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Abstract

Standard techniques for aligning large language models (LLMs) utilize
human-produced data, which could limit the capability of any aligned
LLM to human level. Label refinement and weak training have emerged as
promising strategies to address this superalignment problem. In this work,
we adopt probabilistic assumptions commonly used to study label refine-
ment and analyze whether refinement can be outperformed by alternative
approaches, including computationally intractable oracle methods. We
show that both weak training and label refinement suffer from irreducible
error, leaving a performance gap between label refinement and the oracle.
These results motivate future research into developing alternative methods
for weak to strong generalization that synthesize the practicality of label
refinement or weak training and the optimality of the oracle procedure.

1 Introduction

Given the rapid advancement of LLMs, it is important to ensure that they align
themselves with human values. Standard techniques for doing so, such as super-
vised fine-tuning and reinforcement learning from human feedback (Ouyang et al.,
2022) utilize human-produced data, which could limit the capability of any aligned
LLM to human level. This has led to a continued interest in developing techniques
for aligning a super-human model; such a goal is referred to as the superalignment
of large language models, a term introduced by OpenAl (Leike and Sutskever, 2023).
The same team introduced weak to strong general-
ization as an analogy for superalignment (Burns
et al., 2023). Weak to strong generalization is
meant to act as an empirical verification frame-
work for superalignment techniques: a small
LLM acts as a human producing data while
a large LLM acts as the superhuman model.
Two promising classes of techniques for super-
alignment/weak to strong generalization have
emerged. The first directly utilizes the weak data
in an alignment/training process; this includes
direct weak training and bootstrapping chains oos  obs  olo  ol2 o

of models with weak training (Burns et al., 2023). " Weak Model Accuracy '
Understanding the success of this class of tech- oracle e GPT:35turbo __ GPT-35-turbo
niques is a work in progress; the authors of + Refinement + Weak Training
(Burns et al., 2023) find empirical success for

them, and in some theoretical frameworks, these Figure 1: Performance of weak-to-strong
techniques are provably successful (Lang et al., methods on GSM8K. Details are provided in
2024; Charikar et al., 2024; Wu and Sahai, 2024; Appendix B.

Xue et al., 2025). On the other hand, weak train-

ing can lead to deception of the strong model and reduce its capabilities in tasks such as
reasoning (Yang et al., 2024b;a) (cf. Figure 1 for a replication). Additionally, in the theoretical
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frameworks proposed in (Somerstep et al., 2024; Yao et al., 2025) training on the weak model
outputs can actually degrade strong model capabilities. In response to this uncertainty,
a second class of weak to strong generalization techniques that utilize latent capabilities
of the large pre-trained LLM to refine the weak labels (Somerstep et al., 2024; Yang et al.,
2024b) has emerged. While the empirical results of these techniques are promising, and
some theory underpins their success, it is still unknown if refinement (or weak training)
is the best that we can do in weak to strong generalization settings. The authors of Yang
et al. (2024b) observe that, empirically, refinement underperforms training on gold standard
target data (in this context data produced by a capable LLM), a phenomenon that we also
observe in Figure 1. Inspired by this, we seek to study if refinement (or weak training) is
optimal in certain settings.

To get a partial answer, we adopt a probabilistic set-up (a generalization of Somerstep
et al. (2024)) used to justify refinement, and study if it (and direct weak training) is optimal
for weak to strong generalization. Our framework is a transfer learning framework, the
source distribution (X, Y) ~ P represents data from the unaligned model while (X,Y) ~ Q
represents data from an aligned version of the strong model. The key challenge in weak to
strong generalization is that we only observe weak labels (Y’) over Q. From the source and
weak data, the goal is to obtain an estimate of the distribution Qyx.

superalignment weakly-supervised TL
pretrained LLM Yp | Xp
(super)alignment task Yo | Xg
weak teacher Yo | Xg

Table 1: Transfer Learning <—— Superalignment

The difference between the base and hypothetical fine-tuned version of an LLM is complex;
we assume that this differnce may be attributed to a latent concept shift. Latent concept shift
occurs when both the source and target distributions are mixtures of distributions indexed
by an unobserved latent concept variable K, with only the proportions of K changing
between P and Q.

Following Wu and Sahai (2024), we consider two desiderata that ensure a (non-trivial) weak
to strong generalization has occurred:

1. The weak to strong estimator should asymptotically converge to the target (as the number
of weak target and source samples grows).

2. Estimators trained with either only the weak target data or the source data should not
asymptotically converge to the target task.

The second requirement lays a framework where a weak to strong generalization task is not
trivial. Our primary contribution is summarized in the following (informal) theorem.

