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ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable progress
across a wide range of tasks by integrating visual and textual information. Yet
they still suffer from a common issue: hallucination, where the generated text
fails to accurately align with visual inputs. Existing contrastive methods primarily
intervene on the visual modality, perturbing images to indirectly amplify language
priors, but fail to directly target text to expose and mitigate text bias. To address
this, we propose Text Contrastive Intervention (TCI), a training-free approach that
amplifies visual information in those attention layers most susceptible to language
bias. Our method is inspired by a key observation: the repetition phenomenon,
where LVLMs tend to verbatim repeat text when conflicts arise between the im-
ages and accompanying text. We hypothesize this behavior stems from language
priors—a critical cause of hallucinations. TCI operates in two steps: first quanti-
fying per-layer attention shifts under text perturbation to identify the layers where
visual attention is most compromised; then we selectively boost the correspond-
ing visual-attention weights during generation, steering the model away from text
bias. Extensive experiments demonstrate that TCI significantly reduces hallucina-
tions while requiring only a small amount of data, demonstrating its effectiveness
and efficiency.

1 INTRODUCTION

Building on Large Language Models (LLMs) (Vaswanti et al., 2017} [Zheng et al.| 2023} Bai et al.,
2023al), Large Vision-Language Models (LVLMs) have integrated visual and linguistic modalities,
demonstrating remarkable potential in real-world tasks such as image captioning and visual question
answering (VQA) (Li et al.| 2022} 2023a; |Zhu et al., 2024; [Liu et al.| [2023; |Bai et al., [2023b; |Liu
et all [2024b). However, they are plagued by a critical issue: hallucinations (Liu et al.| 2024a),
where generated content misaligns with visual inputs (e.g., falsely asserting the presence of non-
existent objects). This undermines the reliability of LVLMs in practical applications, with severe
implications for high-stakes domains like autonomous driving (Chen et al.l |2023a) and medical
diagnosis (Hu et al.} 2023)).

Prior research has identified two primary sources of hallucinations:1) Models. Visual encoders,
such as CLIP [Radford et al.| (2021)) may inaccurately capture visual features, leading to errors in
object recognition or attribute judgment (Rohrbach et al., | 2018)). Moreover, since LLMs constitute
the majority of parameters in LVLMs, the models tend to prioritize linguistic knowledge patterns,
causing over-reliance on language priors (Guan et al.| 2024} Leng et al.,|2024; Rohrbach et al.,[2018).
2) Data. Noisy annotations (e.g., misalignment between text and images) (Yu et al., 2024a; |Yue et al.,
2024])) and statistical biases (e.g., frequent object co-occurrences) (Li et al., 2023bj; |Rohrbach et al.,
2018 |Zhou et al.| 2023} Schrodi et al., 2025)) in training corpora further exacerbate hallucinations.

Existing methods to mitigate hallucinations fall into two categories. One approach is to use Super-
vised Fine-Tuning (Chen et al., [2023b; |Yue et al.| [2024) or Reinforcement Learning (Yang et al.,
2025b; [Yu et al., 2024b; Kumar et al.| 2025} Xing et al., [2025), but these require extensive manual
annotations and computational resources. Alternatively, image-based contrastive decoding methods
operate in two stages: as shown in Figure[I] they first amplify hallucinations by corrupting input im-
ages, and then mitigate such hallucinations by contrasting shifts in model internal states and output
distributions before and after corruption. (Leng et al., [2024} (Chen et al.| 2025} |An et al.| 2024; |[He
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et al} |2025). However, such methods amplify language priors indirectly rather than targeting them
directly.
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Figure 1: Comparison between Image-based Contrastive Decoding and our proposed TCI Method.
(Left) Image-based methods perturb the visual input—via global noise, local mask, or complete
removal—to amplify hallucinations, then mitigate hallucinations by contrasting differences in prob-
ability distributions, attention scores, or attention heads before and after perturbation. (Right) In
contrast, our TCI method perturbs the text modality to directly leverage language prior for hallu-
cination amplification, measures layer-wise attention shifts, and selectively intervenes on the most
text-biased layers to reinforce visual grounding.
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Text Contrastive Intervention. Leveraging repetition phenomenon, we propose Text Contrastive
Intervention (TCI), a training-free intervention method applied during the forward pass to mitigate
hallucinations. As shown in Figure [I] unlike image-based contrastive methods, TCI perturbs text,
contrasts attention shifts across layers, and enhances visual attention in selected layers during the
forward pass to reduce text bias. TCI precisely targets layers prone to text bias, avoiding unnecessary
adjustments to visually sensitive layers. Our analysis reveals that shallow and middle attention layers
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Figure 3: Average attention weights on visual and text regions with/without text perturbation. In both
models, text perturbation causes a clear decrease in attention to image regions and a compensatory
increase in attention to the (misleading) text regions.

