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ABSTRACT

In recent years, advanced image editing and generation methods have rapidly
evolved, making detecting and locating forged image content increasingly chal-
lenging. Most existing image forgery detection methods rely on identifying the
edited traces left in the image. However, because the traces of different forgeries
are distinct, these methods can identify familiar forgeries included in the training
data but struggle to handle unseen ones. In response, we present an approach for
Generalizable Image Forgery Localization (GIFL). Once trained, our model can
detect both seen and unseen forgeries, providing a more practical and efficient
solution to counter false information in the era of generative Al. Our method fo-
cuses on learning general features from the pristine content rather than traces of
specific forgeries, which are relatively consistent across different types of forg-
eries and therefore can be used as universal features to locate unseen forgeries.
Additionally, as existing image forgery datasets are still dominated by traditional
hand-crafted forgeries, we construct a new dataset consisting of images edited
by various popular deep generative image editing methods to further encourage
research in detecting images manipulated by deep generative models. Extensive
experimental results show that the proposed approach outperforms state-of-the-art
methods in the detection of unseen forgeries and also demonstrates competitive
results for seen forgeries.

1 INTRODUCTION

Driven by the success of deep-generative models |Goodfellow et al.| (2020); Karras et al.| (2019);
Ho et al.| (2020); Rombach et al.| (2022), Al-based image manipulation tools have enabled realis-
tic editing through simple interactions such as masks, sketches, and prompts [Zeng et al.| (2022);
Rombach et al.| (2022)); Xie et al.| (2023)); Zeng et al|(2023); [Epstein et al.|(2023)) that traditionally
require sophisticated skills and tedious manual operations. Although they have undoubtedly brought
numerous benefits, their widespread adoption has raised concerns about the credibility and trustwor-
thiness of visual content. Consequently, forgery image detection and localization has emerged as an
important research problem.

In recent years, a lot of effort has been made and a large number of methods have been proposed.
Traditional methods are typically designed manually based on the observed artifacts of manipulated
images such as noise patterns, JPEG artifacts, lens aberration, camera response function, color filter
array Mahdian & Saic|(2009); |Amerini et al. (2011); [Ferrara et al.[(2012); Siwei et al.| (2014); |[Mc-
Closkey & Albright| (2018};[2019); Nikoukhah et al.|(2019); Nataraj et al.| (2019). Their applications
are usually limited to the type of editing that produces the specific artifacts. In response, learning-
based detection methods have been proposed to detect a wider range of forgeries by training a model
on a large dataset of diverse forged images [Wu et al.|(2019); Dong et al.|(2022); Liu et al.| (2022).

Although learning-based approaches achieved excellent performance compared to traditional meth-
ods, their generalizability is still largely limited. They can accurately detect the types of forgeries
included in training data, but often struggle to identify new forgeries to which they have not been
exposed. In addition, the training datasets used in existing work are usually outdated and are still
oriented towards basic manipulation techniques like splicing and copy-and-paste, despite that so-
phisticated editing methods powered by deep generative models have been widely applied nowa-
days. To detect image forgeries in practical applications, it is crucial to consider the use cases of
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detecting forgeries produced by deep generative models and emphasize the generalization to unseen
forgeries.

To this end, we investigate the generalizability of state-of-the-art forgery detection methods and
present a comprehensive recipe for generalizable forgery detection in the deep learning era. First,
we propose a new paradigm with a universal forgery detection network, which can generalize to
unseen forgeries. We found that the inefficacy of existing methods in detecting unseen forgery
is due to their heavy reliance on specific forgery traces of forged content. Since different editing
methods may leave distinct traces, a model that looks for this trace can only recognize the type of
forgery included in the training data.

Therefore, we encourage our detector to be more inclined towards learning and utilizing authentic
image features in the pristine areas instead, which are more consistent across different types of
forgeries and can be used as universal features to learn a generalizable detector. More specifically,
our method supervises the encoder feature using features from masked images in which the forged
areas are removed. The decoder then utilizes these features in conjunction with other general features
to produce the localization mask.

Second, to encourage future research on the detection of advanced image forgeries, we create a
new forged image dataset, Forgery ADE. This dataset consists of a total of 177,680 images partially
manipulated using eight popular state-of-the-art image editing and generation methods based on
GANSs and diffusion models. For each original image, we create different variants of forged images
applying different types of forgeries in the same area. This makes it easier to study the effect of dif-
ferent types of training forgery on test-time detection robustness and compare detection performance
between different types of forgery.

Furthermore, we study and addressed several pervasive data-related issues such as the influence
of semantic correlation between forgery and image content, false positives on authentic images,
the influence of the number of training forgery types on the model’s generalization ability, and the
impact of masking, a common post-processing step for deep learning based image editing methods,
on forgery detection performance and generalization.

We summarize our contributions as follows:

* We proposed a generalizable image forgery detection and localization method capable of
detecting unseen forgeries, while also showing competitive performance compared to ex-
isting methods in detecting seen forgeries.

* We construct a new image forgery dataset using various advanced image manipulation
and generation methods, which is more suitable for universal and cross-method forgery
detection research than most existing datasets.

* We addressed several data-related issues in existing image forgery detection and localiza-
tion methods by introducing a comprehensive training data configuration.

2 RELATED WORK

Many methods have been proposed to assess the authenticity of images McCloskey & Albright
(2018)); Marra et al.| (2018); Rossler et al.| (2019); Nataraj et al.| (2019); McCloskey & Albright
(2019); L1 et al.{(2020). However, these approaches frequently exhibit unsatisfactory performance
when applied to images forged by unseen editing methods. Some attempts have been made to
address this challenge. [Wang et al.| (2020) demonstrated that GAN-based generated images share
some common systematic flaws, which can be distinguished from real images by classifiers trained
on a specific generator. |Zeng et al|(2017); Zhang et al.| (2019); [Frank et al.| (2020) found that
the GAN-based image generation method is more likely to expose common artifacts in the spectral
domain, which can be used to distinguish them from authentic images. Wang et al.| (2023) tries to
identify the images generated by the diffusion model Ho et al.|(2020) based on reconstruction errors
of a pre-trained diffusion model. However, these methods can only determine the authenticity of the
entire image and cannot locate the forged areas in the image.

Some work focuses on locating specific forged regions in images by modeling it as a pixel-level
binary classification problem. |Liu et al.|(2022); |[Dong et al.| (2022) utilize the learned multi-scale
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Figure 1: Illustration of the traditional classification-based image forgery detection pipeline (left)
and our proposed GIFL method (right).

and multi-view to detect forged areas. |Kwon et al.| (2022)) designed CAT-Net to locate slicing
and copy-and-paste forgeries from the perspective of detecting the anomaly of JPEG compression
artifacts. Some research is dedicated to finding inpainting forgery in images|Zhu et al.|(2018); |L1 &
Huang| (2019); |Lu & Niu|(2020); [Kumar & Meenpal (2021); |Zhu et al.| (2023); [Zhang et al.| (2022);
Wu & Zhou! (2021).

