
SPvR: Structured Pruning via Ranking

Abstract

Deep neural networks have achieved state-of-the-
art performance in multiple domains but are in-
creasingly resource-intensive, limiting their de-
ployment on constrained devices. We introduce
Structured Pruning via Ranking (SPvR), a novel
structured pruning approach to address this chal-
lenge for classification tasks. SPvR prunes pre-
trained networks in terms of function composi-
tion and network width while adhering to a user-
specified parameter budget. Our method leverages
local grouping and global ranking modules to gen-
erate smaller yet effective networks tailored to
a given dataset and model. Finally, we train the
pruned networks from scratch, instead of fine-
tuning. Our evaluations demonstrate that SPvR sig-
nificantly surpasses existing state-of-the-art prun-
ing methods on benchmark datasets, using standard
architectures. Even with a 90% reduction in size,
SPvR’s sub-networks experience a minimal drop
in test accuracy (< 1%) while on ImageNet1K, we
outperform all baselines by achieving < 1% Top-
5 accuracy drop when pruning 70% of ResNet50
parameters. Additionally, when compared to Mo-
bileNetV3, an SPvR pruned network improves the
Top-1 accuracy by 3.3% with 20% less parame-
ters. Furthermore, we empirically show that SPvR
achieves reduced inference latency, underscoring
its practical benefits for deploying neural networks
on resource-constrained devices.

1 INTRODUCTION

Highly over-parameterized, deep neural networks have
shown remarkable proficiency in learning effective represen-
tations in diverse domains such as computer vision [Wang
et al., 2023, Yuan et al., 2021, He et al., 2016], natural lan-

guage processing [Wu et al., 2023, Radford et al., 2019, De-
vlin et al., 2018] and speech [Radford et al., 2023, Baevski
et al., 2020]. However, their deployment on commercial, es-
pecially low-end, hardware is impeded by their substantial
size, leading to large memory requirements and extended in-
ference times. Consequently, recent deep-learning research
has pivoted toward methods for reducing model size. These
include network pruning [Fang et al., 2023, Blalock et al.,
2020, Li et al., 2016, Molchanov et al., 2016, LeCun et al.,
1989], low-rank weight approximation [Li et al., 2023a,
Swaminathan et al., 2020, Denton et al., 2014], weight quan-
tization [Li et al., 2023b, Gong et al., 2020, Courbariaux
et al., 2016], and knowledge distillation [Liang et al., 2023,
Pan et al., 2020, Hinton et al., 2015], with pruning receiv-
ing notable attention for its effective balance between size
reduction and performance.

Network pruning is generally classified into two approaches:
unstructured and structured. The former involves masking
individual weights, leading to sparse models [Frankle and
Carbin, 2018], while the latter prunes entire neurons or
channels, resulting in dense sub-networks [Li et al., 2016].
Sparse models often necessitate specialized hardware for
efficiency [Han et al., 2016], whereas dense sub-networks
can reduce both inference time and storage requirements on
conventional hardware. However, most structured pruning
techniques are model-specific and tailored to particular net-
work architectures such as Convolutional Neural Networks
[Li et al., 2022, Sui et al., 2021, Luo and Wu, 2020] or lan-
guage models [Ma et al., 2023, Hou et al., 2020, McCarley
et al., 2019]. Many of these methods either overlook the
dataset’s role in pruning [He et al., 2019, Li et al., 2016]
or require training the original large model to identify the
optimal sub-network [Xia et al., 2022, Hou et al., 2020,
Fan et al., 2019]. Furthermore, pruning algorithms need
to generate optimal sub-networks tailored to user-defined
parameter budgets, considering the varying sizes of the tar-
get deployment devices [Tiwari et al., 2021, Dupont et al.,
2021].

In response to these challenges, we introduce SPvR (Struc-

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.



tured Pruning via Ranking), a novel, structured pruning
approach tailored for classification tasks. SPvR is applica-
ble to any pre-trained network, without the need to train
the original extensive model. It employs a local grouping
module that partitions similar neurons layer by layer for
efficient pruning alongside a global ranking module that
assesses the overall importance of these groups. Based on
a predefined parameter budget, the least significant groups
are eliminated, resulting in a dense, smaller sub-network
with reduced depth and parameter count. This layer reduc-
tion which typically occurs at high pruning rates is vital for
lowering inference latency, as structured pruning often leads
to irregular layer widths, which are not optimal for GPU
utilization. After pruning, the resulting dense sub-network is
re-initialized and trained from scratch. We choose to retrain
instead of fine-tuning as the observations made in the semi-
nal work by Liu et al. [2018] demonstrate that for structured
pruning, the resultant architecture is more important than
the retained weights.

Extensive evaluations on benchmark datasets, including CI-
FAR10 [Krizhevsky et al., 2009], Tiny ImageNet [Le and
Yang, 2015], ImageNet Deng et al. [2009], and CityScapes
[Cordts et al., 2016], using distinct architectures, namely,
VGG16 [Simonyan and Zisserman, 2014], ResNet34 [He
et al., 2016], ResNet50 [He et al., 2016], and SegNet [Badri-
narayanan et al., 2017], demonstrate that SPvR’s recom-
mended shallower sub-networks significantly outperform
other methods across all datasets and pruning rates, while
also achieving notably lower inference latency due to their
reduced depth. Furthermore, we exhibit the applicability
of our method to resource-constrained devices by demon-
strating that an SPvR pruned network with 20% fewer pa-
rameters significantly outperforms MobileNetV3 Howard
et al. [2019], a model specifically designed for mobile phone
CPUs.

1.1 OUR CONTRIBUTIONS:

• Development of an Efficient Pruning Algorithm:
Our primary contribution is the development of Struc-
tured Pruning via Ranking (SPvR), a novel, structured
pruning approach. SPvR is capable of effectively gen-
erating shallow and dense sub-networks tailored to
specific datasets, pre-trained models, and user-defined
parameter budgets. Unlike some state-of-the-art meth-
ods such as OTOv2Chen et al. [2023], SPvR only ne-
cessitates backpropagation on the pruned model (re-
training) rather than the original, massive network.

