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Abstract

Recent accelerations in multi-modal applications have been made possible with the
plethora of image and text data available online. However, the scarcity of analogous
data in the medical field, specifically in histopathology, has slowed comparable
progress. To enable similar representation learning for histopathology, we turn
to YouTube, an untapped resource of videos, offering 1,087 hours of valuable
educational histopathology videos from expert clinicians. From YouTube, we curate
QUILT: a large-scale vision-language dataset consisting of 802, 144 image and
text pairs. QUILT was automatically curated using a mixture of models, including
large language models, handcrafted algorithms, human knowledge databases, and
automatic speech recognition. In comparison, the most comprehensive datasets
curated for histopathology amass only around 200K samples. We combine QUILT
with datasets from other sources, including Twitter, research papers, and the internet
in general, to create an even larger dataset: QUILT-1M, with 1M paired image-
text samples, marking it as the largest vision-language histopathology dataset to
date. We demonstrate the value of QUILT-1M by fine-tuning a pre-trained CLIP
model. Our model outperforms state-of-the-art models on both zero-shot and
linear probing tasks for classifying new histopathology images across 13 diverse
patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasksﬂ

1 Introduction

Whole-slide histopathology images are dense in information, and even individual image patches can
hold unique, complex patterns critical for tissue characterization. Summarizing this information
into a single label is an oversimplification that fails to capture the complexity of the field, which
covers thousands of evolving disease sub-types [55]. This highlights the need for more expressive,
dense, interconnected representations beyond the reach of a singular categorical label. As such,
natural language descriptions can provide this comprehensive signal, linking diverse features of
histopathology sub-patch structures [20} 24].

If there were a large-scale vision-language dataset for histopathology, researchers would be able to
leverage the significant advancements in self-supervised vision and language pre-training to develop
effective histopathology models [46]]. Unfortunately, there is a significant scarcity of comprehensive
datasets for histopathology. Notable open-source contributions have been made with datasets like
ARCH [20] and OpenPath [24]. Yet, these sources are still somewhat limited due to their size, as the
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former has only ~ 8K samples and the latter (the largest histopathology vision-language dataset to
date) has about 200K samples. Although recent efforts (e.g. PMC-15M [67]]) curated 15M image-text
pairs across a variety of different biomedical domains from Pubmed [48]], whether their samples are
specific to histopathology remains ambiguous; worse, their dataset is not openly available.
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Figure 1: Overview of QUILT curation pipeline. We identify relevant histopathology YouTube
videos in Search. For Image extraction, we find and de-noise histopathology frames using trained
models. In Text section, we rely on a conventional Automatic Speech Recognition (ASR) model and
leverage Unified Medical Language System (UMLS) and large language models (LLMs) for post-
processing and ASR error correction. Relevant sub-pathology, medical and region-of-interest (ROI)
text are extracted using an LLM. Finally, domain-specific algorithms are used to Pair images and
text, eliminating duplicates to yield QUILT, a richly annotated image-text dataset for histopathology.

To address the need for a large-scale vision-language dataset in histopathology, we introduce QUILT:
containing 437, 878 images aligned with 802, 144 text pairs across multiple microscopic magnifi-
cation scales covering from 10x to 40x. We draw on the insight that publicly available educational
YouTube histopathology content represents an untapped potential. We curate QUILT using 1,087
hours of valuable educational histopathology videos from expert pathologists on YouTube. To extract
aligned image and text pairs from the videos, we utilize a mixture of models: large language models
(GPT-3.5), handcrafted algorithms, human knowledge databases, and automatic speech recognition.
QUILT does not overlap with any current open-access histopathology data sources. This allows
us to merge our dataset with other open-source datasets available. Therefore, to create an even
larger and more diverse dataset, we combine QUILT with data from other sources, such as Twitter,
research papers, and the Internet, resulting in QUILT-1M. The larger QUILT- 1M contains one million
image-text pairs, making it the largest public vision-language histopathology dataset to date.

Using QUILT and QUILT-1M, we finetune vision-language models using a contrastive objective
between the two modalities. We extensively evaluate it on 13 external histopathology datasets taken
across different sub-pathologies. We report zero-shot classification, linear probe, and image-to-text
and text-to-image retrieval tasks. Against multiple recently proposed baselines (CLIP [46], PLIP [24],
and BiomedCLIP [67]), models trained with QUILT-1M outperform all others. Our ablations identify
the importance of QUILT.

QUILT offers three significant advantages: First, QUILT does not overlap with existing data sources;
it ensures a unique contribution to the pool of available histopathology knowledge. Second, its
rich textual descriptions extracted from experts narrating within educational videos provide more
expressive, dense interconnected information. Last, the presence of multiple sentences per image
fosters diverse perspectives and a comprehensive understanding of each histopathological image. We
hope that both computer scientists and histopathologists will benefit from QUILT’s potential.

2 Related work

We built upon a growing literature applying self-supervised learning and other machine learning
methods to medical image understanding.