Some studies have focused on detecting both general and composite image forgeries. [Wu et al.
(2019) proposed ManTra-Net, which uses a long short-term memory solution to locate various types
of forgery traces. |[Zhuang et al.| (2021) proposed a fully convolutional network to detect the com-
monly used editing operations in Photoshop, and designed a training data generation strategy based
on Photoshop scripts. [Wu et al.| (2022) proposed a method based on noise-modeling and a robust
training scheme for detecting forged images that are shared on online social media. |Guillaro et al.
(2023)) proposed TruFor, which utilizes learned noise-sensitive fingerprints to detect manipulation
traces. Wu et al.| (2023)) proposed FOCAL, an image forgery detection method based on pixel-level
contrastive learning and unsupervised clustering. Zhai et al.| (2023) proposed WSCL, which aims to
enhance generalization ability through weakly-supervised learning. Recently, Guo et al.|(2024])) pro-
posed EITLNet, which effectively locates various image forgeries through the enhanced two-branch
transformer encoder with attention-based feature fusion.

Although these methods have broadened the scope of forgery detection, they still rely heavily on
locating the specific traces of the forgeries in training data and are prone to severe degradation in
detecting unseen forgeries.

3 METHOD

3.1 LEARNING UNIVERSAL FEATURES FOR GENERALIZABLE FORGERY LOCALIZATION

A forged image consists of two parts: the authentic part and the forged part. Given a forged image
1, existing approaches use a classifier C' to perform pixel-level binary classification. The goal of the
classifier is to assign different labels, e.g. 0, 1, to pixels in the two parts, and produce a binary mask
M d-
My =C().

Through learning on a large dataset of images altered by various editing methods, a powerful deep
neural network classifier can learn to recognize manipulation traces and detect many types of forg-
eries. However, these classifiers often rely heavily on the specific traces left by forgery methods
in the forged content, making it challenging to detect novel forgeries that have not been encoun-
tered. This is a critical issue because image editing methods evolve rapidly and new techniques are
constantly being developed.

In this work, we aim to encourage the detector to pay more attention to the general information
shared among different types of forgeries rather than specific forgery traces to develop a more gen-
eralizable approach. We observe that while forged parts may have distinct traces due to various
editing methods, authentic regions remain relatively consistent. Therefore, we propose to recon-
struct the features of the authentic area that are devoid of forged content to make the model R more
inclined to learn and utilize the authentic information:

F. = R(Fy)

where F). denotes the reconstructed authentic feature and F7 is the entire image feature encoded by
a frozen encoder.
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Figure 2: Architecture of our proposed Universal Forgery Localization Transformer (UFLT) (red
part), which contains multiple dual-domain attention components (cyan part).

Fig. [T] illustrates the overall pipeline of most existing approaches and the proposed method. In
essence, we transform the forgery localization task from a binary classification task that distin-
guishes between real and forged content to a regression task centered on authentic feature recon-
struction. Using the wider metric space of a regression process, more useful information can be
retained and used to achieve better performance and robustness.

Moreover, we decouple the detection process from the encoding and decoding process inspired
by Chen et al.|(2024). We utilize the same frozen encoder E to encode the features of both the input
image and the partial images where the forgery areas are removed:

Fr = E(I)

F, = E(Io(1- M)

where © represents element-wise multiplication. We then utilize a Universal Forgery Localization
Transformer (UFLT), which will be detailed in Sec.[3.2] to align the features of the forged image with
those of the partial image. This alignment reduces the gap between encoded features of different
forgeries, leading to improved generalization ability.

Finally, a fully connected layer is used as a decoder to obtain the final detection mask based on the
reconstructed features:

M, = FC(F,)

The loss function of our method comprises two parts: utilizing L2 loss to guide the regressor’s
feature reconstruction and alignment with input features, and supervising the final mask output
through a combination of BCE loss and IoU loss|Zhou et al.|(2019):

L=Ly(F, Fy) x 10+ Lpop(Ma, M) + Liov(Ma, My)

3.2 UNIVERSAL FORGERY LOCALIZATION TRANSFORMER

It has been pointed out that the spectral feature traces of different types of forgery may appear in
different depth of a network Zeng et al.| (2017); [Frank et al.| (2020); [Zhang et al.| (2019)); Xu et al.
(2019). However, existing spectral detection networks Kwon et al.| (2022); Wang et al.[ (2022a);
Zhou et al.| (2024) typically use a manually designed feature extractor to obtain traces from a spe-
cific layer through a single spectral transform and process the spectral features as another branch
independent of the spatial domain pipeline, which means that these methods can only extract the
spectral traces of some specific forgeries. Moreover, their single spectral transform and independent
branch processing result in the isolation of spectral information during intermediate processing, with
no interaction with spatial information before the inverse transform.

To this end, we propose a Universal Forgery Localization Transformer (UFLT), as depicted in Fig.
[2] To effectively exploit the traces exposed at different depths in different domains, we draw inspi-
ration from FFC |Chi et al.|(2020) and establish the interaction and fusion of features across domain
and across depth by connecting the paths of the two domains in each layer of the network. The
transformer encoder and feedforward network architectures are identical to ViT |Dosovitskiy et al.
(2020).
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In contrast to FFC, which utilizes an image-level Fourier transform to capture global information,
our approach focuses on leveraging local spectral domain information along with spatial positional
relationships to extract local information. To ensure compatibility with the vision transformer net-
work and make full use of its global self-attention capabilities for establishing long-distance corre-
lations, UFLT performs the Fourier transform on the patch embedding scale. Specifically, letting
Xpiz € RN XD pe the input feature, where N and D are the number and dimension of embeddings,
we apply a 2-D fast Fourier transform (FFT) to embeddings, and then concatenate the imaginary
and real parts of the spectral features to produce X e, € RV*(P*2) Due to the redundancy in
the conjugate symmetric signal obtained from the 2-D FFT, we can reduce the dimension of X ¢,
without losing essential information. Therefore, we transform X ¢,.., into a D dimensional feature
through a fully connected layer to ensure that its shape aligns with that of X,,;, allowing the vision
transformer to use features of the spectral domain.

4 FORGERY ADE DATASET

Diversifying the type of forgeries in training is an effective way to enhance the generalizability of
forgery detectors Wang et al.| (2020). However, most of the existing forgery image detection and
localization datasets [Kwon et al.| (2022); Dong et al.| (2013); |De Carvalho et al.| (2013); |[Ng et al.
(2004); Wen et al.|(2016) lack diversity and are still dominated by images produced using manual
slicing. These outdated and diversity limited training datasets are not suitable for contemporary deep
learning based image manipulation methods.

