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 15.6K Vocabulary
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 4 Rendering Engines

Real2Sim Reconstruction
Automatic Toolchain

Keyframe-aware VLN Model

Figure 1: Overview of OpenFly. This work consists of (1) the integration of 4 rendering engines, significantly
enhancing the diversity of scenario resources for aerial vision-language navigation; (2) an automatic data gen-
eration toolchain, eliminating reliance on labor-intensive annotations; (3) the largest aerial VLN dataset to date,
comprising 100K trajectories; and (4) a keyframe-aware VLN model, achieving superior performance in both
simulated and real-world scenes.

ABSTRACT

Aerial Vision-Language Navigation (VLN) seeks to guide UAVs by leveraging
language instructions and visual cues, establishing a new paradigm for human-
UAV interaction. However, the collection of VLN data demands extensive human
effort to construct trajectories and corresponding instructions, hindering the de-
velopment of large-scale datasets and capable models. To address this problem,
we propose OpenFly, a comprehensive platform for aerial VLN. Firstly, OpenFly
integrates 4 rendering engines and advanced techniques for diverse environment
simulation, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian
Splatting (3D GS). Particularly, 3D GS supports real-to-sim rendering, further
enhancing the realism of our environments. Secondly, we develop a highly au-
tomated toolchain for aerial VLN data collection, streamlining point cloud ac-
quisition, scene semantic segmentation, flight trajectory creation, and instruction
generation. Thirdly, based on the toolchain, we construct a large-scale aerial VLN
dataset with 100k trajectories, covering samples of diverse scenarios and assets
across 18 scenes. Moreover, we propose OpenFly-Agent, a keyframe-aware VLN
model emphasizing key observations to promote performance and reduce com-
putations. For benchmarking, extensive experiments and analyses are conducted,
where our navigation success rate outperforms others by 14.0% and 7.9% on the
seen and unseen scenarios, respectively. The toolchain, dataset, and codes will be
open-sourced.
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Lidar Acquisition API Agent Movement API Image Acquisition API

Unified Interface
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UE5 & UE4 Google Earth GTA V 3D GS 

Toolchain

3D Point Cloud Acquisition

Semantic Segmentation Trajectory Generation

First, go up slightly and turn right. Proceed straight toward a building labeled ‘China Ping An’. 
After reaching it, turn left to face a futuristic tower with a large spherical middle section supported 
by several columns. Move forward to it. Next, turn left and continue straight toward a tall building 
featuring a circular structure at its top.

Instruction Generation

Figure 2: Framework of the automatic data generation. Multiple rendering engines are integrated
to provide diverse, high-quality scenes. Built on these, several interfaces and tools are developed to
enable automated generation of trajectories and instructions.

1 INTRODUCTION

Embodied AI has drawn growing research attention, where vision-language navigation (VLN)
emerging as a core task that navigate agents to a target location according to linguistic instruc-
tions and visual observations. A number of benchmark datasets have been established, e.g., Touch-
Down (Chen et al., 2019), REVERIE (Qi et al., 2020), R2R (Anderson et al., 2018), RxR (Ku et al.,
2020), CVDN (Thomason et al., 2019), VLN-CE (Krantz et al., 2020), and LANI (Misra et al.,
2018), which have significantly advanced the development of VLN methods (Long et al., 2024;
Hong et al., 2022; Wang et al., 2024c; Chen et al., 2022; Zhang et al., 2024; Cao et al., 2025; Guo
et al., 2025; Ma et al., 2025). Nevertheless, existing efforts primarily target indoor or ground-based
agents, while unmanned aerial vehicles (UAVs), crucial for aerial photography, rescue operations,
and cargo transport, remain unexplored.

Most recently, AerialVLN (Liu et al., 2023) and OpenUAV (Wang et al., 2024a) have made signif-
icant strides by leveraging UAV simulators to mitigate the scarcity of aerial VLN datasets, thereby
driving advances in this field. However, several critical challenges remain to be addressed:

• Limited data diversity. Existing methods rely on AirSim and Unreal Engine (UE) for UAV con-
trol, which confines them to digital assets compatible with these platforms, limiting the diversity
of available data and constraining the incorporation of more photorealistic sources.

• High collection cost. The process of generating trajectories relies on pilots operating UAVs in
simulators, followed by manual annotation to create language instructions. The entire process is
labor-intensive, time-consuming, and difficult to scale.

• Small data scale. Current datasets for aerial VLN remain relatively small, containing only about
10k trajectories, which is far behind embodied manipulation datasets. By contrast, Open X-
Embodiment (O’Neill et al., 2024) and EO-1 (Qu et al., 2025) have collected over 1M episodes of
manipulation, significantly promoting the development of vision-language-action (VLA) models.

To address these issues, we propose OpenFly, a comprehensive platform consisting of diverse ren-
dering engines, a versatile toolchain, and a large-scale benchmark for the aerial VLN task. To
enhance data diversity, the platform is established on various widely-used rendering engines and
advanced techniques, i.e., UE, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS), enabling
us to utilize a wide range of assets as shown in Fig. 1. In particular, we use UAVs to capture nu-
merous real-world images and integrate 3D GS technology into our platform to reconstruct realistic
3D scenes, empowering real-to-sim simulation. To improve the efficiency of data collection, we
develop a versatile toolchain for automated aerial VLN data generation as depicted in Fig. 2. Specif-
ically, point cloud acquisition is first conducted to capture the 3D occupancy of a scene. Next, scene
semantic segmentation is performed to identify and select landmarks as waypoints along the flight
trajectories. Building on these tools, trajectory generation is then carried out, taking landmarks and
point clouds as input, using predefined flight actions as basic units, and automatically searching
for a collision-free trajectory. Finally, we feed the trajectories and corresponding UAV-egocentric
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images into a vision-language-model (VLM), e.g., GPT-4o, to generate linguistic instructions. The
entire pipeline is highly automated, reducing the reliance on UAV pilots and annotators. To collect a
large-scale dataset, we meticulously collected 18 high-quality scenes, generating various trajecto-
ries of differing heights and lengths. Benefitting from our toolchain, we are able to quickly construct
a dataset of 100k samples, significantly larger than existing datasets.