Theorem 1.1. Under the latent concept shift framework, both source and (weak) target distributions
are required to produce a consistent estimator. Additionally, the following holds:

1. Both label refinement and weak training produce inconsistent estimators of the target function.

2. There exists a deconvolution-based procedure meets the consistency criteria.

The remaining discussion sets up the latent concept shift framework and provides results
demonstrating when 1.1 holds. As further details about the deconvolution-based procedure
are deferred to Section 4, for now, we’d like to note that it’s an idealized procedure and
may not be practical for actual weak to strong generalization tasks (e.g. mathematical
reasoning); rather, we develop it to show that there is a non-trivial gap in current techniques
and demonstrate possible room for improvement in weak to strong generalization tasks.
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1.1 Related work

Transfer Learning: In transfer learning, the goal is to leverage a pre-trained model or an
abundant source of data to improve model performance on a target task (as compared to
only training on any target data). Often, the form of knowledge transfer that must occur
is categorized by the difference in the source and target distributions. Generally, the three
categories of transfer are covariate shift (P(X) # Q(X)) (Kpotufe and Martinet, 2018; Huang
et al., 2006; Dai et al., 2007), label shift P(Y) # Q(Y) (Maity et al., 2020; Lipton et al., 2018;
Zhang et al., 2015), and posterior drift (P(Y|X) # Q(Y|X))(Maity et al., 2021; Cai and Wei,
2019; Liu et al., 2020). Our work falls in the category of posterior drift; as in prior works,
we must make assumptions on how the source function Ep(Y|X) and Eq(Y|X) relate. In
Cai and Wei (2019); Cai and Pu (2024); Maity et al. (2021) the difference must lie in a simple
function class (e.g., a linear function of a sufficient statistic or a polynomial class). In our
work, as in Alabdulmohsin et al. (2023), the posterior drift is due to distribution shift in an
unobserved random variable.

Weak to Strong Generalization/Superalignment: Several prior works have conducted
theoretical studies of weak to strong generalization (Lang et al., 2024; Charikar et al., 2024;
Wu and Sahai, 2024; Somerstep et al., 2024). The closest related work is Somerstep et al.
(2024) which considers a similar causal graph but restricts the relationship between X, Y and
Y’ to a mixture of linear regressions. In contrast with this work and the work in Somerstep
et al. (2024), others have considered frameworks where weak training is sufficient for weak
to strong generalization (Lang et al., 2024; Charikar et al., 2024; Wu and Sahai, 2024). Wu
and Sahai (2024) show that weak training allows for weak to strong generalization in spiked
covariance models through a benign overfitting process. Charikar et al. (2024), show that
weak training may lead to good generalization properties if the base and target models are
close with respect to the representation layer. Lang et al. (2024); Shin et al. (2024) studies
properties of the weak data, and establish desirable conditions for weak training.

Interest in the weak to strong generalization problem has grown on the empirical side.
One line of work transfers alignment behavior induced by RLHF from a weak model to a
strong model by learning the distributional differences in the weak model before and after
alignment (Zhu et al., 2024; Zhou et al., 2024). Other works look to expand generalization
from weak training to other model properties beyond accuracy. For example, the authors
of Yang et al. (2024b) improve large models’ mathematical reasoning with responses from
smaller models while in Pawelczyk et al. (2024) trustworthiness properties such as fairness,
privacy, and adversarial robustness are transferred.

Other lines of work include leveraging the temperature parameter for weak training (Zhang
etal., 2024), studying deception from weak training (Yang et al., 2024a), and using a dynamic
logit fusion approach for weak training (Fan et al., 2024).

2 Set Up: Latent concept transfer

Let P and Q be the data distributions in source and target domains with corresponding
probability distribution function (or probability mass function) p and q. Over the source
and target distributions, there are three observable random variables of interest denoted X,
Y, Y'. The variable X generally denotes a model input, Y is a gold-standard /uncorrupted
model output, and Y’ are proxy labels produced from a smaller model.

Goal: We wish to learn the target predictive distribution q(y|x) from knowledge of
p(xy,y') and (x,y").

To make progress, we begin with specifying the conditional dependencies of the data-
generating process.

Assumption 2.1. All data drawn from P or Q is generated by the process given in Figure 2 and
this process is faithful and Markov. Additionally, K is never observed in either P or Q and Y is never
observed in Q.
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Concretely, the data generating process in the source and target is specified as a probabilistic
directed acyclic graph. The Markovian and faithfulness assumptions simply imply that
conditional independences exist in the data generating process iff they exist in the graph.
This factorizes the source and target distributions as

p(xkyy') = p(x)pklx)p(y | x, )p(y | x, k),
q(x,ky,y') = q(x)qklx)g(y | x,k)g(y’ | x, k).

Table 1 summarizes the analogy between transfer learning and weak-to-strong generaliza-
tion. The variable X plays the role of a natural language query to a small or large LLM, K is
a latent mechanism through which models generate an output, Y are outputs from a strong
model, and Y’ are outputs from a weaker model. As in other transfer learning problems, the
learner has access to source and target samples, though it is key to note that the true labels
Y are only observed over P.

Assumption 2.2. We assume that the learner has sampling access to the following distributions
(X,Y,Y") ~ Pand samples (X,Y") ~ Q. The latent variable K is never observed.

In most weak to strong generalization applications, the learner always has access to queries
from some dataset of interest, and a base/unaligned large LLM (e.g. a base version of Llama2-
70b). The sampling access to (X, Y) from P represents this. Likewise, access to a weak/small
LLM with some expertise on the target task (e.g. a base version of Llama2-7b fine-tuned on
good data) is always given; this is represented by the sampling access to (X, Y’) over Q.