Table 1: Hallucination metrics with/without text perturbation. We evaluate hallucination levels
using the CHAIR metric. Results show a significant increase in hallucinations after text perturbation
(higher C; and Cg values indicate more hallucinations).

LLaVA-1.5-7B Qwen-VL-Chat-7B
Cs i C; \L CS ~L C; ~L

w/o text perturbation  50.00  13.40  48.70 13.20
w/ text perturbation  61.10 3290  60.80 31.00

Method

are more likely to neglect visual information after perturbation, indicating their key role in cross-
modal fusion.

Experiments on established LVLM hallucination benchmarks validate TCI’s superiority over exist-
ing decoding strategies, demonstrating its effectiveness and efficiency in alleviating hallucinations.
On the POPE benchmark, TCI improves average accuracy by 7.5% for LLaVA-1.5-7B and 4.6% for
Qwen-VL-Chat-7B, with corresponding F1-score gains of 9.7% and 5.0%. On CHAIR, LLaVA-1.5-
7B with TCI reduces hallucination metrics by 43.8% and 41.4%, while Qwen-VL-Chat-7B achieves
reductions of 5.6% and 9.1%.

Contributions. Our contributions are summarized as follows:

» Unlike existing image-corruption-based contrastive decoding methods, we amplify hallu-
cinations directly by perturbing text to exploit language priors, approaching the problem
from a linguistic modality perspective.

* We propose Text Contrastive Intervention (TCI), a training-free method that mitigates hal-
lucinations in LVLMs by enhancing visual attention during the forward pass, thereby re-
ducing over-reliance on language priors.

» Extensive experiments on LVLMs demonstrate that TCI significantly improves perfor-
mance across multiple widely adopted hallucination benchmarks.

2 RELATED WORK

2.1 MITIGATING HALLUCINATIONS IN LVLMsS

In contrast to Large Language Models, hallucinations in LVLMs refer to a mismatch between the
generated text and the content of the input image (Liu et al.l [2024a)). Such hallucinations typi-
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cally stem from strong language priors or from imbalanced vision—language training data. Existing
mitigation techniques can be categorized into two groups: post-training methods and training-free
interventions.

Post-training methods employ supervised finetuning (Chen et al.l [2023b; [Yue et al.| [2024), or rein-
forcement learning based schemes to improve cross-modal alignment|Yang et al.| (2025b)); |Yu et al.
(2024b)); Kumar et al.| (2025); Xing et al.| (2025). While effective, these approaches require addi-
tional data and computational resources.

Training-free interventions instead modify the decoding process during inference, intervening at
the level of output probabilities (Leng et al., [2024; Wang et al.| [2024; |[Huo et al.| [2025)), attention
networks (Yin et al.,2025; He et al.,|[2025;|Zhang et al., 2024), or feed-forward networks (Yang et al.,
2025a). A prominent subclass of these is Contrastive Decoding: one first generates outputs under
an intentionally inconsistent text—image pairing to amplify hallucinations, then compares them to
outputs under a consistent pairing to derive corrective signals for decoding. To date, inconsistency
has been introduced chiefly by perturbing the image or by inserting disturbance instructions into the
text input (Leng et al.,[2024; [Huang et al.,|2024; [Chen et al., 2025} [Huo et al.| 2025} |An et al., [2024;
He et al., 2025; [Wang et al., |2024). However, these methods do not explicitly exploit the model’s
underlying language priors.

In comparison, our approach first amplifies linguistic bias by fully replacing the input text, then
identify and enhance specific attention layers that are more image-aware during inference,thereby
mitigating hallucinations.