Although some recently developed datasets have included deep learning base forgeries, they still
have several critical issues. First, in most datasets |Wen et al. (2016); |Guillaro et al. (2023); lJia
et al. (2023); [Sun et al.| (2023), the location, shape, and contents of the forged areas are determined
based on the semantics of the image. However, in practical applications, forgery may appear in
any shape in any region of the image and may be unrelated to semantics. Therefore, training on
these forgery images with semantic connections can lead detectors to rely on semantics to detect the
forgery, resulting in reduced performance on forgeries without semantic connections. Second, most
existing datasets only include forged images and lack authentic images as negative samples. As a
result, false positives often occur when the input is a clean image without any forgery |VidalMata
et al.| (2023). Moreover, we found that many existing models learned a shortcut to detecting deep
learning based forgeries by detecting the seam between the manipulated area and the pristine area.
This is because most deep-generative inpainting models have a post-processing step that blends the
model output with the original image using the inpainting mask. We present a detailed study of these
issues in Section

To this end, we create a new forged image dataset based on the ADE 20K Zhou et al.|(2017) dataset,
called Forgery ADE. Examples of forged images generated by different forgery methods in the
dataset are shown in Fig.

We select eight of the most popular and representative deep learning based image inpainting methods
as forgery approaches, including 4 GAN-based methods: Deepfill v2|Yu et al.[(2019), CTSDG |Guo
et al.|(2021), CR-Fill Zeng et al.|(2021), LaMa|Suvorov et al.| (2022), and 4 diffusion-based methods:
LDM Rombach et al.| (2022), SSDE |Song et al.| (2020), DDNM [Wang et al.|(2022b), RePaint |Lug-
mayr et al.| (2022). Each of these methods is applied to all 20,210 training images and 2,000 test
images in the ADE 20K, producing eight sets of forgery images for a total of 177,680 images. We
carefully selected a set of irregular occlusion masks provided by |[Zeng et al.|(2021)) that are not re-
lated to the image and randomly rotated and flipped them to increase the diversity of the data and
further avoid semantic association. We scale all images and masks to 512 x 512. All forged im-
ages are the direct output of the generated model without post-processing masking. In training, we
provide authentic images as negative samples, of which the ground truth is all zero maps.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Considering the availability of code and the popularity of forgery methods, we use the most popular
GAN-based forgery method Deepfill v2 |Yu et al.| (2019) and the diffusion-based forgery method
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Table 1: Quantitative comparison. Bold for best results.

Prior Forgery Metric | ManTra-Net MVSS-Net PSCC-Net CAT-Net IID-Net IF-OSN IML-ViT TruFor FOCAL EITLNet GIFL
Fl 0.8855 0.9117 0.8765 0.8532  0.8583 09069  0.9035 0.8779 0.8239  0.8956  0.8539
10U 0.7071 0.7719 0.7009 0.6523  0.6633 07656 07166  0.7057  0.6086  0.7362  0.6446

Deepfill v2 ACC 0.9805 0.9881 0.9815 09665  0.9795 09888  0.9865 09852 0.9519  0.9847  0.9756

AUC 0.8905 0.9133 0.8718 0.8724  0.8565 09010  0.9082  0.8611 0.8251  0.9030  0.8647

Fl 0.5623 0.7063 0.6382 0.5019  0.5951  0.6480 05193  0.6069 05238 07218  0.7078

10U 0.1262 0.3703 0.3108 0.0547  0.1979 02768  0.0795 02106 0.0821  0.4015  0.3655

LDM ACC 0.8842 0.9283 0.8228 0.8741  0.8936 09074  0.8613 09124 08546 09183  0.9248

Trained AUC 0.5672 0.7193 0.7147 0.5273 06171  0.6576  0.5511  0.6103 05409 07527  0.7278
rame:

Fl 0.4799 0.6526 0.5431 04902 04848 0.6723 05259 06117 05628 05711  0.7827

10U 0.0047 0.3060 0.1066 0.0192  0.0147 03482  0.0767 02183 0.1415  0.1490  0.5010

CASIALO  AcC 09114 0.9272 0.8917 0.9087  0.9072 09383  0.9093 09372 0.8807  0.9224  0.9490

AUC 0.5015 0.6636 0.5677 05083  0.5057  0.6795  0.5430  0.6131 0.5701  0.5821  0.7934

Fl 0.6426 0.7569 0.6859 0.6151  0.6461 07424  0.6496  0.6988 0.6368  0.7295  0.7815

10U 0.2793 0.4827 0.3728 02421 02920 04635 02909 03782 02774  0.4289  0.5037

Seen AVG  ACC 0.9254 0.9479 0.8987 09164 09268 09448 09190 09449 0.8957  0.9418  0.9498

AUC 0.6531 0.7654 0.7181 0.6360  0.6598 07460  0.6674  0.6948  0.6454  0.7459  0.7953

Fl 0.5619 0.6831 0.5650 05241  0.5667 0.6412  0.5421 05212 05258 05513 0.7963

10U 0.1269 0.3321 0.1878 0.0825  0.1547 02632  0.1106  0.0800 0.0890  0.1313  0.5277

CTSDG ACC 0.8667 0.9247 0.8032 0.8749  0.8695 09082  0.8692  0.8834 0.8512  0.8861  0.9545

AUC 0.5743 0.6839 0.6173 0.5449  0.5862  0.6429  0.5700  0.5408 0.5416 05722  0.8209

Fl 0.5481 0.6808 0.6041 0.5487  0.5858 05902  0.5326  0.5640 0.5509  0.6231  0.7876

. 10U 0.1031 0.3261 0.2096 0.1189  0.1802  0.1824  0.0960  0.1527 0.1192 02511  0.5086

CR-Fill ACC 0.8874 0.9317 0.8992 0.8840  0.8980  0.9036  0.8721  0.8988 0.8649  0.9096  0.9525

AUC 0.5536 0.6760 0.6175 05662  0.6015 05958  0.5589  0.5780 0.5607  0.6389  0.8070

Fl 0.4735 0.5137 0.4734 05073 0.5481 04788 05152 05127 05197 05591  0.6580

10U 0.0125 0.0732 0.0152 0.0638  0.1230  0.0238  0.0728  0.0742 0.0818  0.1557  0.2884

LaMa ACC 0.8717 0.8935 0.8733 0.8761  0.8931  0.8789  0.8681  0.8868 0.8482  0.8987  0.9279