Access to Y/ over P depends on the specific weak to strong

generalization setting. In some cases, direct access to

the base/unaligned version of the small LLM (e.g. an

/ @ unaltered version of Llama2-7b) and observing the dif-

7 ference between the unaligned and aligned small LLM
@-’@ can be used to “reconstruct” the aligned large LLM (Zhu
\ et al., 2024; Zhou et al.,, 2024). In other works, namely

\ , @ Somerstep et al. (2024); Yang et al. (2024b), base small

LLM observations are not available (i.e. (X,Y’)p is not

physically observable data); rather, the conditional dis-
tribution P(Y|X, Y’) represents the outcome distribution

of the base model fed with an X and weak label Y. We
primarily work in this setting.

Figure 2: Latent concept transfer

In latent concept shift, the key assumption is that the shift between source and target occurs
in the frequency of K. We also allow for a shift in Y’| X, our reasoning is explained below.

Assumption 2.3. We assume that p(x) = q(x), and p(y|x, k) = q(y|x, k), but p(k|x) # q(k|x)
and p(y'|x,k) # q(y'|x k).

The shift from p(k|x) to g(k|x) occurs due to the shift in prior over K from P to Q. The shift
between p(y'|x, k) and q(y'|x, k) represents some imperfection in the aligning process of
the weak model. In our setup, recall that p(y|x,y’) represents the output distribution of an
LLM fed with an input x and a weak label /; it is not reasonable to expect that the base
LLM is aware of the exact bias present in y’. This is encoded by appropriately restricting
the shift between p(y'|x, k) and q(y'|x, k). Note that we assume the target version of the
strong model has (conditional on k) density p(y|x, k); or that this imperfection is absent in
the hypothetical gold standard model. The final assumption we make parameterizes each
of the distributions of interest.

Assumption 2.4. Let v represent the marginal distribution of the latent concept. Then for known
density functions g(-) and ¢(-) parameterized by n and 0 respectively, the source and target
distributions satisfy

p p
plylx) = ¥ S o py ) = Y kS gy o)

™ Y g (x|e) ™ Y g (x|ne)
) g (x| ) g (x| k) w
aylx) =Y, 2oy x, 0);9(v 1x) = Y. =2 —o(yix,0,7).  (22)
; Y g (x| ; Y g (x[me) k
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Assumption 2.4 parametrizes the relationship between X, Y, Y/, and K. Our parametric
assumption 2.4 leaves questions such as identifiability novel, and is general enough to cover
prevalent examples in the literature.

Example 2.5. Wang et al. (2024) assumes that there is a set of language modeling tasks T indexed
by d, and that for the d-th task it holds that y = f(x,0%,¢€), x ~ Px, € ~ DPe. By equating the d-th
task with the k-th value of the latent concept in our setup, we see that the framework of Wang et al.
(2024) is covered under Assumption 2.4.

Example 2.6. Somerstep et al. (2024) assume that y = Yy 7B} x + €, with € ~ N'(0,0?). Pathak
et al. (2024) show that there exists a transformer architecture that matches this mixture of regression
distributions.

Example 2.7. Xie et al. (2021) posit that an LLM can be represented by a hidden Markov model
(HMM) mixture. In particular, there is a set of transition matrices © = {6y,...,0x}, priors 7P,

71, emission parameters T, TV, and a state space H such that the sequence of tokens (x,y) =

(x1,%%,...,x1,y) satisfies

p(ol) — z[zp (il )

k |LheH J

I~

). P(xj|h/T)P(hx<j/9k)1 n
heH

—_

q(y'|x) Z[ZP ", ) p(h]x, 6k)
J

)3 P(xj’hrT)P(hxq/@k)] n
k Lnen 1heH

We return to the motivation of problem set up: recall X are meant to represent queries to
an LLM, while Y /Y’ represent outputs of large and small language models. The latent
variable represents some internal mechanism by which language models produce their
responses. In each of these examples it assumed that language models are essentially emulating
the distributions they are trained on. In other words, we are assuming that the base (strong
model) is trained on a distribution specified by equation (2.1) while the target model is an
LLM (hypothetically) trained on a distribution specified by equation (2.2). When an LLM
receives a query, it internally attempts to infer the concept most related, then samples a
response from the corresponding expert.

3 Weak to strong generalization strategies

In this section we discuss three possible approaches to the weak to strong generalization
problem and their performance within our framework. The first two approaches, weak
training and label refinement, have been previously proposed and studied (Burns et al.,
2023; Somerstep et al., 2024; Yang et al., 2024b). Within our framework, we will see that each
of these fails to produce estimators that satisfy the weak to strong generalization desiderata.
Inspired by this, we propose a new weak to strong generalization procedure, which is
impractical to implement but does enjoy superior theoretical properties.

3.1 Weak Training

Burns et al. (2023) advocate for training a base model, then training the base model for a
small number of epochs on the weak data.. Consider the regression settings of Examples 2.5
and 2.6. In our framework, this essentially corresponds to fitting an estimator of the form

Arwt, Owt = arg min%@/neA(K)Ewt(Q),

Lot(0,70) 2 0% { Ty e f (x1,00) — v/} + AL { S e f (x4, 60) — i}

Here A > 0 controls how much attention the estimator should pay to the source versus the
weak target data. Fitting an estimator to a loss combining both sources of data is a core
component of many transfer learning techniques Maity et al. (2020); Cai and Wei (2019);
unfortunately, the presence of weak supervision in the target domain prevents this from
being particularly useful in our setting.
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Proposition 3.1. Consider the regression setting of examples 2.5 and 2.6 with np = nb 2. Let
€p, €y be the K X 1 vectors of the bias in the source and weak models conditioned on k. Suppose

that p(x;0) is Lipschitz in 6. Then it holds that [ P, g

*

P
Rrwt — T Where 65, 7T

. > ¢ satisfies

* * 2
Ex[{EQlyla] — S unf (05 Y] = nllenl 2+ (1= )2lleqr P + 71— )efeq .

