TCI: MITIGATING HALLUCINATION IN LVLMS VIA TEXT CONTRASTIVE INTERVENTION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027 028 029

030

032

033

034

037

038

040

041

042

043

044

046

047

051

052

Paper under double-blind review

ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable progress across a wide range of tasks by integrating visual and textual information. Yet they still suffer from a common issue: hallucination, where the generated text fails to accurately align with visual inputs. Existing contrastive methods primarily intervene on the visual modality, perturbing images to indirectly amplify language priors, but fail to directly target text to expose and mitigate text bias. To address this, we propose Text Contrastive Intervention (TCI), a training-free approach that amplifies visual information in those attention layers most susceptible to language bias. Our method is inspired by a key observation: the repetition phenomenon, where LVLMs tend to verbatim repeat text when conflicts arise between the images and accompanying text. We hypothesize this behavior stems from language priors—a critical cause of hallucinations. TCI operates in two steps: first quantifying per-layer attention shifts under text perturbation to identify the layers where visual attention is most compromised; then we selectively boost the corresponding visual-attention weights during generation, steering the model away from text bias. Extensive experiments demonstrate that TCI significantly reduces hallucinations while requiring only a small amount of data, demonstrating its effectiveness and efficiency.

1 Introduction

Building on Large Language Models (LLMs) (Vaswani et al., 2017; Zheng et al., 2023; Bai et al., 2023a), Large Vision-Language Models (LVLMs) have integrated visual and linguistic modalities, demonstrating remarkable potential in real-world tasks such as image captioning and visual question answering (VQA) (Li et al., 2022; 2023a; Zhu et al., 2024; Liu et al., 2023; Bai et al., 2023b; Liu et al., 2024b). However, they are plagued by a critical issue: hallucinations (Liu et al., 2024a), where generated content misaligns with visual inputs (e.g., falsely asserting the presence of non-existent objects). This undermines the reliability of LVLMs in practical applications, with severe implications for high-stakes domains like autonomous driving (Chen et al., 2023a) and medical diagnosis (Hu et al., 2023).

Prior research has identified two primary sources of hallucinations:1) Models. Visual encoders, such as CLIP Radford et al. (2021)) may inaccurately capture visual features, leading to errors in object recognition or attribute judgment (Rohrbach et al., 2018). Moreover, since LLMs constitute the majority of parameters in LVLMs, the models tend to prioritize linguistic knowledge patterns, causing over-reliance on language priors (Guan et al., 2024; Leng et al., 2024; Rohrbach et al., 2018). 2) Data. Noisy annotations (e.g., misalignment between text and images) (Yu et al., 2024a; Yue et al., 2024) and statistical biases (e.g., frequent object co-occurrences) (Li et al., 2023b; Rohrbach et al., 2018; Zhou et al., 2023; Schrodi et al., 2025) in training corpora further exacerbate hallucinations.

Existing methods to mitigate hallucinations fall into two categories. One approach is to use Supervised Fine-Tuning (Chen et al., 2023b; Yue et al., 2024) or Reinforcement Learning (Yang et al., 2025b; Yu et al., 2024b; Kumar et al., 2025; Xing et al., 2025), but these require extensive manual annotations and computational resources. Alternatively, image-based contrastive decoding methods operate in two stages: as shown in Figure 1, they first amplify hallucinations by corrupting input images, and then mitigate such hallucinations by contrasting shifts in model internal states and output distributions before and after corruption. (Leng et al., 2024; Chen et al., 2025; An et al., 2024; He

et al., 2025). However, such methods amplify language priors indirectly rather than targeting them directly.

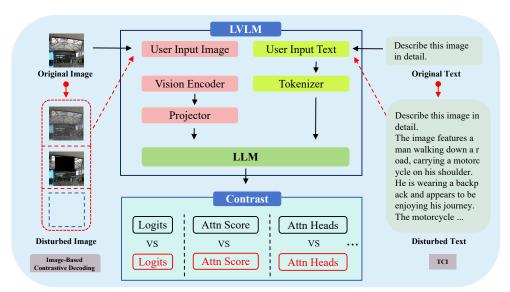


Figure 1: Comparison between Image-based Contrastive Decoding and our proposed TCI Method. (Left) Image-based methods perturb the visual input—via global noise, local mask, or complete removal—to amplify hallucinations, then mitigate hallucinations by contrasting differences in probability distributions, attention scores, or attention heads before and after perturbation. (Right) In contrast, our TCI method perturbs the text modality to directly leverage language prior for hallucination amplification, measures layer-wise attention shifts, and selectively intervenes on the most text-biased layers to reinforce visual grounding.

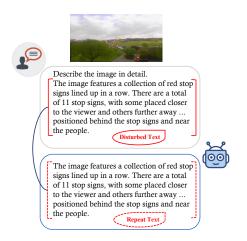


Figure 2: An example of *repetition phenomenon*. Perturbing the input caption makes the model repeat it verbatim, despite visual contradictions.

Repetition phenomenon. To address this limitation, we explore direct amplification of language priors by perturbing input text and observe a *repetition phenomenon*: LVLMs tend to repeat input text even when it conflicts with the image. Figure 2 illustrates an example of this phenomenon. We hypothesize that the emergence of this behavior and the occurrence of hallucinations share the same cause: the model tends to neglect genuine visual information during the generation process.