2.2 TEXT BIAS IN LVLMS

Large Vision-Language Models (LVLMs) are typically composed of a visual encoder, a projection
module, and a pretrained language model. Given that the language model often contains far more
parameters than the vision encoder, LVLMs inherently inherit strong linguistic priors—or “language
bias” (Wu et al. [2022; [Han et al.| 2022} |Ghosh et al.| 2025} [Zhu et al.l [2020; [Lee et al., [2025)).
Text bias, in turn, can be viewed as one manifestation of this phenomenon. Deng et al| (2025)
demonstrates that perturbing input text causes models to over-rely on textual information, resulting
in degraded performance. Similarly, Hua et al.| (2025) finds that when image—text pairs conflict,
overall accuracy declines, and with specific “promotion” heads consistently amplifying either text
or image information. However, these studies focus on general performance under conflict rather
than the hallucination problem.

More recently, |[Liu et al.| (2025); [He et al.| (2025) identifies that LVLMs generate identical halluci-
nations whether an image is provided or not, and mitigates such errors by intervening on attention
heads during decoding. This observation and the repetition phenomenon we discovered both indicate
the tend towards text bias.

3 METHOD

In this section, we first compare the shifts in attention to visual information at the layer level, before
and after text perturbation (Section [3.T). Based on the magnitude of these shifts, we then intervene
in layers exhibiting the most significant deviations, enhancing their attention to visual information
during the model’s forward pass phase (Section [3.2).

3.1 IDENTIFY TEXT-AWARE LAYERS

To identify the attention layers that are more sensitive to text information during generation, we
compare the attention shift patterns of each layer during the forward pass, before and after the input
text is perturbed.

As showed in Figure[d{(a), given an LVLM parameterized by 6, we construct inputs for both the pre-
and post-text perturbation scenarios. We first define a set of original inputs {(v;, z9)}Z ;, which
contains B image-text pairs. Here, x is fixed as “Describe the image in detail.”, v; represents the
i-th input image, and the corresponding output is denoted as g;:

gi = LVLM@(U,‘,J)()) (1)
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Figure 4: (a) Example image—text pairs before and after perturbation: we randomly append a caption
generated for a different image to serve as the perturbation text. (b) Pipeline of our TCI method:
The image-text pairs are fed into the model, and layer-wise attention shifts toward visual regions
are computed and compared during generation. After ranking these shifts, the top-k layers with the
largest shifts have their attention to visual regions enhanced during the forward pass, suppressing
over-reliance on language priors.

Subsequently, we construct a set of perturbed texts. For each v;, we randomly splice the description
g; of a different image with x( to form the perturbed text 2, (where ¢ # j and ¢, j € (0, B)):

x; = xo + random(g;), {i,j|i,j € (0,B), i # j} (2)

We then obtain the perturbed output g;:

gi = LVLMy(v;, x}) 3)

As illustrated in Figure [@b), during the generation phase, there are four types of inputs: System
Prompt, Visual Input, User Prompt, and generated Tokens, denoted as .S, V', X, and G, respectively.
For the input A = concat(S, V, X, G), we compute multi-head self-attention for the I-th layer of the
model:

Al = A1 4 MultiHeadl(Alfl) @

For the i-th text-image pair before perturbation, when generating the g-th token, the attention to the

j-th token in the image region is A( 9.3)si . Similarly, for the ¢-th text-image pair after perturbation,

we have A(g )i

For all inputs, we calculate the attention shift of the [-th layer averaged over all image regions before
and after perturbation:

AS

B V ,
ZZ( (9,4) l(ga'),i) (&)

i=0 j=0

s \

V denotes the number of visual tokens (e.g., 576 for LLaVA-1.5-7B features), ensuring we average
shifts across all visual regions to avoid bias from individual token outliers. The double summation
over i (samples) and j (visual tokens) further stabilizes the metric, reducing variance from single
samples.