• Comprehensive Evaluation Demonstrating En-
hanced Performance and Efficiency: Through ex-
tensive experimental evaluations, we demonstrate that
sub-networks generated by SPvR, when trained from
scratch, consistently outperform existing pruning meth-
ods as well as hand-crafted architectures. This superior

performance is observed across a range of benchmark
datasets. Furthermore, a significant contribution of our
work is the achievement of reduced model inference
latency. This aspect is crucial for deploying neural net-
works in resource-constrained environments, aligning
with the growing need for efficient and fast computa-
tional models.

2 RELATED WORK

Structured pruning strategies for convolutional neural net-
works have seen a variety of approaches [He and Xiao,
2023]. Weight-dependent methods, including norm-based
filter pruning (ℓ1 and ℓ2 norms), focus on filter removal
based on their norms Li et al. [2016], while Filter Prun-
ing via Geometric Median (FPGM) targets filters near the
geometric median of a layer He et al. [2019]. However,
these methods overlook the data’s influence on the final
architecture. Activation-based pruning, such as HRank Lin
et al. [2020] and CHIP Sui et al. [2021], remove filters
by analyzing activation ranks or cross-channel correlations.
Techniques like ThiNet Luo et al. [2017] and NISP Yu
et al. [2018] determine filter importance through reconstruc-
tion error or feature ranking, respectively. CURL Luo and
Wu [2020] employs KL-divergence for channel masking
and global filter removal. These methods, however, suf-
fer from being time-consuming (e.g., HRank), neglecting
output layer changes (CHIP), or using suboptimal rank-
ing (ThiNet, CURL). Regularization approaches like Net-
work Slimming Liu et al. [2017] target filters with mini-
mal scaling factors in batch normalization layers, whereas
optimization-based methods, such as those using Taylor
Expansion Molchanov et al. [2019], rank filters by weight
and gradient impacts. Random Channel Pruning (RCP) in-
tegrates the Lottery Ticket Hypothesis, selecting pruned
models for further training [Li et al., 2022, Frankle and
Carbin, 2018]. Both regularization and optimization require
initial full model training. OTOv2 (Only Train Once) Chen
et al. [2023] stands out by pruning both vision and language
models. However, these techniques necessitate training the
original, large network from scratch to identify pruned sub-
networks. Unlike most structured pruning methods our pro-
posed technique focuses on depth reduction to lower infer-
ence latency, offering a significant advantage in resource
efficiency by retraining only the pruned networks.

3 SPVR: AN EFFICIENT MODEL
PRUNING ALGORITHM

Structured Pruning via Ranking (SPvR) is a novel, network
pruning algorithm that assesses the global importance of
neurons/filters through forward passes on the original net-
work, targeting the least important ones for pruning. This
approach reduces parameter count and the network’s depth,

2



leading to faster sub-networks during training and inference
compared to those from other pruning methods. SPvR com-
prises two key components: a local grouping module that
clusters similar neurons/filters within layers and a global
ranking module that prioritizes these groups for efficient
pruning.

3.1 RANKING MODULE

Let fθ be an L layer neural network parameterized by θ
where θ = {θ1, θ2, · · · , θL}. Here, θi represents the pa-
rameters of layer i while θij denotes the j-th neuron/filter
at layer i. Given a dataset D = {(x0, y0), · · · , (xn, yn)}
composed of input and output pairs xk and yk, respectively,
the task of training fθ is solving the following minimization
problem:

min
θ

1

n

n∑
k=1

E(yk, fθ(xk)) (1)

where E is the error function, fθ(xk) ∈ Rc is the softmax
final output of fθ for a given input xk and c is the number
of classes. A neuron is important if its removal significantly
changes the output of fθ. Let fMi

j(θ)
denote the network

after masking j-th neuron/filter in the i-th layer from the
original network. More precisely, Mi

j is defined as follows:

Mi
j(θ) =

{
θmr if m ̸= i ∨ r ̸= j

0 otherwise

Masking θij may lead to one of the following cases:

1) ∥fθ(xk)− fMi
j(θ)

(xk)∥2 < ϵ

argmax
p

fθ(xk)p = argmax
p

fMi
j(θ)

(xk)p

2) ∥fθ(xk)− fMi
j(θ)

(xk)∥2 ≥ ϵ

argmax
p

fθ(xk)p = argmax
p

fMi
j(θ)

(xk)p

3) ∥fθ(xk)− fMi
j(θ)

(xk)∥2 < ϵ

argmax
p

fθ(xk)p ̸= argmax
p

fMi
j(θ)

(xk)p

4) ∥fθ(xk)− fMi
j(θ)

(xk)∥2 ≥ ϵ

argmax
p

fθ(xk)p ̸= argmax
p

fMi
j(θ)

(xk)p

Here ϵ → 0. If removing θji results in case 1, it is considered
the least important neuron/filter. On the other hand, if the
removal of θij leads to case 4, it is considered the most
important neuron/filter. Following the above cases, under the
i.i.d. assumption [Molchanov et al., 2019], the importance

of the j-th neuron in the i-th layer is determined by:

Ii
j =

n∑
k=1

L
(
fθ(xk), fMi

j(θ)
(xk)

)
(2)

where, L = I +
∣∣∣fθ(xk)q − fMi

j(θ)
(xk)q

∣∣∣
I =

1 if argmax
p

fθ(xk)p ̸= argmax
p

fMi
j(θ)

(xk)p

0 otherwise

Here, q = argmax
p

fθ(xk)p indicates the class predicted

by fθ(xk). The inclusion of I in the scoring function L is
motivated by the idea that if masking a neuron/filter leads
to a misclassification, it should be considered crucial for
the task and assigned a higher importance value. Given that∣∣∣fθ(xk)q − fMi

j(θ)
(xk)q

∣∣∣ ≤ 1, assigning a value less than
1 diminishes the significance of misclassification, while any
value above 1 has the same effect on the final ranking (the
scores may vary, but the rank remains consistent). Therefore,
in our experiments, we assign 1 for misclassifications. If two
different neurons/filters result in the same number of mis-
classifications including no misclassifications, as indicated
by I , the tie is resolved by

∣∣∣fθ(xk)q − fMi
j(θ)

(xk)q

∣∣∣, which
assesses the deviation in the predicted class’s probability
before and after masking.