We validate this by randomly sampling 1,000 images from the COCO 2014 validation set (Lin et al., 2014), apply random caption perturbations, and compute the average attention weight across all layers for both LLaVA-1.5-7B (Liu et al., 2024b) and Qwen-VL-Chat-7B (Bai et al., 2023b). The experimental details can be found in the Appendix C. As shown in Figure 3 and Table 1, perturbation triggers a marked drop in attention to image regions and a com-

pensatory rise in text attention, confirming that weakened visual engagement drives hallucination.

Text Contrastive Intervention. Leveraging repetition phenomenon, we propose **Text Contrastive Intervention** (TCI), a training-free intervention method applied during the forward pass to mitigate hallucinations. As shown in Figure 1, unlike image-based contrastive methods, TCI perturbs text, contrasts attention shifts across layers, and enhances visual attention in selected layers during the forward pass to reduce text bias. TCI precisely targets layers prone to text bias, avoiding unnecessary adjustments to visually sensitive layers. Our analysis reveals that shallow and middle attention layers

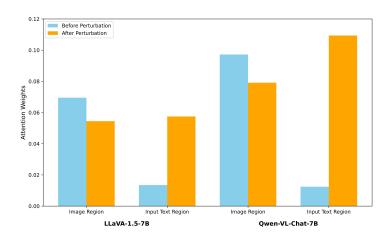


Figure 3: Average attention weights on visual and text regions with/without text perturbation. In both models, text perturbation causes a clear decrease in attention to image regions and a compensatory increase in attention to the (misleading) text regions.

Table 1: Hallucination metrics with/without text perturbation. We evaluate hallucination levels using the CHAIR metric. Results show a significant increase in hallucinations after text perturbation (higher C_I and C_S values indicate more hallucinations).

Method	LLaVA-1.5-7B		Qwen-VL-Chat-7B		
	$C_S \downarrow$	$\mathbf{C}_I\downarrow$	$\mathbf{C}_S\downarrow$	$\mathbf{C}_I\downarrow$	
w/o text perturbation w/ text perturbation	50.00 61.10	13.40 32.90	48.70 60.80	13.20 31.00	

are more likely to neglect visual information after perturbation, indicating their key role in cross-modal fusion.

Experiments on established LVLM hallucination benchmarks validate TCI's superiority over existing decoding strategies, demonstrating its effectiveness and efficiency in alleviating hallucinations. On the POPE benchmark, TCI improves average accuracy by 7.5% for LLaVA-1.5-7B and 4.6% for Qwen-VL-Chat-7B, with corresponding F1-score gains of 9.7% and 5.0%. On CHAIR, LLaVA-1.5-7B with TCI reduces hallucination metrics by 43.8% and 41.4%, while Qwen-VL-Chat-7B achieves reductions of 5.6% and 9.1%.

Contributions. Our contributions are summarized as follows:

- Unlike existing image-corruption-based contrastive decoding methods, we amplify hallucinations directly by perturbing text to exploit language priors, approaching the problem from a linguistic modality perspective.
- We propose Text Contrastive Intervention (TCI), a training-free method that mitigates hallucinations in LVLMs by enhancing visual attention during the forward pass, thereby reducing over-reliance on language priors.
- Extensive experiments on LVLMs demonstrate that TCI significantly improves performance across multiple widely adopted hallucination benchmarks.

2 RELATED WORK

2.1 MITIGATING HALLUCINATIONS IN LVLMS

In contrast to Large Language Models, hallucinations in LVLMs refer to a mismatch between the generated text and the content of the input image (Liu et al., 2024a). Such hallucinations typi-

cally stem from strong language priors or from imbalanced vision—language training data. Existing mitigation techniques can be categorized into two groups: post-training methods and training-free interventions.

Post-training methods employ supervised finetuning (Chen et al., 2023b; Yue et al., 2024), or reinforcement learning based schemes to improve cross-modal alignment Yang et al. (2025b); Yu et al. (2024b); Kumar et al. (2025); Xing et al. (2025). While effective, these approaches require additional data and computational resources.

Training-free interventions instead modify the decoding process during inference, intervening at the level of output probabilities (Leng et al., 2024; Wang et al., 2024; Huo et al., 2025), attention networks (Yin et al., 2025; He et al., 2025; Zhang et al., 2024), or feed-forward networks (Yang et al., 2025a). A prominent subclass of these is Contrastive Decoding: one first generates outputs under an intentionally *inconsistent* text–image pairing to amplify hallucinations, then compares them to outputs under a *consistent* pairing to derive corrective signals for decoding. To date, inconsistency has been introduced chiefly by perturbing the image or by inserting disturbance instructions into the text input (Leng et al., 2024; Huang et al., 2024; Chen et al., 2025; Huo et al., 2025; An et al., 2024; He et al., 2025; Wang et al., 2024). However, these methods do not explicitly exploit the model's underlying language priors.

In comparison, our approach first amplifies linguistic bias by fully replacing the input text, then identify and enhance specific attention layers that are more image-aware during inference, thereby mitigating hallucinations.

2.2 TEXT BIAS IN LVLMS

 Large Vision–Language Models (LVLMs) are typically composed of a visual encoder, a projection module, and a pretrained language model. Given that the language model often contains far more parameters than the vision encoder, LVLMs inherently inherit strong linguistic priors—or "language bias" (Wu et al., 2022; Han et al., 2022; Ghosh et al., 2025; Zhu et al., 2020; Lee et al., 2025). Text bias, in turn, can be viewed as one manifestation of this phenomenon. Deng et al. (2025) demonstrates that perturbing input text causes models to over-rely on textual information, resulting in degraded performance. Similarly, Hua et al. (2025) finds that when image—text pairs conflict, overall accuracy declines, and with specific "promotion" heads consistently amplifying either text or image information. However, these studies focus on general performance under conflict rather than the hallucination problem.