AUC 0.5059 0.5370 0.5084 05316  0.5668 05119  0.5445  0.5373 0.5366  0.5803  0.6596

Fl 0.4781 0.5082 0.5376 04704 04883 04879  0.5020 04720 0.5028  0.4903  0.6779

10U 0.0192 0.0609 0.1193 0.0108  0.0381 00348  0.0565 00126 0.0586  0.0380  0.3216

SSDE ACC 0.8688 0.8840 0.8606 0.8655  0.8663  0.8785  0.8618 0.8744 0.8465  0.8778  0.9188

AUC 0.5070 0.5311 0.5725 05026 0.5235 05176 0.5336  0.5063 0.5217 05183  0.7010

Fl 0.5258 0.5511 0.5668 04861  0.5656 05252 0.5508 04901 0.5467  0.5276  0.6589

Unseen 10U 0.0741 0.1266 0.1575 0.0300  0.1503  0.0889  0.1231  0.0355 0.1118  0.0929  0.2949

DDNM ACC 0.8861 0.9018 0.8813 0.8706  0.8934 0.8916  0.8789  0.8812 0.8640  0.8909  0.9263

AUC 0.5369 0.5676 0.5945 05130  0.5875 05474  0.5732 05179 0.5542 05483  0.6698

Fl 0.4923 0.5335 0.5892 04902  0.5484 05380 04986 05166 0.5102 05521  0.6478

. 10U 0.0354 0.1001 0.1924 0.0383  0.1252  0.1095  0.0505 0.0778 0.0674  0.1384  0.2721

RePaint ACC 0.8691 0.8890 0.8835 0.8706  0.8843  0.8932  0.8615 0.8873 0.8482  0.8947  0.9172

AUC 0.5169 0.5519 0.6112 05178  0.5725 05566  0.5319 05392  0.5285  0.5735  0.6594

Fl 0.4764 0.4830 0.4706 04755 04700 04838 04848 04730 04902 04737  0.5647

10U 0.0097 0.0169 0.0041 0.0089  0.0027  0.0236  0.0275  0.0045 0.0453  0.0052  0.1417

COVERAGE  AcC 0.8797 0.8857 0.8787 0.8797  0.8806  0.8859  0.8639  0.8884 0.8422  0.8851  0.8971

AUC 0.5008 0.5080 0.4982 05002  0.4987 05111  0.5086  0.5036 0.5085  0.5007  0.5763

Fl 0.4253 0.4673 0.4183 04249 04186 04224 04509 04365 04538  0.4789  0.5712

. 10U 0.0122 0.0784 0.0069 00120  0.0047 00104  0.0506 0.0305 0.0511  0.0805 0.2148

CocoGlide  AcC 0.7460 0.7413 0.7429 07446 07494 07520 07415 07466 07363  0.7626  0.7968

AUC 0.5021 0.5312 0.5011 0.5028  0.5023 05054  0.5220 0.5122 0.5161 05383  0.6114

Fl 0.4977 0.5526 0.5281 04909 05239 05209  0.5096 04983 0.5125 05320 0.6703

10U 0.0491 0.1393 0.1116 0.0457  0.0974  0.0921  0.0735  0.0585 0.0780  0.1116  0.3212

Unseen AVG  ACC 0.8594 0.8815 0.8528 0.8583  0.8668  0.8740  0.8521  0.8684 0.8377  0.8757 0.9114

AUC 0.5247 0.5733 0.5651 0.5224  0.5549 05486  0.5428  0.5294 0.5335  0.5588  0.6882

LDM Rombach et al|(2022) to create edited images in Forgery ADE. We also include a represen-
tative traditional splicing forgery image dataset CASIA v2 |Dong et al.[(2013) as training data. In
addition, we add unmanipulated clean images to the training data as negative samples, with a ratio
of 1 : 1 to forged images.

We use the pre-trained DINOv2 ViT-L/14|0Oquab et al.|(2023) as the encoder, which is frozen during
training, and use a fully connected layer as decoder. UFLT adopts the same configuration as ViT-
L/14|Dosovitskiy et al.|(2020). UFLT and the decoder are optimized together by the Adam optimizer.
Training is performed on images with a resolution of 448 x 448, with all data enhancement measures
in|Wang et al.|(2020) and |Wu et al.|(2023). The learning rate is set to 1e — 4 and the batch size is 8.
We use the Pytorch framework for our implementation and train on a Nvidia A100 GPU.

5.2 PERFORMANCE OF OUR APPROACH

We compared our proposed approach with several state-of-the-art image forgery detection and lo-
calization methods, including EITLNet Guo et al.| (2024), FOCAL |Wu et al.| (2023), TruFor|Guillaro
et al.[(2023), IML-ViT Ma et al.|(2023)), IF-OSN|Wu et al.| (2022)), IID-Net/Wu & Zhou|(2021)), CAT-
Net | Kwon et al| (2022), PSCC-Net Liu et al.| (2022), MVSS-Net Dong et al.| (2022)) and ManTra-
Net|(Wu et al.| (2019). To ensure fair comparison, all methods are implemented in accordance with
the original paper, while trained on the same dataset with the same data augmentation measures as
ours.

A comparative experiment is conducted on all eight forgery test sets in Forgery ADE, as well as two
splicing forgery datasets CASIA v1 Dong et al.|(2013) and COVERAGE [Wen et al.| (2016)), and an
object synthetic dataset CocoGlide |Guillaro et al.|(2023)). Performance is evaluated using pixel-level
metrics including F1, IoU, ACC, and AUC.
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Figure 3: Visual comparison of our results and those of previous methods. Red boxes indicate the
results on seen forgeries and blue for unseen ones. Zoom-in to see the details. More results are
included in the Appendix.
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As illustrated in Table [T} GIFL achieves state-of-the-art performance in detecting unseen forgeries
and also shows competitive performance on seen forgeries. In particular, GIFL demonstrates sig-
nificantly superior performance over other methods in detecting highly realistic images edited by
diffusion-based methods.

Fig. [3|shows the detection results of our method and others. More visual comparisons are shown in
the Appendix (Fig. [5). It can be observed that existing methods generally fail to achieve satisfactory
localization results for unseen forgeries, many forged contents cannot be accurately and completely
detected, and authentic contents are often incorrectly labeled as forgeries. Some methods tend to
focus on a specific one in multiple seen forgeries and fail to detect others. In contrast, GIFL provides
more accurate results in unseen forgeries and performs more consistently and reliably on multiple
trained forgeries.

5.3 ABLATION STUDY

We investigate the specific effects of each component of our approach. The following experiments
adopt the same model parameters and experimental settings as stated in Sec. To speed up the
experiment, we set the encoder and UFLT to the configuration of ViT-B, trained on forged images
of Deepfill v2 and LDM with the same number of authentic images, and tested only on the first 50
images of each forgery in Forgery ADE. The results are shown in Table[2] A more complete analysis
can be found in the Appendix (Table|[6).

Learning Method. We design a series of experiments to explore the effectiveness of our proposed
image forgery localization method. Firstly, we train the UFLT and decoder using the traditional
mask-targeted classification training method as a comparison (Option I). Then, we change the target
for the reconstruction in the GIFL to the feature of the target mask encoded by the encoder:

= B(M,)

thus independently applying the feature space alignment strategy without the reconstruction of the
image features to show the influence of each component (Option II). By comparing the results of
Option II with those of Option I and the baseline, we can see that the authentic feature-reconstruction
approach and the feature space alignment strategy each brings a significant improvement on unseen
but also cause a slight performance degradation on seen forgeries.
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Table 2: Ablation study on different configurations of GIFL.