Machine learning for histopathology. Early representation learning work in computational pathol-
ogy primarily relied on weakly-supervised learning, with each whole-slide image (WSI) receiving
a single label. The limited nature (single label to many patches) has produced sub-optimal models
[12,126] at the patch level. Lately, a self-supervised learning approach, which learns useful representa-
tions from unlabeled data, has shown some success [26,113,[12]. Most of this work has been unimodal.
They use image augmentations similar to those used for natural images [14]], mostly differing by way
of consciously injecting domain knowledge. For example, they leverage the compositional nature of
H&E stain information of whole-slice images [26], or inject hierarchical morphological information
at different magnifications [[13]], or combine with other modalities like genomic features [12] or with
descriptive text [20]. When text data is used, the objectives similarly use augmentations seen in natural
language [50]]. By contrast, we explore self-supervised mechanisms that learn better histopathology
information representations that go beyond a single label, aided by language descriptions.

Medical vision-language datasets. Learning vision-language representations demands a large
dataset of images aligned with descriptive text, a resource that is notably lacking in histopathology.
The MIMIC-CXR-JPG v2.0.0 dataset [28]], for example, consists of de-identified hospital-sourced
chest radiographs and reports. For histopathology, The Cancer Genome AtlasE] provides de-identified
PDF-reports for a limited number of WSIs. Despite this resource, the enormous size of this data
(reaching up to 120, 0002 pixels) makes processing challenging, limiting its use to a small number of
focused studies [39]. A majority of medical vision-language datasets are concentrated in the radiology
sub-domain, due to the relatively straightforward process of collecting validated multimodal data [28]].
Many models are trained on a subset of PubMed [48]] or comparable radiology datasets [68} 23|18, 143]].
PMC-15M [67], a recent subset of PubMed not specific to histopathology, was used to train multiple
models. While the models themselves are public, PMC-15M is not, making it hard to determine what
portion of it is histopathology-relevant.

Vision-language pairs on histopathology. One of the first histopathology vision-language datasets,
ARCH, contains only 7,614 accessible image-text pairs [20l22]]. Later on, [24] released OpenPath,
a dataset of 200K image-text pairs extracted from Twitter. This was the largest histopathology dataset
until QUILT-1M.

Video data for self-supervision. Numerous recent studies have started to tap into video data.
For instance, millions of publicly accessible YouTube videos were used to train a vision-language
model [65)166]. Similarly, a causal video model was trained by using sequential gaming videos [6].
Localized narratives [38, 44] provide another example of dense, interconnected supervision for a
single image. Despite the potential of video content, video often yields noisier datasets compared
to static sources. Recently, the enhanced capabilities of automatic speech recognition models
streamlined the curation of large-scale cleaner datasets from videos [[65, 16} (67]]. Furthermore, the
growing versatility of large language models has shown promise as data annotators, information
extractors [33),159, 15} 21]], text correctors [63]], and as tools for medical information extraction and
reasoning [[1} 56l

3 Curating QUILT: Overview

Creating a vision-language dataset from videos is a significant undertaking, as not all videos are
suitable for our pipeline. Many either lack voiced audio, are not in English, fail to contain medically
relevant content, or have insufficient medical relevance—for example, videos that present static
images of histopathology content on a slide deck, or those that briefly cover histopathology images
in pursuit of a different objective. Conventional automatic speech recognition (ASR) systems also
struggle with the specialized requirements of histopathology transcription, necessitating a non-trivial
solution. The de-noising of text and image modalities adds further complexity as the videos are
typically conversational and, therefore, inherently noisy. Instructors pan and zoom at varying speeds,
recording a mix of relevant and irrelevant histopathological visual content in their videos. As such,
trivially extracting frames at static intervals fails to capture the data appropriately. To collect QUILT

we trained models and handcrafted algorithms that leverage the nuances in the instructors’ textual
and visual behavior, ensuring accurate collection and alignment of both modalities.

3https://www.cancer.gov/tcga



INPUT: " ...s0 here we have a huge lumen and we have
the lining epithelium and then we have the underlying
connective tissue capsule. let's see the features in detail
one by one. if you see this lumen lumen has sparse
amount of keratin. so definitely this is a keratinous cyst. so
we have a cyst that is actually producing keratin. let's move
into the epithelium and the epithelium if you carefully
observe most of the areas the epithelial appears uniform
thickness right from here.

OUTPUT:

{MED":["The cyst is producing keratin, indicating it is a
keratinous cyst.”,

“The epithelial lining appears to have uniform thickness”]
'ROI:[

“Sparse amount of keratin in the lumen.”,

‘uniform thickness of the epithelial lining]}

INPUT: " .. tend to see some inflammation
here yes. when you notice this there is a dense|
amount of inflammation here yeah you see this
tiny blue dots these are the lymphocytes and
these cells are your inflammatory cells and
they are kind of having an effect on the
epithelium. if you see this epithelium because
of the inflammation the epithelium starts "
OUTPUT:

{MED'"[

"Dense inflammation is present in the region
with lymphocytes and other inflammatory cells
having an effect on the epithelial cells”]
'ROI":['dense inflammation here”,
“lymphocytes”,

“inflammatory cells"]}

INPUT: " ...of a daughter cyst where you see so this
was an epithelial island with showing central
keratinization the cells producing lot of keratin and at
the same time you have the epithelium with the
lumen. so this forms a tiny daughter cyst and this is
one of the most important trees in why this keratocyst
has a high amount of recurrence rate. one more
important feature of odontogenic keratocyst is lies
within the epithelium."