More recently, Liu et al. (2025); He et al. (2025) identifies that LVLMs generate identical hallucinations whether an image is provided or not, and mitigates such errors by intervening on attention heads during decoding. This observation and the repetition phenomenon we discovered both indicate the tend towards text bias.

3 Method

In this section, we first compare the shifts in attention to visual information at the layer level, before and after text perturbation (Section 3.1). Based on the magnitude of these shifts, we then intervene in layers exhibiting the most significant deviations, enhancing their attention to visual information during the model's forward pass phase (Section 3.2).

3.1 IDENTIFY TEXT-AWARE LAYERS

To identify the attention layers that are more sensitive to text information during generation, we compare the attention shift patterns of each layer during the forward pass, before and after the input text is perturbed.

As showed in Figure 4(a), given an LVLM parameterized by θ , we construct inputs for both the preand post-text perturbation scenarios. We first define a set of original inputs $\{(v_i, x_0)\}_{i=1}^B$, which contains B image-text pairs. Here, x_0 is fixed as "Describe the image in detail.", v_i represents the i-th input image, and the corresponding output is denoted as g_i :

$$g_i = \text{LVLM}_{\theta}(v_i, x_0) \tag{1}$$

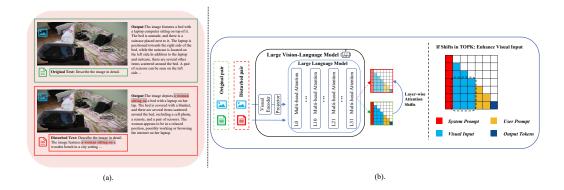


Figure 4: (a) Example image—text pairs before and after perturbation: we randomly append a caption generated for a different image to serve as the perturbation text. (b) Pipeline of our TCI method: The image-text pairs are fed into the model, and layer-wise attention shifts toward visual regions are computed and compared during generation. After ranking these shifts, the top-k layers with the largest shifts have their attention to visual regions enhanced during the forward pass, suppressing over-reliance on language priors.

Subsequently, we construct a set of perturbed texts. For each v_i , we randomly splice the description g_j of a different image with x_0 to form the perturbed text x_i' (where $i \neq j$ and $i, j \in (0, B)$):

$$x_i' = x_0 + \operatorname{random}(g_i), \{ i, j \mid i, j \in (0, B), i \neq j \}$$
 (2)

We then obtain the perturbed output g'_i :

$$g_i' = \text{LVLM}_{\theta}(v_i, x_i') \tag{3}$$

As illustrated in Figure 4(b), during the generation phase, there are four types of inputs: System Prompt, Visual Input, User Prompt, and generated Tokens, denoted as S, V, X, and G, respectively. For the input $A = \operatorname{concat}(S, V, X, G)$, we compute multi-head self-attention for the l-th layer of the model:

$$A^{l} = A^{l-1} + \text{MultiHead}^{l}(A^{l-1}) \tag{4}$$

For the *i*-th text-image pair before perturbation, when generating the *g*-th token, the attention to the *j*-th token in the image region is $A^l_{(g,j),i}$. Similarly, for the *i*-th text-image pair after perturbation, we have $A^{l'}_{(g,j),i}$.

For all inputs, we calculate the attention shift of the l-th layer averaged over all image regions before and after perturbation:

$$AS^{l} = \frac{1}{B} \cdot \frac{1}{V} \sum_{i=0}^{B} \sum_{j=0}^{V} \left(A_{(g,j),i}^{l} - A_{(g,j),i}^{l'} \right)$$
 (5)

V denotes the number of visual tokens (e.g., 576 for LLaVA-1.5-7B features), ensuring we average shifts across all visual regions to avoid bias from individual token outliers. The double summation over i (samples) and j (visual tokens) further stabilizes the metric, reducing variance from single samples.

Finally, we sort all AS^l values in descending order. Layers with larger AS^l values are more sensitive to text, thus are more susceptible to the influence of language priors, and are more likely to overlook visual information when perturbed.

3.2 ENHANCE VISION IN FORWARD PASS

After identifying the top text-aware layers, during the generation phase of the model, we enhance their attention to visual regions. This forces the attention layers to reduce text bias and focus on vision regions. Specifically, when the l-th layer generates the g-th token in an autoregressive manner, the attention to various regions is denoted as $A^l_{(S,U,V,g-1)\leftarrow g}$. We only enhance the attention to visual information, while keeping the attention to other regions unchanged:

$$\overline{A}_{g \leftarrow (S,U,V,g-1)}^l = (1+\alpha) \cdot A_{g \leftarrow (:,:,V,:)}^l, \quad \text{when } g > 0$$
 (6)

The enhanced attention \overline{A}^l is then integrated into the layer-wise feature propagation. First, the multi-head attention outputs are concatenated and projected:

$$MHA_{\text{enhanced}}^{l} = \text{Concat}\left(\text{head}_{1}(\overline{A}^{l}), \dots, \text{head}_{h}(\overline{A}^{l})\right) \cdot W^{O}$$
(7)

 W^{O} is the projection matrix for the output of multi-head attention. Finally, the probability of generating the next token g is obtained as:

$$p_{\theta}(g \mid S, U, V, G_{\leq q}) = \operatorname{Softmax} \left[\operatorname{logit} \theta(g \mid S, U, V, G \leq g) \right]$$
(8)

 $G_{< g}$ represents generated tokens before position g (i.e., $[g_1, g_2, ..., g_{g-1}]$). The model selects the next token g based on the configured decoding strategy and probability distribution. The two-stage procedure is shown in Appendix C.4.