. Seen Average Unseen Average
Category  Option | g, [IOU  ACC AUC | FI I0U  ACC  AUC
Baseline 1 0.8048  0.5566 09321 0.8253 | 0.7226 04059 09016 0.7362

I 0.8212  0.5849 0.9346 0.8287 | 0.6653 0.3085 0.8845 0.6704
11 0.8170 0.5772 0.9340 0.8258 | 0.6748 0.3243  0.8805 0.6834
Method 111 0.7485 0.4565 09171 0.7621 | 0.6657 0.3151 0.8884 0.6761
v 0.8049 0.5585 0.9346 0.8152 | 0.5681 0.1650 0.8622 0.5847

V07872 05241 09302 0.7909 | 0.6752 0.3377 0.8921 0.6843
VI | 07625 0.4905 0.8801 0.8130 | 0.7206 04152 0.8641 0.7658
Network ~ VII | 07655 04819 09253 0.7706 | 0.6320 02613 0.8772  0.6405
VIII | 0.7724 05011 0.9203 0.7921 | 0.7030 0.3794 0.8959 0.7201
IX | 07918 05387 09090 0.8344 | 0.7236 0.4164 08763 0.7599

To investigate the impact of specifically reconstructing authentic features in images, we reconstruct
the feature of the complete image (Option III):

F,=E(I)
Further, we replace the targeted features with the forgery feature of the image:
F,=E(I 6 M)

so that UFLT learns to reconstruct the content of the forged area rather than the authentic one (Option
IV). Option III proves that reconstructing authentic features plays a crucial role. The performance
of Option IV in unseen forgeries is far below the baseline, which shows the clear advantage of using
authentic content for generalizable forgery detection.

Universal Forgery Localization Transformer. To verify the effectiveness of UFLT, we first con-
struct an UFLT-spatial that is implemented only in the spatial domain, which has the same structure
and number of parameters as the baseline, but without any spectral transformation (Option V). Then
we performed the spectral transformation on the input and output of the network, thereby con-
structing an UFLT-spectral that is only in the spectral domain (Option VI). According to the results,
although UFLT performed solely in the spectral domain has certain advantages, its performance gain
is still limited. This shows that the benefit of UFLT comes largely from the fusion and utilization of
information from both domains.

Patch-Level Domain Transformation. To verify the effectiveness of patch-level domain transfor-
mation, we introduced three spectral transformation schemes for comparison: 2-D FFT on the entire
feature at the image level (Option VII), 32 x 32 (Option VIII) and 8 x 8 (Option IX) scales, respec-
tively. Since the spectral domain features are obtained by transformation at the image level, which
does not retain any spatial position information, it hardly brought any performance improvement
for forgery localization tasks. Although the transformation scheme on the 32 x 32 scale preserves
information in local regions, its performance is still inferior to the baseline due to its inability to
effectively utilize the global attention mechanism of ViT. The 8 x 8 scheme yields a similar perfor-
mance to the baseline but has higher computational complexity.

5.4 DATA-RELATED STUDIES

In this section, we study the impact of several data-related issues on detection performance and
generalization. The experimental settings and model configuration in this section are the same as
those in the ablation studies, except for the training data. We measure the false positive errors on
authentic images using pixel-level ACC (p-ACC) and image-level ACC (i-ACC). The experimental
results are shown in Table[3]and Table 4]

Additionally, we investigate the impact of various image quality degradation (such as compression,
resizing, etc.) on detection performance. Please refer to Appendix [A.2]for details.

Semantic Correlations. To investigate the impact of semantic correlation between forgery and im-
age content on detection performance, we use images generated by LaMa|Suvorov et al.[(2022)) from
GRE [Sun et al.| (2023)) and the LaMa subset of Forgery ADE for training, which were semantically
related and nonrelated, respectively. We then test them on two datasets with semantic correlation,
Guillaro et al.| (2023)); Jia et al.| (2023); |Sun et al.| (2023)) and [Wen et al.| (2016), and two datasets
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Table 3: Performance comparison under different dataset settings, bold for trained forgeries.

. . Data Diversity False Positives Masking
Forgery  Metric ‘ Baseline ‘ 1 1 pit v v VI VIl VI X X X1

F1 0.8932 | 0.9051 0.7320 0.8874 0.8859 0.8810 | 0.8968 0.9035 0.8982 | 0.8641 0.8722  0.9029

. 10U 0.7195 | 0.7433 04243 0.7075  0.7025 0.6909 | 0.7285 0.7419  0.7271 | 0.6647 0.6758 0.7415
Deepfill v2. AcC 0.9650 | 0.9695  0.9007 0.9617  0.9620 0.9608 | 0.9678 0.9698 0.9677 | 0.9595 0.9510 0.9688
AUC | 0.9093 | 09161 0.7564 0.9055 0.9069 0.8979 | 0.9117 0.9122 0.9065 | 0.8576 0.8985 0.9124

Fl1 0.8032 | 0.7500 0.7216 0.8731 0.8629 0.8621 | 0.7940 0.8079 0.7864 | 0.8061 0.8303  0.8720

10U 0.5464 | 04412 04062 0.6831 0.6654 0.6649 | 0.5252  0.5537 0.5206 | 0.5539 0.5947  0.6705

CTSDG ACC 0.9203 | 0.9045 0.9024 0.9581 0.9573 0.9558 | 09149 0.9284 0.9252 | 0.9363  0.9257  0.9499
AUC 0.8368 | 0.9045 0.7339 0.8956 0.8801 0.8856 | 0.8187 0.8198 0.7961 | 0.8015 0.8616 0.8817

Fl 0.8362 | 0.7934 0.7595 0.8480 0.8599 0.8647 | 0.8372 0.8336 0.8275 | 0.7858 0.8036 0.8448
) IOU | 0.6005 | 0.5213 04727 06242 0.6514 0.6571 | 0.6000 05960 0.5909 | 0.5104 0.5352  0.6169
CR-Fill ACC | 09382 | 09316 09197 09421 09535 0.9533 | 0.9385 09410 0.9445 | 0.9311 09256 0.9484
AUC | 0.8625 | 0.7863 0.7751 0.8639 0.8824 0.8802 | 0.8464 0.8399 0.8358 | 0.7697 0.8196 0.8429