OUTPUT:

{'MED"["The presence of daughter cysts is one of the
reasons for the high recurrence rate of keratocysts”,
“Epithelial islands with central keratinization and high
keratin production are seen in keratocysts”]
'RO[[‘epithelial island”,

“central keratinization”, “daughter cyst’]}

Figure 2: QUILT examples. Input is the corrected ASR caption for the representative image. Output
are the medical and ROI extracted text(s) paired with the image (see Section [3.I). In histopathology,
understanding tissue characteristics often involves views from varying magnification levels. Thus, in
QUILT we estimate an image’s magnification (indicated by the relative size of the microscope icon).

3.1 QuiLT: Collecting medical image and text pairs from YouTube

Our proposed dataset curation pipeline involves (1) gathering channel and video data covering the
histopathology domain, (2) filtering videos based on a certain "narrative style", (3) extracting and
denoising image and text modalities from videos using various models, tools, and algorithms, (4)
postprocessing denoised text by LLMs to extract medical text and finally, (5) splitting and aligning
all modalities for curating the final vision-language pre-training (VLP) data. See Figure [T] (and
supplemental material) for a detailed overview of the pipeline.

Collecting representative channels and videos. Our pipeline begins by searching for relevant
channels and video ids on YouTube, focusing on the domain of histopathology. Using keywords
spanning 18 sub-pathology fields (see supplement for more details), we search among channels before
searching for videos to expedite discovery, considering that video searches are time-consuming and
the APIs pose limitations on numerous requests [65]. Channels with subscriber count > 300K are
excluded to avoid large general science channels, as educational histopathology channels often have
fewer subscribers. We then download low-resolution versions of all identified videos, with the lowest
resolution at 320p.

Filtering for narrative-style medical videos. For each video within each channel, we exclude videos
that are shorter than 1 minute, non-voiced, or have non-English audio. For videos meeting these
heuristics, two decisions are made:

(A) Do they have the required medical content, i.e., histopathology image-text pairs?

(B) If so, are they in narrative style — videos wherein the presenter(s) spend a significant time
panning and zooming on the WSI, while providing vocal descriptions of image content?

For (A) we automatically identify the relevant videos by extracting keyframes from a video. These
keyframes are automatically extracted using FFmpeg ['} marking the beginning or end of a scene
(frames containing significant visual changes). The software requires a threshold that determines
the minimum amount of visual change required to trigger a keyframe. Through experimentation,
we set different thresholds for various video durations, with smaller thresholds for longer videos.
Next, we train and use an ensemble of three histopathology image classifiers to identify videos with
histopathology images (See supplement for more details).

For (B), in which we identify narrative-style videos, we randomly select keyframes predicted to be
histopathology. For each such selected frame, we extract the next three histopathology key-frames
and compute the cosine similarity between the selected frame and each of the subsequent three

*https:/ffmpeg.org/



frames. If all three have similarity scores > a preset threshold of 0.9, we count it as a narrative
streak. A video is identified as narrative style if at least 10% of the selected frames exhibit a narrative
streak. Consequently, we download all narrative-style videos at high-resolution. Narrative-style
videos typically cover WSIs at various magnifications, hence, we train a tissue-image-magnification
classifier to predict the following three scales: {(1 — 10)x, (> 10 — 20)x, (> 20)x}. This provides
relevant metadata for downstream objectives.

Extract medically relevant information from the following text, including any physical

System Prompt: |jeccriptions or attenmtion to specific regions or concepts

Please extract the key medical information from the following text, including any
descriptions of physical characteristics or specific regions/concepts that are
nentioned. Think step by step, lextract medical/histopathology content from the
following text, do not add new words. Also, for ROI extract only medically relevant
substring where the marrator is physically describing/pointing attention to a
region/concept/image and using words like 'here', 'you can see', 'this area/region’.

User Prompt:

System Prompt You are an Automatic speech recognition's noisy medical text
correction engine Fow-shot ["The mWost common by quite some distance of These s the radicular cyst. We've already
Thinking step by step, Acting as a medical/histopathology oxamples: [discussed in some detail that arises within the periodomtal ligament space,

User Prompt: [onto)ogy/glossary and a medical search-engine return best particularly the periapex from the epithelial cell of malassez. As a result of
replacements for words in incorrect list provided. the text is from inflanmmation following the death of the pulp extending into the periapical radix, the
an ASR so take that into comsideration, output the right phrases in resulting in the development of cysts."
context to the previous statements and medical factuality

