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Abstract

The recent success of State-Space Models (SSMs) in sequence modeling has1

inspired their adaptation to graph learning. We propose the Message-Passing2

State-Space Model (MP-SSM), which embeds modern SSM principles directly3

into the Message-Passing Neural Network (MPNN) framework. This yields a4

unified methodology for learning on both static and temporal graphs, preserving5

permutation equivariance and enabling efficient long-range information propa-6

gation. Crucially, MP-SSM supports exact sensitivity analysis, allowing us to7

characterize representational bottlenecks such as vanishing gradients and over-8

squashing in deep regimes. By combining the representational advantages of SSMs9

with the structural inductive biases of message passing, MP-SSM contributes to10

a broader effort of unifying learning principles across architectures. Experiments11

across synthetic, heterophilic, and spatiotemporal benchmarks demonstrate that12

our framework produces representations that are both theoretically interpretable13

and empirically strong. In this sense, MP-SSM provides new insights into the con-14

ditions under which distinct neural models converge toward similar representations,15

advancing the theme of representational unification.16

1 Introduction17

Graph Neural Networks (GNNs), especially Message-Passing Neural Networks (MPNNs), have18

become a staple in learning from graph-structured data. However, traditional MPNNs like GCNs19

[61] face challenges in propagating information across distant nodes due to issues such as over-20

squashing [2, 106, 27] and vanishing gradients [27, 84, 3], which hinder performance in tasks21

requiring long-range dependency modeling [32]. While various strategies, such as rewiring [106,22

60, 49], transformers [64, 119, 88, 33, 31], and weight-space regularization [43, 44], have been23

proposed to improve signal propagation, a principled and simple solution remains elusive, since most24

aforementioned methods require substantial architectural modifications and cannot be seamlessly25

applied to traditional MPNNs like GCN [61]. In parallel, recent breakthroughs in sequence modeling26

using State-Space Models (SSMs), e.g., LRU [81], S4 [46], and extensions [98, 48, 87, 38], have led27

to advanced architectures like Mamba [45], Griffin [25], and xLSTM [9]. These models consist of28

stacked recurrent seq2seq blocks, moving nonlinearities outside the recurrence [4] and interleaving29

them with multilayer perceptrons (MLPs), enabling long-range dependency modeling, stable gradient30

flow, efficient training, and universal approximation [80, 77]. This design balances short-term31

memory retention [59] and nonlinear expressivity [58, 24], a trade-off critical to learn long-term32

dependencies while representing complex nonlinear relationships within data [85, 110]. Inspired33

by these advances, researchers have begun adapting SSMs for graph learning. Some approaches34

adopt spectral methods [57], while others transform graphs into sequences for SSM processing35

[104, 111, 10], often compromising permutation-equivariance [14] or graph topology. Alternatives36

like GrassNet [122] rely on spectral decompositions with non-unique modes [69], limiting generality.37
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Figure 1: Illustration of our MP-SSM for temporal and static cases, considering a recurrence time
k + 1 = 3. The temporal case (left) incorporates dynamic updates to node embeddings over time
steps, represented as U = [U1,U2,U3], while the static case (right) uses fixed node embeddings
U = [U1,U1,U1]. An MP-SSM block comprises a linear recurrence followed by a multilayer
perceptron (MLP). Multiple MP-SSM blocks are stacked to construct a deep MP-SSM architecture.

A comprehensive review of related work is provided in Appendix A. We propose a novel approach38

that unifies the representational strengths of MPNNs and SSMs by embedding modern state-space39

heuristics directly into message passing, yielding a principled framework for both static and temporal40

graphs and providing new insights into when distinct neural architectures converge toward similar41

internal representations.42

Contributions. Our work introduces the Message-Passing State-Space Model (MP-SSM):43

1. Unified framework: Integrates SSMs into MPNNs, preserving permutation equivariance44

and enabling efficient long-range propagation on both static and temporal graphs.45

2. Theoretical guarantees: Supports exact Jacobian-based sensitivity analysis, offering precise46

insights into vanishing gradients and over-squashing.47

3. Empirical performance: Achieves state-of-the-art results across synthetic, heterophilic,48

and spatio-temporal benchmarks, with runtime comparable to GCNs.49

2 Message-Passing State-Space Model50

We propose the Message-Passing State-Space Model (MP-SSM), which embeds modern SSM princi-51

ples into message passing. An MP-SSM block consists of a linear state-space recurrence on graphs52

followed by a graph-agnostic MLP, enabling efficient long-range propagation and parallelization.53

Due to its popularity and simplicity, we use the symmetrically normalized adjacency with self-loops54

[61] as graph shift operator (GSO), for our analysis. However, our framework seamlessly extends to55

any GSO.56

Central to our contribution is a linear recurrence over the GSO followed by a shared MLP layer as57

readout layer. Precisely, we define a block of MP-SSM as a seq2seq model mapping input features58

Ut ∈ Rn×c′ into output states Yt ∈ Rn×c as59

Xt+1 = AXtW +Ut+1B, t = 0, . . . , k, (1)
Yt+1 = MLP(Xt+1), (2)

where Xt ∈ Rn×c are the hidden states, W,B are learnable weight matrices, and k is an hyperpa-60

rameter defining the depth of the recurrence. This purely linear recurrence enables exact sensitivity61

analysis and closed-form parallel implementation. In Appendix E, we describe our fast implemen-62

tation, discussing both its advantages and limitations, and provide a runtime comparison with a63

standard GCN, showing that MP-SSM can achieve up to a 1000× speedup. For temporal graphs,64

U = [U1, . . . ,Uk+1]; for static graphs, U = [U1, . . . ,U1], ensuring a unified treatment, see Figure65
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1. Nonlinearity appears only in the MLP, simplifying analysis and computation. In Appendix F66

we discuss the originality of our method in relation to recent temporal graph that use a state-space67

modeling approach, like GGRNN [90] and GraphSSM [66].68

We stack more MP-SSM blocks to develop a hierarchy of representations. Stacking s blocks of69

depth k yields an effective receptive field of sk hops, supporting stable long-range aggregation. In70

Appendix G, we provide a multi-hop interpretation of a deep MP-SSM architecture, in the static case.71

Note that, due to our GSO choice, MP-SSM reduces to a residual GCN when k = 1 , see Appendix72

B, but generalizes beyond it for k ≥ 2. Standard deep learning heuristics (residuals, normalization,73

dropout) can be applied between blocks, following modern SSM design. Appendix H presents an74

ablation study tracing the incremental impact of each SSM heuristic on graph representation learning,75

progressing from a plain GCN to a deep MP-SSM architecture. Finally, we discuss the complexity76

and runtimes of MP-SSM in Appendix I.77

3 Sensitivity Analysis78

A key advantage of MP-SSM is that its purely linear recurrence allows an exact characterization of79

gradient flow via Jacobians. For node j at step s and node i at step t ≥ s, the Jacobian of the linear80

recurrent equation of an MP-SSM block is exactly the following:81

∂X
(i)
t

∂X
(j)
s

= (At−s)ij︸ ︷︷ ︸
scalar

(W⊤)t−s︸ ︷︷ ︸
matrix

. (3)

This closed form enables precise analysis of stability and information transfer, allowing us to reason82

around key challenges in graph learning like over-squashing and vanishing gradients, see Appendix C83

for a full theoretical analysis. In particular, we can compute a lower bound for the spectral norm of84

the Jacobian of (3) as follows:85

2

|V |+ 2|E|
||Wt−s|| ≤ min

i,j

∥∥∥∥∥ ∂X(i)
t

∂X
(j)
s

∥∥∥∥∥, (4)

where |V | and |E| denotes number of vertices and edges, respectively.86

Regarding over-squashing, we find a class of graph topologies that realise the lower bound in (4), thus87

representing the worst-case scenario for transferring information. Regarding vanishing gradients, we88

estimate that a k-layer GCN vanishes 2−k/2 faster than an MP-SSM block of depth k. For detailed89

statements of the theorems, assumptions, and proofs, see Appendix C.90

Overall, MP-SSM provides a principled theoretical foundation, exact Jacobian computation, provable91

stability, and precise reasoning about over-squashing and vanishing gradients.92

4 Experiments93

We evaluate MP-SSM on static graphs (synthetic shortest-path tasks, Section 4.1 and Appendix K),94

temporal graphs (spatio-temporal forecasting, Section 4.2 and Appendix L), as well as heterophilic95

(Appendix N) and long-range real-world benchmarks (Appendix M).96

4.1 Graph Property Prediction97
Table 1: Mean log10(MSE)(↓) and std averaged on 4 ran-
dom weight initializations. First, second, and third best
results for each task are color-coded.

Model Diameter SSSP Eccentricity

MPNNs
A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

Transformers
GPS -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Ours
MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

We evaluate MP-SSM on three synthetic98

tasks from [43], graph diameter, SSSP,99

and node eccentricity, requiring long-100

range information flow. Using the orig-101

inal setup and hyperparameters, Table 1102

shows MP-SSM outperforms all base-103

lines, gaining 2.4 points on average, sur-104

passing A-DGN by 3.4 points on eccen-105

tricity and exceeding its GCN backbone106

by over 4 points, demonstrating superior107

long-range propagation.108
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Table 2: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
First, second, and third best results for each task are color-coded. Baseline results are reported from
[94, 70, 39, 36, 121].