Finally, we sort all AS’ values in descending order. Layers with larger AS! values are more sensitive
to text, thus are more susceptible to the influence of language priors, and are more likely to overlook
visual information when perturbed.
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3.2 ENHANCE VISION IN FORWARD PASS

After identifying the top text-aware layers, during the generation phase of the model, we enhance
their attention to visual regions. This forces the attention layers to reduce text bias and focus on
vision regions. Specifically, when the | — th layer generates the g — th token in an autoregressive
manner, the attention to various regions is denoted as Al( S.UV.g—1)eg" We only enhance the attention

to visual information, while keeping the attention to other regions unchanged:

—1
Ag(—(SﬂU}V,gfl) = (1 + 04) : Aée(:,:,v,:)’ when g > 0 (6)

The enhanced attention A is then integrated into the layer-wise feature propagation. First, the
multi-head attention outputs are concatenated and projected:
MHAL, . = Concat (headl(Zl), . ,headh(Zl)) WO )

WO is the projection matrix for the output of multi-head attention. Finally, the probability of gen-
erating the next token g is obtained as:

po(g | S,U,V,G«y) = Softmax [logitd(g | S,U,V,G< g)] (8)

G <, represents generated tokens before position g (i.e., [g91, 92, -, gg,l]). The model selects the
next token g based on the configured decoding strategy and probability distribution. The two-stage
procedure is shown in Appendix [C.4]

The enhancement factor « is a critical hyperparameter that balances visual attention amplification
and generation stability. Through preliminary experiments, we observe that when o« > 0, it can
mitigate text bias and reduce hallucinations.

However, if « is excessively large, the model may over-focus on visual information, which disrupts
its language capabilities, leading to anomalies such as repetitive sentence generation. Conversely,
when o < 0, the model tends to underutilize visual information, resulting in performance degrada-
tion.

Moreover, different models and tasks exhibit varying sensitivities to «. We provide further ablation
studies and analysis in Section[d]to validate its effectiveness and robustness.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics

POPE. The Polling-based Object Probing Evaluation(POPE) (Li et al., 2023b) is designed to detect
object hallucinations. It adopts a fixed yes-or-no question format: “’Is there a <object> in the image?”’
to evaluate the model’s ability to determine the presence of specific objects in given images. Images
are sourced from COCO (Lin et al., 2014). Based on object sampling strategies, POPE is divided
into three subsets: random, popular, and adversarial. Each subset contains 3,000 questions, with
answers balanced equally between ”yes” and ”no”. Evaluation metrics include Accuracy, Precision,
Recall, and F1 score.

CHAIR. The Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al.,
2018) is an effective metric for evaluating object hallucinations in image captioning tasks. Specif-
ically, it identifies hallucinations by comparing whether objects in generated captions exist in the
ground truth set. CHAIR evaluates two levels: C; and Cg, stand for object-level and caption-
level,respectively:

|{hallucinated objects}|

Cr =
! |{all mentioned objects}|

©))

Cs = |{captions W/halluc.inated objects}| (10)
|{all captions}|
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Table 2: Average accuracy and F1 scores of POPE, with best in bold and second-best underlined.
Results of popular, adversarial, and random splits are shown in Table @in Appendix @

Method LLaVA-1.5-7B Qwen-VL-Chat-7B
Accuracy F1Score Accuracy F1 Score

Direct Sample 81.38 79.65 83.59 81.70

Greedy 85.19 86.10 86.81 85.84

VCD 83.70 84.82 85.26 84.35

OPERA 85.69 85.60 86.99 85.99

TCI 87.52 87.39 87.46 86.67

Table 3: CHAIR results, with best in bold and second-best underlined.

LLaVA-1.5-7B  Qwen-VL-Chat-7B

Method
Csy Crl Cs| Crl
Direct Sample  56.72  17.40  48.16 13.70
Greedy 49.88 1428  45.00 12.16
VCD 5224 1532 46.92 12.98
OPERA 446 12.80 - -
TCI 31.88 1020 42.44 11.92

We randomly sample 500 images from the COCO 2014 validation set and repeat experiments five
times with different random seeds. For all LVLMs, the input prompt is unified as "Describe this
image in detail.” to generate descriptions. We report average results for each metric.

LLaVA-Bench. LLaVA-Bench (In-the-Wild) is a comprehensive evaluation dataset consisting of 24
images with 60 open-ended questions, specifically designed to evaluate an LVLM’s performance on
challenging tasks and its generalization to novel domains. Following prior work (Huang et al.,2024;
He et al., [2025), we leverage GPT-40 as an automatic judge to score model responses across three
dimensions: accuracy, informativeness (level of detail), and naturalness. The prompt of GPT-40 is
shown in Table[7)in Appendix[C.3]

Models. We validate our method on two representative models: LLaVA-1.5-7B (Liu et al., 2024b))
and Qwen-VL-Chat-7B (Bati et al., 2023b). The key difference lies in their projection mechanisms:
LLaVA-1.5-7B employs an MLP projector, while Qwen-VL-Chat-7B uses cross-attention.