{'MED': ["Radicular cyst arises within the periodontal ligament space, particularly the
Few-shot [\Thg most common .is the radicular cyst. We've already discussed in lperiapex from the epithelial cell of malassez.","These radicular cysts are caused by
examples: |some detail that ..the periapex from the epithelial risks of malacid inflammation following the death of the pulp extending into the periapical radix."],
As a result of inflammation.. periacapical race, the resulting in the ‘ROI': [fRadicular cyst within the periodontal ligament space.”, "Inflammation
development. Conditioning words: ['periasapical race']" following the death of the pulp Extending into the periapical radixJ}
{"conditioned output!: {lperiaeapical race": "periapical radix", TNPUT: "So pigmented purpuric dermatosis, and they, some people think at least some of
"periapex": "periapex"}, \iNCONditi0NeA OULPUL L epithelial risks of the cases are a lymphocytic vasculitis that the lymphocytes are damaging the vessels
malacid": "epithelial cell of malassez"}} Okay, fine. Maybe so, because there is hemorrhage, but they don't usually have
neutrophils. They don't have leukocytoclastic vasculitis. That's a pigmented purpuric
INPUT:"So pignent and perperic dermatosis, and they, some people dermatosis. elsewhere, but if I had a biopsy, we'd just one area, like that, I'd
neutrophils. They don't have lupusidoclastic vasculitis. That's a probably say DFSP, and with a comment that there's an area that started to get
pignent and perperic dermatosis... And although the virus arcomadus particular, and I'm concerned it could be fibrosarcomatous, compare it with the
DFSPs. Conditioning_words: ['perperic dermatosis', 'lupusidoclastic excision specimen.The good news, they're going to treat it the same way. They take it
vasculitis']" out with a margin, and then we look at the whole excision specimen. And although the
‘??%Q fibrosarcomatous DFSPs."
OUTPUT: {"'conditioned_output!:{'pignent and perperic dermatosis" OUTPUT: {'MED':["Pignented purpuric dermatosis may be a lymphocytic vasculitis, with
"pignented purpuric dermatoses',"lupusidoclastic vasculitis" > > lymphocytes damaging the vessels and causing hemorrhage.","Neutrophils are usually not
"leukocytoclastic vasculitis"}, [iinconditioned output!s present in this condition.","Leukocytoclastic vasculitis is not seen in pigmented
ivirus arconadus": "Fibrosarcomatous'}} purpuric dermatosis.","Biopsy suggests Dermatofibrosarcoma Protuberans (DFSP)."],
'ROI'[Pignent and purpuric dermatosis.","Fibrosarcomatous DFSPs"]}

Figure 3: Prompting the LLM by providing few-shot examples to perform the following tasks: (Left)
correcting noisy ASR text within its context. We highlight the probable list of misspelled keywords
in yellow and their corrections by the LLM in gray. Additional missed errors/misspelled entries
identified by the LLM are highlighted in blue. (Right) extracting medical (MED) and ROI text from a
given text. We highlight the definition of medical and ROI text in blue and gray respectively.

Text Extraction using ASR and text denoising. The high costs associated with private medical
ASR APIs ﬂnecessitated the use of a more conventional ASR model: Whisper [47]. As anticipated,
this model often misinterprets medical terms, thus requiring the use of post-processing algorithms to
minimize its error rates.

We propose a four-step text de-noising and quality control pipeline: i) We utilize the Rake key-
word extraction algorithm to extract keywords or key-phrases up to four words and refine them by
eliminating stopwords [49]. ii) We then cross-check each refined entry against UMLS [7] using
the SciSpacy entity linking package [41]. If an entry is not found within UMLS, we check for
misspelled words within the entry using a spell-checking algorithl‘rﬂ instantiated with a specialized
list of histopathology terms curated from various histopathology ontology labels and definitions. iii)
With this probable list of misspelled keywords, we condition and prompt the LLM with examples
to correct the misspelled entry within its context (sentence), and secondly, we task the LLM with
identifying additional unconditioned errors/misspelled entries. For both, we leverage a set of manually
curated examples to prompt the LLM in-context Figure [3] For more examples and failure cases,
see supplement for more details. iv) Finally, to de-noise the text, we resolve the output mapping of
incorrect — correct entries by verifying the corrected words against UMLS and our curated list of
histopathology words/phrases. Entries that pass this double-validation process are used to replace
the initial noisy transcription. Leveraging domain-specific databases to extract the text and filter out
noise allows us to bypass the correction of repetition errors and filler words, such as ’ah’, 'uhm’, ’the’,
etc. in tandem, using LLMs allows us to concentrate on correcting medically-relevant misspelled
words, rather than correcting non-medically-relevant terms.

From the ASR-corrected text, we extract medical text which describes the image(s) as a whole. Also,
when the speaker describes/gestures at visual regions-of-interest through statements like "look here
...", we extract the text entity being described as ROI text. To filter relevant medical text and ROI text
from the ASR-corrected text, we utilize LLMs (See supplement for more details), a decision rooted in

S nuance.com/en-au/healthcare/provider-solutions/speech-recognition/dragon-medical-one.htm]
Shttps://github.com/barrust/pyspellchecker



a few compelling reasons: 1) Curating pre-training datasets at a scale that can tolerate higher levels of
noise, LLMs are more cost-effective than expert-human (medical) labor. 2) The task does not require
LLMs to generate new information but instead they discriminate useful versus irrelevant signals,
serving to improve the signal-to-noise ratio of the data. To extract relevant text, we prompt LLMs
to filter out all non-medically relevant text, providing context as necessary. See Figure 2] for some
example image-text pairs. Lastly, we instruct the LLMs to refrain from introducing any new words
beyond the corrected noisy text and set the model’s temperature to zero. Finally, we use LLMs to
categorize our videos into one of the 18 identified sub-pathology classes. Similar to the previous
tasks, this categorization is done by conditioning with a few examples and prompting the LLM to
predict the top three possible classes given the text. More details, prompts, and additional examples
are presented in the supplemental material.