Besides, we propose OpenFly-Agent, a keyframe-aware aerial VLN model incorporating an adap-
tive frame-level sampling mechanism to emphasize critical observations containing instruction-
related landmarks, leading to performance improvement and computation reduction compared to
a uniform sampling strategy. Extensive experiments are conducted on the OpenFly dataset to evalu-
ate numerous methods, establishing a comprehensive benchmark for the aerial VLN tasks. Overall,
our contributions can be summarized as follows:

• We build OpenFly on multiple rendering engines and develop a versatile toolchain, enabling the
automatic generation of data with high diversity and efficiency.

• We have constructed a large-scale aerial VLN benchmark comprising 100k trajectories across 18
high-quality scenes. To the best of our knowledge, this is the largest aerial VLN benchmark to
date, and users can collect more customized data using the OpenFly platform.

• We propose OpenFly-Agent, a keyframe-aware VLN model. Extensive experiments in both sim-
ulated and real-world settings demonstrate its superior performance.

2 RELATED WORKS

2.1 VISION-LANGUAGE NAVIGATION DATASETS

Numerous datasets have been constructed to accelerate the VLN task. R2R (Anderson et al., 2018)
focuses on evaluating agents in unseen buildings and provides discrete navigation options. RxR (Ku
et al., 2020) provides a more densely annotated VLN dataset. TouchDown (Chen et al., 2019) and
REVERIE (Qi et al., 2020) have each contributed a dataset from real-life environments, which re-
quires a ground-based agent to follow instructions and find a target object. CVDN (Thomason et al.,
2019) presents a cooperative VLN dataset where agents can access the history of human coopera-
tion for inference. All the above datasets are graph-based, where navigable points are predefined.
LANI (Misra et al., 2018) and VLN-CE (Krantz et al., 2020) propose the VLN task in continuous
outdoor/indoor environments, enabling agents to move freely to any unobstructed point. Recently,
a few works have tried to construct VLN datasets for aerial space. ANDH (Fan et al., 2022) estab-
lishes a dialogue-based aerial VLN dataset with bird-view images. CityNav (Lee et al., 2024) builds
on the point cloud data from SensatUrban (Hu et al., 2022) and linguistic annotations from CityRe-
fer (Miyanishi et al., 2023), which requires a real-world 2D map to help locate specific landmarks
in the instruction. AerialVLN (Liu et al., 2023), OpenUAV (Wang et al., 2024a) and CityNav-
Agent (Zhang et al., 2025) integrate AirSim and UE to create VLN scenes where pilots can control
UAVs to generate various trajectories.

2.2 VISION-LANGUAGE NAVIGATION METHODS

VLN methods enable agents to follow language instructions based on visual observations. Early
approaches, such as graph-based methods (Ma et al., 2019; Wang et al., 2019; Ke et al., 2019; Fu
et al., 2020), model the environment as a set of predefined nodes, with agents navigating between
these discrete states. However, these methods are limited in dynamic, real-world environments. In
recent years, LLM-driven approaches (Zhou et al., 2024b;a; Chen et al., 2024; Zeng et al., 2025)
have utilized large language models to enhance reasoning and infer navigation steps, offering more
flexibility in continuous environments. Despite significant progress, LLM-based methods still face
challenges in grounding language instructions with real-world sensory data and adapting to unknown
environments. In contrast, works like (Irshad et al., 2021; Krantz et al., 2021; Zhang et al., 2024;
Song et al., 2025) have shifted focus to continuous spaces, aiming for more realistic navigation
in dynamic settings. More recently, aerial VLN has gained attention, with AerialVLN (Liu et al.,
2023) proposing a lookahead guidance method for better training trajectories, while STMR (Gao
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et al., 2024) enhances spatial reasoning through matrix representations, and OpenUAV (Wang et al.,
2024a) integrates human feedback with ground-truth trajectories to guide navigation.

3 AUTOMATIC DATA GENERATION

In this section, we first introduce the rendering engines and data resources, then present the devel-
oped toolchain. The overall framework for automatic data generation is illustrated in Fig. 2.

3.1 RENDERING ENGINES AND DATA RESOURCES

We leverage multiple rendering engines to construct diverse and realistic environments. Specifi-
cally, Unreal Engine provides eight urban scenes spanning over 100km2 with rich assets such as
buildings, vehicles, and pedestrians. GTA V contributes a highly realistic cityscape modeled after
Los Angeles. Google Earth offers four urban regions (Berkeley, Osaka, Washington D.C., and St.
Louis) covering 53.60km2. Besides, hierarchical 3D Gaussian Splatting (Kerbl et al., 2024) is
employed for the reconstruction of real-world environments from UAV data, encompassing more
than 7km2 across five campuses with diverse landmarks. More details and examples are provided
in Appendix A.

3.2 TOOLCHAIN FOR AUTOMATIC DATA COLLECTION

To achieve automatic data generation, we first integrate the above rendering engines and design three
unified interfaces to control the agent movement and acquire sensor data (presented in Appendix C).
Based on these interfaces, we further develop a toolchain, streamlining point cloud acquisition, scene
semantic segmentation, trajectory creation, and instruction generation.

3D Point Cloud Acquisition. OpenFly integrates various rendering engines and scenes, exhibiting
distinct characteristics. To address these differences, we provide two methods to reconstruct the
point cloud map for different scenes. 1) Rasterized Sampling Reconstruction: For UE and GTA V
scenes, we customize rasterized sampling points at appropriate resolutions, followed by using the
developed interface to obtain the local point cloud at the sampling points and stitch them for the
entire scene. 2) Image-Based Sparse Reconstruction: In 3D GS, the scene reconstruction process
begins with the open-source COLMAP (Schönberger & Frahm, 2016) framework, which generates
a sparse point cloud from input images. We directly export and use the point clouds from this step.