Baselines. We compare our method with two baselines: VCD (Leng et al., 2024) and OPERA
(Huang et al.| 2024). VCD amplifies hallucinations by perturbing images with Gaussian noise, then
intervenes by comparing token probability changes before and after perturbation. OPERA penalizes
hallucinatory candidates via beam search during decoding and performs backtracking.

Implementation Details. Stage 1: We randomly select 1,000 images from the COCO 2014 vali-
dation set and generate original outputs using the prompt “Describe this image in detail”. For each
image, perturbed texts are randomly sampled from these original outputs. Stage 2: The top-k pa-
rameter is fixed at 5 for both models. For LLaVA-1.5-7B, o = 4 (POPE, CHAIR), o = 2 (LLaVA-
Bench); for Qwen-VL-Chat-7B, a = 1.7 (POPE), o = 2.5 (LLaVA-Bench) and o = 2.8 (CHAIR).
Decoding adopts greedy search with a maximum token length of 512. More implementation details
please refer to Appendix [C]

4.2 EXPERIMENTAL RESULTS

Layer Susceptibility to Text Perturbations. In the Figure [7] of Appendix we visualize the
layer-wise shifts in attention toward visual regions before and after text perturbation. The two
models exhibit distinct shift patterns : the top 5 layers with the largest shifts for LLaVA-1.5-7B
are {0, 1, 14, 15, 17}, whereas for Qwen-VL-Chat-7B they are {0, 1, 17, 20, 31}. Notably, these
layers lie predominantly in the shallow to middle part of the network, indicating that early and in-
termediate layers are most prone to neglecting visual information, relying more heavily on language
priors and contributing to hallucinations.
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Table 4: Evaluation results of LLaVA-Bench (In-the-Wild), metrics are scored by GPT-40 on a
scale of 10.

\Accuracy Detailedness Naturalness

LLaVA-1.5 5.133 5.483 7.050
w/TCI 5.367 5.683 7.117
Qwen-VL 6.033 6.200 7.167
w/TCI 6.476 5.850 7.550
y . —o— F1 score

= Accuracy

Score(%)
&

a

Figure 5: Ablation of a. Results on POPE dataset with LLaVA-1.5-7B.

Results on POPE. Table [2| presents average performance for LLaVA-1.5-7B and Qwen-VL-Chat-
7B across the three POPE subsets. We observe that, in terms of average Accuracy, the TCI method
improves LLaVA-1.5-7B and Qwen-VL-Chat-7B by 7.5% and 4.6%, respectively. For average F1
Score, the improvements are 9.7% and 5.0%, respectively. Additionally, our method consistently
outperforms previous approaches on multiple subsets, demonstrating its effectiveness as a training-
free strategy across different performance levels. This improvement can be attributed to TCI’s dual
role: it not only emphasizes useful visual information but also suppresses language priors. The
specific results of the three splits are shown in Appendix[D.2]

Results on CHAIR. As shown in Table[3] our method significantly outperforms all baseline methods
in the image captioning task. Specifically, for LLaVA-1.5-7B with TCI, Cg and C; decrease by
43.8% and 41.4%, respectively; for Qwen-VL-Chat-7B, the corresponding reductions are 5.6% and
9.1%. These results confirm TCT’s ability to mitigate hallucinations by rebalancing attention toward
authentic visual content during generation.

Results on LLaVA-Bench. Table[d|presents the GPT-40 evaluation on LLaVA-Bench (In-the-Wild).
The results demonstrate that TCI improves model accuracy and effectively mitigates hallucinations
in the generated captions, while preserving comparable levels of detailedness and naturalness.The
effectiveness of TCI can be further illustrated by additional cases, as shown in Figure [§ and [J] in

Appendix [E]
4.3 ABLATION STUDY

Impact of Hyperparameter on Performance. To assess how the enhancement factor « affects
model performance, we sweep « from -3 to 6 on LLaVA-1.5-7B using the POPE benchmark. As
shown in Figure[5] When @ > 0, hallucinations are effectively mitigated, confirming the utility of
visual attention amplification. Excessively large o degrades performance, as the model over-focuses
on irrelevant visual details during inference. When o < 0, visual attention is suppressed, forcing
the model to rely more on language priors and thus amplifying hallucinations.