The enhancement factor α is a critical hyperparameter that balances visual attention amplification and generation stability. Through preliminary experiments, we observe that when $\alpha>0$, it can mitigate text bias and reduce hallucinations.

 However, if α is excessively large, the model may over-focus on visual information, which disrupts its language capabilities, leading to anomalies such as repetitive sentence generation. Conversely, when $\alpha < 0$, the model tends to underutilize visual information, resulting in performance degradation.

Moreover, different models and tasks exhibit varying sensitivities to α . We provide further ablation studies and analysis in Section 4 to validate its effectiveness and robustness.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets and Metrics

 POPE. The Polling-based Object Probing Evaluation(POPE) (Li et al., 2023b) is designed to detect object hallucinations. It adopts a fixed yes-or-no question format: "Is there a <object> in the image?" to evaluate the model's ability to determine the presence of specific objects in given images. Images are sourced from COCO (Lin et al., 2014). Based on object sampling strategies, POPE is divided into three subsets: random, popular, and adversarial. Each subset contains 3,000 questions, with answers balanced equally between "yes" and "no". Evaluation metrics include Accuracy, Precision, Recall, and F1 score.

CHAIR. The Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al., 2018) is an effective metric for evaluating object hallucinations in image captioning tasks. Specifically, it identifies hallucinations by comparing whether objects in generated captions exist in the ground truth set. CHAIR evaluates two levels: C_I and C_S , stand for object-level and caption-level,respectively:

$$C_I = \frac{|\{\text{hallucinated objects}\}|}{|\{\text{all mentioned objects}\}|}$$
(9)

$$C_S = \frac{|\{\text{captions w/hallucinated objects}\}|}{|\{\text{all captions}\}|}$$
 (10)

Table 2: **Average accuracy and F1 scores of POPE**, with best in **bold** and second-best <u>underlined</u>. Results of popular, adversarial, and random splits are shown in Table 8 in Appendix D.2.

Method	LLaVA-1.5-7B		Qwen-VL-Chat-7B		
	Accuracy	F1 Score	Accuracy	F1 Score	
Direct Sample	81.38	79.65	83.59	81.70	
Greedy	85.19	86.10	86.81	85.84	
VCD	83.70	84.82	85.26	84.35	
OPERA	85.69	85.60	86.99	85.99	
TCI	87.52	87.39	87.46	86.67	

Table 3: CHAIR results, with best in **bold** and second-best underlined.

Method	LLaVA	LaVA-1.5-7B Qwen-VL-Ch		L-Chat-7B
	$\mathbf{C}_S\downarrow$	$\mathbf{C}_I\downarrow$	$\mathbf{C}_S\downarrow$	$\mathbf{C}_I\downarrow$
Direct Sample	56.72	17.40	48.16	13.70
Greedy	49.88	14.28	45.00	12.16
VCD	52.24	15.32	46.92	12.98
OPERA	44.6	12.80	-	-
TCI	31.88	10.20	42.44	11.92

We randomly sample 500 images from the COCO 2014 validation set and repeat experiments five times with different random seeds. For all LVLMs, the input prompt is unified as "Describe this image in detail." to generate descriptions. We report average results for each metric.

LLaVA-Bench. LLaVA-Bench (In-the-Wild) is a comprehensive evaluation dataset consisting of 24 images with 60 open-ended questions, specifically designed to evaluate an LVLM's performance on challenging tasks and its generalization to novel domains. Following prior work (Huang et al., 2024; He et al., 2025), we leverage GPT-40 as an automatic judge to score model responses across three dimensions: accuracy, informativeness (level of detail), and naturalness. The prompt of GPT-40 is shown in Table 7 in Appendix C.5.

Models. We validate our method on two representative models: LLaVA-1.5-7B (Liu et al., 2024b) and Qwen-VL-Chat-7B (Bai et al., 2023b). The key difference lies in their projection mechanisms: LLaVA-1.5-7B employs an MLP projector, while Qwen-VL-Chat-7B uses cross-attention.

Baselines. We compare our method with two baselines: VCD (Leng et al., 2024) and OPERA (Huang et al., 2024). VCD amplifies hallucinations by perturbing images with Gaussian noise, then intervenes by comparing token probability changes before and after perturbation. OPERA penalizes hallucinatory candidates via beam search during decoding and performs backtracking.

Implementation Details. Stage 1: We randomly select 1,000 images from the COCO 2014 validation set and generate original outputs using the prompt "Describe this image in detail". For each image, perturbed texts are randomly sampled from these original outputs. Stage 2: The top-k parameter is fixed at 5 for both models. For LLaVA-1.5-7B, $\alpha=4$ (POPE, CHAIR), $\alpha=2$ (LLaVA-Bench); for Qwen-VL-Chat-7B, $\alpha=1.7$ (POPE), $\alpha=2.5$ (LLaVA-Bench) and $\alpha=2.8$ (CHAIR). Decoding adopts greedy search with a maximum token length of 512. More implementation details please refer to Appendix C.