Scene Semantic Segmentation. VLN requires meaningful landmarks as navigation targets. Thus,
we offer three semantic segmentation methods to identify landmarks. 1) 3D Scene Understanding: A
sequence of top-down views of the scene is captured in a rasterized format, followed by the off-the-
shelf Octree-Graph (Wang et al., 2024b) to extract semantic 3D instances. 2) Point Cloud Projection
and Contour Extraction: We acquire the point cloud of a scene and project the voxelized point cloud
onto the ground. For each instance, its contour is segmented, and the maximum height of its points
is used as the final height. Additionally, semantic annotations are obtained by feeding the segmented
instances to GPT-4o for caption. 3) Manual Annotation: When the point cloud quality of a scene
is low or finer segmentation is required, OpenFly provides an interface for manually annotating
instances and semantics within the point cloud. Users can choose these methods flexibly based on
their requirements. The corresponding details and results are shown in Appendix D.

Automatic Trajectory Generation. Leveraging the point cloud map and segmentation tools, Open-
Fly can automatically generate VLN trajectories using the following method. First, a global voxel
map Mglobal is constructed from the scene point cloud. Second, a landmark is randomly chosen
as the target, with a starting point being selected at a certain distance from the landmark, and a
point close to the landmark being chosen as the endpoint. Third, A collision-free trajectory is gen-
erated using the A* (Hart et al., 1968) pathfinding algorithm based on Mglobal and a customized
action space. By repeatedly selecting the endpoint as the new starting point, complex trajectories
can be generated. Finally, utilizing OpenFly’s interface, UAV-egocentric images corresponding to
the trajectory points are obtained as visual observations. More details are included in Appendix E.

Automatic Instruction Generation. Most previous works have predominantly relied on manual
annotation to generate trajectory instructions, which is costly and hinders dataset scalability (Liu
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Table 1: Comparisons of different VLN datasets. Ntraj : the number of total trajectories. Nvocab:
vocabulary size. Path Len: the average length of trajectories, measured in meters. Intr Len: the
average length of instructions. Nact: the average number of actions per trajectory.

Dataset Ntraj Nvocab Path Len. Intr Len. Action Space Nact Environment

R2R (Anderson et al., 2018) 7189 3.1K 10.0 29 graph-based 5 Matterport3D
RxR (Ku et al., 2020) 13992 7.0K 14.9 129 graph-based 8 Matterport3D
TouchDown (Chen et al., 2019) 9326 5.0K 313.9 90 graph-based 35 Google Street View
VLN-CE (Krantz et al., 2020) 4475 4.3K 11.1 19 2 DoF 56 Matterport3D
AerialVLN (Liu et al., 2023) 8446 4.5K 661.8 83 4 DoF 204 AirSim + UE
CityNav (Lee et al., 2024) 32637 6.6K 545 26 4 DoF - SensatUrban
OpenUAV (Wang et al., 2024a) 12149 10.8K 255 104 6 DoF 264 AirSim + UE

Ours 100K 15.6K 99.1 59 4 DoF 35
AirSim + UE, GTA V,
Google Earth Studio,
3D GS + SIBR viewers

et al., 2023; Lee et al., 2024). To address this issue, we propose a highly automated instruction
generation method based on VLMs, e.g., GPT-4o.

A straightforward method would be to input all images to VLMs to analyze the trajectory and gen-
erate instructions. However, using all images introduces considerable computational overhead and
causes significant difficulties for a VLM to understand. Additionally, we find the ‘Forward’ action
usually occupies a larger proportion of a flight trajectory, with ‘Turn Left/Turn Right’ or ‘Ascend/De-
scend’ actions taken when encountering key landmarks. Therefore, we split the complete trajectory
into multiple sub-trajectories according to action transitions, extracting key actions and images for
processing. Notably, slight angle adjustments often occur during flight to change direction subtly,
which will be ignored in this procedure. We submit the action sequence and the last captured three
images of each sub-trajectory to a VLM to generate a sub-instruction of both the action and the
landmark. All sub-instructions of the same trajectory are then processed by an LLM to integrate
into a complete instruction. The proposed strategy significantly improves the instruction accuracy
compared to directly inputting all trajectory images to a VLM. To further verify the data quality, we
randomly select 3K samples from the entire dataset according to the data distribution in Sec. 4.2.
After manually inspecting these samples, we find that they reach a high qualification rate of 91%.
The problematic data involves some vague descriptions, but it is still considered acceptable by ex-
aminers. Besides, all test data have undergone manual inspection, with low-quality ones removed.
Thanks to GPT’s high concurrency, we can quickly generate a large number of instructions, which
solves the problem of difficult and time-consuming manual annotation. More details of instruction
generation and data quality control are provided in Appendix F and G.

4 DATASET ANALYSIS

Table 1 summarizes key statistics of several commonly used VLN datasets, from which we can see
that our dataset features a significantly larger number of trajectories and a greater environmental
diversity. In contrast, our average trajectory length and instruction length are relatively short. This
is intentional, we argue that short- and medium-range instructions better reflect natural human usage
habits and may be more beneficial for advancing aerial VLN.

4.1 TRAJECTORY AND INSTRUCTION ANALYSIS

Using our toolchain, we collect a dataset of 100K trajectories, which is much larger than other
aerial VLN datasets. Compared with ground-based VLN, the aerial VLN task has more motion
dimensions. Therefore, we set different trajectory lengths and flight heights to obtain rich data. Fig.
3a and 3b exhibit the distribution of these data, with their lengths ranging from 0 to 300 meters,
and the heights ranging from 0 to 210 meters. Notably, we follow the mainstream methods (Krantz
et al., 2020; Liu et al., 2023) to use discrete actions, e.g., ‘Forward’ and ‘Turn left’, for trajectory
generation, where the step size of the ‘Forward’ action is set to 3 m, 6 m, and 9 m to adapt to targets
at different distances. Fig. 3c presents the action distribution of our dataset. It should be noted that
the OpenFly platform also supports trajectory generation with continuous waypoints.
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(a) (b) (c) (d)

Figure 3: Statistical analysis of the generated data. (a) Height distributions of trajectories. (b)
Length distributions of trajectories. (c) Action distributions. (d) Word cloud of verbs and nouns.