Proposition 3.1 shows that within our framework, weak training does not satisfy the first
criteria of weak to strong generalization (it does not produce a consistent estimator of the
target function). This inconsistency within our framework is also prevalent empirically; for
example, in Figure 1 GPT-3.5-Turbo does not successfully learn any mathematical reasoning
ability from the weak models. While Proposition 3.1 covers the regression case, the intuition
carries over to the HMM case. Both the source and weak target data are biased, and thus
constructing a consistent estimator by mixing the two is generally not possible.

3.2 Label Refinement

Simultaneously, Somerstep et al. (2024) and Yang et al. (2024b) introduced a set of methods
which feed the weakly labelled data as auxiliary information to the source model and then
drawing a new label for each query in the target data set. For example, in both Somerstep et al.
(2024) and Yang et al. (2024b) the first step of the refinement procedure is to draw new labels

Y that satisfy

- d
P(Y =y|X =x) SEyPp(Y =y|X =x,V); V~TI}L; Qyx, - G.1)

In other words, for each query x, they collect m weakly labelled pairs (x;, y;.)}”:l drawn from

Qx y (i.e.produced by the weak model), form “auxiliary information" v = [x1, ¥}, ..., X, Y]
and then draw a new label from the source model that is fed with both v and x. The notation
IPp(-) emphasizes that the refined labels are being drawn from the source distribution.

Following Somerstep et al. (2024); Yang et al. (2024b) we utilize our framework to study
refined data (X, Y) with the following distribution:

X~ Qx; p@%) 2 ey x) = [, py|x0)dQ(v | x).

It is also possible to perform label refinement by correcting one weak label at a time
(Somerstep et al., 2024), in this case we consider a refined distribution of the form gre (v |

= [y [ xy)dQ(y' | %)
3.2.1 Irreducible error of label refinement

In this subsection, we ask whether for a given query x, the refined label is a good stand-in
for a hypothetical gold-standard label drawn from the target distribution. To begin, we
work g, (y|x) into a more interpretable form.

Proposition 3.2. For P{k | X,k'} = [, p(k | x,0)q(v|x,k')dv, which is an entry of the
(conditional-on-X) confusion matrix of the prediction k (of true class k' from V), one can write

Gre(y|x) Zp y|x,k)g(k|x) and 4(k|x) = Zq (K'|x)P{k | X,K'}.

For the case of correcting one weak label at a time, one can simply replace v with y/’.

Proposition 3.2 reveals the statistical intuition for refinement methods in weak to strong
generalization: The model internally updates its prior on the latent variable when fed the
weak data as auxiliary information. This essentially transfers the problem of estimating g(x)
from weak data to inferring the marginal of the latent variable K from pairs (X, V)/(X,Y’).
Unfortunately, Proposition 3.2 also reveals that even refinement does not produce labels
that match hypothetical gold standard labels, as if §(k|x) # q(k|x) then gre(y|x) # q(y|x).



Published as a conference paper at COLM 2025

Example 3.3 (ICL Refinement). Consider the HMM set-up of Example 2.7, with V ~ Hj]\il Qy| X;
and taking q(k) = 1{k = k*} for simplicity. We may then write

M
()« Bypex0) = T B, [Lpt/ehplhx o0pxlo)] — (62)
2

The approximate treatment of the ICL pairs as iid is justified by the use of additional delimiter tokens
in V. For simplicity, we take this as a given and refer to Xie et al. (2021) for a detailed discussion.

We also see that for a given k # k*, 4(k|x) > 0 unless the expected likelihood of the sequence of
tokens xl,y’l,. <o) Xm, Yoy 1S zero under the transition matrix 0. Thus, under general conditions,
the labels § will still incur some bias from weighting towards the incorrect concepts, leading to
irreducible error.

Example 3.4 (Weak label improvement). The authors of Somerstep et al. (2024) also propose a
refinement procedure in which the source model “corrects” the weak label for each data pair (x,y’).
We return to the regression setting (Example 2.5) and again assume that q(k) = 1{k = k*}. We
can model this refinement step as

q(klx) = [y p(k | %,y )q(y [x, k*)dy’
In Appendix A we show that if we let AZ(x) = (u(x; 6;{0”) — u(x;0))?, then it holds that

d(k|x) < p(k|x)e %0,

We see that for x in which A%(x) is large for all k # k*, the label bias can be drastically
reduced. If, on the other hand, it turns out that A%* (x) is large due to the distribution shift in
y'|x, then label refinement will suffer from a large bias and still have undesirable irreducible
error. These examples are evident in Figure 2, where we see that label refinement improves
on weak training, but does not compare to an oracle proxy.

3.3 Weak to strong generalization through latent concept identification

We have seen that within the latent concept transfer framework, both weak training and
label refinement produce biased estimates of the target function. The question remains
if there exists a procedure that produces a consistent estimate of the target function. To
answer this in the affirmative, we propose a two-step procedure: first identify the latent
mixture components and mixture proportions in P and Q, then construct the target function
by borrowing mixture proportions from Q and the mixture components from P. We lay this
out in Algorithm 1.