F1 0.7024 | 0.5531  0.6255 0.7140  0.6915 0.7338 | 0.7236  0.6960 0.6616 | 0.6024  0.6500  0.6509

10U 0.3669 | 0.1312  0.2501 0.3845 0.3542  0.4309 | 03916 0.3504 0.3068 | 0.2132  0.2951  0.2911

LaMa ACC 0.8992 | 0.8518 0.8854 0.8982 0.8944 0.9210 | 0.8962 0.9003 0.8975 | 0.8784 0.8876  0.8945
AUC 0.7057 | 0.5672 0.6339 0.7119  0.6877 0.7349 | 0.7174 0.6891  0.6582 | 0.6082 0.6602  0.6515

Fl 0.7164 | 0.4827 0.6870  0.6897 0.6959 0.6681 | 0.7331 0.7238  0.6999 | 0.6248  0.6533  0.7529

10U 0.3936 | 0.0373 0.3418 0.3534 0.3613  0.3254 | 0.4100 0.4002 0.3628 | 0.2450 0.3036  0.4553

LDM ACC 0.8991 | 0.8287 0.8996 0.8875 0.8882 0.8842 | 0.8985 0.8961 0.8954 | 0.8885 0.8902  0.9200
AUC | 0.7412 | 0.5180 0.6975 0.7143 0.7085 0.6903 | 0.7483 0.7354  0.7084 | 0.6254 0.6670  0.7556

F1 0.6588 | 0.4806 0.5758 0.7977 0.8052 0.7910 | 0.6774 0.6650 0.6311 | 0.5658 0.6337  0.7251

10U 0.2974 | 0.0390 0.1801 0.5481 0.5608 0.5288 | 0.3206 0.3111 0.2613 | 0.1613  0.2597  0.4019

SSDE ACC 0.8755 | 0.8295 0.8561 0.9337 0.9378 0.9347 | 0.8590 0.8700 0.8748 | 0.8514 0.8627 0.9049
AUC 0.6711 | 0.5188 0.6004 0.8039 0.8112 0.7908 | 0.6984 0.6755 0.6501 | 0.5900 0.6525 0.7282

Fl1 0.6906 | 0.5389 0.6094 0.6853 0.7902 0.7664 | 0.7133  0.7020 0.6496 | 0.5446 0.7086  0.6884

10U 0.3494 | 0.1166 0.2302  0.3480 0.5310  0.4902 | 0.3801 0.3639 0.2914 | 0.1342 0.3843  0.3472

DDNM ACC 0.8982 | 0.8453 0.8824 0.8955 0.9313 0.9231 | 0.8910 0.8961 0.8916 | 0.8576  0.8951  0.8977
AUC 0.6897 | 0.5581 0.6198 0.6872 0.7884 0.7646 | 0.7118 0.6949 0.6511 | 0.5667 0.7200  0.6894

F1 0.6441 | 04870 0.5376  0.6789  0.7298 0.7295 | 0.6779 0.6133  0.6001 | 0.4828  0.6659  0.6191

. 10U 02750 | 0.0482 0.1193  0.3306 04171 0.4203 | 03218 0.2284 0.2143 | 0.0442 0.3137 0.2356
RePaint ACC 0.8783 | 0.8275 0.8484 0.8859 0.9003 0.9024 | 0.8689 0.8561 0.8636 | 0.8266 0.8800  0.8694
AUC 0.6516 | 0.5237 0.5600 0.6790 0.7303 0.7306 | 0.6864 0.6236 0.6160 | 0.5226  0.6799  0.6243

p-ACC | 0.9966 | 0.9994 0.9994 0.9878  0.9930 0.9942 | 0.9704 0.9924  0.9962 | 0.9985 0.9765 0.9948

Authentic 5 4CC | 0:8000 | 0.8400 0.9800 07400 0.5200 07400 | 0.0400 0.5000 0.9600 | 0.8400 05400 0.7200
Table 4: The impact of dataset semantic correlation on performance.
Training set  Semantic | Test set Semantic | Fl1 j(0]8) ACC AUC

CocoGlide 0.4570 0.0493 0.7488 0.5194

COVERAGE v 0.4748 0.0103 0.8731 0.4962

GRE IMD2020 05038 0.0646 09472 0.5319
Forgery ADE 0.6909 0.3406 0.8961 0.6870

CocoGlide 0.4785 0.0800 0.7419 0.5276

COVERAGE v 0.4971 0.0383 0.8665 0.5103

ADE IMD2020 05704 0.1079 09790 0.5853
Forgery ADE 0.7809 0.4975 09135 0.8202

without semantic correlation, Novozamsky et al.|(2020) and the Deepfill v2 training set of Forgery
ADE. Both training sets use the first 2,0000 images and employ the same pre-processing and scaling
to the same size. The experimental results are shown in table [4]

It can be seen that models trained on datasets with semantic correlations and without perform simi-
larly in dealing with semantic-related forgeries, while the model trained on datasets without semantic
correlations performs significantly better in handling forged images without semantic correlations.

Data Diversity. This section discusses the impact of the types and number of forgery methods. We
use a combination of different forgeries for training: only Deepfill v2 (Option I) or LDM (Option
IT), using 4 types of forgery (Option III), 6 types of forgery (Option IV), and all types of forgery
(Option V).

We can see that including the corresponding samples in the training set can improve the detection
performance on specific forgeries, as well as forgeries generated by similar methods. Increasing the
diversity of the training forgery can significantly improve the generalization, resulting in better per-
formance on almost all forgeries, but it can lead to an increase in the false-positive rate on authentic
images.

Negative Samples. We further investigate the impact of introducing negative samples in training
on the detection performance and false positive erros. Based on the research of |[VidalMata et al.
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Table 5: The performance of each method on authentic images after training on datasets with and
without negative samples.

w/o Authentic Image | w/ Authentic Image
Methods | p.ACC  i-ACC | p-ACC  i-ACC

ManTra-Net | 0.9334 0.0800 0.9978 0.6000
MVSS-Net | 0.9885 0.6400 1.0000 1.0000
PSCC-Net | 0.9363 0.3200 0.9892 0.9800

CAT-Net 0.9897 0.2200 0.9928 0.4800
IID-Net 0.9936 0.8000 1.0000 1.0000
IF-OSN 0.9902 0.5000 1.0000 1.0000
IML-ViT 0.9115 0.2800 0.9834 0.9800

Trufor 0.9862 0.6600 1.0000 1.0000
FOCAL 0.9588 0.0000 0.9602 0.0000
EITLNet 0.9792 0.6200 1.0000 1.0000

GIFL 0.9704 0.0400 0.9966 0.8000

(2023), we do not include authentic images in the training dataset (Option VI) and then set the ratio
of forged images to authentic images to 1:2 (Option VII) and 2:1 (Option VIII), respectively.

Introducing a certain number of negative samples significantly reduces the occurrence of false pos-
itive errors and has no significant impact on the performance of forgery detection. Increasing the
proportion of negative samples can further suppress false positive errors. However, excessive neg-
ative samples can lead to a degradation in detection performance. Therefore, we suggest adding a
certain proportion of negative samples to the training samples to balance detection performance and
false positive erros. Take GIFL for example, a ratio of 1 : 1 between forged and authentic images is
recommended.