For instruction analysis, the vocabulary size of our dataset is 15.6K, and the average length of in-
structions is 59. Fig. 3d illustrates the word clouds of nouns and verbs, where ‘building’, ‘windows’,
and ‘skyscraper’ are the most common references, and ‘proceed’ and ‘turn’ are the mostly used verbs
for VLN. Due to the space limitation, we put more details in Appendix H.

4.2 DATASET SPLIT

Similar to previous works, we divide the dataset into three splits, i.e., Train, Test Seen, Test Unseen.
For the Train split, 7 scenes under the UE rendering engine account for 75.7% of all data, since UE
provides the largest number of scenes, where different amounts of trajectories are sampled according
to the areas of scenes. The 4 scenes created by 3D GS are also the main part of the data, accounting
for nearly 20% of the total amount. To ensure visual quality, we only collect data from a high-
altitude perspective using Google Earth, which accounts for 4.46%. The Test Seen data consists of
1800 trajectories uniformly sampled from 11 seen scenarios, and the Test Unseen data comprises
1200 trajectories uniformly generated from 3 unseen scenes, i.e., UE-smallcity, 3D GS-sjtu02, and
a Los Angeles-like city in GTA V. Detailed data distributions are shown in Appendix H.

5 OPENFLY-AGENT

Fig. 4 illustrates the architecture of our OpenFly-Agent, an aerial VLN model that builds upon the
OpenVLA (Kim et al., 2024) baseline, since OpenVLA and aerial VLN share a similar pipeline,
i.e., taking images and instructions as input and generating actions. OpenVLA is trained on 1M
data, having strong abilities in instruction-following and reasoning, which establishes an efficient
initialization for our model. In contrast, our OpenFly-Agent takes a sequence of images as input
to indicate the observation history instead of one image in the original OpenVLA. Additionally, to
mitigate visual redundancy between adjacent video frames while maintaining key information, two
strategies are designed, i.e., keyframe selection and visual token merging. First, a series of candidate
keyframes is selected based on the UAV flight trend and a landmark grounding module. Then, these
keyframes are merged temporally, resulting in a compact sequence of visual tokens. Finally, the
action decoder discretizes the predicted tokens to 6 action types specific to UAVs.

5.1 KEYFRAME SELECTION

The length of contextual visual tokens is a major challenge for VLMs when processing videos. Many
open-source VLMs use uniform frame sampling (Buch et al., 2022; Ranasinghe et al., 2024; Wang
et al., 2025) to reduce calculation, but this strategy is not suitable for aerial VLN, since it may miss
frames containing key landmarks. To address this issue, a keyframe selection strategy is proposed
to emphasize important visual observations. We notice that sudden changes in the UAV’s trajectory
are often caused by the observation of landmarks, which can serve as a kind of cues to determine
keyframes. Therefore, a heuristic method is adopted to select candidate frames by identifying the
change point of the UAV’s movement, followed by extracting the corresponding frame and two
frames before and after it from the trajectory, constituting a keyframe set. Moreover, we design a
landmark grounding module, which consists of three cross-attention layers to incorporate text and
image features from the LLM hidden state, predicting the bounding boxes b ∈ R4 of the instruction-
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Figure 4: The architecture of OpenFly-Agent. Keyframes are selected according to action transitions
and the landmark grounding module to extract crucial observations as the history, with correspond-
ing visual tokens compressed to further reduce the computational burden.

indicated landmark. To incorporate as many landmark-related regions as possible into the historical
visual tokens, candidate frames with the bounding boxes’ area greater than the threshold θ will be
retained as the final keyframes. During the training process, we obtain the bounding box of each
landmark using the developed tools introduced in Sec. 3.2, enabling the training of the grounding
module and the accurate selection of keyframes. During the testing process, the bounding box of
each frame is sequentially estimated by the well-trained grounding module. Then, our model selects
keyframes by bounding boxes area and adjacent frames when a significant motion change occurs,
forming a keyframe set for this moment.

5.2 VISUAL TOKEN PRUNING

To further reduce redundant information in keyframes, we introduce visual token merging into
OpenFly-Agent. For the keyframes selected by the above method, a visual encoder maps them
to multiple visual tokens, with each token representing the information of an image patch. Consid-
ering the potential inter-frame patch redundancy, we take a strategy that similar tokens in adjacent
frames are periodically merged. Specifically, we select the frame with the largest bounding box
in a keyframe set as the reference, since it usually contains the crucial observation indicating the
landmark in an instruction. Then, we densely calculate the cosine similarities between each pair
of visual tokens of the reference image and other comparative images in a keyframe set. Next, we
merge the tokens with high similarity by averaging them, with the unmerged tokens in the compara-
tive frame being discarded. The merging operation is iteratively performed until the entire keyframe
set has been traversed. Besides, we maintain a memory bank with a capacity of K images, follow-
ing a first-in-first-out (FIFO) policy to retain the latest keyframes. Since aerial VLN requires UAVs
to perform long-distance flights based on instructions, we continue to conduct token compression
within each keyframe to reduce the computational burden. The compressed visual tokens are ob-
tained through grid pooling (Li et al., 2024). Notably, we keep the visual tokens of the current frame
uncompressed to capture the latest visual observation, as it contains the most important information
for action prediction.

6 EXPERIMENTS

6.1 IMPLEMENTATION AND TRAINING DETAILS

The proposed OpenFly-Agent adopts the OpenVLA (Kim et al., 2024) as the baseline, with the
current frame during flight remaining 256 tokens and all historical keyframes compressed into 1
token. The capacity K of the history memory bank is set to 2 in our experiment. For the action
head, the last 256 tokens in the vocabulary are used as special tokens for action representation.
Similar to (Liu et al., 2023; Lee et al., 2024), 6 actions for UAVs are defined as {Forward, Turn Left,
Turn Right, Move Up, Move Down, Stop}. The OpenFly-Agent is trained with a batch size of 64

7
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Table 2: Comparison results on the test set. ‘Random’ means randomly selecting one action to
execute until the ‘stop’ action is chosen. All models are retrained using our dataset.