Model Metr-LA PeMS-Bay

MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓
Graph Agnostic
HA 6.99 13.89 17.54% 3.31 7.54 7.65%
FC-LSTM 4.37 8.69 14.00% 2.37 4.96 5.70%
SVR 6.72 13.76 16.70% 3.28 7.08 8.00%
VAR 6.52 10.11 15.80% 2.93 5.44 6.50%

Temporal GNNs
AdpSTGCN 3.40 7.21 9.45% 1.92 4.49 4.62%
ASTGCN 6.51 12.52 11.64% 2.61 5.42 6.00%
DCRNN 3.60 7.60 10.50% 2.07 4.74 4.90%
GMAN 3.44 7.35 10.07% 1.86 4.32 4.37%
Graph WaveNet 3.53 7.37 10.01% 1.95 4.52 4.63%
GTS 3.46 7.31 9.98% 1.95 4.43 4.58%
MTGNN 3.49 7.23 9.87% 1.94 4.49 4.53%
RGDAN 3.26 7.02 9.73% 1.82 4.20 4.28%
STAEformer 3.34 7.02 9.70% 1.88 4.34 4.41%
STD-MAE 3.40 7.07 9.59% 1.77 4.20 4.17%
STEP 3.37 6.99 9.61% 1.79 4.20 4.18%
STGCN 4.59 9.40 12.70% 2.49 5.69 5.79%
STSGCN 5.06 11.66 12.91% 2.26 5.21 5.40%

Temporal Graph SSMs
GGRNN 3.88 8.14 10.59% 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% 1.98 4.45 4.77%

Ours
MP-SSM 3.17 6.86 9.21% 1.62 4.22 4.05%

4.2 Spatio-Temporal Forecasting109

We report here a thorough evaluation of MP-SSM on two popular forecasting datasets, Metr-LA and110

PeMS-Bay [68], and additional results are provided in Appendix L further three spatio-temporal111

forecasting benchmarks, namely Chickenpox Hungary, PedalMe London, and Wikipedia math [89].112

The aim is to predict future node values from time-series data using original dataset settings. Across113

both datasets, MP-SSM outperforms existing temporal GNNs, including state-space models GGRNN114

[90] and GraphSSM [66], highlighting its effectiveness in modeling spatial-temporal dependencies115

and versatility across static and temporal graph domains.116

Full details of the hyperparameter settings for all experiments are described in Appendix O.3. We117

emphasize that, unlike most state-of-the-art graph models, MP-SSM runs at a speed comparable to118

that of a standard GCN (see runtime and complexity analyses in Appendix I), even without leveraging119

the optimized implementation discussed in Appendix E.120

5 Conclusions121

We introduced the Message-Passing State-Space Model (MP-SSM), a framework that unifies modern122

state-space sequence modeling with message passing on graphs. By embedding SSM principles into123

MPNNs, MP-SSM achieves efficient and stable information propagation, supports exact sensitivity124

analysis, and applies broadly across static and temporal domains. Beyond performance gains, our125

work highlights the representational commonalities between sequence and graph models, illustrating126

how both families capture dependencies through analogous mechanisms of recurrence and aggre-127

gation, despite operating on different data domains. This connection aligns with the broader goal128

of understanding and unifying neural representations across domains, offering insights into how129

principles from sequence models can inform graph learning and vice versa.130
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A Related Works520

Learning Long-Range Dependencies on Graphs. While GNNs effectively model local structures521

via message passing, they struggle with long-range dependencies due to over-squashing and vanishing522

gradients [2, 27]. Standard models like GCN [61], GraphSAGE [50], and GIN [118] suffer from523

degraded performance on tasks requiring global context [5, 32], especially in heterophilic graphs [72,524

112]. Solutions include graph rewiring [106, 60], weight-space regularization [43, 44], and physics-525

inspired dynamics [54]. Graph Transformers (GTs) like SAN [64], Graphormer [119], and GPS526

[88] enhance expressivity using structural encodings [33, 31], but suffer from quadratic complexity.527

Scalable alternatives include sparse and linearized attention mechanisms [120, 21, 97, 96, 115, 26],528

though simple MPNNs often remain competitive [105].529

Learning Spatio-Temporal Interactions on Graphs. Temporal GNNs often combine GNNs with530

RNNs to model spatio-temporal dynamics [42]. Some adopt stacked architectures that separate531

spatial and temporal processing [92, 83, 82, 6, 22], while others integrate GNNs within RNNs for532

joint modeling [65, 17, 68, 23, 90]. Our approach follows the latter, but goes further by embedding533

modern SSM principles directly into the GNN architecture, unifying spatial and temporal reasoning534

through linear recurrence. This contrasts with GGRNN [90], which employs a more elaborate535

message-passing scheme involving nonlinear aggregation over multiple powers of the graph shift536

operator at each recurrent step.537

Casting State-Space Models into Graph Learning. Several recent models adopt SSMs for538

static graphs by imposing sequential orderings, e.g., via degree-based sorting [111] or random539

walks [10], often sacrificing permutation-equivariance. Spectral methods [57] offer alternatives but540

are computationally demanding and prone to over-squashing [27]. In the temporal graph setting,541

GraphSSM [66] applies the diffusive dynamics of a GNN backbone first, followed by an SSM as542

a post-processing module. In contrast, our approach embeds the core principles of modern SSMs543

directly into the graph learning process, yielding a unified framework that seamlessly supports both544

static and temporal graph modeling—while maintaining permutation equivariance, computational545

efficiency, and supporting parallel implementation.546

B MP-SSM generalizes MPNNs.547

We note that our MP-SSM can implement its backbone MPNN, an important property that allows it548

to retain desired or known behavior from existing MPNNs while also generalizing it and allowing for549

improved information transfer, as discussed in Section 3. To show that our model can implement its550

backbone MPNN, which in our case is based on GCN via the chosen GSO, we consider the static case,551

i.e., an input sequence [U1, . . . ,U1], under the assumption that the MLP is a nonlinear activation σ552

function. We note that this can be obtained if the weights within the MLP decoder are the identity553

matrices, i.e., MLP(·) = σ(·). Then an MP-SSM block with k = 1 yields a GCN layer. In fact, if554

k = 1 then Equations (1) and (2) read:555

X1 = U1B ⇒ X2 = AU1BW +U1B = AX1W +X1 ⇒ Y2 = σ(AX1W +X1),

which implements a GCN with a residual connection. Then Y2 is passed as an input to the next556

MP-SSM block, which yields a similar update rule, effectively constructing a deep GCN. However,557

we note that if k ≥ 2, then an MP-SSM block deviates from the standard GCN processing.558

C Detailed Sensitivity Analysis559

We conduct a sensitivity analysis of MP-SSM via the spectral norm of the Jacobian of node features,560

as in [106]. We provide an exact characterization of MP-SSM’s gradient flow through the graph,561

identify unfavourable topological structures that intensify oversquashing effects, and quantitatively562

assess the impact of removing nonlinearities at each recurrent step of graph diffusion, particularly in563

alleviating vanishing gradients in the deep regime.564

Remark C.1. If the GSO is the identity matrix (A = I), then stacking s MP-SSM blocks with one565

recurrence each (k = 1) results in a deep MLP of depth 2s. This feedforward architecture is graph-566

agnostic, and it can be made resilient to vanishing and exploding gradient issues through standard567

deep learning heuristics such as residual connections [52] and normalization layers [108], with568
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dropout being employed as a regularization technique to support the learning of robust hierarchical569

representations [101]. In our deep MP-SSM architecture, we apply these heuristics between MP-SSM570

blocks, following established practices in SSMs [46, 45]. Thus, MP-SSM extends graph-agnostic571

deep feedforward networks, for which established deep learning heuristics are known to effectively572

address vanishing/exploding gradient issues. This observation motivates our focus for sensitivity573

analysis on the linear recurrent equation within an MP-SSM block, as it encapsulates the core574

dynamics relevant to information propagation on graphs. Notably, all the other operations within575

a deep MP-SSM are independent of the graph structure. Thus, if the linear recurrent equation576

supports effective information transfer, then this property naturally extends across the full577

MP-SSM architecture, which is fundamentally a stack of such linear recurrences.578

Let X(j)
s and X

(i)
t denote the embeddings of nodes j and i at time steps s ≤ t. We define:579

Definition C.2 (Local sensitivity). The local sensitivity of the features of the i-th node to features of580

the j-th node, after t− s applications of message-passing aggregations, is defined as the following581

spectral norm:582

Sij(t− s) =

∣∣∣∣∣
∣∣∣∣∣ ∂X(i)

t

∂X
(j)
s

∣∣∣∣∣
∣∣∣∣∣. (5)

Equation (5) measures the influence of node j’s features at time s on node i at time t.583

Remark C.3. If the local sensitivity between two nodes increases exponentially with t− s, then the584

learning dynamics of the MPNN are unstable; that is the typical case for linear MPNNs using the585

adjacency matrix without any normalization or feature normalization. Therefore, upper bounds on586

local sensitivity are linked with stable message propagation, in the deep regime.587

The linearity of the recurrence of an MP-SSM block allows an exact computation of the Jacobian588

between two nodes j, i at different times s, t, in terms of the powers of the GSO, as expressed by589

Equation (6) in Theorem C.4 (for the proof, see Appendix D.2).590

Theorem C.4 (Exact Jacobian computation in MP-SSM). The Jacobian of the linear recurrent591

equation of an MP-SSM block, from node j at layer s to node i at layer t ≥ s, can be computed592

exactly, and it has the following form:593

∂X
(i)
t

∂X
(j)
s

= (At−s)ij︸ ︷︷ ︸
scalar

(W⊤)t−s︸ ︷︷ ︸
matrix

. (6)

Consequently, GSOs that yield a bounded outcome under iterative multiplication promote stable MP-594

SSM dynamics, as highlighted in Remark C.3. In Lemma C.5, we formally prove (see Appendix D.1)595

that the symmetrically normalized adjacency with self-loops exhibits this stability property, along596

with additional characteristics1 that support our theoretical analysis.597

Lemma C.5 (Powers of symmetrically normalized adjacency with self-loops). Assume an undirected598

graph. The spectrum of the powers of the symmetric normalized adjacency matrix A = D− 1
2 (Ã+599

