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Abstract

The recent success of State-Space Models (SSMs) in sequence modeling has
inspired their adaptation to graph learning. We propose the Message-Passing
State-Space Model (MP-SSM), which embeds modern SSM principles directly
into the Message-Passing Neural Network (MPNN) framework. This yields a
unified methodology for learning on both static and temporal graphs, preserving
permutation equivariance and enabling efficient long-range information propa-
gation. Crucially, MP-SSM supports exact sensitivity analysis, allowing us to
characterize representational bottlenecks such as vanishing gradients and over-
squashing in deep regimes. By combining the representational advantages of SSMs
with the structural inductive biases of message passing, MP-SSM contributes to
a broader effort of unifying learning principles across architectures. Experiments
across synthetic, heterophilic, and spatiotemporal benchmarks demonstrate that
our framework produces representations that are both theoretically interpretable
and empirically strong. In this sense, MP-SSM provides new insights into the con-
ditions under which distinct neural models converge toward similar representations,
advancing the theme of representational unification.

1 Introduction

Graph Neural Networks (GNNs), especially Message-Passing Neural Networks (MPNNs), have
become a staple in learning from graph-structured data. However, traditional MPNNs like GCNs
[61] face challenges in propagating information across distant nodes due to issues such as over-
squashing [2 [106} 27]] and vanishing gradients [27, |84, [3]], which hinder performance in tasks
requiring long-range dependency modeling [32]. While various strategies, such as rewiring [[106}
60, 49], transformers [64, 119, 188, 133} 131]], and weight-space regularization [43| |44], have been
proposed to improve signal propagation, a principled and simple solution remains elusive, since most
aforementioned methods require substantial architectural modifications and cannot be seamlessly
applied to traditional MPNNs like GCN [61]]. In parallel, recent breakthroughs in sequence modeling
using State-Space Models (SSMs), e.g., LRU [81]], S4 [46], and extensions [98, 148} 87, 138], have led
to advanced architectures like Mamba [45]], Griffin [25]], and XLSTM [9]. These models consist of
stacked recurrent seq2seq blocks, moving nonlinearities outside the recurrence [4] and interleaving
them with multilayer perceptrons (MLPs), enabling long-range dependency modeling, stable gradient
flow, efficient training, and universal approximation [80} [77]. This design balances short-term
memory retention [S9]] and nonlinear expressivity [38), 24], a trade-off critical to learn long-term
dependencies while representing complex nonlinear relationships within data [85, [110]]. Inspired
by these advances, researchers have begun adapting SSMs for graph learning. Some approaches
adopt spectral methods [57], while others transform graphs into sequences for SSM processing
[104} 1111 110], often compromising permutation-equivariance [[14] or graph topology. Alternatives
like GrassNet [122] rely on spectral decompositions with non-unique modes [69], limiting generality.
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Figure 1: Ilustration of our MP-SSM for temporal and static cases, considering a recurrence time
k + 1 = 3. The temporal case (left) incorporates dynamic updates to node embeddings over time
steps, represented as U = [Uy, Uy, Us], while the static case (right) uses fixed node embeddings
U = [U;,Uy,U;]. An MP-SSM block comprises a linear recurrence followed by a multilayer
perceptron (MLP). Multiple MP-SSM blocks are stacked to construct a deep MP-SSM architecture.

A comprehensive review of related work is provided in Appendix [A] We propose a novel approach
that unifies the representational strengths of MPNNs and SSMs by embedding modern state-space
heuristics directly into message passing, yielding a principled framework for both static and temporal
graphs and providing new insights into when distinct neural architectures converge toward similar
internal representations.

Contributions. Our work introduces the Message-Passing State-Space Model (MP-SSM):

1. Unified framework: Integrates SSMs into MPNNs, preserving permutation equivariance
and enabling efficient long-range propagation on both static and temporal graphs.

2. Theoretical guarantees: Supports exact Jacobian-based sensitivity analysis, offering precise
insights into vanishing gradients and over-squashing.

3. Empirical performance: Achieves state-of-the-art results across synthetic, heterophilic,
and spatio-temporal benchmarks, with runtime comparable to GCNs.

2 Message-Passing State-Space Model

We propose the Message-Passing State-Space Model (MP-SSM), which embeds modern SSM princi-
ples into message passing. An MP-SSM block consists of a linear state-space recurrence on graphs
followed by a graph-agnostic MLP, enabling efficient long-range propagation and parallelization.
Due to its popularity and simplicity, we use the symmetrically normalized adjacency with self-loops
[61] as graph shift operator (GSO), for our analysis. However, our framework seamlessly extends to
any GSO.

Central to our contribution is a linear recurrence over the GSO followed by a shared MLP layer as
readout layer. Precisely, we define a block of MP-SSM as a seq2seq model mapping input features

U, € R"*< into output states Y; € R"*¢ as
Xt-‘rl = AXtW+Ut+1Ba t= 07"'7k7 ()
Y11 = MLP(X;41), 2

where X; € R"*¢ are the hidden states, W, B are learnable weight matrices, and k is an hyperpa-
rameter defining the depth of the recurrence. This purely linear recurrence enables exact sensitivity
analysis and closed-form parallel implementation. In Appendix [E] we describe our fast implemen-
tation, discussing both its advantages and limitations, and provide a runtime comparison with a
standard GCN, showing that MP-SSM can achieve up to a 1000x speedup. For temporal graphs,
U = [Uy,..., Ug4q]; for static graphs, U = [Uy, ..., U], ensuring a unified treatment, see Figure
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[1] Nonlinearity appears only in the MLP, simplifying analysis and computation. In Appendix [F
we discuss the originality of our method in relation to recent temporal graph that use a state-space
modeling approach, like GGRNN [90]] and GraphSSM [66].

We stack more MP-SSM blocks to develop a hierarchy of representations. Stacking s blocks of
depth k yields an effective receptive field of sk hops, supporting stable long-range aggregation. In
Appendix [G] we provide a multi-hop interpretation of a deep MP-SSM architecture, in the static case.
Note that, due to our GSO choice, MP-SSM reduces to a residual GCN when k£ = 1, see Appendix
but generalizes beyond it for £ > 2. Standard deep learning heuristics (residuals, normalization,
dropout) can be applied between blocks, following modern SSM design. Appendix [H| presents an
ablation study tracing the incremental impact of each SSM heuristic on graph representation learning,
progressing from a plain GCN to a deep MP-SSM architecture. Finally, we discuss the complexity
and runtimes of MP-SSM in Appendix|l]

3 Sensitivity Analysis

A key advantage of MP-SSM is that its purely linear recurrence allows an exact characterization of
gradient flow via Jacobians. For node j at step s and node i at step ¢ > s, the Jacobian of the linear
recurrent equation of an MP-SSM block is exactly the following:

8X(l) —s —s
G = AT (W ©)
scalar matrix

This closed form enables precise analysis of stability and information transfer, allowing us to reason
around key challenges in graph learning like over-squashing and vanishing gradients, see Appendix[C]
for a full theoretical analysis. In particular, we can compute a lower bound for the spectral norm of
the Jacobian of (3] as follows:

(@)

t

anj)

2

W S| < mi 4

where |V| and | E| denotes number of vertices and edges, respectively.

Regarding over-squashing, we find a class of graph topologies that realise the lower bound in (@), thus
representing the worst-case scenario for transferring information. Regarding vanishing gradients, we
estimate that a k-layer GCN vanishes 2~%/2 faster than an MP-SSM block of depth k. For detailed
statements of the theorems, assumptions, and proofs, see Appendix [C]

Overall, MP-SSM provides a principled theoretical foundation, exact Jacobian computation, provable
stability, and precise reasoning about over-squashing and vanishing gradients.

4 Experiments

We evaluate MP-SSM on static graphs (synthetic shortest-path tasks, Section[d.T|and Appendix K,
temporal graphs (spatio-temporal forecasting, Sectiond.2]and Appendix [[J), as well as heterophilic
(Appendix [N) and long-range real-world benchmarks (Appendix [M).

L Table 1: Mean log1o(MSE)({) and std averaged on 4 ran-
4.1 Graph Property Prediction dom weight initializations. First, second, and third best

Its f h task lor-coded.
We evaluate MP-SSM on three synthetic ouTS o cdc Tav® are cooreoce

tasks from [43]], graph diameter, SSSP, Model Diameter SSSpP Eccentricity
and node eccentricity, requiring long- MPNNs

range information flow. Using the orig- A-DGN -0.51880.1812 -3.2417 +0.0751 0.42960.1003
inal setup and hyperparameters, Table[I] ~ GAT 0.8221+0.0752 0.695140.1499 0.790910.0222
shows MP-SSM outperforms all base- GCN 0.74241+0.0466 0.9499+0.0001 0.84684+0.0028
lines, gaining 2.4 points on average, SUr-  Transformers

paSSing A-DGN by 34 pOil’ltS on eccen- GPS '005121i040426 '3-5990i0.1949 0-6077i0.0282
tricity and exceeding its GCN backbo.ne Ours

by over 4 points, demonstrating superior MP-SSM 3.235310. 1755 4632110, 0770 -2.97240 0271

long-range propagation.
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Table 2: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
First, second, and third best results for each task are color-coded. Baseline results are reported from
[94] 1701 139L 36l [121]].