Method test-seen test-unseen

NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Random 242m 0.7% 0.8% 0% 301m 0.1% 0.1% 0%
Seq2Seq (Krantz et al., 2020) 205m 2.9% 24.3% 2.6% 229m 2.1% 20.6% 1.1%
CMA (Krantz et al., 2020) 161m 5.4% 28.1% 4.8% 217m 4.6% 24.4% 2.1%
AerialVLN (Liu et al., 2023) 139m 7.5% 30.0% 6.8% 214m 7.3% 28.1% 4.4%
Navid (Zhang et al., 2024) 153m 13.0% 38.2% 11.6% 210m 10.8% 27.2% 5.0%
NaVila (Cheng et al., 2024) 132m 20.3% 53.5% 17.8% 202m 14.7% 42.1% 9.6%
OpenFly-Agent (Ours) 93m 34.3% 64.3% 24.9% 154m 22.6% 56.2% 19.1%

and a learning rate of 2e-5. The grounding module is optimized with a GIoU loss function, and the
threshold θ for keyframe selection is set to 0.25 times the size of the input image.

6.2 EVALUATION METRICS

Four standard metrics in VLN tasks are adopted to evaluate different methods, i.e., navigation error
(NE), success rate (SR), oracle success rate (OSR), and success weighted by path length (SPL).
NE measures the average deviation between the UAV’s final stopping point and the ground-truth
destination. SR calculates the proportion of successful tasks, where a task is considered successful
if the UAV stops within 20 m of the target (Liu et al., 2023). In OSR, if any point on the trajectory
is within 20 m of the target, the task can be considered successful. SPL calculates the success rate
weighted by the ratio of the ground-truth path length to the actually-executed path length.

6.3 QUANTITATIVE RESULTS

We evaluate the proposed OpenFly-Agent and multiple VLN methods on the test set, with quantita-
tive results listed in Table 2, where Seq2Seq, CMA, and AerialVLN achieve limited success rates.
In contrast, Navid (Zhang et al., 2024) and NaVila (Cheng et al., 2024) are two most recent VLN
methods, obtaining better results and demonstrating the great potential of VLMs in aerial VLN.
Our OpenFly-Agent outperforms the comparison methods by a large margin, benefiting from the
proposed strategies. While aerial VLN is an emerging and challenging task, and there is still much
room for improvement. The results on the test-unseen split indicate the generalization abilities of
these methods. Similarly, our method achieves the best performance, exhibiting a certain degree of
robustness. However, all methods are significantly degraded, indicating that more powerful models
are urgently needed to be developed.

(a) (b)

Figure 5: Results of real-world experiments. (a) Comparison with two strong VLN methods. (b)
Performances of OpenFly-Agent trained on different datasets.
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Instruction: Fly straight towards that campus-looking building with the red roof. Once closed, give a little left turn until 

you spot the river right in front of you. Then, keep flying forward until you see the whole bridge on the river.

go straight, 50m go straight, 50m go straight, 50m turn left, 30°

turn left, 30° go straight, 50m go straight, 50m go straight, 50m Stop

turn left, 30°

Figure 6: Snapshots of the real-world experiment.

6.4 REAL-WORLD EXPERIMENTS

The real-world experiments are conducted in 23 real outdoor scenes, where each scene corresponds
to an unseen VLN task created by human operators, and the trajectory lengths range from 50m to
500m. We use a Q250 airframe as a real agent, carrying an NVIDIA Jetson Xavier NX running
Ubuntu 18.04 as the onboard computer. All methods run on an external PC communicating with the
onboard computer to transfer images and action instructions. Two most recent models, Navid (Zhang
et al., 2024) and NaVila (Cheng et al., 2024), are evaluated for comparison. The results are shown in
Fig 5 (a), where our model achieves the best performance with 26.09% SR and 34.78% OSR, signif-
icantly outperforming the comparison methods. This experiment again indicates the superiority of
our OpenFly-Agent. Besides, we also trained our model on both our own dataset and the AerialVLN
dataset separately. The results are shown in Fig. 5 (b), strongly demonstrating the capability of our
data generation method in bridging the sim-to-real gap. A qualitative result is presented in Fig. 6,
and a dynamic demo can be found in our supplementary video.

6.5 ABLATION STUDY

Table 3: Ablation study on the test-seen split.
‘KS’ and ‘VTM’ denote keyframe selection and
visual token merging, respectively.

Method NE↓ SR↑ OSR↑ SPL↑

OpenVLA (baseline) 231m 2.3% 10.8% 2.2%
History + VTM 215m 16.6% 40.5% 9.1%
KS 275m 9.2% 28.1% 6.1%
KS + VTM 93m 34.3% 64.3% 24.9%

Ablation studies are conducted to evaluate the
contribution of the keyframe selection and visual
token merging in OpenFly-Agent. Table. 3 shows
the results, where OpenVLA (Kim et al., 2024)
is our baseline. Using only the current frame as
an observation makes OpenVLA perform poorly
in the aerial VLN task. From ‘History + VTM’
we can see that historical frames significantly im-
prove the success rate. The keyframe selection strategy further increases the SR from 16.6% to
34.3%, demonstrating the effectiveness of key observations. Besides, the comparison between ‘KS’
and ‘KS + VTM’ indicates the great effect of our visual token merging strategy.

7 CONCLUSION

In this work, we present OpenFly, a platform designed for large-scale data collection in aerial Vision-
and-Language Navigation (VLN). OpenFly integrates multiple rendering engines and provides an
automatic toolchain for data generation, enabling efficient collection of diverse, high-quality aerial
VLN data. The resulting large-scale dataset comprises 100k trajectories across 18 distinct scenes,
spanning a wide range of altitudes and lengths, which is significantly larger than existing ones. Fur-
thermore, we propose OpenFly-Agent, a keyframe-aware aerial VLN model capable of identifying
frames with critical observations, leading to accurate flight action prediction. Extensive experiments
validate the effectiveness of the proposed method, and establish a comprehensive benchmark for fu-
ture advancements in aerial VLN.
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APPENDIX

A MORE DETAILS OF RENDERING ENGINES AND DATA RESOURCES

In this section, more information about the used rendering engines and data resources are detailed,
with several high-quality examples illustrated in Fig. 7.