3.1.1 SPvR Ranking Function vs KL Divergence

Sub-optimal ranking criteria have previously been em-
ployed to gauge the impact of masking a neuron/filter on
a network’s final output, thereby estimating its importance.
CURL [Luo and Wu, 2020], a state-of-the-art method, uses
a criterion based on KL-divergence. We demonstrate the
advantage of our approach over KL-divergence with an ex-
ample, further supported by a detailed empirical evaluation
in Appendix A.

Consider a three class classification task where a pre-
trained network’s final layer has three neurons represent-
ing classes 0, 1 and 2, respectively, with a softmax func-
tion applied to the output. For a sample input x yield-
ing fθ(x) = [0.1, 0.3, 0.6]T from the model, the sample
is classified as belonging to class 2. Now, for three neu-
rons indexed by j = 1, j = 2 and j = 3 in the i-
th layer, let fMi

1(θ)
(x) = [0.1, 0.6, 0.3]T , fMi

2(θ)
(x) =

[0.01, 0.1, 0.89]T and fMi
3(θ)

(x) = [0.1, 0.8, 0.1]T . The
neuron at j = 3 is the most crucial since its removal leads
to misclassification along with a large change in output fol-
lowed by j = 1 (misclassification) and j = 2 (no effect
on the network’s classification accuracy). Let θ′ = Mi

1(θ),
θ′′ = Mi

2(θ) and θ′′′ = Mi
3(θ). We calculate the impor-

tance of neurons at j = 1, j = 2 and j = 3 using both KL
divergence and our proposed method.

3



KL (fθ(x) ∥ fθ′(x)) = 0.20

KL (fθ(x) ∥ fθ′′(x)) = 0.32

KL (fθ(x) ∥ fθ′′′(x)) = 0.78

L (fθ(x), fθ′(x)) = 1.3

L (fθ(x), fθ′′(x)) = 0.29

L (fθ(x), fθ′′′(x)) = 1.5

In this scenario, the KL divergence criterion incorrectly
assigns greater importance to the neuron at j = 2 in com-
parison to j = 1, whereas our proposed ranking function
accurately identifies the correct ranking.

3.2 GROUPING MODULE

Determining Ii
j for individual neurons/filters in a wide and

deep network is computationally expensive. In order to make
SPvR more compute efficient, we group layerwise similar
neurons/filters so that Ii

j estimates the importance of the
j-th group in the i-th layer where the size of the group
is a hyperparameter denoted by d. Let S ∈ Rn×m be a
network’s intermediate layer output. The similarity between
two neurons/filters is measured by the correlation between
their output activations/channels given by the following
correlation matrix, C ∈ Rm×m:

C = ŜT Ŝ (3)

where, Ŝ = S̄
1√
n
Diag

(
S̄T S̄

)−1/2

and, S̄ = S − 1

n
1n1

T
nS

Algorithm 1 Grouping Module

Input: Correlation Matrix C, group-size d
Let G = {} (set of sets) ,Q = {1, · · · ,m}
for j ∈ Q do
T = Indices corresponding to top d values in C(j,:)

G.append(T )
C(:,T ) = −∞
Q = Q \ T

end for
Output: G

Here, Diag
(
S̄T S̄

)
is a diagonal matrix where the diagonal

entries are equal to the diagonal entries of S̄T S̄. Using C,
the neurons are partitioned into mutually exclusive groups
using Algorithm 1 where, C(j,:) denotes the j-th row and
C(:,T ) denotes all columns indexed in T . In the case of
CNNs, the output of the i-th layer is denoted by a tensor
Si ∈ Rn×m×w×h where n is the number of samples, m is
the number of output channels and w, and h are the width
and height of each output channel, respectively. In such a
scenario, the tensor is first reduced to a matrix, Si

pq ∈ Rn×m

as follows:

Si
pq =

w∑
r=1

h∑
t=1

|Si
pqrt|

∀p ∈ {1, 2, · · · , n} and ∀q ∈ {1, 2, · · · ,m}

(4)

Applying Eqn. 3 and Algorithm 1 on Si
pq yields the groups

for the current layer. Although Eqn. 3 describes a linear
correlation, we find that it works well in practice while
being lightweight to compute.

Once the neurons/filters are grouped, the importance of each
group across all layers is assessed using the ranking module.
These groups are globally sorted throughout the model, and
the least important ones are pruned away until the desired
parameter count is reached. At high pruning rates, this pro-
cess may result in the pruning of entire layers, as we do not
impose a minimum threshold for layer pruning. Such a sce-
nario, known as layer collapse, leads to entire layers being
removed, rendering a network untrainable [Tanaka et al.,
2020]. This poses a challenge for methods that rely on pre-
served weights for subsequent fine-tuning. In contrast, our
approach views the pruned sub-network as a new model and
initializes (re-initialization) its parameters through standard
initialization techniques. After re-initialization, the pruned
networks undergo training from scratch, a strategy recom-
mended by Liu et al. [2018]. Consequently, layer collapse is
a beneficial feature of our method contributing significantly
to reducing inference latency in the pruned models at high
pruning rates. Ultimately, SPvR autonomously identifies the
optimal number of layers and the precise layerwise width of
the final pruned architecture for the specific dataset, model,
and parameter budget.