Model Metr-LA PeMS-Bay
MAE | RMSE | MAPE | |[MAE | RMSE | MAPE |
Graph Agnostic
HA 6.99 13.89 17.54% | 3.31 7.54 7.65%
FC-LSTM 4.37 8.69 14.00% | 2.37 4.96 5.70%
SVR 6.72 1376  16.70% | 3.28 7.08 8.00%
VAR 6.52 10.11  15.80% | 2.93 5.44 6.50%
Temporal GNNs
AdpSTGCN 3.40 7.21 9.45% 1.92 4.49 4.62%
ASTGCN 6.51 1252 11.64% | 2.61 542 6.00%
DCRNN 3.60 7.60 10.50% | 2.07 4.74 4.90%
GMAN 3.44 7.35 10.07% | 1.86 4.32 4.37%
Graph WaveNet 3.53 7.37 10.01% | 1.95 4.52 4.63%
GTS 3.46 7.31 9.98% 1.95 4.43 4.58%
MTGNN 3.49 7.23 9.87% 1.94 4.49 4.53%
RGDAN 3.26 7.02 9.73% 1.82 4.20 4.28%
STAEformer 3.34 7.02 9.70% 1.88 4.34 4.41%
STD-MAE 3.40 7.07 9.59% 1.77 4.20 4.17%
STEP 3.37 6.99 9.61% 1.79 4.20 4.18%
STGCN 4.59 9.40 12.70% | 2.49 5.69 5.79%
STSGCN 5.06 11.66  1291% | 2.26 5.21 5.40%
Temporal Graph SSMs
GGRNN 3.88 8.14 10.59% | 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% | 1.98 4.45 4.77%
Ours
MP-SSM 3.17 6.86 9.21% | 1.62 4.22 4.05%

4.2 Spatio-Temporal Forecasting

We report here a thorough evaluation of MP-SSM on two popular forecasting datasets, Metr-LA and
PeMS-Bay [68]], and additional results are provided in Appendix [[] further three spatio-temporal
forecasting benchmarks, namely Chickenpox Hungary, PedalMe London, and Wikipedia math [89].
The aim is to predict future node values from time-series data using original dataset settings. Across
both datasets, MP-SSM outperforms existing temporal GNNSs, including state-space models GGRNN
[90] and GraphSSM [66]], highlighting its effectiveness in modeling spatial-temporal dependencies
and versatility across static and temporal graph domains.

Full details of the hyperparameter settings for all experiments are described in Appendix [0.3] We
emphasize that, unlike most state-of-the-art graph models, MP-SSM runs at a speed comparable to
that of a standard GCN (see runtime and complexity analyses in Appendix|[), even without leveraging
the optimized implementation discussed in Appendix [E]

5 Conclusions

We introduced the Message-Passing State-Space Model (MP-SSM), a framework that unifies modern
state-space sequence modeling with message passing on graphs. By embedding SSM principles into
MPNNs, MP-SSM achieves efficient and stable information propagation, supports exact sensitivity
analysis, and applies broadly across static and temporal domains. Beyond performance gains, our
work highlights the representational commonalities between sequence and graph models, illustrating
how both families capture dependencies through analogous mechanisms of recurrence and aggre-
gation, despite operating on different data domains. This connection aligns with the broader goal
of understanding and unifying neural representations across domains, offering insights into how
principles from sequence models can inform graph learning and vice versa.
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A Related Works

Learning Long-Range Dependencies on Graphs. While GNNs effectively model local structures
via message passing, they struggle with long-range dependencies due to over-squashing and vanishing
gradients [2| 27]]. Standard models like GCN [61], GraphSAGE [50], and GIN [118] suffer from
degraded performance on tasks requiring global context [5,32]], especially in heterophilic graphs [[72]
112]. Solutions include graph rewiring [106} 60], weight-space regularization [43|44], and physics-
inspired dynamics [54]]. Graph Transformers (GTs) like SAN [64], Graphormer [119], and GPS
[88] enhance expressivity using structural encodings [33} [31], but suffer from quadratic complexity.
Scalable alternatives include sparse and linearized attention mechanisms [[120} 211,197,196/ [115! [26]],
though simple MPNNs often remain competitive [105].

Learning Spatio-Temporal Interactions on Graphs. Temporal GNNs often combine GNNs with
RNNs to model spatio-temporal dynamics [42]]. Some adopt stacked architectures that separate
spatial and temporal processing [92} 183) 82 16l [22]], while others integrate GNNs within RNNs for
joint modeling [65} 17} 68} 123, 190]]. Our approach follows the latter, but goes further by embedding
modern SSM principles directly into the GNN architecture, unifying spatial and temporal reasoning
through linear recurrence. This contrasts with GGRNN [90], which employs a more elaborate
message-passing scheme involving nonlinear aggregation over multiple powers of the graph shift
operator at each recurrent step.

Casting State-Space Models into Graph Learning. Several recent models adopt SSMs for
static graphs by imposing sequential orderings, e.g., via degree-based sorting [111] or random
walks [10], often sacrificing permutation-equivariance. Spectral methods [57] offer alternatives but
are computationally demanding and prone to over-squashing [27]. In the temporal graph setting,
GraphSSM [66]] applies the diffusive dynamics of a GNN backbone first, followed by an SSM as
a post-processing module. In contrast, our approach embeds the core principles of modern SSMs
directly into the graph learning process, yielding a unified framework that seamlessly supports both
static and temporal graph modeling—while maintaining permutation equivariance, computational
efficiency, and supporting parallel implementation.

B MP-SSM generalizes MPNNs.

We note that our MP-SSM can implement its backbone MPNN, an important property that allows it
to retain desired or known behavior from existing MPNNs while also generalizing it and allowing for
improved information transfer, as discussed in Section[3] To show that our model can implement its
backbone MPNN, which in our case is based on GCN via the chosen GSO, we consider the static case,
i.e., an input sequence [Uy, ..., U;], under the assumption that the MLP is a nonlinear activation o
function. We note that this can be obtained if the weights within the MLP decoder are the identity
matrices, i.e., MLP(-) = o(-). Then an MP-SSM block with k& = 1 yields a GCN layer. In fact, if
k = 1 then Equations (T) and ) read:

X; =U;B = X :AUlBW+U1B:AX1W+X1 = Y :a(AX1W+X1),

which implements a GCN with a residual connection. Then Y is passed as an input to the next
MP-SSM block, which yields a similar update rule, effectively constructing a deep GCN. However,
we note that if £ > 2, then an MP-SSM block deviates from the standard GCN processing.

C Detailed Sensitivity Analysis

We conduct a sensitivity analysis of MP-SSM via the spectral norm of the Jacobian of node features,
as in [106]. We provide an exact characterization of MP-SSM’s gradient flow through the graph,
identify unfavourable topological structures that intensify oversquashing effects, and quantitatively
assess the impact of removing nonlinearities at each recurrent step of graph diffusion, particularly in
alleviating vanishing gradients in the deep regime.

Remark C.1. If the GSO is the identity matrix (A = I, then stacking s MP-SSM blocks with one
recurrence each (k = 1) results in a deep MLP of depth 2s. This feedforward architecture is graph-
agnostic, and it can be made resilient to vanishing and exploding gradient issues through standard
deep learning heuristics such as residual connections [52] and normalization layers [LO8]], with
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dropout being employed as a regularization technique to support the learning of robust hierarchical
representations [[101]. In our deep MP-SSM architecture, we apply these heuristics between MP-SSM
blocks, following established practices in SSMs [46] 45]]. Thus, MP-SSM extends graph-agnostic
deep feedforward networks, for which established deep learning heuristics are known to effectively
address vanishing/exploding gradient issues. This observation motivates our focus for sensitivity
analysis on the linear recurrent equation within an MP-SSM block, as it encapsulates the core
dynamics relevant to information propagation on graphs. Notably, all the other operations within
a deep MP-SSM are independent of the graph structure. Thus, if the linear recurrent equation
supports effective information transfer, then this property naturally extends across the full
MP-SSM architecture, which is fundamentally a stack of such linear recurrences.

Let ng ) and Xgi) denote the embeddings of nodes j and 7 at time steps s < t. We define:
Definition C.2 (Local sensitivity). The local sensitivity of the features of the i-th node to features of
the j-th node, after ¢ — s applications of message-passing aggregations, is defined as the following
spectral norm:

oxV

Si ’(t - 8) = 8ng)

: ®

Equation (B)) measures the influence of node j’s features at time s on node ¢ at time ¢.

Remark C.3. If the local sensitivity between two nodes increases exponentially with ¢ — s, then the
learning dynamics of the MPNN are unstable; that is the typical case for linear MPNNs using the
adjacency matrix without any normalization or feature normalization. Therefore, upper bounds on
local sensitivity are linked with stable message propagation, in the deep regime.

The linearity of the recurrence of an MP-SSM block allows an exact computation of the Jacobian
between two nodes j, ¢ at different times s, ¢, in terms of the powers of the GSO, as expressed by

Equation (6) in Theorem [C.4] (for the proof, see Appendix [D.2).

Theorem C.4 (Exact Jacobian computation in MP-SSM). The Jacobian of the linear recurrent
equation of an MP-SSM block, from node j at layer s to node i at layer t > s, can be computed
exactly, and it has the following form:

ox? . _
2‘) _ (At ‘s)ij (WT)t s (6)
@XSJ Hi_/al,_/

Consequently, GSOs that yield a bounded outcome under iterative multiplication promote stable MP-
SSM dynamics, as highlighted in Remark|C.3] In Lemma [C.5] we formally prove (see Appendix [D.T)
that the symmetrically normalized adjacency with self-loops exhibits this stability property, along
with additional characteristic that support our theoretical analysis.

Lemma C.5 (Powers of symmetrically normalized adjacency with self-loops). Assume an undirected
graph. The spectrum of the powers of the symmetric normalized adjacency matrix A = Dz (A +
I)D*% is contained in the interval [—1,1]. The largest eigenvalue of At has absolute value of 1

with corresponding eigenvector d = diag(D% ), for all t > 1. In particular, the sequence of powers
[A*);>1 does not diverge or converge to the null matrix.