Google EarthGTA V 3D GSUE

Figure 7: High-quality examples from different rendering engines and techniques, including several
large cities such as Shanghai, Guangzhou, Los Angeles, Osaka, and etc., cover an area of over a
hundred square kilometers in total. 3D GS provides five large campus scenes, further enhancing the
diversity and realism of the data.

Unreal Engine. UE is a rendering engine capable of providing highly realistic interactive virtual
environments. This platform has undergone five iterations, and each version features comprehensive
and high-quality digital assets. In UE5, we meticulously select an official sample project named
‘City Sample’, which provides us with a large urban scene covering 25.3km2 and a smaller one
covering 2.7km2. These scenes include a variety of assets such as buildings, streets, traffic lights,
vehicles, and pedestrians. Besides, in UE4, we prepare six more high-quality scenes. Specifically,
there are two large scenes showcasing the central urban areas of Shanghai and Guangzhou, cover-
ing areas of 30.88km2 and 58.56km2, respectively. The remaining four scenes are selected from
AerialVLN (Liu et al., 2023). They have smaller areas for totally about 26.64km2. These scenes
encompass a wide range of architectural styles, including both Chinese and Western influences, as
well as classical and modern designs. Additionally, the UE4 engine allows us to make adjustments
in scene time to achieve different appearances of scenes under varying lighting conditions.

AirSim is an open-source simulator, which provides highly realistic simulated environments for
UAVs and cars. We integrate the AirSim plugin into UE4 to obtain image data easily from the
perspective of a UAV. Since AirSim does not support UE5 and stopped updating in 2022, we use the
UnrealCV (Weichao et al., 2017) plugin as an alternative for image acquisition in UE5. To realize
a highly efficient data collection in simulated scenes, we modify the UE5 project to a C++ project,
integrate the UnrealCV plugin, and package executables for multiple systems like Windows and
Linux.

GTA V. It is an open-world game that is frequently used by computer vision researchers due to
its highly realistic and dynamic virtual environment. The game features a meticulously crafted
cityscape modeled after Los Angeles, encompassing various buildings and locations such as
skyscrapers, gas stations, parks, and plazas, along with dynamic traffic flows and changes in lighting
and shadows.

Script Hook V is a third-party library with the interface to GTA V’s native script functions. With the
help of Script Hook V, we build an efficient and stable interface, which receives the pose information
and returns accurate RGB images and lidar data. From the interface, we can control a virtual agent
to collect the required data in an arbitrary pose and angle in the game.
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Table 4: Different 3D GS Scenes

Campus Name Images Area

ECUST (Fengxian Campus) 12008 1.06 km2

NWPU (Youyi Campus) 4648 0.8 km2

NWPU (Changan Campus) 23798 2.6 km2

SJTU (Minghang-East Zone) 20934 1.72 km2

SJTU (Minghang-West Zone) 9536 0.95 km2

Google Earth. It is a virtual globe software, which builds a 3D earth model by integrating satellite
imagery, aerial photographs, and Geographic Information System (GIS) data. From this engine, we
select four urban scenes covering a total area of 53.60km2, i.e., Berkeley, primarily consisting of
traditional neighborhoods; Osaka, which features a mix of skyscrapers and historic buildings; and
two areas with numerous landmarks: Washington, D.C., and St. Louis.

Google Earth Studio is a web-based animation and video production tool that allows us to create
keyframes and set camera target points on the 2D and 3D maps of Google Earth. Using this func-
tionality, we can quickly generate customized tour videos by selecting specific routes and angles. In
order to efficiently plan the route, we develop a function that automatically draws the flight trajectory
in Google Earth Studio according to the selected area and predefined photo interval.

3D Gaussian Splatting. As a highly realistic reconstruction method, hierarchical 3D GS (Kerbl
et al., 2024) employs a hierarchical training and display architecture, making it particularly suit-
able for rendering large-scale areas. Due to these features, we use this method to reconstruct and
render multiple real scenes. We utilize the DJI M30T drone as the data collection device, which
offers an automated oblique photography mode, enabling us to capture a large area of real-world
data with minimal manpower. Practically, we gathered data from five campuses across three uni-
versities, which are East China University of Science and Technology, Northwestern Polytechnical
University, and Shanghai Jiao Tong University (referred to as ECUST, NWPU, and SJTU). These
campus scenes include various types and styles of landmarks, such as libraries, bell towers, wa-
terways, lakes, playgrounds, construction sites, and lawns. The detailed information for the five
campuses is presented in Table 4.

SIBR (Bonopera et al., 2020) viewers is a rendering tool designed for the 3D GS project, enabling
visualization of a scene from arbitrary viewpoints. The tool supports high-frame-rate scene ren-
dering and provides various interactive modes for navigation. Building upon SIBR viewers, we
developed an HTTP RESTful API that generates RGB images from arbitrary poses, simulating a
UAV’s perspective.

B DETAILS OF 3D GS DATA COLLECTION

From the UAV’s perspective, choosing the appropriate shooting altitude poses a dilemma, i.e., if the
altitude is too low, the sparse point cloud generated during the initialization of the 3D GS recon-
struction will be suboptimal, due to insufficient feature point matches between photos. In contrast,
if the altitude is too high, the Gaussian reconstruction will result in an overly coarse training of de-
tails. After multiple attempts, the data collection plan using the M30T was determined as follows.
For large-scale block scenes, oblique photography is performed at approximately twice the average
building height using the default parameters of the M30T’s wide-angle camera, with a tilt angle of
-45°. For landmark buildings with heights significantly different from the average height, additional
targeted data collection is conducted at twice their height. This altitude setting can, to a certain
extent, ensure both higher-quality point cloud initialization and Gaussian splatting training.
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(a) (b) (c) (d)

Figure 8: Results of our point cloud acquisition and semantic segmentation. (a) Rasterized sampling
point cloud reconstruction. (b) Image-based point cloud reconstruction. (c) Semantic 3D scene
segmentation. (d) Point cloud projection and contour extraction.