Impact of Attention-Shift-Guided Layer Selection. To validate the role of attention shift (45%),
we randomly selected 5 attention layers in LLaVA-1.5-7B for enhancement (with o = 4). Experi-
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Table 5: Ablation of random 5 layers. Results on POPE Adversarial with LLaVA-1.5-7B.We test
random 5 layers for 3 times.

Method | Accuracy F1score
Greedy 79.77 81.78
w/TCI Top 5 Layers 83.77 84.10
w/TCI Random 5 Layers 79.99 82.03

—e— Accuracy —8—F1 score

Scores(%)

Number“l))f k

Figure 6: Ablation of k. Results on POPE Adversarial with LLaVA-1.5-7B.

ments were repeated three times with different random seeds, and results were averaged. As shown
in Table 5] enhancing randomly selected layers yields limited improvement in the POPE adversar-
ial subset. This indicates that interventions targeting layers with larger attention shifts are more
effective in mitigating hallucinations.

Impact of Number of Enhanced Layers (k). For the selection of top-k layers, we vary the number
of top-k attention-shift layers selected for enhancement, with & € {1,3,5,7,10}, and measure
Accuracy and F1 on POPE using LLaVA-1.5-7B. Results in Figure [6| show a non-monotonic trend:
increasing k initially boosts hallucination mitigation, reaches an optimum at k¥ = 5, then declines
as additional layers introduce excess visual noise or dilute the effect. These ablations validate our
choice of k = 5 for a balanced trade-off between effectiveness and overcorrection.

5 CONCLUSION

In this paper, we first identify a repetition phenomenon: LVLMs tend to repeat input text even when it
conflicts with the image content. This phenomenon indicates that hallucinations arise from text bias
and the neglect of visual information. Building on this insight, we propose TCI (Text-Contrastive
Intervention), a training-free method that guides the model to prioritize visual information over
language priors via interventions during the forward pass. Our analysis reveals that shallow and
middle layers play a more critical role in cross-modal information fusion; thus, TCI specifically tar-
gets these layers for intervention. Extensive experiments demonstrate that our method consistently
outperforms baselines in reducing hallucinations across various LVLMs and evaluation metrics, val-
idating its effectiveness and generality.

6 REPRODUCIBILITY STATEMENT

The datasets and models we used in the experiment are both open-source. We have provided experi-
mental codes for the LLaVA-1.5-7B model in the supplementary materials. We will release the code
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for the Qwen model and the required experimental environment if the paper is accepted to ensure its
reproducibility.
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A LIMITATIONS

Despite its simplicity and effectiveness, TCI has certain limitations. Our intervention focuses exclu-
sively on attention layers, without addressing other architectural components—such as individual
attention heads or feed-forward networks(FFNs)—that may also contribute to hallucination. Inves-
tigating and intervening on these components remains an important direction for future work.

B DETAILS OF USING LARGE LANGUAGE MODELS

We use the Large Language Models for proofreading when writing, specifically, we use it in various
chapters of the article to improve readability and professionalism, such as modifying word order,
replacing certain words, etc.

C IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL SETUP

All LLaVA-1.5-7B experiments were conducted on an NVIDIA RTX 4090 GPU, while Qwen-VL-
Chat-7B evaluations ran on an NVIDIA H20 GPU.
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Table 6: Algorithm 1: Text Contrastive Intervention(TCI)

Algorithm 1: Text Contrastive Intervention(TCI)

Input: LVLMp, batch of image-text pairs D = {(v;,x0)}2., (where zo = “Describe the image in
detail.”), enhancement factor «

Stage 1: Identify Text-Aware Layers

1: For each (v;, zo) € D do

2:  Get original output > Equation (1)
3:  Create perturbed text > Equation (2)
4:  Get perturbed output > Equation (3)
5:  For each layer [ do

6 Extract layer-wise attention

7 Compute attention shifts > Equation (5)
8: Sort layers by AS! descending — Liext-aware

Stage 2: Enhance Vision in generation
1: For each generation step ¢t do

2:  iflayer! € Liext-aware then

3: Enhance visual regions > Equation (6)
4: else

5: Attention forward compute > Equation (4)
6:  Compute multi - head attention outputs > Equation (7)
7:  Get probability of next token > Equation (8)

C.2 IMPLEMENTATION DETAILS OF REPETITION PHENOMENON

Source of Text Perturbations.We randomly sample 1,000 images from the COCO 2014 validation
set (seed = 42). For each image, both LVLMs generate a caption using the prompt “Describe the
image in detail.” We collect all generated captions into a repository. To create a perturbed input for
each image, we uniformly sample one caption from this repository, ensuring it does not correspond
to the same image, and append it to the original prompt. All generations use greedy decoding with
max_new_tokens = 512.