Image frame extraction and denoising. For each video, we employ a similar method to that
described in Filtering for narrative-style medical videos subsection to extract histopathology
key-frames; our method leverages these frames’ times ¢ as beacons to break the entire video into
time-intervals called chunks from which to extract representative image(s). Next, we extract the
median image (pixel-space) of stable (static) frames in each chunk if they exists, else we de-duplicate
the histopathology keyframes (beacons of the chunk). In essence, we use the extracted histopathology
scene frames as guides for data collection, exploiting the human tendency in educational videos to
pause narration during explanation, and we extract the relevant frame(s).

Aligning both modalities. For each narrative-style video, we perform the following steps to
align image and text modalities: First, we compute histopathology time chunks denoted as
[(t1,t2), (t3,t4), - (tn—1,tn)] from keyframes after discriminating histopathology frames using the
histopathology ensemble classifier — (scene_chunks). Each scene_chunk is padded with pad_time to
its left and right; see supplement for more details.

1. Text: we use the ASR output to extract the words spoken during each chunk in scene_chunks.
Using the method described in Text Extraction using ASR and text denoising subsection,
we extract the Medical and ROI caption for this chunk.

2. Image: we extract representative image(s) for every chunk/time-interval in scene_chunks as
described in Filtering for narrative-style medical videos subsection above.

Finally, each chunk in scene_chunks is mapped to texts (both medical and ROI captions) and images.
Next we map each medical image to one or more medical text. Using the time interval in which
the image occurs, we extract its raw text from ASR and then correct and extract keywords using
the Rake method, which we refer to as raw_keywords. We extract keywords from each medical
text returned using the LLM, and we refer to these as keywords. Finally, if the raw_keywords occur
before or slightly after a selected representative image, and overlap with the keywords in one of the
Medical/ROI texts for that chunk, we map the image to the medical/ROI text. Example. keywords:
psammoma bodies, match with raw_keyword: psammoma bodies within the ASR-corrected text
‘Meningiomas typically have a meningothelial pattern with lobular-like arrangements and psammoma
bodies.” Refer to Figures in the supplement for a detailed explanation of the method and examples of
aligned image and text.

3.2 QUILT-1M: Combining QUILT with other histopathology data sources

To create QUILT-1M, we expanded QUILT by adding other disparate histopathology image-text
open-access sources: LAION, Twitter, and PubMed.

PubMed Open Access Articles. We searched the PubMed open-access from 2010-2022, extracting
59,371 histopathology image-text pairs, using our histopathology classifier and multi-plane figure
cropping algorithm. The images are categorized into (1) images that are fully histopathology, (2)
multi-plane images that contain histopathology sub-figures, and (3) histopathology sub-figures
cropped from (1) and (2). See supplement for more details.

Histopathology Image Retrieval from LAION. The Large-scale Atrtificial Intelligence Open Net-
work (LAION-5B) [52] curated over 5 billion pairs of images and text from across the Internet,
including a substantial volume of histopathology-related data. We tapped into this resource by
retrieving 22,682 image and text pairs. See supplement for more details.



Twitter Data from OpenPath. We utilized a list of tweets curated by Huang et al. [24], which totaled
up to 55,000 unique tweets and made up 133, 511 unique image-text pairs. This exhibits a one-to-
many relationship where many images were matched with multiple captions; this differentiated our
work from the OpenPath approach. To maintain comparability, we followed their text pre-processing
pipeline [24]]. See supplement for more details.
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Figure 4: (a) Distribution of all videos over sub-pathology types. (b) Distribution of our entities
across top 20 UMLS semantic types. (¢) Number of image-text pairs within each sub-pathology type.
(d) word cloud of all the text in QUILT.

3.3 Quality

To evaluate our pipeline’s performance, we assess several aspects. First, we calculate the precision of
our LLM’s corrections by dividing the number of conditioned misspelled errors replaced (i.e., passed
the UMLS check) by the total number of conditioned misspelled words found, yielding an average of
57.9%. We also determined the unconditioned precision of the LLM, similar to the previous step, and
found it to be 13.8%. Therefore, we replace our detected incorrect words with the LLM’s correction
57.9% of the time, and 13.8% of the time we replace the LLM’s detected errors with its correction
(see supplement for more details). To estimate the ASR model’s transcription performance, we
compute the total number of errors replaced (both conditioned and unconditioned) and divide it by the
total number of words in each video, resulting in an average ASR error rate of 0.79%. To assess the
LLM’s sub-pathology classification, we manually annotated top-k (k = 1, 2, 3) sub-pathology types
for 100 random videos from our dataset. The LLM’s accuracy for top-3, top-2, and top-1 was 94.9%,
91.9%, and 86.8%, respectively. Also note that, by prompting the LLLM to extract only medically
relevant text, we further eliminate identifiable information, such as clinic addresses, from our dataset.