Algorithm 1 Latent Concept Identification

Require: Source data Dp : {x;,y;,y;} target data D¢y : {x;, ¥}, maximum likelihood esti-
mation procedure MLE

1: Compute {6, é;{up,ﬁk, ALK |« MLE(Dp)

2: Compute {éZiq, AIHK |+ MLE(Dg)

3: Compute assignment a(k) = arg mink,dz(@;up , GA;U")

4: Compute final estimate §(x) < Yy 71508 (*|fla))/ [Ty Al 8 (3o 1@ (Y5 X, )

The success of this strategy hinges on the MLE /identification step, we discuss this further in
Section 4. We briefly comment on possible relaxation on observing Y’ over P for the success
of Algorithm 1. In particular, note that GAZ}” does not play a role in the final estimate; rather
it is only used to compute the assignments. With no weak source samples available, one

could instead opt to utilize 6 in the assignment step.
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4 Identification and estimation under latent concept shift and weak
supervision

In this section, we study the question: When are the parameters of Qy|x identifiable? To
formalize identifiability, consider the space of measures A(X x )), and the space of mea-
sures on A(X x ), which we denote as A%2(X x )). For any mixture density speci-

fied by f(y,x;,1,0,K) = Zszl %q)(y,‘ x, 0k ), we can define the mixing measure

F.(17,6,K) € A%(X x Y) as the weighted sum of Dirac measures F.(,0) = YX_, Ttk 0y, 0y

As in prior work (Aragam et al., 2018), we say that a mixture family f(x;#,6) is identifiable
if the map

IT: A(X xR) = A2(X xR): TI(f(x;7,1,0)) = F.(1,0)

mlg (x|me)

m?(% x,0¢). The necessary

is injective. Recall our goal is learning g(y|x) = Y

ingredients to identifying q(y|x) are:

1. Identifiability of the mixture system. Note this property is dependent on the functions
() and g(-, ).
2. A matching identifiability condition between {9:’” } and {9:"*}.

Our first contribution is to characterize the identifiability of our general mixture model; this
result generalizes those in Nguyen et al. (2024b).

Definition 4.1. We say that the functions ¢(-, -, -) g(-, -) are zero’th order algebraically independent
if for any collection of distinct parameters {6y}, {ny }, the collection of functions in x {g(x;nx)} is
linearly independent and the collection of functions in {@(y; x,0x) } in x,y is linearly independent.
Proposition 4.2. Suppose that ¢(-,-,-), and (-, -) are (zero'th order) algebraically independent.

Then the mixture family f(x;,0) is identifiable.

Proposition 4.2 establishes a sufficient condition for the parameters 7, 0,7 being identifiable
from observing data (X, Y/Y’) from P or Q. The algebraic independence condition ensures
that distinct sets of the parameters cannot lead to the same distribution over P and Q.
Example 4.3. In Example 2.5, the density of f(x, 0, €) needs to satisfy algebraic independence; in
Example 2.6 it is sufficient that the { By} be linearly independent.

In the case of Example 2.7, a discussion on when the necessary algebraic independence
condition is met is more complex.

Proposition 4.4. Consider the HMM model setup of Example 2.7 and in Xie et al. (2021). Following
their notation, suppose some additional assumptions hold:

1. The state space H. is finite, the tokens x/ and y also lie in a finite token space O. Emission

sequences x', x?, . .. from the mixture of hidden markov models may be arbitrarily long.

2. For value T, there exists set of tokens (07,...,0%;), o) € O such that p(oj|h,T) > 0 and
p(oj|h,T) = 0.

3. p(y; h, T) satisfies the algebraic independence condition in T.
Then q(x,y') and p(x,y) satisfy the algebraic independence conditions in 0, 7, and T.

Assumption 2 of Proposition 4.4 is fairly strong; in the topic model literature, the special
tokens o; are referred to as anchor words (Arora et al., 2012) and in hyperspectral mixing
they are referred to as pure pixels (Jasmine and Pattabiraman, 2018). Anchor words play an
important role in the identification of the parameters of topic models.

Unfortunately, because we do not observe X,Y ~ Q, to identify g(y|x) we require more
than just identifiability of the individual components. At its heart, we need to match the
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target prior 717 observed from Q' to the source components 77, 0 observed from P, keeping in
mind that each of these is identifiable only up to permutation. To assure this is possible, we
impose a statistical distinguishability condition on p(y'|x, k) and q(y'|x, k).

Assumption 4.5 (identifiability over permutation). Let [K] = {1,...,K}. Forall k, [K] and
A > 0 we assume: (i) argminy,_; [0, — 0" [|* > ¢ + A, and (ii) [|0" — 6," || < c.

4.1 Consistency of algorithm 1

Recall our estimator desiderata are (i) the weak to strong estimator should asymptotically
converge to the target (as the number of weak and source samples grows) and (ii) an
estimator using one source of data should not asymptotically converge to the target. Under
assumptions 2.1 - 2.4 (ii) clearly holds. With no alteration, the source model P(Y|X) clearly
does not match Q(Y|X) since P(k|X) # Q(k|X). Likewise Q(Y'|X, k) # Q(Y|X, k) so long
as 9;{0”7 # 0. We partially establish (i) in the following proposition.