Furthermore, we train various forgery detection methods without negative samples and witha 1 : 1
ratio of negative to positive samples and evaluate their results on authentic images (Table [5). It
can be observed that the false positive problem of most methods is effectively suppressed after the
introduction of negative samples in training, except for FOCAL, which is limited by its contrast
learning strategy that forcibly divides all images into two parts.

Masking. We investigate the impact of the masking post process that replaces unedited regions in
forged images with authentic content. We train on the blended images and test them on both fully
generated (Option IX) and blended forged images (Option XI). We also test the model trained on
the complete images on the masked images (Option X).

It can be seen that the model trained on the blended image performs well on blended images but
performs poorly on fully generated images, while the model trained on the complete image performs
well in both cases. This is likely because the model trained on blended images will learn a shortcut
that detects forgery by detecting the seam caused by blending. Therefore, we suggest training on
the fully generated images to ensure that forged images, whether blended or not, can be accurately
detected.

6 CONCLUSION

In this paper, we study the localization and detection of universal image forgeries. We propose a
generalizable image forgery localization method and an efficient and robust dual-domain network.
Our research emphasizes that focusing on the learning of authentic image features in pristine areas
can be a generalizable way for forgery localization. Extensive experimental results indicate that our
method outperforms state-of-the-art methods in locating uncounted image forgeries by a large mar-
gin and also shows competitive performance on the seen forgeries. Furthermore, we construct an
image forgery dataset containing images edited by various advanced deep generative image editing
methods and introduce a comprehensive training data configuration to address several data-related
issues in universal image forgery detection and localization. Our training strategy and dataset con-
figurations are independent of the model and can be applied to improve existing methods. It is worth
noting that our improvement in generalization ability comes at the cost of a slight performance drop
on seen forgeries, which can be an interesting problem to study in future work.

10
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A APPENDIX

A.1 VISUALIZATION OF FEATURE ALIGNMENT

In order to visually verify the effectiveness of feature alignment, we train a fully connected layer as
a decoder on the encoded features F7, and decode the reconstructed features F;. and target features
F, into RGB images for observation, as shown in Fig. [6]

We can observe that both the reconstructed and target features have semantic and spatial structures
similar to the input image after decoding, and the authentic content is reconstructed while the forged
content is excluded. This confirms that the authentic features in different forged images have a high
degree of consistency and are in the same feature space as the input features.

A.2 IMPACT OF IMAGE QUALITY DEGRADATION

We apply a series of image degradation methods to the forged images, including JPEG compression
with a quality factor of 25, downsampling and upsampling back with scale of 2, sharpening, mean
blur with a kernel size of 7, motion blur with a kernel size of 7 and a random direction, gamma
transform with a factor of 1.5, and ISO noise with a color shift factor of 0.05 and intensity factor
of 0.8. We detect forged images with degraded images using the GIFL baseline, and the results
are shown in Table [§] It can be seen that various image degradations are not conducive to forgery
detection and may harm detection performance.

A.3 IMPACT OF ENCODER

To investigate the influence of the pre-trained encoder’s performance, we use DINOv2 ViT-L/14,
DINOv2 ViT-B/14 trained on the LVD-142M dataset |(Oquab et al.| (2023)), MAE ViT-B/16 trained
on ImageNet 1k He et al.| (2022), and the original ViT-B/16 trained on ImageNet 21k [Dosovitskiy
et al.[(2020) as encoders and test on the complete test set. The rest of the experimental settings and
model configuration in this section are the same as those in comparative studies. The experimental
results are shown in Table[7] It can be seen that using a weaker encoder will result in a decrease in the
performance of the model, but it still performs significantly in detecting unseen forgeries compared
to other methods in Table [Tl

15



Under review as a conference paper at ICLR 2025

By

=% =

e
s

Image Torged Area Deepfill v2 CTSDG CR-Till LaMa LDM SSDE DDNM RePaint

Figure 4: Forged images generated by different forgery methods in Forgery ADE dataset.
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Figure 5: Visual comparison of completion images of our method and other methods. Red back-
ground for trained forgeries, blue for unseen ones. Zoom-in to see the details.
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Table 6: Complete results of the ablation study.
Prior Forgery =~ Metric | Baseline | 1 11 111 v | Vv VI VII VIII IX

F1 0.8932 | 09033 0.9007 0.8683 0.9011 | 0.8920 0.8421 0.8680 0.8754 0.8736
IOU | 07195 | 07495 07364 0.6594 0.7341 | 0.7133  0.6186 0.6621 0.6759 0.6810
Deepfill v2 ACC | 0.9650 | 0.9719 09681 0.9552 0.9692 | 0.9652 0.9289 0.9589 0.9569 0.9545
AUC | 0.9093 | 0.9061 0.9039 0.8810 0.9054 | 0.8956 0.8979 0.8704 0.8947 0.9058

Seen F1 0.7164 | 0.7391 0.7333  0.6287 0.7087 | 0.6823 0.6828 0.6631 0.6694 0.7100
10U 0.3936 | 0.4203 0.4181 0.2535 0.3829 | 0.3348 0.3623 0.3018 0.3262 0.3963

LDM ACC 0.8991 | 0.8973 0.8999 0.8790 0.8999 | 0.8951 0.8314 0.8917 0.8836 0.8635

AUC | 0.7412 | 0.7513 0.7478 0.6432 0.7249 | 0.6861 0.7280 0.6707 0.6895 0.7629

F1 0.8032 | 0.7479 0.7819 0.7853 0.6813 | 0.7875 0.7904 0.7625 0.7763 0.7934

10U 0.5464 | 0.4459 0.5017 0.5095 0.3318 | 0.5226 0.5295 0.4708 0.5017 0.5372

CTSDG ACC | 0.9203 | 0.9037 0.9120 0.9257 0.8959 | 0.9250 0.8969 0.9221 0.9135 0.8964
AUC | 0.8368 | 0.7616 0.7989 0.8024 0.6723 | 0.7945 0.8567 0.7582 0.8095 0.8556

Fl 0.8362 | 07912 0.7916 0.8114 0.7097 | 0.8387 0.7967 0.7523 0.8011 0.8008
] IOU | 0.6005 | 05098 05102 0.5563 03718 | 0.6062 0.5346 0.4414 0.5397 0.5436
CR-Fill ACC | 09382 | 09257 09191 09339 09103 | 0.9426 0.9036 09174 0.9285 0.9121
AUC | 0.8625 | 0.7851 0.7858 0.8210 0.6939 | 0.8350 0.8523 0.7439 0.8257 0.8480