I)D− 1
2 is contained in the interval [−1, 1]. The largest eigenvalue of At has absolute value of 1600

with corresponding eigenvector d = diag(D
1
2 ), for all t ≥ 1. In particular, the sequence of powers601

[At]t≥1 does not diverge or converge to the null matrix.602

Thus, Lemma C.5 implies that the symmetrically normalized adjacency with self-loops serves as603

a GSO that ensures stable dynamics when performing a large number of message-passing opera-604

tions in the MP-SSM’s framework. Moreover, for such a particular GSO, we can derive a precise605

approximation of the local sensitivity in the deep regime, as stated in Theorem C.6 and proved in606

Appendix D.3.607

Theorem C.6 (Approximation deep regime). Assume a connected graph, and the symmetrically608

normalized adjacency with self-loops as GSO. Then, for large values of t− s, the Jacobian of the609

linear recurrent equation of an MP-SSM block, from node j at layer s to node i at layer t ≥ s, admits610

the following approximation:611

∂X
(i)
t

∂X
(j)
s

≈
√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s, (7)

1Similar characteristics of the symmetrically normalized adjacency with self-loops have also been discussed
in [79].
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where dl =
∑n

j=1(Ã)lj is the degree of the l-th node.612

For the case of the symmetrically normalized adjacency with self-loops as GSO, we can find a precise613

lower bound for the minimum local sensitivity among all possible pairs of nodes in the graph, in the614

deep regime (proof in Appendix D.4).615

Corollary C.7 (Lower bound minimum sensitivity). Assume a connected graph, and the symmetri-616

cally normalized adjacency with self-loops as GSO. Then, for large values of t − s, the following617

lower bound for the minimum local sensitivity of the linear recurrent equation of an MP-SSM block618

holds:619
2

|V |+ 2|E|
||Wt−s|| ≤ min

i,j
Sij(t− s). (8)

The minimum local sensitivity is realized for pairs of nodes among which the transfer of information620

is the most critical due to the structure of the graph. Therefore, lower bounds on the minimum621

local sensitivity are linked to the alleviation of over-squashing. Rewiring techniques are known to622

help combating this phenomenon [27]. Corollary C.7 proves that, without rewiring, MP-SSM can623

deal with over-squashing by increasing the norm of the recurrent weight matrix. In Remark C.8, we624

construct an example of a topology that approaches the lower bound of Equation (8), thus realising a625

worst case scenario due to over-squashing.626

Remark C.8 (Bottleneck Topologies). A chain of m cliques of order d represents a topology realising627

a bad scenario for Equation (7), since local sensitivity can reach values as low as
1

md2
, scaling on628

long chains and large cliques, see Appendix D.3.1 for details. This effect is intrinsically tied to629

the specific topology of the graph, and it aligns with prior studies that emphasize the challenges of630

learning on graphs with bottleneck structures [106].631

To assess the overall gradient information flow across the entire graph in the deep regime, we define:632

Definition C.9 (Global sensitivity). The global sensitivity of node features of the overall graph after633

t− s hops of message aggregation is defined as:634

S(t− s) = max
i,j

Sij(t− s). (9)

Remark C.10. The local sensitivity between two far-apart nodes can be physiologically small due635

to the particular topology of the graph (e.g. bottlenecks), or it can be even 0 if two nodes are not636

connected by any walk. However, if the local sensitivity converges to 0, in the deep regime of637

large t − s, for all the pairs of nodes, i.e., if the global sensitivity converges to 0 regardless of the638

particular topology of the graph, then it means that the MPNN model is characterized by a vanishing639

information flow. Therefore, lower bounds on global sensitivity are linked to the alleviation of640

vanishing gradient issues, in the deep regime.641

For connected graphs, we can leverage the exact Jacobian computation of Theorem C.4 to prove the642

following lower bound on the global sensitivity, see Appendix D.5 for the proof.643

Theorem C.11 (Lower bound global sensitivity). Assume a connected graph. The global sensitivity644

of the linear recurrent equation of an MP-SSM block is lower bounded as follows:645

ρ(A)t−s

|V |
||Wt−s|| ≤ S(t− s), (10)

where ρ(A) is the spectral radius of the GSO. Thus, for the symmetrically normalized adjacency with646

self-loops, it holds the lower bound
1

|V |
||Wt−s|| ≤ S(t− s).647

This theoretical result demonstrates that MP-SSM ensures values of the global sensitivity strictly648

greater than zero, for any depth t− s and for connected graphs with any number of nodes. This result649

cannot be guaranteed in a standard MPNN, as the nonlinearity applied at each time step increasingly650

contributes to vanish information as the depth increases. We provide an extended discussion about651

this point in Appendix J.652

Remark C.12. Note that both results of Equation (6) and Equation (10) hold for any GSO. However,653

for the particular case of the symmetrically normalized adjacency with self-loops, we can provide654

more precise approximations and bounds.655
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From Section B, we know that MP-SSM generalizes its backbone MPNNs, and the GCN architecture656

in particular when using the symmetrically normalized adjacency with self-loops as GSO. In Theo-657

rem C.13, we provide an estimation of the vanishing effect caused by the application at each time658

step of a ReLU nonlinearity in a standard GCN compared with our MP-SSM, in the deep regime, as659

we prove in Appendix D.6.660

Theorem C.13 (GCN vanishes more than MP-SSM). Let us consider a GCN network that aggregates661

information from k hops away, i.e., with k layers, equipped with the ReLU activation function. Then,662

the GCN vanishes information at a 2−
k
2 faster rate than our MP-SSM block with k linear recurrent663

steps.664

D Proofs665

Here, we provide all the proofs of lemmas, theorems, and corollaries stated in the main text.666

D.1 Proof of Lemma C.5667

Lemma. Assume an undirected graph. The spectrum of the powers of the symmetric normalized668

adjacency matrix A = D− 1
2 (Ã+ I)D− 1

2 is contained in the interval [−1, 1]. The largest eigenvalue669

of At has absolute value of 1 with corresponding eigenvector d = diag(D
1
2 ), for all t ≥ 1. In670

particular, the sequence of powers [At]t≥1 does not diverge or converge to the null matrix.671

Proof. At =
(
D− 1

2 (Ã + I)D− 1
2

)(
D− 1

2 (Ã + I)D− 1
2

)
. . .
(
D− 1

2 (Ã + I)D− 1
2

)
= D− 1

2 (Ã +672

I)
(
D−1(Ã + I)

)t−1

D− 1
2 . Now, D−1(Ã + I) is a stochastic matrix, and so also its powers are673

stochastic matrices. Therefore, D− 1
2AtD

1
2 =

(
D−1(Ã + I)

)t
is a stochastic matrix. The eigen-674

values of a stochastic matrix are contained in the closed unitary disk [75, 8]. Let, λ1, . . . , λn all the675

eigenvalues (not necessarily distinct) of such a stochastic matrix, with corresponding eigenvectors676

v1, . . . ,vn. Thus, D− 1
2AtD

1
2vl = λlvl, from which it follows, multiplying both sides by D

1
2 ,677

that AtD
1
2vl = λlD

1
2vl. This means that the eigenvalues of At are exactly the same of those of678

the stochastic matrix D− 1
2AtD

1
2 with eigenvectors D

1
2v1, . . . ,D

1
2vn, for all t. In particular, the679

assumption of undirected graph implies A is a symmetric matrix, thus we get that all eigenvalues of680

At are real and contained inside [−1, 1], for all t. Since the spectral radius of a stochastic matrix is 1,681

and the vector 1 with all components equal to 1 is necessarily an eigenvector due to the row-sum being682

1 for a stochastic matrix, then it follows that the largest eigenvalue of At is 1 and d = diag(D
1
2 ) is683

an eigenvector corresponding to eigenvalue 1, for all t.684

To see why the sequence of powers [At]t≥1 does not diverge or converge to the null matrix, we685

observe that, since A is symmetric, the Spectral Theorem implies we can diagonalize in R the matrix686

A = QΛQ⊤ with Q orthogonal matrix and Λ diagonal matrix of real eigenvalues. Powers of A can687

be written as At = (QΛQ⊤)(QΛQ⊤) . . . (QΛQ⊤) = QΛtQ⊤. Thus the eigenvalues of At are688

λt
l , for l = 1, . . . , n. We already proved that the eigenvalues λn ≤ . . . ≤ λ1 are contained in the689

real interval [−1, 1]. Hence, this ensures that the sequence of powers cannot diverge. On the other690

hand, we can spectrally decompose symmetric matrices as follows [51], At =
∑n

l=1 λ
t
lqlq

⊤
l , where691

ql is the eigenvector corresponding to the eigenvalue λl. Thus, for large values of t, the spectral692

components corresponding to eigenvalues strictly less than 1 in absolute value vanish, so the matrix693

At approaches the sum of terms corresponding to eigenvalues with absolute value equal to 1. This694

proves that the sequence of powers cannot converge to the null matrix.695

D.2 Proof of Theorem C.4696

Theorem. The Jacobian of the linear recurrent equation of an MP-SSM block, from node j at layer697

s to node i at layer t ≥ s, can be computed exactly, and it has the following form:698

∂X
(i)
t

∂X
(j)
s

= (At−s)ij︸ ︷︷ ︸
scalar

(W⊤)t−s︸ ︷︷ ︸
matrix

.
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Proof. In this proof we use the notation (M)ij to denote the (i, j) entry of a matrix M, and M(i) to699

denote the i-th row of a matrix M. Let us start with the recurrent equation Xt+1 = AXtW+Ut+1B.700