Thus, Lemma implies that the symmetrically normalized adjacency with self-loops serves as
a GSO that ensures stable dynamics when performing a large number of message-passing opera-
tions in the MP-SSM’s framework. Moreover, for such a particular GSO, we can derive a precise
approximation of the local sensitivity in the deep regime, as stated in Theorem [C.6|and proved in
Appendix [D.3]

Theorem C.6 (Approximation deep regime). Assume a connected graph, and the symmetrically
normalized adjacency with self-loops as GSO. Then, for large values of t — s, the Jacobian of the
linear recurrent equation of an MP-SSM block, from node j at layer s to node i at layer t > s, admits
the following approximation:

ox{" /U +d)(A+d))
oxy VI+2|E|

(Wi, 7

!Similar characteristics of the symmetrically normalized adjacency with self-loops have also been discussed
in [79].
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where dy = 377_ | (A)y is the degree of the I-th node.

For the case of the symmetrically normalized adjacency with self-loops as GSO, we can find a precise
lower bound for the minimum local sensitivity among all possible pairs of nodes in the graph, in the
deep regime (proof in Appendix [D.4).
Corollary C.7 (Lower bound minimum sensitivity). Assume a connected graph, and the symmetri-
cally normalized adjacency with self-loops as GSO. Then, for large values of t — s, the following
lower bound for the minimum local sensitivity of the linear recurrent equation of an MP-SSM block
holds:

2

t—s :

The minimum local sensitivity is realized for pairs of nodes among which the transfer of information
is the most critical due to the structure of the graph. Therefore, lower bounds on the minimum
local sensitivity are linked to the alleviation of over-squashing. Rewiring techniques are known to
help combating this phenomenon [27]. Corollary [C.7]proves that, without rewiring, MP-SSM can
deal with over-squashing by increasing the norm of the recurrent weight matrix. In Remark [C.8] we
construct an example of a topology that approaches the lower bound of Equation (§), thus realising a
worst case scenario due to over-squashing.

Remark C.8 (Bottleneck Topologies). A chain of m cliques of order d represents a topology realising

a bad scenario for Equation (7), since local sensitivity can reach values as low as ——, scaling on

long chains and large cliques, see Appendix [D.3.1] for details. This effect is intrinsically tied to
the specific topology of the graph, and it aligns with prior studies that emphasize the challenges of
learning on graphs with bottleneck structures [106].

To assess the overall gradient information flow across the entire graph in the deep regime, we define:

Definition C.9 (Global sensitivity). The global sensitivity of node features of the overall graph after
t — s hops of message aggregation is defined as:

S(t—s) =maxS;;(t — s). 9
i

Remark C.10. The local sensitivity between two far-apart nodes can be physiologically small due
to the particular topology of the graph (e.g. bottlenecks), or it can be even 0 if two nodes are not
connected by any walk. However, if the local sensitivity converges to 0, in the deep regime of
large t — s, for all the pairs of nodes, i.e., if the global sensitivity converges to 0 regardless of the
particular topology of the graph, then it means that the MPNN model is characterized by a vanishing
information flow. Therefore, lower bounds on global sensitivity are linked to the alleviation of
vanishing gradient issues, in the deep regime.

For connected graphs, we can leverage the exact Jacobian computation of Theorem [C.4]to prove the
following lower bound on the global sensitivity, see Appendix [D.5]for the proof.

Theorem C.11 (Lower bound global sensitivity). Assume a connected graph. The global sensitivity
of the linear recurrent equation of an MP-SSM block is lower bounded as follows:

pA)

TIIWHH <S(t-s), (10)

where p(A) is the spectral radius of the GSO. Thus, for the symmetrically normalized adjacency with

1
self-loops, it holds the lower bound v [[WE=s]| < S(t — s).

This theoretical result demonstrates that MP-SSM ensures values of the global sensitivity strictly
greater than zero, for any depth ¢ — s and for connected graphs with any number of nodes. This result
cannot be guaranteed in a standard MPNN, as the nonlinearity applied at each time step increasingly
contributes to vanish information as the depth increases. We provide an extended discussion about
this point in Appendix

Remark C.12. Note that both results of Equation (6) and Equation hold for any GSO. However,
for the particular case of the symmetrically normalized adjacency with self-loops, we can provide
more precise approximations and bounds.
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From Section @ we know that MP-SSM generalizes its backbone MPNNs, and the GCN architecture
in particular when using the symmetrically normalized adjacency with self-loops as GSO. In Theo-
rem [C.13] we provide an estimation of the vanishing effect caused by the application at each time
step of a ReLU nonlinearity in a standard GCN compared with our MP-SSM, in the deep regime, as
we prove in Appendix [D.6|

Theorem C.13 (GCN vanishes more than MP-SSM). Let us consider a GCN network that aggregates
information from k hops away, i.e., with k layers, equipped with the ReLU activation function. Then,

the GCN vanishes information at a 275 faster rate than our MP-SSM block with k linear recurrent
steps.

D Proofs

Here, we provide all the proofs of lemmas, theorems, and corollaries stated in the main text.

D.1 Proof of Lemma[C.3|

Lemma. Assume an undirected graph. The spectrum of the powers of the symmetric normalized
adjacency matrix A = D~ 2 (A 4+ I)D~ 2 is contained in the interval [—1, 1]. The largest eigenvalue

of A! has absolute value of 1 with corresponding eigenvector d = diag(D%), forallt > 1. In
particular, the sequence of powers [A'];>; does not diverge or converge to the null matrix.

Proof. A = (D"3(A +I)D3)(D"3(A + )D"2)... (D (A + I)D 3)= D 3(A +
- t—1 -
I) (D’l(A + I)) D~ 2. Now, D~!(A +I) is a stochastic matrix, and so also its powers are

~ t
stochastic matrices. Therefore, D-2 A'Dz = (D_1 (A + I)) is a stochastic matrix. The eigen-

values of a stochastic matrix are contained in the closed unitary disk [[75,[8]]. Let, Aq,..., A, all the
eigenvalues (not necessarily distinct) of such a stochastic matrix, with corresponding eigenvectors
Vi,...,Vy. Thus, D"2 A*D3v; = \v;, from which it follows, multiplying both sides by D,
that AtD%vl = )\ZD%VZ. This means that the eigenvalues of A? are exactly the same of those of
the stochastic matrix D~% A*D? with eigenvectors D%vl, ey D%vn, for all ¢. In particular, the
assumption of undirected graph implies A is a symmetric matrix, thus we get that all eigenvalues of
A are real and contained inside [—1, 1], for all ¢. Since the spectral radius of a stochastic matrix is 1,
and the vector 1 with all components equal to 1 is necessarily an eigenvector due to the row-sum being
1 for a stochastic matrix, then it follows that the largest eigenvalue of Atis 1 and d = diag(D%) is
an eigenvector corresponding to eigenvalue 1, for all ¢.

To see why the sequence of powers [A'];>; does not diverge or converge to the null matrix, we
observe that, since A is symmetric, the Spectral Theorem implies we can diagonalize in R the matrix
A = QAQT with Q orthogonal matrix and A diagonal matrix of real eigenvalues. Powers of A can
be written as A* = (QAQT)(QAQT)...(QAQT) = QA'QT. Thus the eigenvalues of A’ are
)\f, for! = 1,...,n. We already proved that the eigenvalues \,, < ... < \; are contained in the
real interval [—1, 1]. Hence, this ensures that the sequence of powers cannot diverge. On the other
hand, we can spectrally decompose symmetric matrices as follows [31], At = Zle Maq qlT, where
q; is the eigenvector corresponding to the eigenvalue ;. Thus, for large values of ¢, the spectral
components corresponding to eigenvalues strictly less than 1 in absolute value vanish, so the matrix
A approaches the sum of terms corresponding to eigenvalues with absolute value equal to 1. This
proves that the sequence of powers cannot converge to the null matrix. O

D.2 Proof of Theorem [C.4]

Theorem. The Jacobian of the linear recurrent equation of an MP-SSM block, from node j at layer
s to node ¢ at layer ¢ > s, can be computed exactly, and it has the following form:

25
axy

(A7) (W)'™e.
—_——

scalar matrix

17



699
700

701

702

704

705

706
707

708

710

71

712

713
714
715

716

77

718
719
720
721
722
723

724

725

726

727

728

729
730

Proof. In this proof we use the notation (M),; to denote the (¢, j) entry of a matrix M, and M® to
denote the i-th row of a matrix IM. Let us start with the recurrent equation X;; = AX;W+U,;;1B.

Therefore, the i-th node features are updated as follows: X§21 = Zle(A)ilX,El)W + Ug:lB.

()

volvine X9 is (A). X : 0Xip1 _

Now, the only term involving X"’ is (A);; X;”"W. Therefore, the Jacobian reads =
0

XEJ‘)
b ,
P ((A)7 j XEJ )W) . Now, given a row vector x € R and a square matrix M, then the function
0X;
= go; (2 (M);s) =

f(x) = xM, whose i-th component is f; = >_;_; ;(M);;, has derivatives
(M);;. Hence, the Jacobian is % = M. Therefore, it holds —-- = (A);;W . For the case
0

Ofi

Xj

(i)
Xz(tj)
of non-consecutive time steps, we can unfold the recurrent equation X;;; = AX;W + U, 1B

between any two time steps s < ¢, as follows:

t—s—1
X, = APTSX WS 4 Z AU, ,BW". (11)
=0

From the unfolded recurrent equation (TT) of a MP-SSM we can see that the only term involv-

. o . . X B . e
ing X, is A" *X ;W' 5. Thus, the Jacobian reads — = 7<(A SX W “")(")):
oxy  oaxV
9 .
ax(j) ((Atfs)ijxgj)wtfs): (Atfs)ij(wT)tfs.

D.3 Proof of Theorem [C.6]

Theorem. Assume a connected graph, and the symmetrically normalized adjacency with self-loops
as GSO. Then, for large values of ¢t — s, the Jacobian of the linear recurrent equation of an MP-SSM
block, from node j at layer s to node 7 at layer ¢ > s, admits the following approximation:

ox{" /U +d)(A+d))
oxy VI+2|E|

(WhH,

where d; = Z?zl (A);; is the degree of the {-th node.