Proposition 4.6. Suppose that the MLE step satisfies the following: For some constants C > 0, and
a € [0,1] it holds that

P(]|6 — 8]> > [lognp/np)*) < exp(—Clognp); 6 € {Gk,GZJ”,nk, n,f}le,

and P(||6 — 6| > [logny/ny]*) S exp(—Clogngy);, 6 € {qu,nZ},If:l.

Then, if @a(k) denotes the parameter estimates produced by Algorithm 1 and so long as A >
max{O([lognr/np]*), O([logna/ney]*)} then it holds that

04y — Ol < min{np,ng} 7.

In the case of regression (cf. Examples 2.5 and 2.6) we may not be simply interested in
estimating the parameters, but actually obtaining the regression function Eq[Y|X]. Letting
u(x;0) = E[Y|X, 6], we may write the function of interest and our estimate (g(x),4(x)) as

078 (x| ﬁZ(k)g(xWa(k)) A
q(x) £E [Y|x] = k—,u(x)ek), 4(x) = ~ - w(x;0,0))-
¢ L T rlsGin) IS A 8 xlagey)]

Proposition 4.7. Suppose that the MLE step satisfies the conditions in Proposition 4.6. Additionally,
suppose that the functions log g(x|n) and u(x|0) are Lipschitz continuous in their respective
parameters. Then (up to logarithmic factors) the estimator 4(y|x) from Algorithm 1 satisfies

13(x) = q(x)|2,0 S min{np, ng}

Example 4.8. When does MLE satisfy the required convergence assumption? For the case of Examples
2.5 and 2.6, suppose that ¢(y; x,0) corresponds to the normal density with mean y(-) and variance
o(-) parametrized by x and 6. Ho et al. (2022) show that if u(-) and o (-) meet a pair of higher-order
algebraic independence conditions, then the assumption on MLE holds with « = 1/4. We also note
that the specification in Example 2.6 meets the needed independence condition.

For the more general case, where g(+) is not constant in x, possible rates of x = 1 or a = 1/2 are
established in Nguyen et al. (2024b;a).

4.2 Empirical Example

In order to empirically test the findings in the paper, we have adopted a toy empirical
setting from Somerstep et al. (2024). The objective is to teach a model a specific persona; we
assume that the base model is a mixture of an undesirable and a desirable persona (here the
persona corresponds to the concept k). We implement Algorithm 1 by clustering data drawn
from the source model using K-Means++, computing assignments using cosine similarity,
and computing the final estimate by performing supervised fine-tuning on the data from
the cluster that is closest to the weak data.
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We utilize Dolly as the training set, with weak labels provided by Falcon 7B, Gemma 2B,
llama?2 7B, and Mistral 8b. GPT-40-mini acts as the strong model. At test time, we measure
the strong model’s accuracy and use of the desirable persona on TinyTruthful QA and
TinyAlpaca Eval (Maia Polo et al., 2024). Our findings are consistent with the theoretical
findings in the draft. In particular,

1. Weak training biases the model by reducing the accuracy at test time (see content scores
of Figure 3)

2. Refinement does not reduce accuracy but does leave Bias by not fully transferring the
persona to the model (see style scores of Figure 3)

3. The identification procedure produces a model with no “bias", the persona is learned and
the accuracy is not reduced (see both scores of each Figure 3).

L\//\.

Strong Model Content Score

\

Figure 3: Comparing performance of weak training, refinement and the identification procedure on a
persona learning task (TinyTruthful QA (left) Tiny AlpacaEval (right)).

5 Conclusion

In this paper, we have studied two popular classes of learning methods for weak-to-strong
generalization: (i) weak training and (ii) label refinement within a general latent concept
transfer framework, adopted from Somerstep et al. (2024) that includes popular classes
of latent concept models for LLMs (Xie et al., 2021; Pathak et al., 2023; Wang et al., 2024).
Under the adopted framework, it is shown that there exists a weak-to-strong generalization
procedure that produces estimators which asymptotically converge to the target function
as the number of unaligned base model and aligned weak model samples grows. This
result primarily relies on identification conditions for the aforementioned latent concept
models for LLMs. We also show that both weak training and label refinement produce
biased estimators of the target function, suggesting that they do not satisfy the consistency
property enjoyed by the weak-to-strong generalization algorithm we produce. While both
weak training and refinement are tractable, our results suggest the need for further research
into weak-to-strong methodologies which enjoy good theoretical properties and remain
implementable for practical language modeling problems.
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A Proofs

Proof of Proposition 4.2. Consider the set up in section 2. We need to show that if
f(x,y;1,0,K) = f(x,y;7,0,K) for almost every x and y, then F(1,0,K) = F(,0,K). Sup-
posing that the hypothesis holds true, we have

K

L CIUDINPRRE R G, )

. ¢(y;x,0¢) x,y almost everywhere.
k=1 25:1 ffk/g(xlﬂk/) k=1 ZkK/:1 ﬁk’g(ka’)

Under the linear independence assumption on ¢(y; x0) if K # K then there exists k* € [K]
such that 6 # 0y for all k € [K]. But this implies that g(x|ix+) = 0 which is a contradiction
since g(x|#,+) is a probability density. Thus we must have K = K. Now note that because
the marginal p(X) must remain the same over f(x;7,8,K) and f(x;7,6, K), we have that