4.2 EXPERIMENTAL RESULTS

Layer Susceptibility to Text Perturbations. In the Figure 7 of Appendix D.1, we visualize the layer-wise shifts in attention toward visual regions before and after text perturbation. The two models exhibit distinct shift patterns: the top 5 layers with the largest shifts for LLaVA-1.5-7B are $\{0, 1, 14, 15, 17\}$, whereas for Qwen-VL-Chat-7B they are $\{0, 1, 17, 20, 31\}$. Notably, these layers lie predominantly in the shallow to middle part of the network, indicating that early and intermediate layers are most prone to neglecting visual information, relying more heavily on language priors and contributing to hallucinations.

Table 4: Evaluation results of LLaVA-Bench (In-the-Wild), metrics are scored by GPT-40 on a scale of 10.

	Accuracy	Detailedness	Naturalness
LLaVA-1.5	5.133	5.483	7.050
w/TCI	5.367	5.683	7.117
Qwen-VL	6.033	6.200 5.850	7.167
w/TCI	6.476		7.550

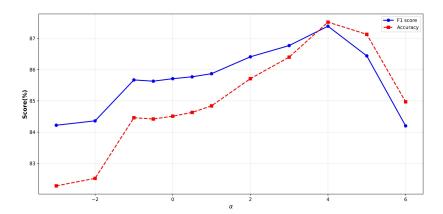


Figure 5: **Ablation of** α . Results on POPE dataset with LLaVA-1.5-7B.

Results on POPE. Table 2 presents average performance for LLaVA-1.5-7B and Qwen-VL-Chat-7B across the three POPE subsets. We observe that, in terms of average Accuracy, the TCI method improves LLaVA-1.5-7B and Qwen-VL-Chat-7B by 7.5% and 4.6%, respectively. For average F1 Score, the improvements are 9.7% and 5.0%, respectively. Additionally, our method consistently outperforms previous approaches on multiple subsets, demonstrating its effectiveness as a training-free strategy across different performance levels. This improvement can be attributed to TCI's dual role: it not only emphasizes useful visual information but also suppresses language priors. The specific results of the three splits are shown in Appendix D.2.

Results on CHAIR. As shown in Table 3, our method significantly outperforms all baseline methods in the image captioning task. Specifically, for LLaVA-1.5-7B with TCI, C_S and C_I decrease by 43.8% and 41.4%, respectively; for Qwen-VL-Chat-7B, the corresponding reductions are 5.6% and 9.1%. These results confirm TCI's ability to mitigate hallucinations by rebalancing attention toward authentic visual content during generation.

Results on LLaVA-Bench. Table 4 presents the GPT-4o evaluation on LLaVA-Bench (In-the-Wild). The results demonstrate that TCI improves model accuracy and effectively mitigates hallucinations in the generated captions, while preserving comparable levels of detailedness and naturalness. The effectiveness of TCI can be further illustrated by additional cases, as shown in Figure 8 and 9 in Appendix E.

4.3 ABLATION STUDY

Impact of Hyperparameter on Performance. To assess how the enhancement factor α affects model performance, we sweep α from -3 to 6 on LLaVA-1.5-7B using the POPE benchmark. As shown in Figure 5, When $\alpha>0$, hallucinations are effectively mitigated, confirming the utility of visual attention amplification. Excessively large α degrades performance, as the model over-focuses on irrelevant visual details during inference. When $\alpha<0$, visual attention is suppressed, forcing the model to rely more on language priors and thus amplifying hallucinations.

Impact of Attention-Shift-Guided Layer Selection. To validate the role of attention shift (AS^l) , we randomly selected 5 attention layers in LLaVA-1.5-7B for enhancement (with $\alpha = 4$). Experi-

Table 5: **Ablation of random 5 layers.** Results on POPE Adversarial with LLaVA-1.5-7B.We test random 5 layers for 3 times.

Method	Accuracy	F1 score
Greedy	79.77	81.78
w/TCI Top 5 Layers	83.77	84.10
w/TCI Random 5 Layers	79.99	82.03

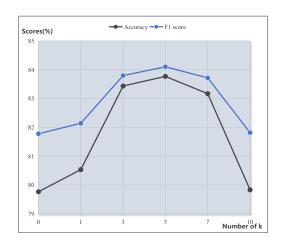


Figure 6: **Ablation of** k. Results on POPE Adversarial with LLaVA-1.5-7B.

ments were repeated three times with different random seeds, and results were averaged. As shown in Table 5, enhancing randomly selected layers yields limited improvement in the POPE adversarial subset. This indicates that interventions targeting layers with larger attention shifts are more effective in mitigating hallucinations.

Impact of Number of Enhanced Layers (k). For the selection of top-k layers, we vary the number of top-k attention-shift layers selected for enhancement, with $k \in \{1, 3, 5, 7, 10\}$, and measure Accuracy and F1 on POPE using LLaVA-1.5-7B. Results in Figure 6 show a non-monotonic trend: increasing k initially boosts hallucination mitigation, reaches an optimum at k = 5, then declines as additional layers introduce excess visual noise or dilute the effect. These ablations validate our choice of k = 5 for a balanced trade-off between effectiveness and overcorrection.

5 CONCLUSION

In this paper, we first identify a *repetition phenomenon*: LVLMs tend to repeat input text even when it conflicts with the image content. This phenomenon indicates that hallucinations arise from text bias and the neglect of visual information. Building on this insight, we propose TCI (Text-Contrastive Intervention), a training-free method that guides the model to prioritize visual information over language priors via interventions during the forward pass. Our analysis reveals that shallow and middle layers play a more critical role in cross-modal information fusion; thus, TCI specifically targets these layers for intervention. Extensive experiments demonstrate that our method consistently outperforms baselines in reducing hallucinations across various LVLMs and evaluation metrics, validating its effectiveness and generality.