3.4 Final dataset statistics

We collected QUILT, from 4475 narrative videos spanning over 1087 hours with over 437K unique
images with 802K associated text pairs. The mean length of the text captions is 22.76 words, and 8.68
words for ROI text, with an average of 1.74 medical sentences per image (max=5.33, min=1.0). Our
dataset spans a total of 1.469M UMLS entities from those mentioned in the text (with 28.5K unique).
The images span varying microscopic magnification scales (0-10x, 10-20x, 20-40x), obtaining (280K,



75K, 107K) images from each scale respectively with an average height and width of 882 x 1468
pixels, as we leverage the max image resolution of videos. Figure ] (a, c) plots our dataset’s diversity
across multiple histopathology sub-domains. This plot shows that the captions cover histopathology-
relevant medical subtypes: findings, concepts, organs, neoplastic processes, cells, diseases, and a mix
of laboratory and diagnostic procedures. Overall, across all 127 UMLS semantic types, our entities
cover 76.2% of medically-related semantic types (e.g., findings, disease, or syndrome) and 23.75%
non-medical (e.g., geographic area, governmental or regulatory activity).

4 QUILTNET: Experiments training with QUILT-1M
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Figure 5: QUILTNET, outperforms out-of-domain CLIP baseline and state-of-the-art histopathology
models across 12 zero-shot tasks, covering 8 different sub-pathologies (accuracy percentage provided).

We use the Contrastive Language-Image Pre-training (CLIP) objective [46]] to pretrain QUILTNET
using QUILT-1M. CLIP takes a batch of N (image, text) pairs and optimizes a contrastive objective
to create a joint embedding space. The optimization process involves concurrent training of both
image and text encoders to increase the cosine similarity of embeddings from aligned pairs, while
decreasing it for unaligned pairs. The objective is minimized via the InfoNCE loss, expressed as:

cos(I T;) cos(Il,T ) >

(Z log W Z log ecob(IJ ,T5)

where I; and T; are the embeddings for the aligned ¢-th image and text, respectively. For the image
encoder, we use both ViT-B/32 and ViT-B/16 architectures [16]. For the text encoder, we use GPT-
2 [45] with a context length of 77, and PubmedBert [67]. We train QUILTNET by finetuning an
OpenAl pre-trained CLIP model [46] on QUILT-1M to enhance its performance in histopathology.
Once finetuned, we conduct experiments on two types of downstream tasks: image classification (zero-
shot and linear probing) and cross-modal retrieval (zero-shot). We also compare the performance of
fine-tuning a pre-trained CLIP model versus training it from scratch.

Downstream histopathology datasets. We evaluate the utility of QUILTNET on 13 downstream
datasets: PatchCamelyon [57] contains histopathology scans of lymph node sections labeled for
metastatic tissue presence as a binary label. NCT-CRC-HE-100K consists of colorectal cancer
images and is categorized into cancer and normal tissue. For SICAPv2 [53] the images are labeled
as non-cancerous, Grade 3-5. Databiox consists of invasive ductal carcinoma cases of Grades
I-III. BACH [4]] consists of breast tissues labeled as normal, benign, in-situ, and invasive carcinoma.
Osteo [5] is a set of tissue patches representing the heterogeneity of osteosarcoma. RenalCell
contains tissue images of clear-cell renal cell carcinoma annotated into five tissue texture types.
SkinCancer consists of tissue patches from skin biopsies of 12 anatomical compartments
and 4 neoplasms that make up the SkinTumor Subset. MHIST [60] contains tissue patches from
Formalin-Fixed Paraffin-Embedded WSIs of colorectal polyps. LC25000 [9], which we divide into
LC25000 (Lung) and L.C25000 (Colon), contains tissue of lung and colon adenocarcinomas. For
more details see supplemental material.

Results using zero-shot learning. Given the vast diversity of cancer sub-types in histopathology,
it is critical that a model maintains comprehensive understanding without requiring specific data



Table 1: Linear probing. Classification results, denoted as accuracy % (standard deviation). Came-
lyon denotes the PatchCamelyon dataset. Supervised results are from each dataset’s SOTA models.

| ViT-B/32 | ViT-B/16
Dataset %shot
o CLIP PLIP QUILTNET CLIP  QUILTNET BiomedCLIP QUILTNET
Supervised(%) GPT/77 GPT/77 GPT/77 GPT/77 GPT/77  PMB/256 PMB/256

91.0 (0.10)93.75 (0.09) 94.64(0.22)(90.96 (0.10)93.36 (0.23) 92.14 (0.12) 93.55 (0.25)
10 192.02 (1.30)93.83 (0.06)95.30 (0.03)/92.58 (0.12)93.85 (0.04) 92.90 (0.07) 93.72 (0.08)
(94.0) 100 91.83 (0.01)94.16 (0.01)95.22 (0.01)(92.26 (0.09)93.76 (0.02) 92.97 (0.05) 93.60 (0.01)