SPvR Pruning Time Complexity: The grouping module
requires only a single forward pass through the original
large model to compute layerwise groups across the en-
tire network while the ranking module requires

∑L
i=1

⌈
mi

d

⌉
number of forward passes where mi is the number of neu-
rons/filters at the i-th layer of an L layer neural network
and d is the group size, a hyper-parameter. Hence, the time
complexity of our pruning algorithm, similar to most other
pruning algorithms is O(n) where n is the number of sam-
ples.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND MODELS

We evaluate our method on four datasets ranging from small
to large scale: CIFAR10 [Krizhevsky et al., 2009] (50K
training samples, 10K test samples and 10 classes), Tiny
ImageNet (100K training samples, 10K test samples and
200 classes) [Le and Yang, 2015] and ImageNet1K Deng
et al. [2009] (1200K training samples, 50K validation sam-
ples and 1000 classes). For CIFAR10, Tiny ImageNet and
ImageNet1K, we utilize VGG16 with batch normalization.

4



Table 1: Comparison of the Top-1 and Top-5 accuracy scores on the CIFAR10, Tiny ImageNet and ImageNet1K datasets,
for multiple pruning methods at different levels of pruning for the VGG16, ResNet34 and ResNet50 networks, respectively.
Higher values are better. Bold values indicate the best score. The Param column indicates the percentage of parameters
removed from the original model.

Methods

Dataset Model Param Base ℓ1 ℓ2 Taylor FPGM RCP HRank CURL NISP OTOv2 SPvR

CIFAR
10

VGG16
(Top-1)

00% 94.25 - - - - - - - - - -
70% - 93.53 93.45 93.23 92.72 86.68 92.84 94.18 92.51 93.20 94.21
80% - 92.60 92.99 92.87 91.63 85.90 93.09 93.89 91.48 92.70 94.33
90% - 92.05 91.64 91.55 90.85 84.00 92.36 93.49 90.28 91.07 94.43
95% - 90.20 90.36 90.37 88.41 84.09 91.44 92.14 88.77 91.03 93.64
98% - 87.32 87.64 87.22 87.09 83.78 91.10 91.66 87.00 87.88 92.60

Tiny
Image

Net

Res
Net34

(Top-1)

00% 63.02 - - - - - - - - - -
70% - 60.95 60.50 60.65 60.73 58.18 57.90 58.38 57.06 58.72 62.89
80% - 58.73 58.51 59.40 59.14 56.52 55.30 56.85 54.76 59.05 62.55
90% - 56.42 56.78 57.06 56.22 54.21 52.85 55.13 52.62 55.94 60.36
95% - 55.07 54.96 55.16 52.88 50.65 50.55 48.33 50.82 52.10 58.95
98% - 52.15 51.18 51.59 50.42 45.46 46.83 39.49 45.10 47.73 55.84

Tiny
Image

Net

Res
Net34

(Top-5)

00% 83.22 - - - - - - - - - -
70% - 81.59 81.28 81.68 81.68 80.51 80.27 80.68 79.39 82.04 83.08
80% - 80.65 80.58 80.61 80.39 79.26 78.85 80.22 77.56 82.18 82.73
90% - 79.30 79.40 79.79 78.70 78.08 77.02 79.81 76.78 81.00 82.34
95% - 79.16 78.32 78.86 76.46 75.57 75.68 74.80 75.35 78.66 81.59
98% - 76.68 77.42 77.42 76.13 72.19 73.26 67.46 71.89 74.66 80.72

Image
Net1K

Res
Net50

(Top-1)

00% 76.32 - - - - - - - - - -
40% - 73.82 73.89 71.69 74.83 75.13 74.98 - 75.43 - 75.58
70% - 70.07 70.91 - - - 69.10 73.39 - 72.20 73.70
80% - 68.11 69.00 - - - - - - 70.10 72.18

Image
Net1K

Res
Net50

(Top-5)

00% 92.89 - - - - - - - - - -
40% - 91.76 91.82 91.01 92.32 92.52 92.33 - 92.45 - 92.69
70% - 89.23 89.57 - - - 89.58 91.46 - 90.70 91.91
80% - 88.06 88.43 - - - - - - 89.30 90.58

[Simonyan and Zisserman, 2014], ResNet34 and ResNet50
[He et al., 2016] models, respectively. The selection of
datasets, models, and their specific combinations is based
on the structured pruning literature [Hoang and Liu, 2023,
Goyal et al., 2020, Krishnan et al., 2019].

4.2 BASELINES

For CIFAR10 and Tiny ImageNet, we compare against ℓ1
norm, ℓ2 norm, Taylor expansion, HRank, FPGM, CURL,
Random Channel Pruning (RCP), NISP, and OTOv2. For
ImageNet1K, we compare against the same methods but
report the results as detailed in their respective publications.

4.3 IMPLEMENTATION DETAILS

Our experiments were conducted using PyTorch v2.3.1
[Paszke et al., 2019] on an NVIDIA A100 GPU. Since

no pre-trained models are available for CIFAR10 and Tiny-
ImageNet, we generate our own "pre-trained" versions of
VGG16 and ResNet34 by training them from scratch to
achieve the maximum reported accuracy on their respective
datasets. On the other hand, we use an ImageNet1K pre-
trained ResNet50 model for pruning. For training VGG16,
ResNet34 and ResNet50, we employed SGD with a momen-
tum of 0.9 as the optimizer along with the cosine annealing
scheduler [Loshchilov and Hutter, 2016]. The learning rate
for each experiment was determined through a grid search
within the range [0.0001, 1.0]. Training durations were set at
200 epochs for VGG16 with a batch size of 128, 100 epochs
for ResNet34 with a batch size of 512 and 100 epochs for
ResNet50 with a batch size of 256. The group size, d, was
set to 2, 4 and 8 for CIFAR10, Tiny ImageNet1K and Im-
ageNet experiments, respectively. The pruning library by
Fang et al. [2023] was utilized to implement the baseline
methods, except for OTOv2. On the ImageNet1K dataset,
we compare SPvR’s performance against the results reported

5



(a) (b) (c)

Figure 1: Inference latency for (a) VGG16, (b) ResNet34 and (c) ResNet50. The results are reported in terms of milliseconds
averaged over 1500 runs with a standard deviation of 0.01− 0.001. Smaller values are better.

by the baseline methods. Further implementation informa-
tion is provided in Section D in the Appendix. Details on the
architectures recommended by SPvR and their correspond-
ing size on disk at various pruning percentages are available
in Section C in the Appendix while architecture-specific
pruning implementations are provided in Section B in the
Appendix.