K K
Y meg(xlme) — Y Awg(x|fp) =0
P P

Thus is a violation of the linear independence requirement on g(x;#) unless we have that
the collections {g (x| )} and {g(x|7x )} are equivalent. Because we are only interested in
identifiability over permutation of k, WLOG we may take

g (x|) = g (x|7i)
Integrating over x shows that 71y = 77} which in turn implies that ¢(x|#x) = g(x|fi) so that
1k = 7. Now putting what we have so far together we get that Y g (x; 7x) (¢ (y; x6¢) —
@(y; x0;)) = 0 for almost every x. Note that ¢(x;7x) > 0 so because there can be no linear

relationship among the set {¢(y; x, 6;), ®(y; x,0;) }, we have that 6;0; which establishes that
F.(17,0,K) = F.(77,8,K) O

Lemma A.1. Suppose that 6 and 0’ are distinct transition matrices for a Markov process on
a finite state space H of size M. Then there exists a sequence of states h;,, ..., h;, such that
PQ[hil'-'h hil] >P9/[hi1...]’l hil]‘

im
Im Im

Proof. If the matrices diag[f] and diag[t’] are not equivalent, then we are finished, as we
can take the cycle to be of length 1. If diag[f] # diag[f'], then there exists states h;, h;,
such that (h;, |h;, ) > 0'(h,|hy, ). Now if 8(h;, |h;,) > 6'(hj, |h;,) we are done, so consider
the case where 60(h;, |h;,) < 0'(h;,|h;,). In this case, there must exist state /;, distinct from
hi, and h;, such that 0(h;, |h;,) > 6 (hj,|h;,). Consider the m’ — 1'th step of this process,
where have constructed a sequence of states h;, ... h; ,  such that G(hi], |hi],,1) >0 (hi], |hi],)
for1 < j < m' —1. Suppose m' —1 < M, then either there exists a j* < m’ —s such

(S

that G(hij* ‘himl—l) >0 (hi]_* ‘him’—l) and the proof is complete or there is a distinct (from
{hij}jgm’—l) state s such that 0(h; ,|h; , ) > 0'(h; ,|h; , ). Finally, consider the case
where have followed this process to the M’th step, in particular we are at state h;, , in this
case there must exists hi/.* such that G(hi].* |hi\,) > G(hi].* |hi,,) as otherwise we would have

Y G(hij |hi,,) <1, the existence of such a state completes the proof. O

Proof. We establish the algebraic independence condition for the HMM set up. For a collec-
tion of transition matrices {61, ...,6;} and prior (711, ... g ) we may write the distribution
of the pair (x,y’) as

p(xy) = ;h;{ p(y' |k, T)p(h]x, 0) pr(x) 7

Recall for identifiability we need that if j(x,y’) is the density of (x,y’) for the collection
of distinct parameters {01,...,0;} and {7t,... 7k} then p(x,y’) and f(x,y’) need to be
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linearly independent. Note that we may write

ap(x,y') +pp(xy') =
> p(/[n ) Zp hlx, Oc) pic(x) 7] + B Zp (1], ) 7]
heH
Given the assumption that there exists a vector of tokens (o7, . .., 0};) such that p(oj|h, %) >
0 and p(oj, |k, T) = 0, the only way for the function to be identically zero is if

[} p(h|x, 66) pi(x) ] + B Zp h|x,0) fe(x) 7] = 0; forallh € H
k

First, we consider the case where the collections {6; } and {f;} are distinct, WLOG we may

say that 81 # 0 forall k € K, and 6; ¢ {60;}1~». WLOG, we may reference Lemma A.1 and
note that there exists a cycle h;, ... h;, h; such that py(h;, ... h; hi ) > pr(hy, ...k hy) for

Im Im

keK.
By the assumptions, with non-zero probability it may occur that x = [OZl 0 ] for
I € NT. Letting px = p1(hi, ... hi, b, ) for the above to hold, it must necessarily hold that

oY P(h|him/9k)[Pk} k]
BTk p(hlhi,, ) [Pel 7]
Note though that it is impossible for this to hold for all large [, thus if any of the transition

matrices are distinct the algebraic independence condition must hold. In the case where the

collection of transition matrices {6y} are identical {8}, a similar argument will show that
iy = 7t for all k (i.e.use the fact that 6, # 6y and select a cycle as we did before). O

=1foralll e N, h e H

Proof of Proposition 4.6. The key ingredient is that step 3 of Algorithm 1 produces the cor-
rect assignments. By Assumption 4.5 for all k € [K] and some A > 0 we have that (i)

arg ming | |9;f" - 9;5” |2 > ¢+ A (ii) ||9;<Uq - 9:)” |2 < c. Under the assumptions of Proposi-
tion 4.6 we have with high probability

AT, AW AT, w, AW w, w

||9kq_9kp||2:||6kq_9kq (9 ! 9 )+9kq_9kp||2
<1167 = 62+ 11— (B, — 6P + 116" = 6,717 < O([ogn/n]*) + ¢
and additionally for k # k’, we have that

w ZU w, AW w AW, AW

165 — 67112 = 116" — 6.7 + (6, —6,") — 67 + 6,7 |
AW, N AW, AW
<1167 = 0P+ 18" — 6,7 112+ 118" — 07117
< O(flogn/u]*) + (16" — 6,7 |?