Proof. We provide an estimation of the term (A*~*),; for the case of large values of ¢t — s, and
assuming a connected graph. We use the decomposition A!™* = Zzn:1 )\f_sqlqlT, where q; is
the unitary eigenvector corresponding to the eigenvalue )\;. As discussed in the proof of Lemma
[C3] for large values of ¢ — s, all the spectral components corresponding to eigenvalues strictly less
than 1 (in absolute value) tend to converge to 0. Moreover, by the Perron—Frobenius theorem for
irreducible non-negative matrices [S5], since the graph is connected and with self-loops, there is only
one simple eigenvalue equal to 1, and —1 cannot be an eigenvalue. Thus it holds the approximation
A'~* =~ qiq; . Now thanks to Lemma we know that q; must be the vector d = diag(D%)

(WV1+di,...,vV/1+dy)

Z?:1(1 + dl)

. 1+d;)(1+d,
where d; = Z?=1(A)lj is the degree of the I-th node. Therefore, (q1q] )ij = (1+d){ +d;) =

n+3L, d
(1+d;)(1+d;)
V] +2|E|

normalised to be unitary, and D is the degree matrix of A +1. Thus, q; =

)

O

D.3.1 Example of a bad scenario for Equation (7)

Figure [2]illustrates an example of a bad scenario for Equation (7)), i.e., a chain of m cliques of order
d connected via bridge-nodes of degree 2 (the minimum to connect them). In the Figure, we consider
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m = 6 and d = 10. The pair of bridge nodes ¢ and j depicted in red in Figure2]are 12 hops apart, so
it can be considered a relatively long-term interaction.

In the long-term approximation glven by Equation (7), the local sensitivity between two brldge
nodes of this topology scales as — d2 , for long chains (m large) and big cliques (d large). In fact, in
such a graph the vast majority of nodes has degree approximately d — 1, thus >_;' | d; = n(d — 1).
Specifically, there are exactly m — 1 nodes of degree 2 (bridge nodes), and md nodes with degree
approximately d — 1. Now, n = m — 1 + md ~ md, thereforen + > ;' ;dy & n+n(d—1) =
nd = md?. Scaling to long chains and large cliques, this approximation becomes more accurate, and
(+d)(A+d;) . 3

so the local sensitivity between two bridge nodes is rescaled by the term -~ ST A N md

Figure 2: A chain of six cliques (containing ten nodes each) connected via bridge-nodes of degree 2.
The pair of red nodes is a pair of nodes that minimizes the quantity in Equation (7). Note that the red
nodes are 12 hops apart, so it can be considered long-term.

D.4  Proof of Corollary[C.7|
Corollary. Assume a connected graph, and the symmetrically normalized adjacency with self-loops

as GSO. Then, for large values of ¢t — s, the following lower bound for the minimum local sensitivity
of the linear recurrent equation of an MP-SSM block holds:

2
- Wt—s < 3 S’LH t—3s). 12
Vg aE Wl S minSi(t - 5) (12)
ox{"
Proof. In the deep regime, we can use the approximation of Equation H of Zj)
Xs

1+d;)(1+d;
(1+di)(1+ J)(WT)f—S.Therefore, we have:

V] + 2/

ax(i) .
mn ~ T min /(14 d;)(1 +d;j 7” t=s i,
i 15x00 | ol A T

where the last inequality holds since the minimum degree value of a node in a connected graph

t—s _
v +2|E|”( D=
noticing that |[W || = |[|[W]|. O

is 1. Thus, we conclude that min; ; S;;(t — s) > [[WE=s|]
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D.5 Proof of Theorem [C.11]

Theorem. Assume a connected graph. The global sensitivity of the linear recurrent equation of an
MP-SSM block is lower bounded as follows:

p(A)F—*
14

where p(A) is the spectral radius of the GSO. Thus, for the symmetrically normalized adjacency
Wi

S(t—s) > W=,

with self-loops, it holds the lower bound S(t — s) > G

Proof. By Equations (5), (6) and (9)., we get S(t — s) = max;; [(A"%);|[[((WT)=?|| =
max; j |(A"%);;||[W?*=3||. Let us define n = |V| the number of nodes. The square of the maximum
entry of an (n,n) matrix M is always greater than the arithmetic mean of all the square coefficients, in

other words, [ HF < max; j M7 ;, where || M| denotes the Frobenius norm. Therefore, Hl\fLHF <
max; j |M; ;|. Now, the symmetry of A implies there are Ay, ..., A\, real eigenvalues with corre-
sponding orthonormal eigenvectors qi, . . . , gy, so that we can decompose A'™% = >"" | )\}ffsqlqlT.

Thus, the Frobenius norm is ||A'~||r = \/2?21 AT |2 = \/2?21 AT > e,
where |\1] is the largest in absolute value between all the eigenvalues, i.e. the spectral radius p(A).
Atfs A t—s

max|(At s) |Z H HF Zp( ) , (13)

2} n n

from which we get the thesis

p(A)~*

S(t — ) = max (A=) (W] = W]

For the particular case of symmetrically normalized adjacency with self-loops, the spectral radius
p(A) is exactly 1 due to Lemma|C.3] O

D.6 Proof of Theorem [C.13]

Theorem. Let us consider a GCN network that aggregates information from £ hops away, i.e., W1th

k layers, equipped with the ReLU activation function. Then, the GCN vanishes information at a 2~
faster rate than our MP-SSM block with a number k of linear recurrent steps.

Proof. The state-update equation of a GCN with a residual connection is X; 1 = o (AX;W + X;).
Therefore, the features of -th node at time ¢+1 are updated as ngl =0 (Z;l:l (A)HXgl)W—l—XEi)) .
Similarly to the proof of theorem|C.4] we can write

ox!) ,
ox)  oxV

= diag (U’ ((A)in§j)W)> (AW,

where we assumed that ¢ # j, so that the residual connection term does not appear in the derivative
w.I.t. X,g] ). Since we are considering o = ReLU, the diagonal entries o’ ((A)in? )W) are either
G

0 or 1. Let’s assume that the components of the vector o’ ((A)intj )W) are independent and

identically distributed (i.i.d.) Bernoulli random variables, each with probability é of taking the value

0. Now, let’s consider a walk { (i, ji) }F ¥~ of length k connecting the j-th node at a reference time
t = 0 to the i-th node at time ¢t = k. Then, the Jacobian of GCN along such a walk reads:
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where P; = diag (a’ ((A)mt Xijt)W)) and M; = (A);,;, W . On the other hand, the Jacobian

of the linear recurrent equation @) of an MP-SSM block, in the static case with a number & of linear
recurrent steps computed along the same walk reads:

(2) k—1
8X H M,
t=0
We aim to prove that, for a generic vector x W1th entries i.i.d. random variables distributed symmetri-
cally about zero (e.g. according to a Normal distribution with zero mean), it holds the approximation

I H PtMtx|| ~ 23| H MtxH We prove the thesis using a recursive argument. First, we
observe that, denoting y = ng then we can write
IPoMox|[* = [[Poy|* = (p1y1)* + .. + (Pnyn)”. (14)

Now, since the p; are assumed i.i.d. Bernoulli random variables, each with probability % 5 of taking
the value 0, in the sum of (I4), roughly a portion of half of the contributions from y are zeroed-out
due to action of Pg. Therefore,

1 1
[[PoMox|[* = [[Poy||* ~ S[lylI* = 5 [[Mox]|*. (15)

Note that the larger the dimension of the graph n, the more accurate the approximation of (T3).
Therefore, we conclude that ||[PoMox|| ~ 272 ||Mgx||. Now, we proceed recursively by denoting
[IMEx ||

|1l

[[Pr—1Mp_1Pr_oMj_o... PoMox|| =
= [|Pr_1Myp_1Xp 1| =

_1 ~
~272 |\Mk_1xk_1|| =

X =P 1M;_...PyMjx, and defining the scalars ¢; = >0, forallt=1,...,k— 1.

Then, we can write

_1 ~

=27 2¢p1|[Xp—1]] =
_1 ~

=27 2¢p_1||Pr_oaMj_oXp_o|| =
1 1 ~

27 20p_127 2o |Xp—2|| =
_k

~ 22 Ck—1Ck—2 + . . C(]HXH.

On the other hand, for the case of MP-SSM, it reads:
HMk_le_Q . M0X|| = Ck_1||Mk_2 . M0X|| =
= Ck_lck_QHMk_g . MOX” =...
= Ck—1Ck—2 ... Col|x]||.

This proves that a standard GCN vanishes information 275 faster than MP-SSM.

We assumed weight sharing in the GCN, but the same proof holds assuming different weights
Wi, ..., Wy at each GCN layer, by simply using the same exact weight matrices for the linear
equation of MP-SSM. O

E Fast Parallel Implementation

We describe all the details to derive and implement a fast parallel implementation for the computation
of an MP-SSM block.

The unfolded recurrence of an MP-SSM block gives the following closed-form solution:

X1 = A*UBW* + A¥1U,BWF ! 4+ AU.BW + U, B. (16)
Therefore the equation of an MP-SSM block reads:
k
Xir1 =) AU BW, (17)
i=0
Y1 = MLP(Xj41), (18)
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The closed-form solution of an MP-SSM block tells us that we could implement the whole recurrence
in one shot. However, the computation of the powers of both the GSO, A, and the recurrent weights,
‘W, can be extremely expensive for generic matrices and large values of k. On the other hand, the
powers of diagonal matrices are fairly easy to compute, since they are simply the powers of their
diagonal entries. Below, we show how to reduce a generic dense real-valued MP-SSM block to an
equivalent diagonalised complex-valued MP-SSM block.

Assume the following diagonalisation of the shift operator: A = PAP~!. If undirected graph, i.e.,
A is symmetric, then by spectral theorem the P is a real orthogonal matrix (i.e. P~ = P ") and A
is real.