6 REPRODUCIBILITY STATEMENT

The datasets and models we used in the experiment are both open-source. We have provided experimental codes for the LLaVA-1.5-7B model in the supplementary materials. We will release the code

for the Qwen model and the required experimental environment if the paper is accepted to ensure its reproducibility.

REFERENCES

- Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, Qianying Wang, Guang Dai, Ping Chen, and Shijian Lu. Mitigating object hallucinations in large vision-language models with assembly of global and local attention. In *Computer Vision and Pattern Recognition*, 2024. URL https://api.semanticscholar.org/CorpusID:270562057.
- Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023a. URL https://arxiv.org/abs/2309.16609.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond, 2023b. URL https://arxiv.org/abs/2308.12966.
- Junzhe Chen, Tianshu Zhang, Shiyu Huang, Yuwei Niu, Linfeng Zhang, Lijie Wen, and Xuming Hu. Ict: Image-object cross-level trusted intervention for mitigating object hallucination in large vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4209–4221, June 2025.
- Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny Birch, Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality for explainable autonomous driving, 2023a. URL https://arxiv.org/abs/2310.01957.
- Zhiyang Chen, Yousong Zhu, Yufei Zhan, Zhaowen Li, Chaoyang Zhao, Jinqiao Wang, and Ming Tang. Mitigating hallucination in visual language models with visual supervision, 2023b. URL https://arxiv.org/abs/2311.16479.
- Ailin Deng, Tri Cao, Zhirui Chen, and Bryan Hooi. Words or vision: Do vision-language models have blind faith in text?, 2025. URL https://arxiv.org/abs/2503.02199.
- Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Utkarsh Tyagi, Oriol Nieto, Zeyu Jin, and Dinesh Manocha. Visual description grounding reduces hallucinations and boosts reasoning in lvlms, 2025. URL https://arxiv.org/abs/2405.15683.
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14375–14385, 2024. doi: 10.1109/CVPR52733.2024.01363.
- Yudong Han, Liqiang Nie, Jianhua Yin, Jianlong Wu, and Yan Yan. Visual perturbation-aware collaborative learning for overcoming the language prior problem, 2022. URL https://arxiv.org/abs/2207.11850.
- Jinghan He, Kuan Zhu, Haiyun Guo, Junfeng Fang, Zhenglin Hua, Yuheng Jia, Ming Tang, Tat-Seng Chua, and Jinqiao Wang. Cracking the code of hallucination in LVLMs with vision-aware head divergence. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3488–3501, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL https://aclanthology.org/2025.acl-long.175/.

- Mingzhe Hu, Shaoyan Pan, Yuheng Li, and Xiaofeng Yang. Advancing medical imaging with language models: A journey from n-grams to chatgpt, 2023. URL https://arxiv.org/abs/2304.04920.
- Tianze Hua, Tian Yun, and Ellie Pavlick. How do vision-language models process conflicting information across modalities?, 2025. URL https://arxiv.org/abs/2507.01790.
- Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and Nenghai Yu. OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13418–13427, Los Alamitos, CA, USA, June 2024. IEEE Computer Society. doi: 10.1109/CVPR52733.2024.01274. URL https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.01274.
- Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao. Self-introspective decoding: Alleviating hallucinations for large vision-language models, 2025. URL https://arxiv.org/abs/2408.02032.
- Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, JD Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei Zhang, Kay McKinney, Disha Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Training language models to self-correct via reinforcement learning. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 54523–54549, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/871ac99fdc5282d0301934d23945ebaa-Paper-Conference.pdf.
- Kang-il Lee, Minbeom Kim, Seunghyun Yoon, Minsung Kim, Dongryeol Lee, Hyukhun Koh, and Kyomin Jung. VLind-bench: Measuring language priors in large vision-language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 4129–4144, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl. 231. URL https://aclanthology.org/2025.findings-naacl.231/.
- Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13872–13882, Los Alamitos, CA, USA, June 2024. IEEE Computer Society. doi: 10.1109/CVPR52733.2024.01316. URL https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.01316.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pretraining for unified vision-language understanding and generation. In *International conference on machine learning*, pp. 12888–12900. PMLR, 2022.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023a.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 292–305, Singapore, December 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.20. URL https://aclanthology.org/2023.emnlp-main.20/.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision ECCV 2014*, pp. 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.
- Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models, 2024a. URL https://arxiv.org/abs/2402.00253.