Therefore, the i-th node features are updated as follows: X
(i)
t+1 =

∑n
l=1(A)ilX

(l)
t W + U

(i)
t+1B.701

Now, the only term involving X
(j)
t is (A)ijX

(j)
t W. Therefore, the Jacobian reads

∂X
(i)
t+1

∂X
(j)
t

=702

∂

∂X
(j)
t

(
(A)ijX

(j)
t W

)
. Now, given a row vector x ∈ Rc and a square matrix M, then the function703

f(x) = xM, whose i-th component is fi =
∑c

l=1 xl(M)li, has derivatives ∂fi
∂xj

= ∂
∂xj

(xj(M)ji) =704

(M)ji. Hence, the Jacobian is ∂f
∂x = M⊤. Therefore, it holds

∂X
(i)
t+1

∂X
(j)
t

= (A)jiW
⊤. For the case705

of non-consecutive time steps, we can unfold the recurrent equation Xt+1 = AXtW + Ut+1B706

between any two time steps s ≤ t, as follows:707

Xt = At−sXsW
t−s +

t−s−1∑
l=0

AlUt−lBWi. (11)

From the unfolded recurrent equation (11) of a MP-SSM we can see that the only term involv-708

ing Xs is At−sXsW
t−s. Thus, the Jacobian reads

∂X
(i)
t

∂X
(j)
s

=
∂

∂X
(j)
s

(
(At−sXsW

t−s)(i)
)
=709

∂

∂X
(j)
s

(
(At−s)ijX

(j)
s Wt−s

)
= (At−s)ij(W

⊤)t−s.710

711

D.3 Proof of Theorem C.6712

Theorem. Assume a connected graph, and the symmetrically normalized adjacency with self-loops713

as GSO. Then, for large values of t− s, the Jacobian of the linear recurrent equation of an MP-SSM714

block, from node j at layer s to node i at layer t ≥ s, admits the following approximation:715

∂X
(i)
t

∂X
(j)
s

≈
√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s,

where dl =
∑n

j=1(Ã)lj is the degree of the l-th node.716

Proof. We provide an estimation of the term (At−s)ij for the case of large values of t − s, and717

assuming a connected graph. We use the decomposition At−s =
∑n

l=1 λ
t−s
l qlq

⊤
l , where ql is718

the unitary eigenvector corresponding to the eigenvalue λl. As discussed in the proof of Lemma719

C.5, for large values of t− s, all the spectral components corresponding to eigenvalues strictly less720

than 1 (in absolute value) tend to converge to 0. Moreover, by the Perron–Frobenius theorem for721

irreducible non-negative matrices [55], since the graph is connected and with self-loops, there is only722

one simple eigenvalue equal to 1, and −1 cannot be an eigenvalue. Thus it holds the approximation723

At−s ≈ q1q
⊤
1 . Now thanks to Lemma C.5, we know that q1 must be the vector d = diag(D

1
2 )724

normalised to be unitary, and D is the degree matrix of Ã+I. Thus, q1 =
(
√
1 + d1, . . . ,

√
1 + dn)√∑n

l=1(1 + dl)
,725

where dl =
∑n

j=1(Ã)lj is the degree of the l-th node. Therefore, (q1q
⊤
1 )ij =

√
(1 + di)(1 + dj)

n+
∑n

l=1 dl
=726 √

(1 + di)(1 + dj)

|V |+ 2|E|
.727

D.3.1 Example of a bad scenario for Equation (7)728

Figure 2 illustrates an example of a bad scenario for Equation (7), i.e., a chain of m cliques of order729

d connected via bridge-nodes of degree 2 (the minimum to connect them). In the Figure, we consider730
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m = 6 and d = 10. The pair of bridge nodes i and j depicted in red in Figure 2 are 12 hops apart, so731

it can be considered a relatively long-term interaction.732

In the long-term approximation given by Equation (7), the local sensitivity between two bridge733

nodes of this topology scales as 1
md2 , for long chains (m large) and big cliques (d large). In fact, in734

such a graph the vast majority of nodes has degree approximately d− 1, thus
∑n

l=1 dl ≈ n(d− 1).735

Specifically, there are exactly m− 1 nodes of degree 2 (bridge nodes), and md nodes with degree736

approximately d − 1. Now, n = m − 1 +md ≈ md, therefore n +
∑n

l=1 dl ≈ n + n(d − 1) =737

nd ≈ md2. Scaling to long chains and large cliques, this approximation becomes more accurate, and738

so the local sensitivity between two bridge nodes is rescaled by the term
√

(1+di)(1+dj)

n+
∑n

l=1 dl
≈ 3

md2 .739

Figure 2: A chain of six cliques (containing ten nodes each) connected via bridge-nodes of degree 2.
The pair of red nodes is a pair of nodes that minimizes the quantity in Equation (7). Note that the red
nodes are 12 hops apart, so it can be considered long-term.

D.4 Proof of Corollary C.7740

Corollary. Assume a connected graph, and the symmetrically normalized adjacency with self-loops741

as GSO. Then, for large values of t− s, the following lower bound for the minimum local sensitivity742

of the linear recurrent equation of an MP-SSM block holds:743

2

|V |+ 2|E|
||Wt−s|| ≤ min

i,j
Sij(t− s). (12)

Proof. In the deep regime, we can use the approximation of Equation (7) of
∂X

(i)
t

∂X
(j)
s

≈√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s. Therefore, we have:

min
i,j

∣∣∣∣∣
∣∣∣∣∣ ∂X(i)

t

∂X
(j)
s

∣∣∣∣∣
∣∣∣∣∣≈ 1

|V |+ 2|E|

∣∣∣∣∣∣(W⊤)t−s
∣∣∣∣∣∣ min

i,j

√
(1 + di)(1 + dj) ≥

2

|V |+ 2|E|

∣∣∣∣∣∣(W⊤)t−s
∣∣∣∣∣∣,

where the last inequality holds since the minimum degree value of a node in a connected graph744

is 1. Thus, we conclude that mini,j Sij(t− s) ≥ 2

|V |+ 2|E|
||(W⊤)t−s|| = 2

|V |+ 2|E|
||Wt−s||,745

noticing that ||W⊤|| = ||W||.746
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D.5 Proof of Theorem C.11747

Theorem. Assume a connected graph. The global sensitivity of the linear recurrent equation of an748

MP-SSM block is lower bounded as follows:749

S(t− s) ≥ ρ(A)t−s

|V |
||Wt−s||,

where ρ(A) is the spectral radius of the GSO. Thus, for the symmetrically normalized adjacency750

with self-loops, it holds the lower bound S(t− s) ≥ 1

|V |
||Wt−s||.751

Proof. By Equations (5), (6) and (9), we get S(t − s) = maxi,j |(At−s)ij |||(W⊤)t−s|| =752

maxi,j |(At−s)ij |||Wt−s||. Let us define n = |V | the number of nodes. The square of the maximum753

entry of an (n, n) matrix M is always greater than the arithmetic mean of all the square coefficients, in754

other words, ||M||2F
n2 ≤ maxi,j M

2
i,j , where ||M||F denotes the Frobenius norm. Therefore, ||M||F

n ≤755

maxi,j |Mi,j |. Now, the symmetry of A implies there are λ1, . . . , λn real eigenvalues with corre-756

sponding orthonormal eigenvectors q1, . . . ,qn so that we can decompose At−s =
∑n

l=1 λ
t−s
l qlq

⊤
l .757

Thus, the Frobenius norm is ||At−s||F =

√∑n
l=1 λ

2(t−s)
l ||ql||2 =

√∑n
l=1 λ

2(t−s)
l ≥ |λ1|t−s,758

where |λ1| is the largest in absolute value between all the eigenvalues, i.e. the spectral radius ρ(A).759

max
i,j

|(At−s)ij | ≥
||At−s||F

n
≥ ρ(A)t−s

n
, (13)

from which we get the thesis

S(t− s) = max
i,j

|(At−s)ij | ||Wt−s|| ≥ ρ(A)t−s

n
||Wt−s||.

For the particular case of symmetrically normalized adjacency with self-loops, the spectral radius760

ρ(A) is exactly 1 due to Lemma C.5.761

D.6 Proof of Theorem C.13762

Theorem. Let us consider a GCN network that aggregates information from k hops away, i.e., with763

k layers, equipped with the ReLU activation function. Then, the GCN vanishes information at a 2−
k
2764

faster rate than our MP-SSM block with a number k of linear recurrent steps.765

Proof. The state-update equation of a GCN with a residual connection is Xt+1 = σ(AXtW +Xt).766

Therefore, the features of i-th node at time t+1 are updated as X(i)
t+1 = σ

(∑n
l=1(A)ilX

(l)
t W+X

(i)
t

)
.767

Similarly to the proof of theorem C.4, we can write768

∂X
(i)
t+1

∂X
(j)
t

=
∂

∂X
(j)
t

(
σ
(
(A)ijX

(j)
t W

))
=

= diag
(
σ′
(
(A)ijX

(j)
t W

))
(A)ijW

⊤,

where we assumed that i ̸= j, so that the residual connection term does not appear in the derivative
w.r.t. X(j)

t . Since we are considering σ = ReLU, the diagonal entries σ′
(
(A)ijX

(j)
t W

)
are either

0 or 1. Let’s assume that the components of the vector σ′
(
(A)ijX

(j)
t W

)
are independent and

identically distributed (i.i.d.) Bernoulli random variables, each with probability 1
2 of taking the value

0. Now, let’s consider a walk {(it, jt)}k−1
t=0 of length k connecting the j-th node at a reference time

t = 0 to the i-th node at time t = k. Then, the Jacobian of GCN along such a walk reads:

∂X
(i)
k

∂X
(j)
0

=

k−1∏
t=0

PtMt,
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where Pt = diag
(
σ′
(
(A)itjtX

(jt)
t W

))
, and Mt = (A)itjtW

⊤. On the other hand, the Jacobian

of the linear recurrent equation (1) of an MP-SSM block, in the static case with a number k of linear
recurrent steps computed along the same walk reads:

∂X
(i)
k

∂X
(j)
0

=

k−1∏
t=0

Mt.