Assume the following diagonalisation of the weights: W = VXV ~!, If using dense real matrices as
weights, then their diagonalisation is possible only assuming complex matrices of eigenvectors V
and complex eigenvalues 3. Also, note that the set of defective matrices (i.e. non-diagonalizable in
C) has zero Lebesgue measure [41]].

Assume the following MLP equations with 2 layers: MLP(X) = ¢(XW;)Wj,, where ¢ is a
nonlinearity, and W1, W, real dense matrices.

With the above assumptions, the MP-SSM block equations can be equivalently written as:
k

Xip1 =y PAP U, BVEV (19)
i=0
Yit1 = o(Xp 1 W1)Wo, (20)
which we can write as:
k . .
Xy1) = P (Z AlP‘lUkH_iBVE’)V‘l, @1
i=0
Y1 = (X1 Wi)Wo, (22)

Multiply on the left side both terms by P! and on the right side both terms by V

k
P !X V=> AP Uy, BV (23)
1=0

If we change coordinate reference to Zg1 = P_leHV, then we can write:

k
Ziyr =Y APT'Up, BVY, (24)
=0
Yii1 = ¢(PZpp VI W )W, (25)

Equations (24) and (23)) give the same exact dynamics of the equations and (T8).

The matrix of complex eigenvectors V in (24) can be merged into the real matrix of weights B in

equation ([26). Therefore, we can call B a complex matrix of weights that accounts for the term
BV. Similarly, the matrix eigenvectors V! in can be merged into the matrix of weights W
in equation (27), that we call W,. To get an exact equivalence, we should exactly multiply by V
and V!, but merging these into learnable complex-valued matrices B and W then we get similar
performance.

With these new notations, we can write the equivalent diagonalised complex-valued MP-SSM block:

k
Ziyr =Y AUy BY, (26)
1=0
Yii1 = o(PZyp1 W)W, (27)

where, in summary:
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* input is pre-processed as IAJkH,i = P_lUkH,i,
* A is the diagonal matrix of the eigenvalues of the GSO,
* learnable recurrent weights are B (complex and dense), and 3 (complex and diagonal)

* learnable readout weights are W, (complex and dense), and Wy, (real and dense)
Equations (26)-(27) tell us that we can implement the whole recurrence efficiently in a closed-form
solution that only involves powers of diagonal matrices.

We provide in Algorithm [T} the pytorch-like implementation of the fast MP-SSM, provided the input
sequence (Uy, ..., Ugy1), computes in parallel the whole output sequence (Y1,..., Ypi1).

Algorithm 1 MP-SSM fast implementation

Require: the input features x € Crum_stepsxnxC' (jf temporal), else x € cnxe, the number of
iterations (i.e., k+1) num_steps; the diagonal complex-valued weight matrix W € Chidden-dim; the
complex-valued matrix B € CC>hidden_dim; the ejgenvalues of the GSO eigenvals € C"

Ensure: out € (Cnum_stepsxnxhidden_dim

1: powers = torch.arange(num_steps)

2: Apowers = eigenvals.unsqueeze(—1).pow(powers) > shape: (n, num_steps)

3: Epowers = W.unsqueeze(—1).pow(powers) > shape: (hidden_dim, num_steps)
4: if not temporal then

5: x = x.repeat(num_steps, 1, 1) > shape: (num_steps, n, C), static case

6: end if

7: Xippea = torch.flip(x, dims = [0]) > shape: (num_steps, n, C)

8: Xcomplex = Xflipped-to(torch.cfloat)

9: xp = torch.matmul(Xcomplex, B) > shape: (num_steps, 7, hidden_dim)
10: Apowers = Apowers-permute(2,0,1) > shape: (num_steps, n, 1)
11: Epowers = Zpowers-transpose(1, 0).unsqueeze(1) > shape: (num_steps, 1, hidden_dim)
12: scaled_x_B = Apowers - XB * Zpowers
13: out = scaled_x_B.cumsum(dim = 0) > shape: (num_steps, 7, hidden_dim)
14: dj,dg,ds = out.shape
15: Xuey = out.permute(1, 2, 0).reshape(n, —1) > shape: (n, num_steps - hidden_dim)
16: Xage = matmul(

X = Xagg,
edge_index = matrix_p_edge_index,
edge_weight = matrix_p_edge_weight
)
17: Xagg = Xagg.Teshape(da, ds, d;).permute(2,0, 1)
18: out = mlp(X,g, batch)

We acknowledge that there is no free lunch: we achieve a one-shot parallel implementation trading
off GPU memory usage, since the whole tensor of shape (num_steps, n, hidden_dim), in line 9 of
Algorithmm must fit into the GPU. However, with sufficient GPU memory, the entire MP-SSM block
computation occurs in 1073 seconds, see Figure As shown in Figure [3, MP-SSM scales similarly
to GCN and GCN (weight sharing), whose lines are overlapping, but it is slightly faster, owing to the
lack of nonlinearity in the recurrence—a benefit that grows with more iterations. On the other hand,
the fast implementation of MP-SSM maintains constant runtime, provided enough GPU memory.

Finally, we note that, unlike standard SSM models such as S4 and Mamba, which follow a Single-
Input-Single-Output strategy—computing a separate SSM for each input channel and then mixing
the results—our implementation in Algorithm[I]adopts a Multiple-Input-Multiple-Output strategy,
enabling native handling of multivariate inputs.
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100 =e= GCN
—e— GCN (weight sharing)
10-1 —°*— MP-SSM

—e-- MP-SSM (fast impl.) /

Inference Time (seconds)

10! 107 5-102 103 5.103
N. iterations (or layers)

Figure 3: Inference time on a graph of n = 100 nodes (with number of edges 3058), input dimension
C = 1, hidden_dim = 32, and increasing lengths £ = 10, 100, 500, 1000, 5000. GCN is a standard
GCN with tanh without residual with & layers. GCN (weight sharing) is the same, but just one layer
iterated k times. MP-SSM baselines use both 1 block.

F Relation to other temporal graph models based on state-space modeling

In the recent literature, we can find temporal graph models that leverage the state-space approach.
The MP-SSM presents a simplified yet effective recurrent architecture for temporal graph modeling,
offering clear advantages in architectural design when compared to alternatives such as GGRNN [90]
or GraphSSM [66]. The MP-SSM recurrent dynamics are governed by a simple linear diffusion on
the graph:

X1 = AXyW + U1 B. (28)
In contrast, the GGRNN recurrent equation (in its simplest form, without gating mechanisms) adopts
a more elaborate design:

K-1 K-1
Xipn=o| > AX,W;+ > AUB; |, (29)
j=0 j=0

where multiple powers of the shift operator, A, are used to aggregate information from both previous
embedding X, and current input features U, weighted with several learnable matrices, W ; and
B, which are applied for different j values, and finally, applying a nonlinearity at each time step.

The key distinguishing feature of MP-SSM is the absence of nonlinearity in the recurrent update, with
the only nonlinear transformation appearing in a downstream MLP decoder, typically composed of two
dense layers with an activation function in between. This feature also allows for a fast implementation
of the recurrence, since it can be unfolded to get a closed-form solution, see Appendix [E] Moreover,
in an MP-SSM block, the same weights, W, B and MLP parameters, are shared across all time steps,
ensuring strict weight sharing throughout the sequence. Moreover, our methodology implements a
stack of MP-SSM blocks to build richer representations, differently from GGRNN where only one
layer of recurrent computation is performed.

On the other hand, the GraphSSM model [[66]] adopts a strategy of stacking several GraphSSM blocks
similar to MP-SSM, but their building blocks are fundamentally different from our MP-SSM block.
In fact, a GraphSSM block processes the spatio-temporal input sequence [U;] in three main stages,
see Appendix D.2 of [66]. First, a GNN backbone is applied to the input sequence, generating a
corresponding sequence of node embeddings X;. Next, each embedding is mixed with the one from
the previous time step X;_1, producing a smoothed temporal embedding H,. This mixed sequence
[H.] is then treated as a multivariate time series and passed through an SSM layer—such as S4, S5, or
S6—to yield the final sequence [Y] as the output of a GraphSSM block. Our approach is conceptually
simpler, as it integrates both the GNN diffusive dynamics and sequence-based processing within a
unified linear recurrence—Equation (2Z8)—followed by a shared MLP applied across time steps. In
this sense, MP-SSM embeds the core principles behind modern SSMs—the very principles that have
driven the success of sequential modeling—directly into the graph processing framework. In contrast,
GraphSSM merely combines GNN and SSM backbones in a modular fashion to address temporal
graph tasks, without deeply integrating their underlying mechanisms.

In TableE], we provide a direct comparison between MP-SSM, GGRNN, and GraphSSM, on the Metr-
LA and PeMS-Bay datasets. To ensure a fair and comprehensive comparison, we computed MAE,
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RMSE, and MAPE for all three models: MP-SSM, GGRNN, and GraphSSM. We used GGRNN
without gating mechanisms, as it achieved the best performance on Metr-LA according to [90l Table
IV], and GraphSSM-S4, since the authors reported in [66] that their experiments were primarily
conducted using the S4 architecture. As the results show, our method consistently and significantly
outperforms both GGRNN and GraphSSM across all three metrics on both datasets.

Table 3: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
Best results for each task are in bold.