5 RESULTS

5.1 PERFORMANCE AGAINST BASELINES

Table 1 showcases the top-1 accuracy for CIFAR10 and
both top-1 and top-5 accuracies for Tiny ImageNet and Ima-
geNet1K. The results clearly indicate that SPvR surpasses
all other pruning methods at every pruning stage across all
three models by a significant margin. Notably, our method
enhances the performance of the VGG16 model when 90%
of its parameters are pruned while maintaining a minimal
accuracy drop of less than 1% even after a 95% reduction
in parameters. On the Tiny ImageNet dataset, our pruned
ResNet34 networks exhibit less than a 1% drop in top-5
accuracy, even with 90% of the model pruned, far surpass-
ing every other pruning baseline. Similarly, our 70% pruned
ResNet50 achieves less than 1% drop in Top-5 accuracy on
the ImageNet1K dataset while also displaying the least drop
in Top-1 accuracy with increasing pruning rate. As observed
by Li et al. [2022], ℓ1 and ℓ2 pruning methods are incredibly
tough-to-beat baselines when trained using the correct set
of hyper-parameters.

5.2 RETRAINING VS FINE-TUNING

Is retraining critical for structured pruning? Although Liu
et al. [2018] answer in the affirmative, we further investigate
this phenomenon by comparing the performance of training
from scratch against fine-tuning on all chosen datasets and

models. For fair evaluation, we choose the highest pruning
rate where depth reduction has not occurred since layer
removal, in the case of fine-tuning, requires learning new
connections from scratch. Table 2 demonstrates that fine-
tuning performs worse than training from scratch for all
networks when trained for the same number of epochs with
the best learning rates selected using grid-search. The gap is
more pronounced for higher pruning rates which is in line
with the observations of Liu et al. [2018].

Table 2: A comparison between Fine-Tuning (FT) a pruned
model versus Training From Scratch (TFS). All accuracy
scores are reported in %.

Dataset Model Params FT TFS

CIFAR10 VGG16 60% 93.40 94.25
TinyImageNet (Top-1) ResNet34 60% 61.60 62.91
TinyImageNet (Top-5) ResNet34 60% 82.70 83.11
ImageNet1K (Top-1) ResNet50 90% 67.77 69.37
ImageNet1K (Top-5) ResNet50 90% 87.91 89.08

5.3 INFERENCE LATENCY

We also examine model inference latency, defined as the
time it takes for a model to make a prediction for a single
sample. The inference latency is significantly affected by
the network’s layerwise width, where non-standard layer
structures (not a power of two) minimally impact the pre-
diction time for a single sample. We chose not to focus on
FLOPs count since models of similar sizes can have iden-
tical FLOPs but vastly different inference latencies [Liu
et al., 2021]. The inference latency, measured in millisec-
onds and averaged over 1500 runs, is displayed in Fig. 1.
Techniques that globally rank and remove neurons or filters

6



Table 3: Comparison of the Top-1 and Top-5 accuracy scores on the CIFAR10, Tiny ImageNet and ImageNet1K datasets,
for multiple pruning methods at a single level of pruning for the VGG16, ResNet34 and ResNet50 networks, respectively.
Each pruned model is trained from scratch. Higher values are better. Bold values indicate the best score. The Param column
indicates the percentage of parameters removed from the original model.

Methods

Dataset Model Param ℓ1 ℓ2 Taylor FPGM RCP HRank CURL NISP SPvR

CIFAR10
VGG16
(Top-1)

90% 92.70 92.12 91.65 91.00 88.07 93.10 93.69 90.01 94.43

TinyImageNet

ResNet34
(Top-1)

90% 56.20 56.88 57.16 56.23 54.25 52.35 55.43 52.93 60.36

ResNet34
(Top-5)

90% 79.10 79.30 79.89 78.60 78.28 77.34 80.00 76.97 82.34

ImageNet1K

ResNet50
(Top-1)

80% 71.50 71.45 - - - - - - 72.18

ResNet50
(Top-5)

80% 90.30 90.40 - - - - - - 90.58

tend to create more irregular layer widths compared to lay-
erwise pruning methods, leading to slower inference times
such as in the CURL-based sub-networks compared to the
original, unpruned networks. Conversely, SPvR-generated
sub-networks exhibit significantly reduced inference latency,
benefiting from decreased depth even with irregular layer
widths. Specifically, at the 98% pruning level for VGG16,
SPvR-generated sub-networks demonstrate remarkably low
latency. For ResNet34 and ResNet50, our recommended sub-
networks consistently show lower inference latency than
those generated by other methods across all pruning stages.

Table 4: A 94% pruned ResNet50 against MobileNetV3 on
ImageNet1K. Param - model parameters in Million.

Model Param (M) Top-1 Acc.