1 80.38 (0.16)87.26 (0.23)87.62 (0.35)(80.28 (0.20)84.78 (0.14) 83.63 (0.44) 83.48 (0.18)
10 [82.67 (0.19)87.48 (0.08)87.55 (0.03)82.20 (0.04)86.77 (0.09) 84.18 (0.15) 84.42 (0.10)
(97.5) 100 (82.80 (0.01)87.34 (0.01)87.48 (0.01)[82.55 (0.02)86.81 (0.04) 84.23 (0.01) 84.44 (0.02)

1 [84.27 (0.22)91.07 (0.25)90.93 (0.25)[85.62 (0.16)88.29 (0.15) 87.53 (0.21) 88.06 (0.20)
10 [89.0 (0.02)93.39 (0.05)92.99 (0.02)90.28 (0.01)91.20 (0.0) 89.23 (0.03) 90.03 (0.02)
(93.3) 100 (89.02 (0.02)93.29 (0.01)93.03 (0.02)(90.29 (0.03)91.20 (0.0) 89.16 (0.02) 89.91 (0.01)

1 [52.45(2.41)65.76 (2.65)69.92 (1.02)|56.01 (0.66)66.86 (1.16) 69.43 (1.03) 68.49 (1.06)
10 162.24 (0.65)69.23 (0.43)74.14 (0.38)/63.70 (0.69)72.37 (0.65) 71.61 (0.31) 72.48 (0.42)
(67.0) 100 [65.75 (0.16)73.0 (0.14)75.48 (0.12)/68.74 (0.10)74.14 (0.16) 74.57 (0.04) 74.60 (0.17)

NCT-CRC [31])

Camelyon [57]

SkinCancer [34]

SICAPv2 53]

for retraining. Thus, we evaluate our model’s zero-shot performance against three state-of-the-art
models: CLIP, BiomedCLIP, and PLIP. Our model demonstrates superior performance, as illustrated
in Figure [5] where it outperforms the other models in all but two datasets, in which BiomedCLIP
performs marginally better. See supplemental material for UMap visualizations and cross-modal
attention visualization comparison. The prompts used for these evaluations are presented in the
supplemental material. To ensure a fair comparison with BiomedCLIP, which uses a ViT-B/16 and
PMB/256 (pre-trained with [67]), we trained three different variants of our model. For detailed
insights into the results, please refer to supplemental material.

Results using linear probing. We assess the few-shot and full-shot performance of our model
by conducting linear probing with 1%, 10%, and 100% of the training data, sampled with three
different seeds; we report the average accuracy and their standard deviation in Table|l} We deploy
our evaluation across four distinct datasets, specifically those with dedicated training and testing sets
among our external datasets. Remarkably, our model, utilizing the ViT-B/32 architecture with GPT/77,
outperforms its counterparts, BiomedCLIP, PLIP, and CLIP, in most datasets. On the NCT-CRC and
SICAPv2 datasets, our model surpasses even the fully supervised performance using only 1% of the
labels. Also, note that for some results 10% does better than 100%; this is because we are sampling
from each class equally, and thus the 10% subset contains a more balanced training set than 100%,
for datasets that are very imbalanced, resulting in sub-optimal performance at 100%.

Results using cross-modal retrieval. In our study, we evaluate cross-modal retrieval efficacy by
examining both zero-shot text-to-image and image-to-text retrieval capabilities. We accomplish this by
identifying the nearest neighbors for each modality and then determining whether the corresponding
pair is within the top IV nearest neighbors, where N € {1, 50,200}. Our experiments are conducted
on two datasets: our holdout dataset from QUILT-1M and the ARCH dataset. Results are in Table 2]

5 Discussion

Limitations. Despite the promising results, QUILT was curated using several handcrafted algorithms
and LLMs. Such curation methods, while effective, introduce their own biases and errors. For
instance, our histopathology classifier had occasional false positives (~ 5%) confirmed by human
evaluation. Occasionally, ASR can misinterpret a medical term and transcribe it as a different existing
term, such as transcribing ’serous carcinoma’ as ’serious carcinoma’. Unfortunately, such errors
are not rectifiable using our current pipeline (see supplement for more details). While not directly
a limitation of our dataset, training a CLIP model trained from scratch underperformed compared



Table 2: Cross-modal retrieval results on the QUILT-1M holdout set and ARCH dataset. In each cell,
the results are displayed in the format (%/%), with QUILT-1M holdout results on the left and ARCH
results on the right. The best-performing results are highlighted in bold text.