Model Metr-LA PeMS-Bay
MAE | RMSE| MAPE | MAE | RMSE | MAPE |
GGRNN 3.88 8.14 10.59% 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% 1.98 4.45 4.77%
MP-SSM (ours)  3.17 6.86 9.21% 1.62 4.22 4.05%

G Multi-hop interpretation of a deep MP-SSM architecture

MP-SSM is fundamentally different from multi-hop GNNs approaches: it operates through strictly
1-hop message passing at each iteration and does not perform aggregation from far-away hops by
design. Nonetheless, to better understand its behavior in deeper architectures, we explore how a
multi-hop perspective can be used for interpretation, drawing contrasts with a representative multi-hop
model, Drew [49]]. For this purpose, let us consider the static case, with the input being the sequence
[Uy,...,U;]. The linearity of the recurrent equation of an MP-SSM block allows us to unfold the
recurrent equation as follows:

k
Xppi1 = AFIXGWH 4 " AU BW (30)
=0

Therefore, assuming a zero initial state and including the MLP into the equation, we have the
following expression in the output of the first MP-SSM block:

k
Y1 = MLP(Z AZ'Ulei). 31)
i=0
Due to the various powers of the shift operator I, A, A%, ..., A¥, we can interpret Equation (31)

as a k-hop aggregation of the input graph U;. Now, the sequence [Yj41, ..., Yi41] is the input
to the second MP-SSM block. Therefore, stacking the second MP-SSM block, and considering a
residual connection from the first MP-SSM block, we have the following expression in the output of
the second MP-SSM block:

k
Yogi1) = Yerr +MLP(D AY 41 BaWY), (32)
1=0

where By, Wy, are the shared weights of the second MP-SSM block. In general, in a deep MP-SSM
architecture of s blocks, we have the following expression in the output of the s-th MP-SSM block:

k
Yokt+1) = Y-kt + MLP(Z AiY(s—1)(k+1)BsWi)- (33)
1=0

To reveal the multi-hop view, we denote Y = Ys(k+1), VAVES) = BSWi, and describe the deep
MP-SSM architecture at the granularity of its blocks, as follows:

k
YO = YO0 MLP (Y AT IW), (34)

=0

This multi-hop interpretation of a deep MP-SSM architecture resembles the DRew-GCN architecture
[49], a multi-hop MPNN employing a dynamically rewired message passing strategy with delay. In
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fact, the recurrent equation of DRew-GCN, rephrased in our MP-SSM notation for ease of comparison,
is defined as:

s+1
YD =y 4 o (Z A(i)Y<”v<i>>W§8)> , (35)
i=1
where A (4) is the degree-normalised shift operator that considers all the neighbors at an exact i hops
from each respective root node, Wgs) are weight matrices, and 7,,(¢) is a positive integer (the delay)
defining the temporal window for the aggregation of past embeddings. Comparing Equation (34) and
Equation (35)) we can summarize the following differences:

» DRew aggregates information using A(¢), a function of the GSO that counts neighbors at an
exact i hops distance, while MP-SSM considers the powers of the GSO, A, thus accounting
for all the possible walks of length :. Similarly, the learnable weights in MP-SSM reflect the
architectural bias induced by the recurrence, as they are structured through powers of a base

matrix, specifically following the form W'*) = B, W,

* DRew nonlinearly aggregates information via a pointwise nonlinearity o, while MP-SSM
employs a more expressive 2-layers MLP.

* MP-SSM uses the same features for multi-hop aggregation (corresponding to 7,,(¢) = 0),
whereas DRew aggregates features from previous layers with a delay 7, () = max(0,¢ —v),
effectively introducing a temporal rewiring of the graph.

Although the unfolding of MP-SSM yields expressions involving powers of the GSO, this resemblance
to multi-hop architectures such as DRew [49] is purely superficial. Unlike models that aggregate
information from distant nodes within a single layer, MP-SSM performs strictly 1-hop message
passing at each iteration. The higher-order GSO terms emerge naturally from the recurrence, not from
an architectural bias toward multi-hop aggregation. This formulation, grounded in first principles,
preserves the original graph topology and constitutes a structurally distinct approach. We provide in
TableE]a comparison of DRew-GCN (results taken from [49]]) with our MP-SSM on the Peptides-func
and Peptides-struct from the LRGB task [32]]. Notably, MP-SSM outperforms DRew-GCN on the
Peptides-struct task, suggesting that the structural architectural bias introduced by the recurrence,
combined with MLP adaptivity, offers a stronger advantage than aggregating information via rewired
connections from delayed past features. In contrast, on the Peptides-func task, the performance of
the two models falls within each other’s standard deviation, indicating no statistically significant
difference between DRew-GCN—despite its dynamic rewiring strategy with delay—and MP-SSM.
In Appendix [M|we report an extended evaluation on the LRGB benchmark.

Table 4: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. DRew-GCN
results are taken from [49]]. The best scores are in bold.

Peptides-func  Peptides-struct

Model AP 1 MAE |

DRew-GCN 69-96j:0.76 0.278110_0028
MP-SSM (ours) 69.931+0.52 0.2458_0 0017

H Ablations

We perform an ablation study to isolate the incremental contribution of each SSM heuristic to the
performance gains in reconstructing graph-structural information that depends on learning long-range
dependencies; specifically for computing quantities like the diameter of a graph, the single-source-
shortest-paths (SSSP), and the eccentricity of a node, see Section @] for more details on these tasks.
Results of this ablation are reported in Table 3

The ablation conducted reveals that removing the nonlinearity from GCN yields the most significant
performance improvement. Introducing weight sharing—effectively incorporating recurrence into the
linear graph diffusion process—yields a slight performance boost while considerably reducing the
number of parameters. Appending an MLP at the last time step of this linear recurrent architecture
does not result in statistically significant gains, except marginally for the Eccentricity task. Likewise,
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Table 5: Architecture ablation study. Mean test log1o(M SE) and std averaged on 4 random weight
initialization on Graph Property Prediction tasks (Section[4.T). The lower, the better. The evaluation
include: a nonlinear multilayer GCN (GCN), a linear multilayer GCN (Linear GCN), a linear mul-
tilayer GCN with weight sharing (Linear GCN (ws)), Linear GCN (ws) followed by an MLP (1
Block Linear GCN), a stack of multiple 1 Block Linear GCN (Multi-Blocks Linear GCN), and
our MP-SSM, which represent a multi-blocks linear GCN with standard deep learning heuristics such
as residual connections and normalisation layers between blocks.

Model Diameter | SSSp | Eccentricity |
GCN 0.742410.0466  0.94991+0.0001 0.8468£0.0028
Linear GCN -2.1255+0.0084 -1.582240.0002 -2.142440.0014
Linear GCN (WS) -2.2678i0,1277 -1.5823:&0,0001 -2.1447:&0'001
1 Block Linear GCN -2.2734:&0,1513 -1.5836:&0,0025 -2.1869i0_005g
Multi-Blocks Linear GCN ’2-3531i0.3183 -1.5821i0_0001 '2-1861i0.0066
MP-SSM -3.235310.1735 -4.632110.0779 -2.97241¢.0271

constructing a hierarchical block structure does not noticeably enhance performance. These limited
improvements suggest that, for the three tasks considered, the linear recurrence mechanism alone,
provided a long enough recurrence, is sufficient to capture meaningful representations to reconstruct
graph’s structural information. Finally, incorporating standard deep learning heuristics further
strengthens the full MP-SSM architecture, consistently improving performance across all tasks.

I Complexity and Runtimes

We discuss the theoretical complexity of our method, followed by a comparison of runtimes with
other methods.

Complexity Analysis. Our MP-SSM consists of a stack of blocks. Each of them performs a linear
recurrence of k iterations followed by the application of a nonlinear map, as defined in Equations
and (2). Note that  is either the length of the temporal graph sequence or a hyperparameter. Given the
similarities between the linear recurrence in MP-SSM and standard MPNNS, described in Section 2]
the recurrence retains the complexity of standard MPNNs. Therefore, the Equation (1) is linear in
the number of node |V'| and edges | E|, achieving a time complexity of O(k - (|V| + | E|)), with k
the number of iterations. Considering O(m) the time complexity of the MLP in Equation , then
the final time complexity of one MP-SSM block is O(k - (|V| + |E|) + m) in the static case and
O(k - (JV| 4+ |E| +m)) in the temporal case.

Runtimes. We provide runtimes for MP-SSM and compare it with other methods, such as Graph GPS
and GCN, in Table[6] In all cases, we use a model with 256 hidden dimensions and a varying depth
effective by changing the number of recurrences from 2 to 16 in our MP-SSM with 2 MP-SSM blocks,
and the number of layers is the depth for other methods. We report the training and inference times in
milliseconds, as well as the downstream performance performance obtained on the Roman-Empire
dataset. As can be seen from the results in the Table, our MP-SSM maintains a similar runtime to
GCN, which has linear complexity with respect to the graph size, while offering strong performance
at the same time. Notably, our MP-SSM achieves better performance than GCN and GPS, and
maintains its performance as depth increases, different than GCN. All runtimes are measured on an
NVIDIA A6000 GPU with 48GB of memory.

J The vanishing gradient tendency in nonlinear MPNN:s.

Let us consider a highly connected graph without bottlenecks, such that the transfer of messages
from any node to any other node is not affected by issues due to structural properties of the graph.
However, in the deep regime, the presence of a nonlinearity at each time step can lead the global
sensitivity (as defined in Equation (9)) to be vanishing small.

For an MP-SSM block, the local sensitivity S;; (¢ — s) of the features of the i-th node to features of the
j-th node after ¢ — s applications of message-passing aggregations, is exactly the norm of the Jacobian
of Equation @), i.e. the norm of the product of the (i, j)-entry of A*~* and the matrix (W T )!==.
For standard MPNN approaches, the local sensitivity has a more complicated expression due to
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Table 6: Training and Inference Runtime (milliseconds) and obtained node classification accuracy
(%) on the Roman-Empire dataset.