C UNIFIED INTERFACES

For data collection, we integrate all rendering engines and design three unified interfaces, i.e., the
agent movement interface, the lidar data acquisition interface, and the image acquisition interface,
allowing an agent to move and perceive the environment within any scene.

• Agent Movement Interface: We design a CoorTrans module, which implements a customized
pose transformation matrix and scaling function to unify all coordinate systems into a meter-
based FLU (Front-Left-Up) convention. This interface enables precise agent positioning, ensuring
consistency and facilitating automatic trajectory generation.

• Lidar Data Acquisition Interface: Lidar data is crucial for scene occupancy perception and es-
sential for trajectory generation. Our platform supports different lidar data acquisition methods,
including lidar sensor collection, depth map back-projection, and image feature matching. We de-
velop a unified interface to integrate these methods and leverage the proposed CoorTrans module
to align all data to the same FLU coordinate system.

• Image Acquisition Interface: We integrate HTTP RESTful and TCP/IP protocols to form a uni-
fied image request interface, allowing image data to be obtained from any location with flexible
resolutions and viewpoints.

D RESULTS OF POINT CLOUD ACQUISITION AND SEMANTIC
SEGMENTATION

This section presents results regarding the point cloud acquisition and scene semantic segmentation,
as shown in Fig. 8.

Point Cloud Acquisition. OpenFly integrates data resources from different rendering engines. In
order to obtain point cloud information from different scenes, we provide two point cloud acquisition
methods. 1) For UE and GTAV scenes, we provide a tool that utilizes rasterized point cloud sampling
and reconstruction to obtain a global point cloud. The results can be seen in Fig. 8a. 2) For 3D GS
scenes, we use COLMAP (Schönberger & Frahm, 2016) to obtain relatively sparse point data from
images, as shown in Fig. 8b. Although the point cloud generated by this method is relatively sparse,
it provides sufficient coverage information.

Scene Semantic Segmentation. To meet the requirements of different data resources and different
segmentation granularities, our OpenFly offers three methods for obtaining 3D semantic segmen-
tation of scenes. Here, we present results of segmentation methods other than manual annotation.
1) Fig. 8c illustrates the semantic segmentation results based on the off-the-shelf 3D scene under-
standing method Octree-Graph (Wang et al., 2024b). This method provides more granular results.
2) The result of semantic segmentation via point cloud projection and contour extraction is shown
in Fig. 8d. This method leverages high-precision point clouds to achieve instance segmentation for
structures like buildings and trees, which directly contact the ground.
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E A COMPREHENSIVE INTRODUCTION TO AUTOMATIC TRAJECTORY
GENERATION

Leveraging the point cloud map and segmentation tools, OpenFly offers two methods for trajectory
generation for different scenes. 1) Path search based on customized action space: First, a global
voxel map Mglobal and a bird’s eye view (BEV) occupancy map Mbev are constructed from the
scene point cloud. Second, the flight altitude is randomly selected within the user-defined height
range, and landmarks that are not lower than the height threshold Hτ are chosen as targets. A
starting point is selected within the distance range [r,R] from the landmark, ensuring that it is not
occupied in both Mglobal and Mbev . Then, a point on the line connecting the starting point and the
landmark, which is close to the landmark and unoccupied in Mbev , is chosen as the endpoint. Third,
A collision-free trajectory from the starting point to the endpoint is generated using the A* (Hart
et al., 1968) pathfinding algorithm, where the granularity of exploration step size and direction can
be adjusted according to the action space. Besides, by repeatedly selecting the endpoint as the new
starting point, complex trajectories can be generated. Finally, utilizing OpenFly’s interface, images
corresponding to the trajectory points can be obtained. 2) Path search based on grid: Google Map
data does not allow image retrieval at arbitrary poses in the space. Thus, we rasterize a pre-selected
area and collect images from each grid point in all possible orientations. Starting and ending points
are chosen within the grid points to generate trajectories. Corresponding images for these trajectory
points are then selected from the pre-collected image set.

F DETAILS OF INSTRUCTION GENERATION

Except for the instruction generation described in the main paper. The remaining process is mainly
divided into two parts: landmark feature extraction and sub-instruction fusion. A simplified prompt
to the VLM and the corresponding response are probably like this.

• Get Landmark features.
System Prompt: You are an assistant who is proficient in image recognition. You can accurately
identify the object in the picture and its characteristics that are different from the surrounding
objects. I will give you the three final images you will see. Please focus on the last image and tell
me the features of the target building and reply to me in the form of JSON.
User: The target is the nearest prominent landmark to me. Answer me a dictionary like color:–,
feature: –, size: –, type: –.
GPT 4o: color: blue, feature: Steel, glass, size: medium size, type: building.

• Instruction Fusion.
System Prompt: You are an assistant proficient in text processing. You need to help me combine
these scattered actions and landmarks into a sentence using words with similar meanings and more
appropriate words, making them smooth, fluent, and accurate. If the landmarks of adjacent actions
are similar or even identical, please use pronouns to refer to them.
User: Multiple sub-instructions.
GPT 4o: Move forward to a high-rise building with a noticeable logo at the top. Then, slightly
turn left and go straight to a futuristic tower with a large spherical structure in the middle.

G DATA QUALITY CONTROL

Data Filter. During data collection, it is inevitable that some damaged or low-quality data will be
generated. We clean the data in the following situations. 1) We remove damaged images that are
produced in generation or transmission. 2) We find that UAVs sometimes appear to pass through the
tree models. Therefore, we exclude the trajectories where the altitude is lower than that of the trees.
3) We believe that extremely short or long trajectories are not conducive to model training. Thus,
we remove these trajectories, specifically those with fewer than 2 or more than 150 actions.