We aim to prove that, for a generic vector x with entries i.i.d. random variables distributed symmetri-769

cally about zero (e.g. according to a Normal distribution with zero mean), it holds the approximation770

||
∏k−1

t=0 PtMtx|| ≈ 2−
k
2 ||
∏k−1

t=0 Mtx||. We prove the thesis using a recursive argument. First, we771

observe that, denoting y = M0x, then we can write772

||P0M0x||2 = ||P0y||2 = (p1y1)
2 + . . .+ (pnyn)

2. (14)
Now, since the pi are assumed i.i.d. Bernoulli random variables, each with probability 1

2 of taking773

the value 0, in the sum of (14), roughly a portion of half of the contributions from y are zeroed-out774

due to action of P0. Therefore,775

||P0M0x||2 = ||P0y||2 ≈ 1

2
||y||2 =

1

2
||M0x||2. (15)

Note that the larger the dimension of the graph n, the more accurate the approximation of (15).776

Therefore, we conclude that ||P0M0x|| ≈ 2−
1
2 ||M0x||. Now, we proceed recursively by denoting777

x̃t = Pt−1Mt−1 . . .P0M0x, and defining the scalars ct =
||Mtx̃t||
||x̃t||

> 0, for all t = 1, . . . , k − 1.778

Then, we can write779

||Pk−1Mk−1Pk−2Mk−2 . . .P0M0x|| =
= ||Pk−1Mk−1x̃k−1|| ≈

≈ 2−
1
2 ||Mk−1x̃k−1|| =

= 2−
1
2 ck−1||x̃k−1|| =

= 2−
1
2 ck−1||Pk−2Mk−2x̃k−2|| ≈

≈ 2−
1
2 ck−12

− 1
2 ck−2||x̃k−2|| ≈ . . .

≈ 2−
k
2 ck−1ck−2 . . . c0||x||.

On the other hand, for the case of MP-SSM, it reads:780

||Mk−1Mk−2 . . .M0x|| = ck−1||Mk−2 . . .M0x|| =
= ck−1ck−2||Mk−3 . . .M0x|| = . . .

= ck−1ck−2 . . . c0||x||.

This proves that a standard GCN vanishes information 2−
k
2 faster than MP-SSM.781

We assumed weight sharing in the GCN, but the same proof holds assuming different weights782

W1, . . . ,Wk at each GCN layer, by simply using the same exact weight matrices for the linear783

equation of MP-SSM.784

E Fast Parallel Implementation785

We describe all the details to derive and implement a fast parallel implementation for the computation786

of an MP-SSM block.787

The unfolded recurrence of an MP-SSM block gives the following closed-form solution:788

Xk+1 = AkU1BWk +Ak−1U2BWk−1 + . . .+AUkBW +Uk+1B. (16)
Therefore the equation of an MP-SSM block reads:789

Xk+1 =

k∑
i=0

AiUk+1−iBWi, (17)

Yk+1 = MLP(Xk+1), (18)
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The closed-form solution of an MP-SSM block tells us that we could implement the whole recurrence790

in one shot. However, the computation of the powers of both the GSO, A, and the recurrent weights,791

W, can be extremely expensive for generic matrices and large values of k. On the other hand, the792

powers of diagonal matrices are fairly easy to compute, since they are simply the powers of their793

diagonal entries. Below, we show how to reduce a generic dense real-valued MP-SSM block to an794

equivalent diagonalised complex-valued MP-SSM block.795

Assume the following diagonalisation of the shift operator: A = PΛP−1. If undirected graph, i.e.,796

A is symmetric, then by spectral theorem the P is a real orthogonal matrix (i.e. P−1 = P⊤) and Λ797

is real.798

Assume the following diagonalisation of the weights: W = VΣV−1. If using dense real matrices as799

weights, then their diagonalisation is possible only assuming complex matrices of eigenvectors V800

and complex eigenvalues Σ. Also, note that the set of defective matrices (i.e. non-diagonalizable in801

C) has zero Lebesgue measure [41].802

Assume the following MLP equations with 2 layers: MLP(X) = ϕ(XW1)W2, where ϕ is a803

nonlinearity, and W1,W2 real dense matrices.804

805

With the above assumptions, the MP-SSM block equations can be equivalently written as:806

Xk+1 =

k∑
i=0

PΛiP−1Uk+1−iBVΣiV−1, (19)

Yk+1 = ϕ(Xk+1W1)W2, (20)

which we can write as:807

Xk+1 = P

( k∑
i=0

ΛiP−1Uk+1−iBVΣi

)
V−1, (21)

Yk+1 = ϕ(Xk+1W1)W2, (22)

Multiply on the left side both terms by P−1 and on the right side both terms by V808

P−1Xk+1V =

k∑
i=0

ΛiP−1Uk+1−iBVΣi (23)

If we change coordinate reference to Zk+1 = P−1Xk+1V, then we can write:809

Zk+1 =

k∑
i=0

ΛiP−1Uk+1−iBVΣi, (24)

Yk+1 = ϕ(PZk+1V
−1W1)W2, (25)

Equations (24) and (25) give the same exact dynamics of the equations (17) and (18).810

The matrix of complex eigenvectors V in (24) can be merged into the real matrix of weights B in811

equation (26). Therefore, we can call B̂ a complex matrix of weights that accounts for the term812

BV. Similarly, the matrix eigenvectors V−1 in (25) can be merged into the matrix of weights W1813

in equation (27), that we call Ŵ1. To get an exact equivalence, we should exactly multiply by V814

and V−1, but merging these into learnable complex-valued matrices B̂ and Ŵ1 then we get similar815

performance.816

With these new notations, we can write the equivalent diagonalised complex-valued MP-SSM block:817

Zk+1 =

k∑
i=0

ΛiÛk+1−iB̂Σi, (26)

Yk+1 = ϕ(PZk+1Ŵ1)W2, (27)

where, in summary:818
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• input is pre-processed as Ûk+1−i = P−1Uk+1−i,819

• Λ is the diagonal matrix of the eigenvalues of the GSO,820

• learnable recurrent weights are B̂ (complex and dense), and Σ (complex and diagonal)821

• learnable readout weights are Ŵ1 (complex and dense), and W2 (real and dense)822

Equations (26)-(27) tell us that we can implement the whole recurrence efficiently in a closed-form823

solution that only involves powers of diagonal matrices.824

We provide in Algorithm 1, the pytorch-like implementation of the fast MP-SSM, provided the input825

sequence (Û1, . . . , Ûk+1), computes in parallel the whole output sequence (Y1, . . . ,Yk+1).826

Algorithm 1 MP-SSM fast implementation
Require: the input features x ∈ Cnum_steps×n×C (if temporal), else x ∈ Cn×C ; the number of

iterations (i.e., k+1) num_steps; the diagonal complex-valued weight matrix W ∈ Chidden_dim; the
complex-valued matrix B ∈ CC×hidden_dim; the eigenvalues of the GSO eigenvals ∈ Cn

Ensure: out ∈ Cnum_steps×n×hidden_dim

1: powers = torch.arange(num_steps)
2: Λpowers = eigenvals.unsqueeze(−1).pow(powers) ▷ shape: (n, num_steps)
3: Σpowers = W.unsqueeze(−1).pow(powers) ▷ shape: (hidden_dim, num_steps)
4: if not temporal then
5: x = x.repeat(num_steps, 1, 1) ▷ shape: (num_steps, n, C), static case
6: end if
7: xflipped = torch.flip(x, dims = [0]) ▷ shape: (num_steps, n, C)

8: xcomplex = xflipped.to(torch.cfloat)
9: xB = torch.matmul(xcomplex, B) ▷ shape: (num_steps, n, hidden_dim)

10: Λpowers = Λpowers.permute(2, 0, 1) ▷ shape: (num_steps, n, 1)
11: Σpowers = Σpowers.transpose(1, 0).unsqueeze(1) ▷ shape: (num_steps, 1, hidden_dim)

12: scaled_x_B = Λpowers · xB · Σpowers

13: out = scaled_x_B.cumsum(dim = 0) ▷ shape: (num_steps, n, hidden_dim)

14: d1, d2, d3 = out.shape
15: xagg = out.permute(1, 2, 0).reshape(n,−1) ▷ shape: (n, num_steps · hidden_dim)

16: xagg = matmul(
x = xagg,
edge_index = matrix_p_edge_index,
edge_weight = matrix_p_edge_weight

)
17: xagg = xagg.reshape(d2, d3, d1).permute(2, 0, 1)
18: out = mlp(xagg, batch)

We acknowledge that there is no free lunch: we achieve a one-shot parallel implementation trading827

off GPU memory usage, since the whole tensor of shape (num_steps, n, hidden_dim), in line 9 of828

Algorithm 1, must fit into the GPU. However, with sufficient GPU memory, the entire MP-SSM block829

computation occurs in 10−3 seconds, see Figure 3. As shown in Figure 3, MP-SSM scales similarly830

to GCN and GCN (weight sharing), whose lines are overlapping, but it is slightly faster, owing to the831

lack of nonlinearity in the recurrence—a benefit that grows with more iterations. On the other hand,832

the fast implementation of MP-SSM maintains constant runtime, provided enough GPU memory.833

Finally, we note that, unlike standard SSM models such as S4 and Mamba, which follow a Single-834

Input-Single-Output strategy—computing a separate SSM for each input channel and then mixing835

the results—our implementation in Algorithm 1 adopts a Multiple-Input-Multiple-Output strategy,836

enabling native handling of multivariate inputs.837
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Figure 3: Inference time on a graph of n = 100 nodes (with number of edges 3058), input dimension
C = 1, hidden_dim = 32, and increasing lengths k = 10, 100, 500, 1000, 5000. GCN is a standard
GCN with tanh without residual with k layers. GCN (weight sharing) is the same, but just one layer
iterated k times. MP-SSM baselines use both 1 block.