Metrics Method Depth
4 8 16 32

Training (ms) 18.38 33.09 61.86 120.93
Inference (ms) GCN 9.30 14.64 27.95 53.55
Accuracy (%) 73.60 61.52 56.86 52.42
Training (ms) 1139.05 228696 454546 OOM
Inference (ms) GPS 119.10 208.26 427.89 OOM
Accuracy (%) 81.97 81.53 81.88 OOM
Training (ms) 1179.08 2304.77 4590.26 OOM
Inference (ms)  GPScgar+performer (RWSE) 120.11 209.98 429.03 OOM
Accuracy (%) 84.89 87.01 86.94 OOM
Training (ms) 23.19 41.44 72.09 141.82
Inference (ms) MP-SSM 10.93 18.87 38.87 67.59
Accuracy (%) 85.73 88.02 90.82 90.91

nonlinearities at each aggregation step, but usually there are 3 key contributors: one from several
multiplications of the shift operator (akin to A*~* in our MP-SSM), one from several multiplications
of the weights (akin to (W )~ in our MP-SSM), and one from several multiplications of the
derivative of the nonlinearity evaluated on the sequence of embeddings D(s), D(s + 1),..,D(¥).
Usually the nonlinearity is pointwise, so D(t) is a diagonal matrix with entries usually in [0, 1], thus
contributing to vanishing the gradient more and more at each time step. Hence, if the subsequent
multiplications of weights and nonlinearity-based terms tend to vanish, while the powers of the shift
operator A are bounded (as it is for the case of the symmetrically normalized adjacency with self-
loops, proved in Lemma 4.5) then the local sensitivity tends to vanish for all pair of nodes, fort — s
large enough. This will be reflected in the global sensitivity, which also will tend to vanish, for ¢t — s
large enough. This demonstrates that global sensitivity effectively quantifies the severity of vanishing
gradient issues in MPNN models plagued by this problem. Note further that the local sensitivity
of the linear recurrence in each block of our MP-SSM has the exact form of ||(A!=%),; (W T)!=%]|,
while for standard MPNN approaches with nonlinearities at each time step the vanishing effect will
be stronger, as we formally proved for the case of GCN in Theorem|[C.13]

K Extended comparison on the Graph Property Prediciton Benchmark

To further evaluate the performance of MP-SSM, we report a more complete comparison for the GPP
task in Table[7] Specifically, we include more MPNN-based models.

L Further spatio-temporal benchmarks

In Table 8] we report the results for Chickenpox Hungary, PedalMe London, and Wikipedia math
[89], which involve public health, delivery demand, and web activity.

As evident from the table, MP-SSM achieves the best results across all datasets.

M Results on the Long-Range Graph Benchmark.

To further evaluate the performance of our MP-SSM, we consider two tasks of the Long-Range Graph
Benchmark (LRGB) [32]].

Setup. We evaluate MP-SSM on the Peptides-func and Peptides-struct tasks from the LRGB
benchmark, which involve predicting functional and structural properties of peptides that require
modeling long-range dependencies. We follow the original experimental setup and 500k parameter
budget.
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Table 7: Mean test set logi10(MSE)({) and std averaged on 4 random weight initializations on Graph
Property Prediction tasks. The lower the better. First, second, and third best results for each task are

color-coded.

Model Diameter SSSP Eccentricity
MPNNs
A-DGN -0.51880.1812  =3.2417410.0751 0.4296-10.1003
DGC 0.6028+£0.0050 -0.148310.0231 0.8261+0.0032
GAT 0.822140.0752  0.695110.1499  0.7909.+0.0222
GCN 0.742440.0466  0.9499+0.0001  0.8468+0.0028
GCNII 0.5287+0.0570 -1.132940.0135 0.7640+0.0355
GIN 0.6131+0.0000 -0.5408+0.4193  0.95040.0007
GRAND 0.671510.0490 -0.094210.3897 0.660210.1393
GraphCON 0~0964:t0.0620 —1.3836i0,0092 0.6833i0,0074
GraphSAGE 0.8645i00401 0.2863i04 1843 0.7863i()‘0207
Transformers
GPS -0.5121+0.0426 -3.599040.1920  0.6077 10.0282
Ours
MP-SSM -3.235310.1735  -4.632110.0779  -2.9724.10.0271

Table 8: Average MSE and standard deviation () of 10 experimental repetitions. Baseline results are
reported from [89, |35, 134] . First, second, and third best methods for each task are color-coded.

Model Chickenpox PedalMe Wikipedia
Hungary London Math

Temporal GNNs

A3T-GCN 1.11440.008 1.469+0.027 0.781+0.011
AGCRN 1.12040.010 1.469+0.030 0.788+0.011
CDE 0.848.10.020 0.810+0.063 0.694+0.02s
DCRNN 1.12410.015 1.46310.019 0.679+0.020
DyGrAE 1~120i04021 1-455i0.031 0-773i0.009
DyHGESN 0.907:&()‘007 1.528:[:()‘063 0.6]0;‘:(]‘003
EGCN-O 1.12410.009 1.491+0.024 0.750+0.014
GConvGRU 1.128:&()‘011 1.622:[:()‘032 0.657i0,015
GC-LSTM 1.115140.014 1.455140.023 0.779+0.023
GRAND 1.0681+0.021 1.5571+0.049 0.79810.034
GREAD 0.98310.027 1.29110.055 0.70410.016
HMM4G 0.93910.013 1.76910.370 0.542¢.00s
MPNN LSTM 1.1160.023 1.48510.028 0.795+0.010
TDE-GNN 0.787 10.018 0.71410.051 0.56510.017
T-GCN 1.117410.011 1.47940.012 0.76410.011
Ours

MP-SSM 0.74810.011 0.64710.062 0.509+0.00s

1005
1006
1007
1008

Results. As shown in TableE[, MP-SSM outperforms standard MPNNS, transformer-based GNNGs,
and most multi-hop and SSM-based models. It achieves the highest average ranking across tasks
without relying on global attention or graph rewiring. Compared to other graph SSMs, MP-SSM
delivers strong performance while preserving permutation-equivariance.

1009

N Results on the Heterophilic Benchmark

1010 To further evaluate the performance of MP-SSM, we report a thorough comparison for the heterophilic
1011 task in Table [I0] Specifically, we include many MPNN-based models, graph transformers, and
1012 heterophily-designated GNNs.

1013 In Table[T0] we color the top three methods. Notably, our MP-SSM achieves the best average ranking
1014 across all datasets in the heterophilic benchmarks.
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Table 9: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Re-evaluated
methods employ the 3-layer MLP readout proposed in [105]]. Note that all MPNN-based methods
include structural and positional encoding. The first, second, and third best scores are colored.
Baseline results are reported from [32, 149, [105} 53] [28] 44]. ¥ means 3-layer MLP readout and
residual connections are employed.

Peptides-func  Peptides-struct | avg. Rank

AP 4 MAE | 1
MPNNs
A-DGN 59.75+0.44 0.2874+0.0021 26.0
GatedGCN 58.64i0_77 0.3420:&0‘0013 29.0
GCN 59.3040.23 0.3496+0.0013 29.5
GCNII 55.4340.78 0.3471+0.0010 30.5
GINE 54.98+0.79 0.3547+0.0045 32.0
GRAND 57.89+0.62 0.3418-+0.0015 29.0
GraphCON 6022:&0.68 0.2778i0_001g 24.0
SWAN 67.5110.39 0.2485+0.0009 12.5
Multi-hop GNNs
DIGL+MPNN 64.694+0.10  0.317340.0007 25.0
DIGL+MPNN+LapPE 68.30+0.26 0.2616+0.0018 16.5
DRew-GatedGCN 67.33;&0,94 0.2699:&0,0013 19.5
DRew-GatedGCN+LapPE 6977:&0.26 0.2539:&0‘0007 12.0
DRew-GCN 69.96:(:0_7.3 0.278110_0028 14.0
DRew-GCN+LapPE 71.50 10 44 0.2536+0.0015 8.0
DRew-GIN 69.40:&0,74 0-2799i0.0016 17.5
DRew-GIN+LapPE 71.26+0.45 0.2606-+0.0014 9.5
GRED 70.8510.27 0.2503 +0.0019 7.0
MixHop-GCN 65.9210.36 0.2921+0.0023 23.0
MixHop-GCN+LapPE 68.431+0.49 0.2614 +0.0023 15.5
Transformers
GraphGPS+LapPE 65.354+0.41 0.2500-+0.0005 155
Graph ViT 69421075  0.24491 0 0016 55
GRIT 69.8840.52  0.246010.0012 5.0
Transformer+LapPE 63.26+1.26 0.2529+0.0016 19.5
SAN+LapPE 63.8441 .21 0.2683+0.0043 22.0
Modified and Re-evaluated*
DRSW*GCN+LapPE 69.45:(:0_21 0.2517:(:0_0011 11.0
GatedGCN 67.65+0.47  0.247740.0009 11.0
GCN 68.6010.50  0.246010.0007 75
GINE 66.21+0.67 0.2473+0.0017 12.0
GrathPS+LapPE 65.34i0_91 0.2509:&0‘0014 17.0
Graph SSMs
GMN 70-71:t0.83 0.2473i0_0025 4.5
Graph-Mamba 67.3940.87 0.2478 +0.0016 12.5
Ours
MP-SSM 69.9310.52 0.2458 1 0.0017 ‘ 4.0

O Experimental Details

0.1 Employed baselines

In our experiments, the performance of our method is compared with various state-of-the-art GNN
baselines from the literature. Specifically, we consider:

classical MPNN-based methods, i.e., GCN [61], GraphSAGE [50], GAT [109], Gat-
edGCN [[13], GIN [118]], ARMA [[11]], GINE [56]], GCNII [18]], and CoGNN [37];

heterophily-specific models, i.e., H2GCN [127], CPGNN [126], FAGCN [12], GPR-GNN
[19]], FSGNN [74], GIoGNN [67]], GBK-GNN [29]], and JacobiConv [113];

physics-inspired MPNNS, i.e., DGC [114], GRAND [15], GraphCON [91], A-DGN [43]],
GREAD [20], CDE [123]], and TDE-GNN [34]];

Graph Transformers, i.e., Transformer [107} 30], GT [95], SAN [63], GPS [88], GOAT [62],
Exphormer [97]], NAGphormer [[16], GRIT [73]], and GraphViT [53];

Higher-Order DGNSs, i.e., DIGL [40], MixHop [1]], DRew [49], and GRED [28]].