Fl1 0.7024 | 0.6335 0.6465 0.6232 0.5327 | 0.6402 0.7063 0.5786 0.6874 0.7226

10U 0.3669 | 0.2524 0.2679 0.2408 0.1105 | 0.2703 0.3797 0.1742 0.3506 0.4045

LaMa ACC 0.8992 | 0.8867 0.8805 0.8833 0.8573 | 0.8886 0.8736 0.8702 0.8991 0.8898
AUC 0.7057 | 0.6281 0.6399 0.6261 0.5551 | 0.6406 0.7260 0.5867 0.6866 0.7276

Unseen F1 0.6588 | 0.6108 0.6033 0.6076 0.4916 | 0.5988 0.6823 0.5679 0.6691 0.6769
10U 0.2974 | 0.2205 0.2138 0.2192 0.0526 | 0.2157 0.3608 0.1580 0.3246 0.3394

SSDE ACC 0.8755 | 0.8596 0.8551 0.8652 0.8340 | 0.8631 0.8345 0.8478 0.8837 0.8517

AUC 0.6711 | 0.6255 0.6226 0.6203 0.5260 | 0.6226 0.7350 0.5919 0.6847 0.7183

Fl 0.6906 | 0.6173 0.6384 0.5984 0.5225 | 0.6070 0.6833 0.5800 0.6641 0.7008
IOU | 03494 | 02324 02605 02081 0.0974 | 0.2297 03646 0.1823 0.3157 0.3794
DDNM ACC | 0.8982 | 0.8756 0.8694 0.8730 0.8472 | 0.8814 0.8346 0.8635 0.8924 0.8698
AUC | 0.6897 | 0.6199 0.6451 0.6060 0.5484 | 0.6194 0.7281 0.5921 0.6716 0.7313

F1 0.6441 | 0.5912 0.5872 0.5681 0.4708 | 0.5789 0.6643 0.5510 0.6199 0.6474

. 10U 0.2750 | 0.1899 0.1919 0.1566 0.0261 | 0.1816 0.3223 0.1413  0.2440 0.2945
RePaint ACC 0.8783 | 0.8557 0.8467 0.8495 0.8284 | 0.8520 0.8413 0.8421 0.8583 0.8382
AUC | 0.6516 | 0.6024 0.6079 0.5810 0.5126 | 0.5936 0.6967 0.5703 0.6422 0.6784
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Figure 6: Visualization of target features and reconstruction features of different types of forged
images. Zoom-in to see the details.
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Table 8: Detection results under various image degradation.

Table 7: The impact of different pre-trained encoders.

Prior Metric ‘ DINOv2-L. DINOv2-B MAE-B ViT-B
Fl 0.7815 0.6982 0.6490  0.6307

) 10U 0.5037 0.3596 03115 0.2486
Trained  Acc 0.9498 0.9216 0.9332  0.8956
AUC 0.7953 0.7258 0.6843  0.6566

Fl 0.6703 0.6326 0.6290  0.6076

10U 0.3212 0.2565 02531  0.2165

Unseen  ACC 09114 0.8853 0.9008  0.8691
AUC 0.6882 0.6664 0.6485  0.6347

Forgery Metric \ Baseline \ Compression  Resizing  Sharpen Blur  Motion Blur Gamma  Noise
Fl 0.8932 0.8552 0.8790  0.8658  0.8244 0.8821 0.8904  0.8659

I0U | 0.7195 0.6506 0.6932  0.6675  0.5937 0.6999 07120 0.6655

Deepfillv2 AcC | 0.9650 0.9526 0.9608  0.9544 09429  0.9606 0.9638  0.9569
AUC | 0.9093 0.8712 0.8977  0.8859  0.8442 0.8952 0.9064  0.8853

Fl 0.8032 0.7963 0.8041 07627  0.7918 0.8023 0.7889  0.8022

I0U | 0.5464 0.5336 05427 04720  0.5351 0.5415 05215 0.5397

CTSDG  Acc | 09203 0.9212 09196 09100  0.9268 0.9219 09177 09238
AUC | 0.8368 0.8181 0.8376 07798  0.8102 0.8297 0.8220  0.8218

F1 0.8362 0.7894 0.8185  0.7838  0.7486 0.8260 0.8351  0.7930

. I0U | 0.6005 0.5212 0.5701  0.5100 0.4545 0.5801 0.5956  0.5253
CR-Fill ACC | 0.9382 0.9235 09315 09189  0.9099 0.9343 0.9409  0.9240
AUC | 0.8625 0.8175 0.8434 08118  0.7708 0.8457 0.8510  0.8189

Fl 0.7024 0.6782 0.6909  0.6515  0.6583 0.6805 0.6992  0.6626

I0U | 0.3669 0.3328 03513 0.2908  0.3048 0.3370 0.3644 03066

LaMa ACC | 0.8992 0.8921 0.8944  0.8920  0.8899 0.8929 0.9019  0.8984
AUC | 0.7057 0.6879 07077 0.6518  0.6692 0.6900 07001 0.6664

Fl 0.7164 0.6820 07009 0.6988  0.6390 0.6949 0.7138  0.6869

I0U | 0.3936 0.3435 03696 03659  0.2779 0.3632 0.3885 03506

LDM ACC | 0.8991 0.8861 0.8956  0.8839  0.8715 0.8940 0.8980  0.8847
AUC | 0.7412 0.7063 07211 0.7198  0.6648 0.7217 0.7350  0.7203

F1 0.6588 0.6385 0.6883  0.5895  0.6169 0.6360 0.6443  0.6695

10U | 02974 0.2703 03464 0.1982  0.2397 0.2701 02726 03184

SSDE ACC | 0.8755 0.8670 0.8834  0.8521  0.8683 0.8708 0.8721  0.8819
AUC | 0.6711 0.6571 07076 0.6124  0.6322 0.6586 0.6554  0.6877

Fl 0.6906 0.6724 07118 0.6656  0.6344 0.7058 0.6837  0.6619

I0U | 03494 0.3248 03810 03150  0.2656 0.3748 03372 03071

DDNM ACC | 0.8982 0.8949 09011  0.8869  0.8790 0.9017 0.8968  0.8859
AUC | 0.6897 0.6743 07087  0.6671  0.6473 0.7079 0.6825  0.6665

Fl 0.6441 0.6333 0.6565  0.6123  0.6117 0.6401 0.6333  0.6248

. I0U | 02750 0.2643 02961 02341  0.2278 0.2753 02572 0.2524
RePaint ACC | 0.8783 0.8711 0.8805  0.8582  0.8587 0.8710 0.8760  0.8672
AUC | 0.6516 0.6518 0.6635  0.6333  0.6287 0.6608 0.6408  0.6400

~ p-ACC | 0.9966 0.9904 0.9909  0.9945  0.9898 0.9909 0.9972  0.9959
Authentic i ACC | 0.8000 0.6800 07200 0.8000  0.7200 0.6200 07200 0.7200
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