F Relation to other temporal graph models based on state-space modeling838

In the recent literature, we can find temporal graph models that leverage the state-space approach.839

The MP-SSM presents a simplified yet effective recurrent architecture for temporal graph modeling,840

offering clear advantages in architectural design when compared to alternatives such as GGRNN [90]841

or GraphSSM [66]. The MP-SSM recurrent dynamics are governed by a simple linear diffusion on842

the graph:843

Xt+1 = AXtW +Ut+1B. (28)
In contrast, the GGRNN recurrent equation (in its simplest form, without gating mechanisms) adopts844

a more elaborate design:845

Xt+1 = σ

K−1∑
j=0

AjXtWj +

K−1∑
j=0

AjUt+1Bj

 , (29)

where multiple powers of the shift operator, A, are used to aggregate information from both previous846

embedding Xt and current input features Ut+1, weighted with several learnable matrices, Wj and847

Bj , which are applied for different j values, and finally, applying a nonlinearity at each time step.848

The key distinguishing feature of MP-SSM is the absence of nonlinearity in the recurrent update, with849

the only nonlinear transformation appearing in a downstream MLP decoder, typically composed of two850

dense layers with an activation function in between. This feature also allows for a fast implementation851

of the recurrence, since it can be unfolded to get a closed-form solution, see Appendix E. Moreover,852

in an MP-SSM block, the same weights, W,B and MLP parameters, are shared across all time steps,853

ensuring strict weight sharing throughout the sequence. Moreover, our methodology implements a854

stack of MP-SSM blocks to build richer representations, differently from GGRNN where only one855

layer of recurrent computation is performed.856

On the other hand, the GraphSSM model [66] adopts a strategy of stacking several GraphSSM blocks857

similar to MP-SSM, but their building blocks are fundamentally different from our MP-SSM block.858

In fact, a GraphSSM block processes the spatio-temporal input sequence [Ut] in three main stages,859

see Appendix D.2 of [66]. First, a GNN backbone is applied to the input sequence, generating a860

corresponding sequence of node embeddings Xt. Next, each embedding is mixed with the one from861

the previous time step Xt−1, producing a smoothed temporal embedding Ht. This mixed sequence862

[Ht] is then treated as a multivariate time series and passed through an SSM layer—such as S4, S5, or863

S6—to yield the final sequence [Yt] as the output of a GraphSSM block. Our approach is conceptually864

simpler, as it integrates both the GNN diffusive dynamics and sequence-based processing within a865

unified linear recurrence—Equation (28)—followed by a shared MLP applied across time steps. In866

this sense, MP-SSM embeds the core principles behind modern SSMs—the very principles that have867

driven the success of sequential modeling—directly into the graph processing framework. In contrast,868

GraphSSM merely combines GNN and SSM backbones in a modular fashion to address temporal869

graph tasks, without deeply integrating their underlying mechanisms.870

In Table 3, we provide a direct comparison between MP-SSM, GGRNN, and GraphSSM, on the Metr-871

LA and PeMS-Bay datasets. To ensure a fair and comprehensive comparison, we computed MAE,872
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RMSE, and MAPE for all three models: MP-SSM, GGRNN, and GraphSSM. We used GGRNN873

without gating mechanisms, as it achieved the best performance on Metr-LA according to [90, Table874

IV], and GraphSSM-S4, since the authors reported in [66] that their experiments were primarily875

conducted using the S4 architecture. As the results show, our method consistently and significantly876

outperforms both GGRNN and GraphSSM across all three metrics on both datasets.

Table 3: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
Best results for each task are in bold.

Model Metr-LA PeMS-Bay

MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓

GGRNN 3.88 8.14 10.59% 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% 1.98 4.45 4.77%

MP-SSM (ours) 3.17 6.86 9.21% 1.62 4.22 4.05%

877

G Multi-hop interpretation of a deep MP-SSM architecture878

MP-SSM is fundamentally different from multi-hop GNNs approaches: it operates through strictly879

1-hop message passing at each iteration and does not perform aggregation from far-away hops by880

design. Nonetheless, to better understand its behavior in deeper architectures, we explore how a881

multi-hop perspective can be used for interpretation, drawing contrasts with a representative multi-hop882

model, Drew [49]. For this purpose, let us consider the static case, with the input being the sequence883

[U1, . . . ,U1]. The linearity of the recurrent equation of an MP-SSM block allows us to unfold the884

recurrent equation as follows:885

Xk+1 = Ak+1X0W
k+1 +

k∑
i=0

AiU1BWi. (30)

Therefore, assuming a zero initial state and including the MLP into the equation, we have the886

following expression in the output of the first MP-SSM block:887

Yk+1 = MLP
( k∑
i=0

AiU1BWi
)
. (31)

Due to the various powers of the shift operator I,A,A2, . . . ,Ak, we can interpret Equation (31)888

as a k-hop aggregation of the input graph U1. Now, the sequence [Yk+1, . . . ,Yk+1] is the input889

to the second MP-SSM block. Therefore, stacking the second MP-SSM block, and considering a890

residual connection from the first MP-SSM block, we have the following expression in the output of891

the second MP-SSM block:892

Y2(k+1) = Yk+1 + MLP
( k∑
i=0

AiYk+1B2W
i
2

)
, (32)

where B2,W2, are the shared weights of the second MP-SSM block. In general, in a deep MP-SSM893

architecture of s blocks, we have the following expression in the output of the s-th MP-SSM block:894

Ys(k+1) = Y(s−1)(k+1) + MLP
( k∑
i=0

AiY(s−1)(k+1)BsW
i
s

)
. (33)

To reveal the multi-hop view, we denote Ŷ(s) = Ys(k+1), Ŵ
(s)
i = BsW

i
s, and describe the deep895

MP-SSM architecture at the granularity of its blocks, as follows:896

Ŷ(s) = Ŷ(s−1) + MLP
( k∑
i=0

AiŶ(s−1)Ŵ
(s)
i

)
. (34)

This multi-hop interpretation of a deep MP-SSM architecture resembles the DRew-GCN architecture897

[49], a multi-hop MPNN employing a dynamically rewired message passing strategy with delay. In898
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fact, the recurrent equation of DRew-GCN, rephrased in our MP-SSM notation for ease of comparison,899

is defined as:900

Y(s+1) = Y(s) + σ

(
s+1∑
i=1

A(i)Y(s−τν(i))W
(s)
i

)
, (35)

where A(i) is the degree-normalised shift operator that considers all the neighbors at an exact i hops901

from each respective root node, W(s)
i are weight matrices, and τν(i) is a positive integer (the delay)902

defining the temporal window for the aggregation of past embeddings. Comparing Equation (34) and903

Equation (35) we can summarize the following differences:904

• DRew aggregates information using A(i), a function of the GSO that counts neighbors at an905

exact i hops distance, while MP-SSM considers the powers of the GSO, Ai, thus accounting906

for all the possible walks of length i. Similarly, the learnable weights in MP-SSM reflect the907

architectural bias induced by the recurrence, as they are structured through powers of a base908

matrix, specifically following the form Ŵ
(s)
i = BsW

i
s.909

• DRew nonlinearly aggregates information via a pointwise nonlinearity σ, while MP-SSM910

employs a more expressive 2-layers MLP.911

• MP-SSM uses the same features for multi-hop aggregation (corresponding to τν(i) ≡ 0),912

whereas DRew aggregates features from previous layers with a delay τν(i) = max(0, i−ν),913

effectively introducing a temporal rewiring of the graph.914

Although the unfolding of MP-SSM yields expressions involving powers of the GSO, this resemblance915

to multi-hop architectures such as DRew [49] is purely superficial. Unlike models that aggregate916

information from distant nodes within a single layer, MP-SSM performs strictly 1-hop message917

passing at each iteration. The higher-order GSO terms emerge naturally from the recurrence, not from918

an architectural bias toward multi-hop aggregation. This formulation, grounded in first principles,919

preserves the original graph topology and constitutes a structurally distinct approach. We provide in920

Table 4 a comparison of DRew-GCN (results taken from [49]) with our MP-SSM on the Peptides-func921

and Peptides-struct from the LRGB task [32]. Notably, MP-SSM outperforms DRew-GCN on the922

Peptides-struct task, suggesting that the structural architectural bias introduced by the recurrence,923

combined with MLP adaptivity, offers a stronger advantage than aggregating information via rewired924

connections from delayed past features. In contrast, on the Peptides-func task, the performance of925

the two models falls within each other’s standard deviation, indicating no statistically significant926

difference between DRew-GCN—despite its dynamic rewiring strategy with delay—and MP-SSM.927

In Appendix M we report an extended evaluation on the LRGB benchmark.

Table 4: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. DRew-GCN
results are taken from [49]. The best scores are in bold.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

DRew-GCN 69.96±0.76 0.2781±0.0028

MP-SSM (ours) 69.93±0.52 0.2458±0.0017

928

H Ablations929

We perform an ablation study to isolate the incremental contribution of each SSM heuristic to the930

performance gains in reconstructing graph-structural information that depends on learning long-range931

dependencies; specifically for computing quantities like the diameter of a graph, the single-source-932

shortest-paths (SSSP), and the eccentricity of a node, see Section 4.1 for more details on these tasks.933

Results of this ablation are reported in Table 5.934

The ablation conducted reveals that removing the nonlinearity from GCN yields the most significant935

performance improvement. Introducing weight sharing—effectively incorporating recurrence into the936

linear graph diffusion process—yields a slight performance boost while considerably reducing the937

number of parameters. Appending an MLP at the last time step of this linear recurrent architecture938

does not result in statistically significant gains, except marginally for the Eccentricity task. Likewise,939
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Table 5: Architecture ablation study. Mean test log10(MSE) and std averaged on 4 random weight
initialization on Graph Property Prediction tasks (Section 4.1). The lower, the better. The evaluation
include: a nonlinear multilayer GCN (GCN), a linear multilayer GCN (Linear GCN), a linear mul-
tilayer GCN with weight sharing (Linear GCN (ws)), Linear GCN (ws) followed by an MLP (1
Block Linear GCN), a stack of multiple 1 Block Linear GCN (Multi-Blocks Linear GCN), and
our MP-SSM, which represent a multi-blocks linear GCN with standard deep learning heuristics such
as residual connections and normalisation layers between blocks.