MobileNetV3-small 2.4 65.40
MobileNetV3-minimal 2.0 61.90
ResNet50-pruned 1.6 65.20

5.4 APPLICATION TO MOBILE PHONES

The MobileNet [Howard et al., 2017] family of networks are
highly efficient models specifically designed to run on mo-
bile phone CPUs with MobileNetV3 [Howard et al., 2019]
being the latest model. These networks have been developed
through hours of careful research combined with automated
architecture search methods such as Neural Architecture
Search. Instead, we advocate that SPvR can be used to
quickly find an efficient architecture for a given dataset and
parameter budget. To demonstrate this, we prune a ResNet50
model down from 25.6M parameters to 1.6M, train it on

the ImageNet dataset and compare the results against the
MobileNetV3 networks. Table 4 shows that our pruned net-
work performs at par with MobileNetV3-small while having
33% fewer parameters and achieves 3.3% better Top-1 accu-
racy than MobileNetV3-minimal while having 20% fewer
parameters.

5.5 APPLICATION TO IMAGE SEGMENTATION

We trained a SegNet[1] model having a VGG16 encoder
and decoder backbone on the CityScapes dataset [2]. The
CityScapes dataset contains 5000 annotated images with
20 labels. We consider 20 samples per class and a group
size, d = 4 to generate the groupings and rankings. Since
a semantic segmentation task is essentially a classification
task over each pixel, we sum the L term in Eqn. 2 over all
pixels, i.e.,

L =

w×h∑
u=1

I +
∣∣∣fθ(xk)q − fMi

j(θ)
(xk)q

∣∣∣
where w and h are the width and height of the image. The
original SegNet model achieves 51.2% IoU whereas its 80%
pruned version using SPvR achieves 46.5% IoU.

6 ABLATION STUDY

6.1 RETRAINING VS ARCHITECTURE

Does SPvR’s success stem from the architecture of the
pruned sub-networks or retraining them from scratch? To an-
swer this question and disentangle the performance benefits

7



(a) (b) (c)

Figure 2: (a) Change in Top-1 accuracy and time required to prune 98% of the VGG16 network with increasing group size,
(b) Change in Top-1, Top-5 accuracy and time required to prune 98% of the ResNet34 network with increasing group size
(c) Change in Top-1, Top-5 accuracy and time required to prune 98% of the ResNet50 network with increasing group size

of training from scratch from our generated sub-networks,
we re-run all experiments for each baseline, training them
from scratch except for OTOv2 which already re-trains the
original pre-trained model. We produce the results on a sin-
gle but high pruning rate for all datasets as it should be
enough to demonstrate the efficacy of our sub-networks.

As per Table 3, the sub-networks generated by each method
show a slight improvement in accuracy when trained from
scratch except for RCP on the CIFAR10 dataset where its
score increases by 4%. On the ImageNet1K dataset, we
report results for all baselines as made available by the
corresponding authors. For this particular experiment, we
only train the models generated by ℓ1 and ℓ2 norm methods
as they form one of the strongest baselines. We find that
both sub-networks benefit from retraining by up to 3% but
are yet unable to outmatch the performance of SPvR. In
general, none of the methods are able to achieve comparable
performance to SPvR indicating the importance of the sub-
networks generated by our method.

6.2 IMPACT OF GROUP SIZE ON
PERFORMANCE AND PRUNING TIME

To understand the impact of group size d, we observe the
change in the accuracy of pruned networks and the time
required for pruning under varying values of d. We per-
form this ablation study for only the maximum level of
pruning as it is the worst-case scenario regarding both accu-
racy and time. Hence, we ablate the VGG16, ResNet34
and ResNet50 networks at a pruning rate of 98% for
d = {2, 4, 8, 16, 32}, d = {4, 8, 16, 32} and d = 8, 16, 32,
respectively. It is expected that values of d closer to 1 pro-
duce fine-grained pruning results but at the cost of slower
rankings. According to Figs. 2a, 2b and 2c, our hypothesis is
indeed validated with SPvR generally being robust to group
size as the top-1 accuracy drop for d = (2−32) for VGG16

is about 1%, the top-5 accuracy drop for d = (4 − 32)
for ResNet34 is about 2% and the top-5 accuracy drop
from d = (8− 32) for ResNet50 is about 1%. At the same
time, for d = 32, SPvR can prune VGG16, ResNet34 and
ResNet50 under 6 seconds, 8 minutes and 30 minutes,
respectively.

7 CONCLUSION

We introduced Structure Pruning via Ranking (SPvR), an
efficient model pruning algorithm that efficiently prunes
vision and language models without requiring backpropa-
gation on the original, pre-trained models. Our approach
leverages a novel combination of local layerwise grouping
and global ranking to prune less significant neuron or fil-
ter groups guided by user-defined parameter budgets. This
process results in the generation of compact sub-networks
with reduced depth and parameter counts. Key highlights
of our contribution include the empirical validation of the
re-initialization strategy through the lens of Geometric
Complexity, demonstrating its effectiveness for structurally
pruned networks. Furthermore, our comprehensive evalu-
ation across various benchmark datasets and models con-
firms SPvR’s superior performance. The algorithm outpaces
both existing pruning methods as well as hand-crafted ar-
chitectures in terms of accuracy and achieves significant
reductions in inference latency. Our findings underscore the
potential of SPvR in addressing the deployment challenges
of large neural networks on resource-constrained devices.

References

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE transactions on

8



pattern analysis and machine intelligence, 39(12):2481–
2495, 2017.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli. wav2vec 2.0: A framework for self-
supervised learning of speech representations. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle,
and John Guttag. What is the state of neural network
pruning? Proceedings of machine learning and systems,
2:129–146, 2020.

Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and
Ilya Zharkov. Otov2: Automatic, generic, user-friendly.
arXiv preprint arXiv:2303.06862, 2023.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances
in neural information processing systems, 27, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Robin Dupont, Hichem Sahbi, and Guillaume Michel.
Weight reparametrization for budget-aware network prun-
ing. In 2021 IEEE International Conference on Image
Processing (ICIP), pages 789–793. IEEE, 2021.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout.
arXiv preprint arXiv:1909.11556, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi,
and Xinchao Wang. Depgraph: Towards any structural

pruning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16091–
16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Cheng Gong, Yao Chen, Ye Lu, Tao Li, Cong Hao, and Dem-
ing Chen. Vecq: Minimal loss dnn model compression
with vectorized weight quantization. IEEE Transactions
on Computers, 70(5):696–710, 2020.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje,
Venkatesan Chakaravarthy, Yogish Sabharwal, and
Ashish Verma. PoWER-BERT: Accelerating BERT in-
ference via progressive word-vector elimination. In
Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pages 3690–3699. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/goyal20a.html.

Isabelle M Guyon. Design of experiments for the
nips 2003 variable selection benchmark. 2003.
URL https://api.semanticscholar.org/
CorpusID:115452637.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. Eie: Ef-
ficient inference engine on compressed deep neural net-
work. ACM SIGARCH Computer Architecture News, 44
(3):243–254, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep
convolutional neural networks: A survey, 2023.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Duc NM Hoang and Shiwei Liu. Revisiting pruning at
initialization through the lens of ramanujan graph. ICLR
2023, 2023.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. Dynabert: Dynamic bert with

9

https://proceedings.mlr.press/v119/goyal20a.html
https://proceedings.mlr.press/v119/goyal20a.html
https://api.semanticscholar.org/CorpusID:115452637
https://api.semanticscholar.org/CorpusID:115452637


adaptive width and depth. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33, pages 9782–9793. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
6f5216f8d89b086c18298e043bfe48ed-Paper.
pdf.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Gokul Krishnan, Xiaocong Du, and Yu Cao. Structural
pruning in deep neural networks: A small-world approach.
arXiv preprint arXiv:1911.04453, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. Advances in neural information processing sys-
tems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu
Timofte, and Luc Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 191–201, 2022.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng
He, Weizhu Chen, and Tuo Zhao. Losparse: Struc-
tured compression of large language models based on
low-rank and sparse approximation. arXiv preprint
arXiv:2306.11222, 2023a.

Zhuo Li, Hengyi Li, and Lin Meng. Model compression for
deep neural networks: A survey. Computers, 12(3):60,
2023b.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He,
Weizhu Chen, and Tuo Zhao. Less is more: Task-aware
layer-wise distillation for language model compression.
In International Conference on Machine Learning, pages
20852–20867. PMLR, 2023.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1529–1538, 2020.

Jiaqiang Liu, Jingwei Sun, Zhongtian Xu, and Guangzhong
Sun. Latency-aware automatic cnn channel pruning with
gpu runtime analysis. BenchCouncil Transactions on
Benchmarks, Standards and Evaluations, 1(1):100009,
2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning effi-
cient convolutional networks through network slimming.
In Proceedings of the IEEE international conference on
computer vision, pages 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Jian-Hao Luo and Jianxin Wu. Neural network pruning with
residual-connections and limited-data. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1458–1467, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compres-
sion. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner:
On the structural pruning of large language models. arXiv
preprint arXiv:2305.11627, 2023.

JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured
pruning of a bert-based question answering model. arXiv
preprint arXiv:1910.06360, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural net-
works for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11264–
11272, 2019.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf


Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang,
Yaliang Li, and Jun Huang. Meta-kd: A meta knowledge
distillation framework for language model compression
across domains. arXiv preprint arXiv:2012.01266, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems,
32, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision. In Inter-
national Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages
28492–28518. PMLR, 2023.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman
Aliari Zonouz, and Bo Yuan. Chip: Channel
independence-based pruning for compact neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:24604–24616, 2021.

Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and
Frederic Andres. Sparse low rank factorization for deep
neural network compression. Neurocomputing, 398:185–
196, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and
Surya Ganguli. Pruning neural networks without any data
by iteratively conserving synaptic flow. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33, pages 6377–6389. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
46a4378f835dc8040c8057beb6a2da52-Paper.
pdf.

Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and
Deepak K Gupta. Chipnet: Budget-aware pruning with

heaviside continuous approximations. arXiv preprint
arXiv:2102.07156, 2021.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7464–7475, 2023.

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu,
Qing-Long Han, and Yang Tang. A brief overview of
chatgpt: The history, status quo and potential future de-
velopment. IEEE/CAA Journal of Automatica Sinica, 10
(5):1122–1136, 2023.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Struc-
tured pruning learns compact and accurate models. arXiv
preprint arXiv:2204.00408, 2022.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin,
and Larry S Davis. Nisp: Pruning networks using neu-
ron importance score propagation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9194–9203, 2018.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, et al. Florence: A new foun-
dation model for computer vision. arXiv preprint
arXiv:2111.11432, 2021.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf


SPvR: Structured Pruning via Ranking
(Supplementary Material)

A SPVR RANKING FUNCTION VS KL DIVERGENCE: EMPIRICAL EVALUATION

In order to show the superiority of our ranking function in a more practical setting, we train a single hidden layer feed-
forward neural network on a binary classification synthetic dataset and compare the neuron rankings produced by the KL
divergence criterion and our method against the ground truth. Specifically, the data is generated as per the algorithm in
[Guyon, 2003] using the scikit-learn library [Pedregosa et al., 2011]. The number of features and samples are set to 100 and
1000, respectively. To introduce noise into the dataset, the binary labels corresponding to each sample are flipped to either 1
or 0 with a probability of 0.02 which also introduces imbalance into the dataset. A single hidden layer feed-forward neural
network with 64 neurons in the hidden layer and ReLU activation along with 2 neurons in the output layer and softmax
activation is trained on the synthetic dataset using the Adam optimizer [Kingma and Ba, 2014] with a learning rate of 0.001.
Once the network is trained, the ground truth ranked list is generated by measuring the number of misclassifications that
occur when masking individual neurons with higher misclassifications being attributed to more important neurons. We
choose this as the ground truth since the main philosophy of pruning is to remove parameters that do not hurt the final
accuracy of a model. Two more ranked lists are generated using our ranking function and the KL divergence criterion,
respectively. The Kendall Tau rank correlation metric [Kendall, 1938], a non-parametric rank similarity measure, is used to
evaluate the rank performance of both methods in comparison to the ground truth where a value of 1 indicates exact rank
association while a value of 0 indicates no association. Table 5 demonstrates that our ranking criterion is much better suited
for the task of computing neuron importance for pruning in comparison to the KL divergence criterion.