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
 in neural information processing systems, 36:34892–34916, 2023.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2024b. URL https://arxiv.org/abs/2310.03744.
 - Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method for alleviating hallucination in lvlms. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), *Computer Vision ECCV 2024*, pp. 125–140, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-73010-8.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.
 - Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. In *Conference on Empirical Methods in Natural Language Processing*, 2018. URL https://api.semanticscholar.org/CorpusID:52176506.
 - Simon Schrodi, David T. Hoffmann, Max Argus, Volker Fischer, and Thomas Brox. Two effects, one trigger: On the modality gap, object bias, and information imbalance in contrastive vision-language models, 2025. URL https://arxiv.org/abs/2404.07983.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.
 - Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large vision-language models with instruction contrastive decoding, 2024. URL https://arxiv.org/abs/2403.18715.
 - Yike Wu, Yu Zhao, Shiwan Zhao, Ying Zhang, Xiaojie Yuan, Guoqing Zhao, and Ning Jiang. Overcoming language priors in visual question answering via distinguishing superficially similar instances, 2022. URL https://arxiv.org/abs/2209.08529.
 - Shuo Xing, Yuping Wang, Peiran Li, Ruizheng Bai, Yueqi Wang, Chan wei Hu, Chengxuan Qian, Huaxiu Yao, and Zhengzhong Tu. Re-align: Aligning vision language models via retrieval-augmented direct preference optimization, 2025. URL https://arxiv.org/abs/2502.13146.
 - Le Yang, Ziwei Zheng, Boxu Chen, Zhengyu Zhao, Chenhao Lin, and Chao Shen. Nullu: Mitigating object hallucinations in large vision-language models via halluspace projection, 2025a. URL https://arxiv.org/abs/2412.13817.
 - Zhihe Yang, Xufang Luo, Dongqi Han, Yunjian Xu, and Dongsheng Li. Mitigating hallucinations in large vision-language models via dpo: On-policy data hold the key. In *Computer Vision and Pattern Recognition*, 2025b. URL https://api.semanticscholar.org/CorpusID: 275570496.
 - Hao Yin, Guangzong Si, and Zilei Wang. Clearsight: Visual signal enhancement for object hallucination mitigation in multimodal large language models. In *Computer Vision and Pattern Recognition*, 2025. URL https://api.semanticscholar.org/CorpusID:277104650.
 - Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang, Qi Tian, and Yueting Zhuang. HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12944–12953, Los Alamitos, CA, USA, June 2024a. IEEE Computer Society. doi: 10.1109/CVPR52733.2024.01230. URL https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.01230.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun. Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13807–13816, 2024b. doi: 10.1109/CVPR52733. 2024.01310.

Zihao Yue, Liang Zhang, and Qin Jin. Less is more: Mitigating multimodal hallucination from an EOS decision perspective. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11766–11781, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.633. URL https://aclanthology.org/2024.acl-long.633/.

Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng, Kaijie Wu, and Jieping Ye. Seeing clearly by layer two: Enhancing attention heads to alleviate hallucination in lylms, 2024. URL https://arxiv.org/abs/2411.09968.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/abs/2306.05685.

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models. *ArXiv*, abs/2310.00754, 2023. URL https://api.semanticscholar.org/CorpusID:263334335.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing vision-language understanding with advanced large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=1tZbq88f27.

Xi Zhu, Zhendong Mao, Chunxiao Liu, Peng Zhang, Bin Wang, and Yongdong Zhang. Overcoming language priors with self-supervised learning for visual question answering, 2020. URL https://arxiv.org/abs/2012.11528.

A LIMITATIONS

Despite its simplicity and effectiveness, TCI has certain limitations. Our intervention focuses exclusively on attention layers, without addressing other architectural components—such as individual attention heads or feed-forward networks(FFNs)—that may also contribute to hallucination. Investigating and intervening on these components remains an important direction for future work.

B DETAILS OF USING LARGE LANGUAGE MODELS

We use the Large Language Models for proofreading when writing, specifically, we use it in various chapters of the article to improve readability and professionalism, such as modifying word order, replacing certain words, etc.

C IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL SETUP

All LLaVA-1.5-7B experiments were conducted on an NVIDIA RTX 4090 GPU, while Qwen-VL-Chat-7B evaluations ran on an NVIDIA H20 GPU.

704

705

706

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722723724725

726 727

728

729

730

731

732

733 734

735 736

737

739

740 741

742 743

744745746

747

748

749

750

751 752

753

754

755

Table 6: Algorithm 1: Text Contrastive Intervention(TCI)

Algorithm 1: Text Contrastive Intervention(TCI) Input: LVLM_{θ}, batch of image-text pairs $\mathcal{D} = \{(v_i, x_0)\}_{i=1}^B$ (where x_0 = "Describe the image in detail."), enhancement factor α **Stage 1: Identify Text-Aware Layers** 1: For each $(v_i, x_0) \in \mathcal{D}$ do Get original output ⊳ Equation (1) 3: Create perturbed text ⊳ Equation (2) 4. Get perturbed output ⊳ Equation (3) 5: For each layer l do Extract layer-wise attention 6: 7: Compute attention shifts ⊳ Equation (5) 8: Sort layers by AS^l descending $\rightarrow L_{\text{text-aware}}$ **Stage 2: Enhance Vision in generation** 1: **For** each generation step t do if layer $l \in L_{\text{text-aware}}$ then 2: 3: Enhance visual regions ⊳ Equation (6) 4: else 5: Attention forward compute ⊳ Equation (4) Compute multi - head attention outputs 6: ⊳ Equation (7) 7: Get probability of next token ⊳ Equation (8)

C.2 IMPLEMENTATION DETAILS OF REPETITION PHENOMENON

Source of Text Perturbations.We randomly sample 1,000 images from the COCO 2014 validation set (seed = 42). For each image, both LVLMs generate a caption using the prompt "Describe the image in detail." We collect all generated captions into a repository. To create a perturbed input for each image, we uniformly sample one caption from this repository, ensuring it does not correspond to the same image, and append it to the original prompt. All generations use greedy decoding with max_new_tokens = 512.

C.3 IMPLEMENTATION DETAILS OF IDENTIFYING TEXT-AWARE LAYERS

In Equation (5), when calculating attention shifts, we select the last token generated by the model (g = last token) and extract the corresponding attention weights. This design offers a key advantage: it enables convenient localization and extraction of attention weights regardless of the length of the generated text.

C.4 THE ALGORITHM OF TCI

We show the two-stage algorithm of TCI in Table 6.