Model Diameter ↓ SSSP ↓ Eccentricity ↓

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

Linear GCN -2.1255±0.0984 -1.5822±0.0002 -2.1424±0.0014

Linear GCN (ws) -2.2678±0.1277 -1.5823±0.0001 -2.1447±0.001

1 Block Linear GCN -2.2734±0.1513 -1.5836±0.0025 -2.1869±0.0058

Multi-Blocks Linear GCN -2.3531±0.3183 -1.5821±0.0001 -2.1861±0.0066

MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

constructing a hierarchical block structure does not noticeably enhance performance. These limited940

improvements suggest that, for the three tasks considered, the linear recurrence mechanism alone,941

provided a long enough recurrence, is sufficient to capture meaningful representations to reconstruct942

graph’s structural information. Finally, incorporating standard deep learning heuristics further943

strengthens the full MP-SSM architecture, consistently improving performance across all tasks.944

I Complexity and Runtimes945

We discuss the theoretical complexity of our method, followed by a comparison of runtimes with946

other methods.947

Complexity Analysis. Our MP-SSM consists of a stack of blocks. Each of them performs a linear948

recurrence of k iterations followed by the application of a nonlinear map, as defined in Equations (1)949

and (2). Note that k is either the length of the temporal graph sequence or a hyperparameter. Given the950

similarities between the linear recurrence in MP-SSM and standard MPNNs, described in Section 2,951

the recurrence retains the complexity of standard MPNNs. Therefore, the Equation (1) is linear in952

the number of node |V | and edges |E|, achieving a time complexity of O(k · (|V |+ |E|)), with k953

the number of iterations. Considering O(m) the time complexity of the MLP in Equation (2), then954

the final time complexity of one MP-SSM block is O(k · (|V | + |E|) +m) in the static case and955

O(k · (|V |+ |E|+m)) in the temporal case.956

Runtimes. We provide runtimes for MP-SSM and compare it with other methods, such as Graph GPS957

and GCN, in Table 6. In all cases, we use a model with 256 hidden dimensions and a varying depth958

effective by changing the number of recurrences from 2 to 16 in our MP-SSM with 2 MP-SSM blocks,959

and the number of layers is the depth for other methods. We report the training and inference times in960

milliseconds, as well as the downstream performance performance obtained on the Roman-Empire961

dataset. As can be seen from the results in the Table, our MP-SSM maintains a similar runtime to962

GCN, which has linear complexity with respect to the graph size, while offering strong performance963

at the same time. Notably, our MP-SSM achieves better performance than GCN and GPS, and964

maintains its performance as depth increases, different than GCN. All runtimes are measured on an965

NVIDIA A6000 GPU with 48GB of memory.966

J The vanishing gradient tendency in nonlinear MPNNs.967

Let us consider a highly connected graph without bottlenecks, such that the transfer of messages968

from any node to any other node is not affected by issues due to structural properties of the graph.969

However, in the deep regime, the presence of a nonlinearity at each time step can lead the global970

sensitivity (as defined in Equation (9)) to be vanishing small.971

For an MP-SSM block, the local sensitivity Sij(t−s) of the features of the i-th node to features of the972

j-th node after t−s applications of message-passing aggregations, is exactly the norm of the Jacobian973

of Equation (6), i.e. the norm of the product of the (i, j)-entry of At−s and the matrix (W⊤)t−s.974

For standard MPNN approaches, the local sensitivity has a more complicated expression due to975
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Table 6: Training and Inference Runtime (milliseconds) and obtained node classification accuracy
(%) on the Roman-Empire dataset.

Metrics Method Depth

4 8 16 32

Training (ms)
GCN

18.38 33.09 61.86 120.93
Inference (ms) 9.30 14.64 27.95 53.55
Accuracy (%) 73.60 61.52 56.86 52.42

Training (ms)
GPS

1139.05 2286.96 4545.46 OOM
Inference (ms) 119.10 208.26 427.89 OOM
Accuracy (%) 81.97 81.53 81.88 OOM

Training (ms)
GPSGAT+Performer (RWSE)

1179.08 2304.77 4590.26 OOM
Inference (ms) 120.11 209.98 429.03 OOM
Accuracy (%) 84.89 87.01 86.94 OOM

Training (ms)
MP-SSM

23.19 41.44 72.09 141.82
Inference (ms) 10.93 18.87 38.87 67.59
Accuracy (%) 85.73 88.02 90.82 90.91

nonlinearities at each aggregation step, but usually there are 3 key contributors: one from several976

multiplications of the shift operator (akin to At−s in our MP-SSM), one from several multiplications977

of the weights (akin to (W⊤)t−s in our MP-SSM), and one from several multiplications of the978

derivative of the nonlinearity evaluated on the sequence of embeddings D(s),D(s + 1), ..,D(t).979

Usually the nonlinearity is pointwise, so D(t) is a diagonal matrix with entries usually in [0, 1], thus980

contributing to vanishing the gradient more and more at each time step. Hence, if the subsequent981

multiplications of weights and nonlinearity-based terms tend to vanish, while the powers of the shift982

operator A are bounded (as it is for the case of the symmetrically normalized adjacency with self-983

loops, proved in Lemma 4.5) then the local sensitivity tends to vanish for all pair of nodes, for t− s984

large enough. This will be reflected in the global sensitivity, which also will tend to vanish, for t− s985

large enough. This demonstrates that global sensitivity effectively quantifies the severity of vanishing986

gradient issues in MPNN models plagued by this problem. Note further that the local sensitivity987

of the linear recurrence in each block of our MP-SSM has the exact form of ||(At−s)ij(W
⊤)t−s||,988

while for standard MPNN approaches with nonlinearities at each time step the vanishing effect will989

be stronger, as we formally proved for the case of GCN in Theorem C.13.990

K Extended comparison on the Graph Property Prediciton Benchmark991

To further evaluate the performance of MP-SSM, we report a more complete comparison for the GPP992

task in Table 7. Specifically, we include more MPNN-based models.993

L Further spatio-temporal benchmarks994

In Table 8, we report the results for Chickenpox Hungary, PedalMe London, and Wikipedia math995

[89], which involve public health, delivery demand, and web activity.996

As evident from the table, MP-SSM achieves the best results across all datasets.997

M Results on the Long-Range Graph Benchmark.998

To further evaluate the performance of our MP-SSM, we consider two tasks of the Long-Range Graph999

Benchmark (LRGB) [32].1000

Setup. We evaluate MP-SSM on the Peptides-func and Peptides-struct tasks from the LRGB1001

benchmark, which involve predicting functional and structural properties of peptides that require1002

modeling long-range dependencies. We follow the original experimental setup and 500k parameter1003

budget.1004
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Table 7: Mean test set log10(MSE)(↓) and std averaged on 4 random weight initializations on Graph
Property Prediction tasks. The lower the better. First, second, and third best results for each task are
color-coded.

Model Diameter SSSP Eccentricity

MPNNs
A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

Transformers
GPS -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Ours
MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

Table 8: Average MSE and standard deviation (↓) of 10 experimental repetitions. Baseline results are
reported from [89, 35, 34] . First, second, and third best methods for each task are color-coded.

Model Chickenpox PedalMe Wikipedia
Hungary London Math

Temporal GNNs
A3T-GCN 1.114±0.008 1.469±0.027 0.781±0.011

AGCRN 1.120±0.010 1.469±0.030 0.788±0.011

CDE 0.848±0.020 0.810±0.063 0.694±0.028

DCRNN 1.124±0.015 1.463±0.019 0.679±0.020

DyGrAE 1.120±0.021 1.455±0.031 0.773±0.009

DynGESN 0.907±0.007 1.528±0.063 0.610±0.003

EGCN-O 1.124±0.009 1.491±0.024 0.750±0.014

GConvGRU 1.128±0.011 1.622±0.032 0.657±0.015

GC-LSTM 1.115±0.014 1.455±0.023 0.779±0.023

GRAND 1.068±0.021 1.557±0.049 0.798±0.034

GREAD 0.983±0.027 1.291±0.055 0.704±0.016

HMM4G 0.939±0.013 1.769±0.370 0.542±0.008

MPNN LSTM 1.116±0.023 1.485±0.028 0.795±0.010

TDE-GNN 0.787±0.018 0.714±0.051 0.565±0.017

T-GCN 1.117±0.011 1.479±0.012 0.764±0.011

Ours
MP-SSM 0.748±0.011 0.647±0.062 0.509±0.008

Results. As shown in Table 9, MP-SSM outperforms standard MPNNs, transformer-based GNNs,1005

and most multi-hop and SSM-based models. It achieves the highest average ranking across tasks1006

without relying on global attention or graph rewiring. Compared to other graph SSMs, MP-SSM1007

delivers strong performance while preserving permutation-equivariance.1008

N Results on the Heterophilic Benchmark1009

To further evaluate the performance of MP-SSM, we report a thorough comparison for the heterophilic1010

task in Table 10. Specifically, we include many MPNN-based models, graph transformers, and1011

heterophily-designated GNNs.1012

In Table 10, we color the top three methods. Notably, our MP-SSM achieves the best average ranking1013

across all datasets in the heterophilic benchmarks.1014
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Table 9: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Re-evaluated
methods employ the 3-layer MLP readout proposed in [105]. Note that all MPNN-based methods
include structural and positional encoding. The first, second, and third best scores are colored.
Baseline results are reported from [32, 49, 105, 53, 28, 44]. ‡ means 3-layer MLP readout and
residual connections are employed.