Table 5: Evaluation of the neuron ranks produced by our proposed ranking function and the KL divergence criterion against
the generated ground truth ranked list in terms of the Kendall Tau rank correlation metric. Bold values indicate the best
performance with 1 being the highest achievable score.

Ranking Methods Kendall Tau Rank Correlation

SPvR Ranking criterion 0.861
KL Divergence criterion 0.586

Remark A.1. Measuring only the number of misclassifications does not provide the complete picture of a neuron’s importance
as the change induced in the final output layer needs to be taken into account in order to correctly rank neurons with the
same number of misclassifications.

B PRUNING STRATEGIES

Pruning VGG16: Pruning networks without skip connections, such as VGG16, is relatively straightforward. The ranking
module provides a sorted list of groups that must be pruned. One can iterate over the list and discard the least important
groups until the user-supplied target parameter budget is reached. The remaining groups form the smaller sub-network.

Pruning ResNets: The ResNet type architectures have two sets of skip connections, known as identity and projection

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.



shortcuts [He et al., 2016]. Layers with the same number of filters share the identity shortcut, while layers with different
numbers of filters require a projection. When iterating over the sorted list provided by the ranking module, if a group from a
particular layer is discarded then the least significant group from each subsequent layer with an identity shortcut is discarded
until a group from a layer after a projection shortcut is encountered.

C PRUNED ARCHITECTURES

C.1 VGG16

Table 6: The number of channels per layer for each pruning percentage. Here, "M" denotes the position of the max-pooling
layer. The Param column indicates the percentage of parameters removed from the original model. The Size column denotes
the actual size of the model on disk in megabytes.

Param
Model
Size

Architecture

00% 112 64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"
70% 33.7 58, 64, "M", 126, 128, "M", 238, 224, "M", 192, 192, 94, "M", 56, 482, 512, "M"
80% 22.5 58, 64, "M", 126, 128, "M", 238, 224, "M", 192, 192, 94, "M", 56, 196, 512, "M"
90% 11.2 54, 64, "M", 124, 128, "M", 224, 220, "M", 174, 110, "M"
95% 5.56 42, 64, "M", 110, 126, "M", 170, 138, 92, "M"
98% 2.25 36, 62, "M", 78, 112, "M", 92, 44, 46, "M"

C.2 RESNET34

Table 7: The number of channels per layer per block with the number of blocks being denoted by × and each block being
denoted by [.]. The Param column indicates the percentage of parameters removed from the original model. The Size column
denotes the actual size of the model on disk in megabytes.

Param Size Architecture

00% 163 [64, 64]×3, [128, 128]×4, [256, 256]×6, [512, 512]×3
70% 46.8 [60, 60]×3, [112, 112]×4, [328, 328]×3
80% 30.6 [60, 60]×3, [104, 104]×4, [256, 256]×3
90% 15.2 [60, 60]×3, [100, 100]×4, [152, 152]×3
95% 8.03 [60, 60]×3, [76, 76]×4, [88, 88]×3
98% 2.72 [60, 60]×3, [36, 36]×4, [44, 44]×3

13



C.3 RESNET50

Table 8: The number of channels per layer per block with the number of blocks being denoted by × and each block being
denoted by [.]. The Param column indicates the percentage of parameters removed from the original model. The Size column
denotes the actual size of the model on disk in megabytes.

Param Size Architecture

0% 195 [64, 64, 64]×3, [128, 128, 128]×4, [256, 256, 256]×6, [512, 512, 512]×3
40% 118 [64, 64, 64]×3, [120, 120, 120]×4, [240, 240, 240]×6, [328, 328, 328]×3
70% 60.3 [64, 64, 64]×3, [112, 112, 112]×4, [200, 200, 200]×6, [152, 152, 152]×6
80% 41.5 [56, 56, 56]×3, [112, 112, 112]×4, [168, 168, 168]×6, [96, 96, 96]×3
95% 12 [56, 56, 56]×3, [88, 88, 88]×4, [64, 64, 64]×6

D IMPLEMENTATION DETAILS

Hyper-parameters for each method were adopted from their respective publications, except RCP, where we sampled 20
sub-architectures instead of 100 due to resource constraints. Consistency was maintained across all methods, including
SPvR, in terms of optimizer, scheduler, batch size, and training duration. In the ranking phase of SPvR, similar to CURL,
only a subset of the dataset was used. Specifically, 50 training samples per class were randomly selected for both CIFAR10
and Tiny ImageNet and 20 samples per class for the ImageNet datasets.

14


	Introduction
	Our Contributions:

	Related Work
	SPvR: An Efficient Model Pruning Algorithm
	Ranking Module
	SPvR Ranking Function vs KL Divergence

	Grouping Module

	Experimental Setup
	Datasets and Models
	Baselines
	Implementation Details

	Results
	Performance against Baselines
	Retraining vs Fine-tuning
	Inference Latency
	Application to mobile phones
	Application to Image Segmentation

	Ablation Study
	Retraining vs Architecture
	Impact of Group Size on Performance and Pruning Time

	Conclusion
	SPvR Ranking Function vs KL Divergence: Empirical Evaluation
	Pruning Strategies
	Pruned Architectures
	VGG16
	ResNet34
	ResNet50

	Implementation Details