C.5 Details of GPT-40 Evaluation

Following prior work Huang et al. (2024); He et al. (2025), we employ GPT-40 to evaluate LVLMs' performance on LLaVA-Bench (In-the-Wild). The adapted prompt, derived from He et al. (2025), is presented in Table 7. All model responses were generated using greedy decoding with max_new_tokens = 512.

For each sample evaluation, GPT-40 was provided with the original image, the baseline model's response, and the TCI-augmented model's response. Three metrics were assessed: Accuracy: Measures alignment between the image and model output. GPT-40 assigns lower scores if inconsistencies (i.e., hallucinations) are identified. Detailedness: Reflects the comprehensiveness of the model's expressive capacity. Naturalness: Evaluates the fluency of generated text.

Table 7: The prompt used for GPT-40 evaluation.

GPT-40 Prompt

You are required to score the performance of two AI assistants in describing a given image. You should pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with the image content, such as claiming the existence of something not present in the image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.

Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the following criteria:

- 1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer hallucinations should be given higher scores.
- 2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions should not count as necessary details.
- 3: Naturalness: assess the language quality, focusing on: fluency of sentence structure, appropriateness of word choice, smoothness of language flow, absence of awkward or unnatural phrasing.

Please output the scores for each criterion, containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.

```
{Question}
{}
{Duestion}
{}
{End of Question}

{Assistant 1}
{}
{End of Assistant 1}

{Assistant 2}
{}
{End of Assistant 2}

Output format:
Accuracy:
Reason:
Detailedness:
Reason:
Naturalness:
Reason:
```

D ADDITIONAL EXPERIMENTS RESULTS

D.1 HEAT MAP OF LAYER-WISE ATTENTION SHIFT

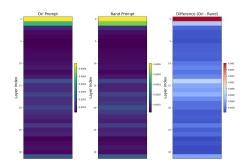
Figure 7 visualizes the layer-wise shifts in attention toward visual regions before and after text perturbation. The two models exhibit distinct shift patterns: the top 5 layers with the largest shifts for LLaVA-1.5-7B are $\{0, 1, 14, 15, 17\}$, whereas for Qwen-VL-Chat-7B they are $\{0, 1, 17, 20, 31\}$.

D.2 RESULTS OF POPE

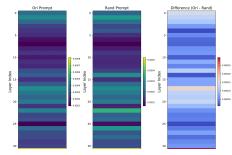
Table 8 shows the results of three splits (random, popular, and adversarial) of POPE. Our method consistently outperforms previous approaches on multiple subsets, demonstrating its effectiveness as a training-free strategy across different performance levels.

E CASE STUDY

Figure 8 and 9 presents several illustrative cases demonstrating the effectiveness of TCI in reducing hallucinations. Without TCI, the model generates descriptions inconsistent with the image (high-lighted in bold red), such as references to "people" and "chairs". In contrast, TCI not only mitigates such hallucinations but also preserves critical image details.



(a) Layer-wise attention shift heat map of LLaVA-1.5-7B



(b) Layer-wise attention shift heat map of Qwen-VL-Chat-7B

Figure 7: Layer-wise attention shift heat maps of models

Table 8: Accuracy and F1 scores on POPE popular, adversarial, and random splits, with best in **bold** and second-best <u>underlined</u>.

Split	Method	LLaVA-1.5-7B		Qwen-VL-Chat-7B	
		Accuracy	F1 Score	Accuracy	F1 Score
	Direct Sample	83.29	81.33	84.37	82.67
	Greedy	89.60	89.72	88.83	87.72
Random	VCD	88.07	88.30	87.90	86.78
	OPERA	89.20	88.81	88.76	87.84
	TCI	90.13	89.72	89.40	88.47
	Direct Sample	81.88	80.06	84.13	82.06
	Greedy	86.20	86.80	87.20	86.17
Popular	VCD	84.40	85.26	85.40	84.31
_	OPERA	86.64	86.62	87.44	86.68
	TCI	88.67	88.36	87.97	87.11
Adversarial	Direct Sample	78.96	77.57	82.26	80.37
	Greedy	79.77	81.78	84.40	83.64
	VCD	78.63	80.89	82.47	81.95
	OPERA	81.24	81.38	84.78	83.45
	TCI	83.77	84.10	85.00	84.43

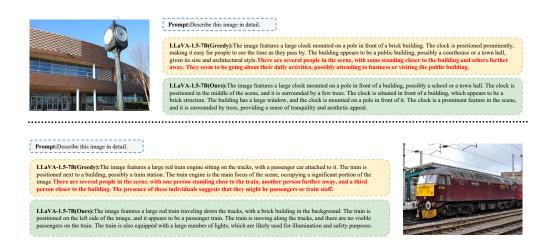


Figure 8: Examples of TCI on LLaVA-1.5-7B. Hallucinatory content is highlighted in bold red.

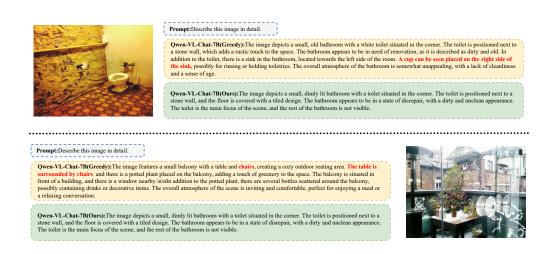


Figure 9: Examples of TCI on Qwen-VL-Chat-7B. Hallucinatory content is highlighted in bold red.