Model Peptides-func Peptides-struct avg. Rank
AP ↑ MAE ↓ ↓

MPNNs
A-DGN 59.75±0.44 0.2874±0.0021 26.0
GatedGCN 58.64±0.77 0.3420±0.0013 29.0
GCN 59.30±0.23 0.3496±0.0013 29.5
GCNII 55.43±0.78 0.3471±0.0010 30.5
GINE 54.98±0.79 0.3547±0.0045 32.0
GRAND 57.89±0.62 0.3418±0.0015 29.0
GraphCON 60.22±0.68 0.2778±0.0018 24.0
SWAN 67.51±0.39 0.2485±0.0009 12.5

Multi-hop GNNs
DIGL+MPNN 64.69±0.19 0.3173±0.0007 25.0
DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018 16.5
DRew-GatedGCN 67.33±0.94 0.2699±0.0018 19.5
DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007 12.0
DRew-GCN 69.96±0.76 0.2781±0.0028 14.0
DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015 8.0
DRew-GIN 69.40±0.74 0.2799±0.0016 17.5
DRew-GIN+LapPE 71.26±0.45 0.2606±0.0014 9.5
GRED 70.85±0.27 0.2503±0.0019 7.0
MixHop-GCN 65.92±0.36 0.2921±0.0023 23.0
MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023 15.5

Transformers
GraphGPS+LapPE 65.35±0.41 0.2500±0.0005 15.5
Graph ViT 69.42±0.75 0.2449±0.0016 5.5
GRIT 69.88±0.82 0.2460±0.0012 5.0
Transformer+LapPE 63.26±1.26 0.2529±0.0016 19.5
SAN+LapPE 63.84±1.21 0.2683±0.0043 22.0

Modified and Re-evaluated‡

DRew-GCN+LapPE 69.45±0.21 0.2517±0.0011 11.0
GatedGCN 67.65±0.47 0.2477±0.0009 11.0
GCN 68.60±0.50 0.2460±0.0007 7.5
GINE 66.21±0.67 0.2473±0.0017 12.0
GraphGPS+LapPE 65.34±0.91 0.2509±0.0014 17.0

Graph SSMs
GMN 70.71±0.83 0.2473±0.0025 4.5
Graph-Mamba 67.39±0.87 0.2478±0.0016 12.5

Ours
MP-SSM 69.93±0.52 0.2458±0.0017 4.0

O Experimental Details1015

O.1 Employed baselines1016

In our experiments, the performance of our method is compared with various state-of-the-art GNN1017

baselines from the literature. Specifically, we consider:1018

• classical MPNN-based methods, i.e., GCN [61], GraphSAGE [50], GAT [109], Gat-1019

edGCN [13], GIN [118], ARMA [11], GINE [56], GCNII [18], and CoGNN [37];1020

• heterophily-specific models, i.e., H2GCN [127], CPGNN [126], FAGCN [12], GPR-GNN1021

[19], FSGNN [74], GloGNN [67], GBK-GNN [29], and JacobiConv [113];1022

• physics-inspired MPNNs, i.e., DGC [114], GRAND [15], GraphCON [91], A-DGN [43],1023

GREAD [20], CDE [123], and TDE-GNN [34];1024

• Graph Transformers, i.e., Transformer [107, 30], GT [95], SAN [63], GPS [88], GOAT [62],1025

Exphormer [97], NAGphormer [16], GRIT [73], and GraphViT [53];1026

• Higher-Order DGNs, i.e., DIGL [40], MixHop [1], DRew [49], and GRED [28].1027

• SSM-based GNN, i.e., Graph-Mamba [111], GMN [10], GPS+Mamba [10], GGRNN [90],1028

and GraphSSM [66].1029
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Table 10: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better. First, second, and third best results for each task are color-coded.
Baseline results are reported from [37, 10, 86, 78, 72]. “∗" in the rank column means that the average
has been computed over less trials.

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions avg. Rank
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑ ↓

[72]
MLP-1 64.12±0.61 38.60±0.41 50.59±0.83 71.89±0.82 70.33±0.96 41.0
MLP-2 66.04±0.71 49.55±0.81 50.92±1.25 74.58±0.75 69.97±1.16 34.4
SGC-1 44.60±0.52 40.69±0.42 82.04±0.77 73.80±1.35 71.06±0.92 38.6

Graph-agnostic
ResNet 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76 37.4
ResNet+adj 52.25±0.40 51.83±0.57 50.42±0.83 78.78±1.11 75.77±1.24 32.0
ResNet+SGC 73.90±0.51 50.66±0.48 70.88±0.90 80.70±0.97 75.81±0.96 29.0

MPNNs
CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86 8.0
CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95 6.8
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20 18.0
GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71 9.8
GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84 16.0
GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22 11.6
GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23 12.6
Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13 31.4
GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27 25.8
GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34 14.6
GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40 12.0
GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21 16.4
SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62 15.6

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06 16.6
NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53 30.6
GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66 31.2
GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47 21.4
GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25 12.8
GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51 16.6
GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18 22.6
GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98 14.4
GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49 15.0
GPSGAT+Performer (DEG) 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19 20.0
GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93 OOM 33.8
GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06 OOM 34.4
GPSGCN+Transformer (DEG) OOM OOM 91.76±0.61 80.82±0.95 OOM 36.2
GPSGAT+Transformer (LapPE) OOM OOM 92.29±0.61 84.70±0.56 OOM 30.2
GPSGAT+Transformer (RWSE) OOM OOM 90.82±0.56 84.01±0.96 OOM 33.8
GPSGAT+Transformer (DEG) OOM OOM 91.58±0.56 81.89±0.85 OOM 36.0
GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68 14.4
GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93 12.6

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95 40.0
FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26 31.0
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92 18.2
GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86 28.0
GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19 41.0
GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91 38.4
H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46 39.6
JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16 36.2

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 – 11.0∗

GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 – 25.5∗

Ours
MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72 85.26±0.93 78.18±1.34 2.4

• Graph-agnostic temporal predictors, i.e., Historical Average (AV), SVR [99], and FC-1030

LSTM [102], and VAR [71];1031

• Spatio-temporal GNNs, i.e., DCRNN [68], GConvGRU [92], Graph WaveNet [117], AST-1032

GCN [47], STSGCN [100], GMAN [125], MTGNN [116], AGCRN [7], T-GCN [124],1033

DyGrAE [103], EGCN-O [83], A3T-GCN [6], MPNN LSTM [82], GTS [93], STEP [94],1034
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GC-LSTM [17], DynGESN [76], HMM4G [35], STAEformer [70], RGDAN [36], AdpST-1035

GCN [121], and STD-MAE [39].1036

O.2 Datasets statistics1037

In our experiments, we compute the performance of our MP-SSM on widely used benchmarks for1038

both static and temporal graphs. Specifically, we consider:1039

• long-range propagation tasks, i.e., the three graph property prediction tasks proposed by1040

[43] (“Diameter”, “SSSP”, and “Eccentricity”) and the “Peptide-func” and “Peptide-struct”1041

tasks from the long-range graph benchmark [32];1042

• heterophilic tasks, i.e., “Roman-empire”, “Amazon-ratings”, “Minesweeper”, “Tolokers”,1043

and “Questions” [86];1044

• temporal tasks, i.e., “Metr-LA” and “PeMS-Bay” for traffic forecasting [68], and the “Chick-1045

enpox Hungary”, “PedalMe London”, and “Wikipedia math” forecasting tasks introduced1046

by [89].1047

In Table 11, we report the statistics of the employed datasets.1048

Table 11: Dataset statistics

Task Nodes Edges Graphs (or Timesteps) Frequency

St
at

ic

Diameter 25 - 35 22 - 553 7,040 –
SSSP 25 - 35 22 - 553 7,040 –
Eccentricity 25 - 35 22 - 553 7,040 –
Peptide-func 150.94 (avg) 307.30 (avg) 15,535 –
Peptide-struct 150.94 (avg) 307.30 (avg) 15,535 –
Roman-empire 22,662 32,927 1 –
Amazon-ratings 24,492 93,050 1 –
Minesweeper 10,000 39,402 1 –
Tolokers 11,758 519,000 1 –
Questions 48,921 153,540 1 –

Te
m

po
ra

l Metr-LA 207 1,515 34,272 5 mins
PeMS-Bay 325 2,369 52,116 5 mins
Chickenpox Hungary 20 102 512 Weekly
PedalMe London 15 225 15 Weekly
Wikipedia math 731 27,079 1,068 Daily

O.3 Hyperparameter space1049

In Table 12, we report the grid of hyperparameters employed in our experiments by our method on1050

all the considered benchmarks.1051

Table 12: The grid of hyperparameters employed during model selection for the graph property
prediction tasks (GPP), Long Range Graph Benchmark (LRGB), heterophilic benchmarks (Hetero),
and spatio-temporal benchmarks (Temporal).

Hyperparameters Values

GPP LRGB Hetero Temporal

Optimizer Adam AdamW AdamW AdamW
Learning rate 0.003 0.001, 0.0005, 0.0001 0.001, 0.0005 ,0.0001 0.005, 0.001, 0.0005 ,0.0001
Weight decay 10−6 0, 0.0001, 0.001 0, 0.0001, 0.001 0, 0.0001, 0.001
Dropout 0 0, 0.5 0, 0.4, 0.5, 0.6, 0, 0.5
N. recurrences 1, 5, 10, 20 1, 2, 4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16
Embedding dim 10, 20, 30 32,64,128,256 32,64,128,256 32,64,128,256
N. Blocks 1, 2 1, 2, 4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16
Structure of U U = [U1, . . . ,U1] U = [U1,U2, . . . ]
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