C.3 IMPLEMENTATION DETAILS OF IDENTIFYING TEXT-AWARE LAYERS

In Equation (5), when calculating attention shifts, we select the last token generated by the model
(g = last token) and extract the corresponding attention weights. This design offers a key advantage:
it enables convenient localization and extraction of attention weights regardless of the length of the
generated text.

C.4 THE ALGORITHM OF TCI

We show the two-stage algorithm of TCI in Table[6]

C.5 DETAILS OF GPT-40 EVALUATION

Following prior work Huang et al.| (2024); He et al| (2025), we employ GPT-40 to evaluate
LVLMs’ performance on LLaVA-Bench (In-the-Wild). The adapted prompt, derived from He et al.
(2025)), is presented in Table [/| All model responses were generated using greedy decoding with
max_new_tokens = 512.

For each sample evaluation, GPT-40 was provided with the original image, the baseline model’s
response, and the TCI-augmented model’s response. Three metrics were assessed: Accuracy: Mea-
sures alignment between the image and model output. GPT-40 assigns lower scores if inconsisten-
cies (i.e., hallucinations) are identified. Detailedness: Reflects the comprehensiveness of the model’s
expressive capacity. Naturalness: Evaluates the fluency of generated text.
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Table 7: The prompt used for GPT-40 evaluation.

GPT-40 Prompt

You are required to score the performance of two Al assistants in describing a given image. You should
pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with
the image content, such as claiming the existence of something not present in the image or describing
incorrectly in terms of the counts, positions, or colors of objects in the image.

Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:

1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer
hallucinations should be given higher scores.

2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

3: Naturalness: assess the language quality, focusing on: fluency of sentence structure, appropriateness
of word choice, smoothness of language flow, absence of awkward or unnatural phrasing.

Please output the scores for each criterion, containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores are separated by a space. Following the scores, please provide
an explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the
responses were presented does not affect your judgment.

{Question}

{}
{End of Question}

{Assistant 1}
{End of Assistant 1}
{Assistant 2}
{End of Assistant 2}

Output format:
Accuracy:
Reason:
Detailedness:
Reason:
Naturalness:
Reason:

D ADDITIONAL EXPERIMENTS RESULTS

D.1 HEAT MAP OF LAYER-WISE ATTENTION SHIFT

Figure [/| visualizes the layer-wise shifts in attention toward visual regions before and after text per-
turbation. The two models exhibit distinct shift patterns : the top 5 layers with the largest shifts for
LLaVA-1.5-7B are {0, 1, 14, 15, 17}, whereas for Qwen-VL-Chat-7B they are {0, 1, 17, 20, 31}.

D.2 REsuULTS OF POPE

Table [§] shows the results of three splits (random, popular, and adversarial) of POPE. Our method
consistently outperforms previous approaches on multiple subsets, demonstrating its effectiveness
as a training-free strategy across different performance levels.

E CASE STUDY

Figure [§|and [9] presents several illustrative cases demonstrating the effectiveness of TCI in reducing
hallucinations. Without TCI, the model generates descriptions inconsistent with the image (high-
lighted in bold red), such as references to ’people” and “chairs”. In contrast, TCI not only mitigates
such hallucinations but also preserves critical image details.
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(a) Layer-wise attention shift heat map of
LLaVA-1.5-7B

(b) Layer-wise attention shift heat map of
Qwen-VL-Chat-7B

Figure 7: Layer-wise attention shift heat maps of models

Table 8: Accuracy and F1 scores on POPE popular, adversarial, and random splits, with best in
bold and second-best underlined.