Instruction Refinement. A known challenge of instruction generation is VLMs’ hallucinations.
During the previous instruction generation process, sometimes the same landmark appears across
several frames. This results in a VLM generating similar captions for the repeated observations
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of a landmark, increasing the complexity of the final instruction and introducing ambiguity due to
duplication.

To mitigate this challenge, we utilize the NLTK library (Bird, 2006) to simplify the instruction by
detecting and merging similar descriptions. Specifically, a syntactic parse tree is first constructed
to extract all landmark captions using a rule-based approach. Then, a sentence-transformer model
is employed to encode the extracted landmark captions into embedding vectors. Their similarities
are computed with dot product, and high-similarity captions are then identified and replaced with
referential pronouns (e.g., “it,” “there,” etc.). For example, a generated instruction with redundant
information is “· · · make a left turn toward a medium-sized beige building marked by a sign-
board reading CHARLIE’S CHOCOLATE. Continue heading straight, passing a medium-sized
gray building with a prominent rooftop billboard displaying Charlie’s Chocolate · · · ”. After
simplification, a more concise sentence is obtained, i.e., “· · · make a left turn toward a medium-
sized beige building marked by a signboard reading CHARLIE’S CHOCOLATE. Continue
heading straight, passing it · · · ”, demonstrating the effectiveness of this post-processing technique.

Manually Check. At the same time, we built a data inspection platform to provide instructions,
action sequences, and corresponding images to human examiners. If an instruction describes all
the actions and landmarks in a trajectory well, it is considered qualified. We randomly select 3K
samples from the entire dataset according to the data distribution. After manually inspecting these
samples, we find that they reach a high qualification rate of 91%. There is some ambiguity in the
description of some landmarks in the remaining data, making it likely that these landmarks are not
easily distinguishable from the surrounding environment. However, the examiners consider this not
entirely unacceptable. In summary, most of the generated data feature good quality for the aerial
VLN task.

H MORE DATASET ANALYSES

(a) (b)

Figure 9: The distribution of the data volume in
different scenes under the Train and Test sets. (a)
Train set distribution. (b) Test set distribution.

Following previous studies (Liu et al., 2023;
Fan et al., 2022), we conducted a statistical
analysis of the linguistic phenomena using 25
randomly selected instructions and compared
the results with other VLN datasets, as de-
tailed in Table 5. The analysis shows that
the generated instructions exhibit rich linguis-
tic phenomena such as ‘Reference’ and ‘Com-
parison’. Notably, our dataset is not the most
complex one, since we believe that instructions
in VLN tasks should be more aligned with real-
life scenarios, rather than emphasizing length
and complexity. This cognition is consistent
with that of REVERIE (Qi et al., 2020). Our
instructions avoid overly lengthy and unrealis-
tic expressions to some extent, making them more practical to command UAVs.

Fig. 9a shows the data distribution of the train set, where 7 UE scenes account for 75.7% of the
total 100K data, 4 3D GS scenes account for nearly 20% of the total amount, and Google Earth data
accounts for 4.46%. Fig. 9b presents the data distribution of the test set, where the seen data and
unseen data account for 60% and 40%, respectively.

I QUALITATIVE EXPERIMENTAL RESULTS

Fig. 10 presents a qualitative result in a UE scene, where our OpenFly-Agent successfully navigates
to the destination according to the instruction. It presents a powerful capability in perceiving envi-
ronments and aligning observations with complex instructions. Fig. 11 presents another successful
aerial VLN example in a 3D GS scene. The image style, flight heights, and viewpoints are signifi-
cantly different from UE’s scenarios. In this case, our OpenFly-Agent exhibits robustness to handle
data with great diversity. In addition, Fig. 12 shows two failure cases, where our model sometimes
fails to identify the landmark or output actions with proper amplitudes.
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Table 5: Linguistic phenomena analysis using randomly selected 25 instructions. p denotes the
proportion of instructions showing the phenomenon, and µ represents the average number of times
the phenomenon occurs in each instruction.

R2R ANDH AerialVLN OpenFly
Phenomenon p µ p µ p µ p µ Example in OpenFly
Reference 100 3.7 92 1.9 100 9.7 100 2.7 ...Advance to the large beige and brown building with windows...
Coreference 32 0.5 8 0.1 68 1.8 52 1.4 ...Continue moving forward to reach it ...
Comparison 4 0.0 32 0.4 20 0.2 60 0.7 ...Move ahead to the medium-sized beige building...
Sequencing 16 0.2 8 0.1 68 3.7 64 0.8 ...move forward to next large light brown building ...
Allocentric Relation 20 0.2 32 0.4 56 4.6 76 1.0 ...black large building featuring a billboard on its rooftop...
Egocentric Relation 80 1.2 32 0.4 100 7.1 100 2.4 ... then slightly turn left as you move ahead towards...
Imperative 100 4.0 100 1.1 100 6.9 100 3.6 .... Proceed slightly straight and turn left ....
Direction 100 2.8 100 1.4 100 4.6 100 3.8 ... turn right and go ahead to ...
Temporal Condition 28 0.4 20 0.2 76 5.6 72 0.9 ...Continue straight until you reach ...

keyframekeyframe

Figure 10: Illustration of an aerial VLN trajectory generated by OpenFly-Agent in a UE scene,
which successfully predicts actions following the instruction when encountering landmarks. The
green bounding box represents the correct landmark prediction.

keyframe

keyframe

keyframe
keyframe

Figure 11: Illustration of aerial VLN trajectories generated by OpenFly-Agent in a 3D GS scene.
The green bounding box represents the correct landmark locations prediction.
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keyframe

Figure 12: Illustration of failure cases. Sometimes our model may misclassify key landmarks or
output wrong actions. The red bounding box represents incorrect landmark locations.

J USE OF LLMS

In this work, we employ large language models (LLMs) to automatically identify and correct gram-
matical errors, thereby improving the overall fluency and readability of the generated text.
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