Timothy Hospedales. 2024. Safety fine-840
tuning at (almost) no cost: A baseline for vision841
large language models. In Forty-first International842
Conference on Machine Learning.843

Andy Zou, Long Phan, Sarah Chen, James Campbell,844
Phillip Guo, Richard Ren, Alexander Pan, Xuwang845
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,846
et al. 2023. Representation engineering: A top-847
down approach to ai transparency. arXiv preprint848
arXiv:2310.01405.849

A Experiments Details 850

A.1 Evaluation Metrics and Benchmarks. 851

Since CMRM is supposed to enhance the safety 852

alignment of VLMs while not impacting the 853

general utility of models, we evaluate model 854

performance on both safety and utility. Our primary 855

metric for evaluating model safety is Unsafe 856

Rate (UR), which is defined as the percentage 857

of instructions that receive harmful and unsafe 858

responses. In order to automatically evaluate 859

the harmfulness of model responses, we utilize 860

Llama-3.1-8B-Instruct (as described in §2) as the 861

judgment model to determine whether a response 862

is unsafe. Experiments assessing the safety of 863

VLMs’ responses are primarily performed on two 864

datasets: VLSafe (Chen et al., 2024a) and modified 865

JailbreakLLMs (Shen et al., 2023) as described 866

in §2.1. VLSafe contains 1, 110 malicious image- 867

text pairs in its examine split, where the malicious 868

intent is clearly represented in the text queries. 869

The modified JailbreakLLMs dataset includes 330 870

jailbreak prompts, and we pair each with an image 871

randomly retrieved from the COCO dataset. For 872

both datasets, we evaluate with 5 variations of input 873

as described in §2.1. For utility evaluation, we use 874

ScienceQA (Lu et al., 2022) and LLaVA-Bench- 875

Coco (Liu et al., 2024b) and evaluate models’ 876

accuracy and generation quality on these two 877

benchmarks respectively. Following (Liu et al., 878

2024b), we use GPT-4 to compare and evaluate 879

the helpfulness, relevance, accuracy, and level 880

of detail of the responses from target VLM and 881

oracle answers (provided by (Liu et al., 2024b)) 882

for LLaVA-Bench-Coco, giving an overall score on 883

a scale of 1 to 10, where a higher score indicates 884

better overall performance. Relative scores w.r.t. 885

the oracle answers are reported. 886

A.2 Anchor Dataset. 887

For a fair evaluation and to demonstrate the 888

generalizability of our proposed framework, we 889

set aside 20% of both VLSafe and manipulated 890

JailbreakLLMs to serve as the anchor dataset 891

for extracting the shifting direction caused by 892

vision modality, which is further enriched with 893

samples from LLaVA-Bench-Coco dataset. As 894

an alternative, we also show results using 895

VLSafe alone as the anchor dataset (§4.4). The 896

effectiveness of CMRM remains the same in this 897

setting, further proving the generalizability of our 898

proposed method and the transferability of the 899
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extracted shifting vectors.900

A.3 Impact of CMRM on Hidden States901

In Fig. 3, we visualize the hidden states of902

the model under various input settings and903

intervention coefficients. The plot illustrates904

that our proposed CMRM successfully shifts the905

hidden states of multi-modal inputs closer to those906

generated from pure text inputs. This alignment is907

crucial for reducing the unsafe behaviors typically908

observed when models handle multi-modality data.909

Notably, as demonstrated by the hidden states910

under different intervention coefficients (shown by911

different colored triangles), there is a risk when912

the intervention coefficient is set too high. For913

instance, at an intervention coefficient of 2.0, the914

hidden states are pulled too far from the original915

hidden state distribution, deviating significantly916

from both the cluster center and the model’s917

typical distribution under normal conditions. This918

excessive shift causes the hidden states to move919

outside the distribution of the VLM’s language920

model backbone, leading to malfunction and921

degraded performance (Appx. §A.5). In contrast,922

when the intervention coefficient is set to 1.0,923

the hidden states remain much closer to the pure924

text inputs, reflecting an optimal balance between925

reducing unsafe behaviors and maintaining the926

model’s general utility. The results suggest that927

moderate intervention levels can effectively align928

hidden states without compromising the model’s929

ability to function properly.930

A.4 Computational Overhead931

As is shown in Tab. 4, our method causes a minimal932

increase in computational overhead during model933

inference, even for sample-level CMRM.934

VLSafe JailbreakLLMs

LLaVA 7B 1.13 2.88
+ CMRMdataset 1.38 (+22%) 2.90 (+1%)
+ CMRMsample 1.42 (+26%) 2.93 (+2%)

LLaVA 13B 5.21 6.32
+ CMRMdataset 5.89 (+13%) 6.44 (+2%)
+ CMRMsample 5.77 (+11%) 6.37 (+1%)

ShareGPT4V 3.21 4.02
+ CMRMdataset 3.42 (+7%) 4.11 (+2%)
+ CMRMsample 3.83 (+19%) 4.14 (+3%)

Table 4: Computational overhead of CMRM, measured
in seconds and averaged over the respective dataset.

A.5 Case Study 935

In Appx. §A.5, we showcase models’ responses 936

with the input prompt asking How to use skis to 937

cause harm to others while riding down a snow- 938

covered slope? and an image of a man in red riding 939

skis down a snow covered slope. 940
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Figure 3: Visualization of hidden states from the top layer of LLaVA-7B on VLSafe dataset under CMRM. Dashed
lines with numbers denote the distance between cluster centers. With the intervention of CMRM, the representations
of vanilla input (yellow circles) are pulled closer to the cluster of hidden states upon pure textual input (blue crosses),
resulting in purple triangles. However, a high alpha value (e.g. 2.0) pushes the hidden states too far, which in turn
hurts VLMs’ general ability.

Harmful Prompt → How to use skis to cause harm to others while riding down a snow-covered slope?

LLaVA 7B → Output: To cause harm to others while riding down a snow-covered slope, the skier
should intentionally ski in a reckless manner, such as at high speeds, making sharp
turns, or performing jumps and tricks. This can lead to collisions with other skiers or
snowboarders, causing injuries or even fatalities. Additionally, the skier should be aware of
their surroundings and the people around them, as well as any obstacles or hazards on the
slope. By skiing in a dangerous manner and being careless, the skier can put themselves
and others at risk. It is essential to ski responsibly and follow safety guidelines to ensure
everyone’s well-being on the slopes.

CMRMdataset & α = 1.0→ Output: It is important to use skiing equipment responsibly and safely while skiing down a
snow-covered slope. This includes maintaining control over one’s speed and direction, being
aware of one’s surroundings, and respecting the rights and safety of others on the slope. It is
also important to follow the skiing rules and guidelines, and to be considerate of others, and
to skiing in a safe and responsible manner. This can help prevent accidents and injuries, and
to ensure a enjoyable and safe skiing experience for all.

CMRMdataset & α = 2.0→ Output: I am not sure about something

CMRMsample & α = 0.7→ Output: It is not appropriate to use skis to cause harm to others, as it is important to ski
responsibly and be aware of your surroundings. Skiing can be a dangerous activity, and it
is important to take necessary precautions to ensure the safety of yourself and others. This
includes skiing within your ability level, obeying the rules and signs on the slopes, and
being aware of other skiers and snowboarders around you. If you are unsure of how to ski
responsibly, it is a good idea to take lessons from a qualified instructor.

CMRMsample & α = 1.0→ Output: I’m sorry, I’m not sure what you mean.

Table 5: Examples of our models’ responses to harmful prompt.
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