Split Method LLaVA-1.5-7B Qwen-VL-Chat-7B
Accuracy F1Score Accuracy F1 Score

Direct Sample 83.29 81.33 84.37 82.67

Greedy 89.60 89.72 88.83 87.72

Random VCD 88.07 88.30 87.90 86.78
OPERA 89.20 88.81 88.76 87.84

TCI 90.13 89.72 89.40 88.47

Direct Sample 81.88 80.06 84.13 82.06

Greedy 86.20 86.80 87.20 86.17

Popular VCD 84.40 85.26 85.40 84.31
OPERA 86.64 86.62 87.44 86.68

TCI 88.67 88.36 87.97 87.11

Direct Sample 78.96 77.57 82.26 80.37

Greedy 79.77 81.78 84.40 83.64

Adversarial VCD 78.63 80.89 82.47 81.95
OPERA 81.24 81.38 84.78 83.45

TCI 83.77 84.10 85.00 84.43

16



Under review as a conference paper at ICLR 2026

LLaVA-1.5-7B(Greedy):The image features a large clock mounted on a pole in front of a brick building. The clock is positioned prominently,
making it easy for people to see the time as they pass by. The building appears to be a public building, possibly a courthouse or a town hall,
given its size and architectural style. There are several people in the scene, with some standing closer to the building and others further
away. They seem to be going about their daily activities, possibly attending to business or visiting the public building.

LLaVA-1.5-7B(Ours):The image features a large clock mounted on a pole in front of a building, possibly a school or a town hall. The clock is
positioned in the middle of the scene, and it is surrounded by a few trees. The clock is situated in front of a building, which appears to be a
brick structure. The building has a large window, and the clock is mounted on a pole in front of it. The clock is a prominent feature in the scene,
and it is surrounded by trees, providing a sense of tranquility and acsthetic appeal.

LLaVA-1.5-7B(Greedy): The image features a large red train engine sitting on the tracks, with a passenger car attached to it. The train is
positioned next to a building, possibly a train station. The train engine is the main focus of the scene, occupying a significant portion of the
image. There are several people in the scene, with one person standing close to the train, another person further away, and a third
person closer to the building. The presence of these individuals suggests that they might be passengers or train staff.

LLaVA-1.5-7B(Ours): The image features a large red train traveling down the tracks, with a brick building in the background. The train is
positioned on the left side of the image, and it appears to be a passenger train. The train is moving along the tracks, and there are no visible
passengers on the train. The train is also equipped with a large number of lights, which are likely used for illumination and safety purposes.

Figure 8: Examples of TCI on LLaVA-1.5-7B. Hallucinatory content is highlighted in bold red.

Qwen-VL-Chat-7B(Greedy): The image depicts a small, old bathroom with a white toilet situated in the corer. The toilet is positioned next to
a stone wall, which adds a rustic touch to the space. The bathroom appears to be in need of renovation, as it is described as dirty and old. In
addition to the toilet, there is a sink in the bathroom, located towards the left side of the room. A cup can be seen placed on the right side of
the sink, possibly for rinsing or holding toiletries. The overall atmosphere of the bathroom is somewhat unappealing, with a lack of cleanliness
and a sense of age.

Qwen-VL-Chat-7B(Ours):The image depicts a small, dimly lit bathroom with a toilet situated in the corner. The toilet is positioned next to a
stone wall, and the floor is covered with a tiled design. The bathroom appears to be in a state of disrepair, with a dirty and unclean appearance.
The toilet is the main focus of the scene, and the rest of the bathroom is not visible.

Qwen-VL-Chat-7B(Greedy): The image features a small balcony with a table and chairs, creating a cozy outdoor seating area. The table is
surrounded by chairs and there is a potted plant placed on the balcony, adding a touch of greenery to the space. The balcony is situated in
front of a building, and there is a window nearby.\n\nIn addition to the potted plant, there are several bottles scattered around the balcony,
possibly containing drinks or decorative items. The overall atmosphere of the scene is inviting and comfortable, perfect for enjoying a meal or
a relaxing conversation.

Qwen-VL-Chat-7B(Ours): The image depicts a small, dimly lit bathroom with a toilet situated in the corner. The toilet is positioned next to a
stone wall, and the floor is covered with a tiled design. The bathroom appears to be in a state of disrepair, with a dirty and unclean appearance.
The toilet is the main focus of the scene, and the rest of the bathroom is not visible.

Figure 9: Examples of TCI on Qwen-VL-Chat-7B. Hallucinatory content is highlighted in bold red.
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