Or re-arranging the inequality
||éZ)q AwV||2 > ||6 /P||2 _ (9([logn/n]ﬂé) >c+A— O([logn/n}”‘)

so that for if A > O([logn/x]*) it must hold true that arg min, | \9% /” 1% = k. O

Proof of Proposition 4.7. In the notation of Algorithm 1 we have established that

ﬁZ(
q(x) <) "

- I3
Lk nZ(k/)g(xMa(k/))]
a(k) =k forall k € [K]

g (x[Ma()) .
k) a(k) 0)
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So we seek a bound on
il g (x|7x) 5 7eg (x|i) >
1Y, — = —u(x6) — Y ——E = u(x;61) 134 Q(x)
/ 2 [T A8 (x| ; [T 78 (x| ?

. < . Al g (x| R il g (x| )
Triangle InequahtyE / ||k (2 0) — — KT (% 6,) |24 Q(x)
=2 (T Al (x| f)] [ g (xle)] ?

So what remains is to establish the Lipschitz continuity of the function pg(x;,7,60) =

q
% 1(x; 6 ). Note that we can equivalently write

Ho(x;m,1,0) = SFIMAX([log g (x[1), - ., log 7rg (x|7x) Dipt (x[6)
where SFTMAX denotes the softmax function. Thus Lipschitness follows from the assump-
tion that log 7rg(x|y) and p(x|6)) are both Lipschitz and bounded and the fact that the
softmax function composed with a set of K Lipschitz function is itself Lipschitz. O

Proof. First, multiply the optimization problem by 1/1+a

np }’lQ/

. 1
argm1n9€®m Z(f(xi,G) 1 n )& 2 f(x;,0 2
i=1

Then let 7 = 14% and expand terms to get

argming.g Y_ f(x;,0)% = 2y f (x;,0) — 2(1 — n)yif (xi0) + ny7 + (1 — n)y}?
=1

Next we add and subtract (7y; + (1 — 7)y})? to complete the square, and drop the addition
of any terms that are not a function of 6.

Ot = argmingo Y (f(x;,0) — (nyi + (1 —1)y}))?
i=1

Due to the assumption that the function f(x;0) is Lipschitz in 6, the empirical loss satisfies
uniform convergence and thus

By B> argmingE,, (f(x,0) — (ny + (1—)y"))?
Which implies that

Ot & argmingE, (f(x, ﬂanf x; 0k) + ZTCZf (x:0]7)))?

Note that we may write

Ex (Ey[y|x] UZﬂkf x;00) + (1= 1) Yol f (x:60)))?

k

= yllep|* + (1 = n)?llegr|* + (1 = n)epeq
By the assumption on @, f(x;6,;) must be within a ball of radius 72 of 1 Y n,’f f(x;0k) +
(1—7n)Yx 7TZ f(x; GZw), which completes the proof.

O

Proof of Proposition 3.2. We have

/,P(ylx,y’M(y’\X)dy’ / ylxy) Zq |2, K )q (K |x)dy'
Zpylx)/k (klx,y") qulxk’) (K'x)dy
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= Lplek) [ pEixy) Loty kel xdy
k kK

=Zp(ylx,k)[Zq(k’IX)//P(k\x,y’)q(y’lx,k’)dy’
k K Y

Calculation of Example 3.4. By Proposition 3.2 we have
d(ylx) = Yp(ylx k)a(klx),
k

q(klx) = /y p(k | x,y)a(y'|x, ko)dy'
Now by Bayes’ rule note that
J,pk 12y e ko)
ply' | x,k)q(y'[x ko) . ,
v L p(klx)p(y'|x, k)
/ /
<P [, Tty 0+ kol )

Now we plug in the parametric form of Assumption 2.4 to arrive at

= p(k[x)

W 1 g W 5
efﬁ(yuﬂ(x;ﬂki’))ze 2172(]/ i"(x'ng))

(klx) < p(klx) < [ .
! ’ T L

1 ;ew 2
Multiplying the numerator and denominator by e%* =rtiy) , and letting Ai(x) be
defined as in the statement we have

I S . 2
o 27 W TH)

i(k|x) < p(k / d
A(k|x) < plklx) L SR wCe, ) Y

/

Then we simply break the integral into the two cases: |y — p(x; 05)1 < |Ak(x)[/4 and
v — u(x;08)| = |A(x)]/4 to arrive at the final result. O

B Details of Figure 1

Figure 1 tests three weak to strong methods using the GSM8K (Cobbe et al., 2021) data set.
Weak labels are produced by Llama-2-7B-Chat (Touvron et al., 2023), Mistral-7B (Jiang et al.,
2023), and Gemma-1.2B (Team and Others, 2024) models. To provide some expertise on the
task, each weak model recieved supervised fine tuning with gold standard data, the data is
produced by (Yang et al., 2024b). The strong model is GPT-3.5-Turbo-0125 (Achiam et al.,
2024). We compare thee weak to strong methods: (i) simply training GPT-3.5-Turbo on the
weak data (ii) Using the ICL refinement method of Somerstep et al. (2024) (iii) an oracle
method where GPT-40 produces answers to the training set that GPT-3.5-Turbo is trained
on. Evaluation is done on a provided test set with answer key included, GPT-4o0 is used to
judge if the given test response matches the answer key in both the reasoning and the final
answer.
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