SSM-based GNN, i.e., Graph-Mamba [111], GMN [10], GPS+Mamba [10], GGRNN [90],
and GraphSSM [66].
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Table 10: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better. First, second, and third best results for each task are color-coded.
Baseline results are reported from [37, [78[72]]. “+" in the rank column means that the average
has been computed over less trials.

Model R pire A -ratings Minesweeper  Tolokers Questions | avg. Rank
Acc T Acc T AUC 1 AUC 1 AUC 1 1
[72]
MLP-1 64.1240.61 38.60+0.41 50.594+0.83 71.8940.82 70.33+0.96 41.0
MLP-2 66.041.0 71 49551081 50924105 74581075 69974116 | 344
SGC-1 44.6010 52 40.6940.42 82041077 738041135 71.061002| 386
Graph-agnostic
ResNet 65.88i0_3g 45.90;&0,52 50.89:&1,39 7295:&1.06 70.34i0‘75 374
ResNet+adj 52.25i0_40 51483i0_57 50-42i0.83 78.78i1_11 75.77i1,24 32.0
ResNet+SGC 73.90+0.51 50.66+0.48 70.8810.90 80.7040.97 75.8140.96 29.0
MPNNs
CO-GNN(, X)) 91.57 +0.32 51.28 +0.56 95.0911.18 83.3640.80 80.021( 56 8.0
CO-GNN(i, 1) 913710 35 54071037 97311041 84454117 765410.05| 68
GAT 80.871.0.30 49.0940.65 92011068 83704047 774311020| 180
GAT-sep 88.7510.41 52701062 93911055 83781043 76791071 | 9.8
GAT (LapPE) 84.8040.46 449010 73 93.5010.54 84991054 76.5510.84 16.0
GAT (RWSE) 86.6210.53 485810.41 92531065 85024067 77.831102| 116
GAT (DEG) 855110 .56 51.6510.60  93.041062 84224081 77101103 | 126
Gated-GCN 74464054 43004032 87541100 77314114 76611113 | 314
GCN 73.69i0_74 48~70:t0.63 89.75i0_52 83.64i0_67 76.09i1,27 25.8
GCN (LapPE) 83.37:(:0_55 4435:{:0.36 94-26:{:0.49 8495:{;0_73 77.79j:1.34 14.6
GCN (RWSE) 84.8410 55 46401055 9384104 85111077 T78li140| 120
GCN (DEG) 84214 0. 47 500110.60 94141050 82514083 769611021 | 164
SAGE 85741067 53.6340.30  93.51t057 82434044 76441062 | 156
Graph Transformers
Exphormer 89.03io_37 53~51:E0.46 90.74i0‘53 83.77:&0‘78 73-94i1,06 16.6
NAGphormer 74.3410.77 51.2640.72 84.194+0.66 7832+0.95 68.17+1.53 30.6
GOAT 71.5941 .25 44.61+0.50 81.0941.02 83.1141.04 7576+1.66 31.2
GPS 82.00+0.61 53.104+0.42 90.631+0.67 83.7140.48 71.7341.47 21.4
GPSGen+performer (LapPE) 83.9640.53 48.20+0.67 93.8540.41 84.7240.77 77.85%t1.25 12.8
GPSceneperformer (RWSE) 84.7210.65 48.0810.85 92.88+0.50 84.8lt0.86 76.45+1.51 16.6
GPSgeNe+performer (DEG) 83.38+0.68 48.934+0.47 93.60+0.47 804910.97 74241118 22.6
GPSgar+performer (LapPE) 85.9340.52 48.8640.38 92.62+0.79 84.62140.54 76.71+0.98 14.4
GPSgaT+performer (RWSE) 87.041+0.58 49.9210.65 91.08+0.55 84.38+0.91 77.14141.49 15.0
GPSGAT+Performer (DEG) 85.5410.58 51.03+0.60 91.5240.46 824510.80 76.5111.19 20.0
GPSGCN+Transformcr (LapPE) OOM OOM 91.82i0_41 83.51i0_93 OOM 33.8
GPSGeN+Transformer (RWSE) OOM OOM 91.1740.51 83.53+1.06 OOM 344
GPSgeN+Transformer (DEG) OOM OOM 91.76+0.61 80.8210.95 OOM 36.2
GPSGAT+Transformer (LapPE) OOM OOM 92294061 84.7010.56 OOM 30.2
GPScAT+Transformer (RWSE) OOM OOM 90.8240.56 84.0110.96 OOM 33.8
GPSGaTsTransformer (DEG) 0OM OOM 91581056 81.8940.85  OOM 36.0
GT 86.514+0.73 51.17+0.66 91.85+0.76 83.234+0.64 77.9540.68 14.4
GT-sep 87.3210.39 52184080 922941047 825210.02 78051003 | 126
Heterophily-Designated GNNs
CPGNN 63.96.40.62 39794077  52.0345.46 73.3641.01 659641.05| 40.0
FAGCN 65.2240.56 44124030 88171073 77754105 772411026| 310
FSGNN 79.921 0 56 52741083  90.084070 827610.61 78.861002| 182
GBK-GNN 74.57:(:()_47 45-98:{:0_71 9085:{;0_53 8101:(:0_67 7447:(:0.86 28.0
GloGNN 59.6310.69 36891014 51084123 73394117 6574x119| 410
GPR-GNN 64.8540.27 44884034 86241061 72944097 55481001 | 384
H2GCN 60.11 4052 364740023 89714031 73354101 63.5941.46| 39.6
JacobiConv 71.14i0.42 43455i0.48 89.66i0_40 68.66i0_65 73.88i1,16 36.2
Graph SSMs
GMN 87.69+0.50 54.07 +0.31 91.014+0.23 84.5240.21 - 11.0*
GPS + Mamba 83.1010 28 45.1310.07 89931054 83.7011 05 - 25.5*
Ours
MP-SSM 90.9140 45 53.6540.71 95334070 85261003 7884134 24
1030 * Graph-agnostic temporal predictors, i.e., Historical Average (AV), SVR [99], and FC-
1031 LSTM [102]], and VAR [[71];
1032 * Spatio-temporal GNNS, i.e., DCRNN [68]], GConvGRU [92]], Graph WaveNet , AST-
1033 GCN [47], STSGCN [[100], GMAN [125], MTGNN [116]], AGCRN [7]], T-GCN [124],
1034 DyGrAE [103], EGCN-O [83], A3T-GCN [6], MPNN LSTM [82], GTS [93], STEP [94],
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1035 GC-LSTM [I7], DynGESN [76], HMM4G [35], STAEformer [[70], RGDAN [36], AdpST-
1036 GCN [[121]], and STD-MAE [39].

1037 0.2 Datasets statistics

1038 In our experiments, we compute the performance of our MP-SSM on widely used benchmarks for
1039 both static and temporal graphs. Specifically, we consider:

1040 * long-range propagation tasks, i.e., the three graph property prediction tasks proposed by
1041 [43] (“Diameter”, “SSSP”, and “Eccentricity”’) and the “Peptide-func” and “Peptide-struct”
1042 tasks from the long-range graph benchmark [32];

1043 * heterophilic tasks, i.e., “Roman-empire”, “Amazon-ratings”, “Minesweeper”, “Tolokers”,
1044 and “Questions” [86];

1045 * temporal tasks, i.e., “Metr-LA” and “PeMS-Bay” for traffic forecasting [68]], and the “Chick-
1046 enpox Hungary”, “PedalMe London”, and “Wikipedia math” forecasting tasks introduced
1047 by [89].

148 In Table[TT] we report the statistics of the employed datasets.

Table 11: Dataset statistics

Task Nodes Edges Graphs (or Timesteps) Frequency
Diameter 25-35 22 -553 7,040 -
SSSP 25-35 22 - 553 7,040 -
Eccentricity 25-35 22 -553 7,040 -
Peptide-func 150.94 (avg) 307.30 (avg) 15,535 -

2 Peptide-struct 150.94 (avg)  307.30 (avg) 15,535 -

%’ Roman-empire 22,662 32,927 1 —
Amazon-ratings 24,492 93,050 1 -
Minesweeper 10,000 39,402 1 -
Tolokers 11,758 519,000 1 -
Questions 48,921 153,540 1 -

— Metr-LA 207 1,515 34,272 5 mins

g PeMS-Bay 325 2,369 52,116 5 mins

g Chickenpox Hungary 20 102 512 Weekly

&  PedalMe London 15 225 15 Weekly
Wikipedia math 731 27,079 1,068 Daily

1049 0.3 Hyperparameter space

1050 In Table[I2] we report the grid of hyperparameters employed in our experiments by our method on
1051 all the considered benchmarks.

Table 12: The grid of hyperparameters employed during model selection for the graph property
prediction tasks (GPP), Long Range Graph Benchmark (LRGB), heterophilic benchmarks (Hetero),
and spatio-temporal benchmarks (Temporal).

H | Values
yperparameters

| GPP | LRGB | Hetero | Temporal
Optimizer Adam AdamW AdamW AdamW
Learning rate 0.003 0.001, 0.0005,0.0001 | 0.001,0.0005,0.0001 | 0.005,0.001, 0.0005,0.0001
Weight decay 10=6 0, 0.0001, 0.001 0, 0.0001, 0.001 0, 0.0001, 0.001
Dropout 0 0,0.5 0, 0.4, 0.5, 0.6, 0,0.5
N. recurrences 1, 5,10, 20 1,2,4,8,16 1,2,4,8,16 1,2,4,8,16
Embedding dim 10, 20, 30 32,64,128,256 32,64,128,256 32,64,128,256
N. Blocks 1,2 1,2,4,8,16 1,2,4,8,16 1,2,4,8,16
Structure of U U = [Uy,...,U4] U =[U;,Us,...]
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