Text-to-Image (%) ‘

Image-to-Text (%)

model config R@l1 R@50 R@200 R@1 R@50 R@200
CLIP ViT-B/32IGPT/77 0.49/0.07 4.73/2.42 10.15/7.21{0.39/0.05 3.99/2.52  8.80/7.22
PLIP ViT-B/32IGPT/77 1.05/0.56 10.79/13.10 21.80/29.85(0.87/0.74 11.04/13.75 21.63/29.46
QUILTNET ViT-B/32IGPT/77 1.17/1.41 16.31/19.87 31.99/39.13(1.24/1.35 14.89/19.20 28.97/38.57
CLIP ViT-B/16IGPT/77 0.83/0.09  5.63/2.73 11.26/8.72|0.66/0.13  5.02/3.09 10.82/9.04

QUILTNET ViT-B/16IGPT/77
BiomedCLIP ViT-B/16(224)PMB/256
QUILTNET ViT-B/16(224)IPMB/256

2.42/1.29 22.38/20.30 41.05/40.89
4.34/8.89 14.99/53.24 25.62/71.43
6.20/8.77 30.28/55.14 50.60/77.64

2.00/1.01 21.66/16.18 39.29/34.15
3.88/9.97 13.93/52.13 23.53/68.47
6.27/9.85 31.06/53.06 50.86/73.43

to fine-tuning a pre-trained CLIP (see supplement for more details). This suggests that a million
image-text pairs may still not be sufficient. Future works may explore other self-supervised objectives.

Data Collection and Societal Biases Aligning in strategies with [65]], we release QUILT derived
from public videos, taking structured steps to limit privacy and consent harms (see supplement for
more details). Complying with YouTube’s privacy policy, we only provide video IDs, allowing
users to opt-out of our dataset. Researchers can employ our pipeline to create QUILT. Regarding
societal biases, a significant portion of our narrators originate from western institutions, a situation
that is further amplified by our focus on English-only videos. Consequently, QUILTNET may exhibit
inherent biases, potentially performing better on data associated with these demographics, while
possibly underperforming when applied to other cultural or linguistic groups.

Conclusion. We introduced QUILT-1M, the largest open-sourced histopathology dataset to date.
Empirical results validate that pre-training using QUILT is valuable, outperforming larger state-of-
the-art models like BiomedCLIP across various sub-pathology types and tasks including zero-shot,
few-shot, full-shot, and cross-modal retrieval. We established a new state-of-the-art in zero-shot,
linear probing, and cross-modal retrieval tasks in the field of Histopathology.
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A Data curation models, algorithms and parsing pipelines

A.1 Curating QUILT: an Overview

Creating a densely annotated vision-language dataset from videos is a significant undertaking, as it
involves various handcrafted algorithms and machine learning models. In the following sections, we
present more detailed information about the challenges of the data curation pipeline and algorithms
used to address these challenges. To download QUILT-1M and its metadata and access the code to
recreate the dataset and trained models, refer to our website.

Collecting representative channels and videos. The first challenge lies in obtaining relevant
histopathology videos. We used a set of keywords (obtained from online histopathology glossaries
E[) to search for videos, resulting in ~ 65K potential matches. Figure |§| shows the word cloud of all
keywords used for searching YouTube. However, filtering histopathology content based on thumbnail
and title yields many false positives, often including general pathology videos. To address this, we
process the frames of lower-resolution versions of each video to differentiate between histopathology
and pathology content, narrowing the selection to ~ 9K videos.
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Figure 6: Word cloud of all keywords used for searching YouTube

Filtering for narrative-style medical videos. Among the ~ 9K videos, we sought videos with a
"narrative style” where narrators freely explain whole slide images and streaks of similar frames
occur, indicating an educational performance. To identify such content, we used a model that
analyzed randomly sampled frames to determine if they maintained a consistent style over time.
This process resulted in the selection of ~ 4K videos. Non-voiced videos are also filtered by using
inaSpeechSegmenter [[17] where the video endpoint does not provide the video language or transcript.
To identify the audio language of a video, we first check YouTube’s API. If the information is
unavailable through the API, we use OpenAIl’s Whisper model [47] on the first minute of audio from
the video.

To identify videos containing medical content, we employ a keyframe extraction process with a
specific threshold to determine the minimum visual change required to trigger keyframes. For a new
video, the thresholds for keyframe extraction are determined by linearly interpolating between the
lowest threshold, 0.008 (5-minute video) and the highest 0.25 (200-minute video). Following the
keyframe extraction process, we utilize a histopathology image classifier to identify histopathology
content within the extracted keyframes. See[A.3]for more details. To identify narrative-style videos,
we randomly select a min(num_of_histo_scene_frames, 20) keyframes from a video and utilize a
pre-trained CLIPH (ViT-B-32) model to embed and compute a cosine similarity on the next three
keyframes. If all three have similarity scores > a threshold of 0.9, we count the video as a narrative
streak.

Text extraction using ASR and text denoising. Another challenge involves automatic speech
recognition (ASR), as YouTube captions are often inadequate for medical vocabulary. To address this
issue, we employed the Large-V2 open-source Whisper model [47] for speech-to-text conversion.
However, general-purpose ASR models like Whisper can misinterpret medical terms, particularly

"https://lab-ally.com/histopathology-resources/histopathology-glossary
8https://huggingface.co/sentence-transformers/clip- ViT-B-32
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Table 3: Salvagable and Non-salvagable cases for ASR correction using an LLM.

Error due to Raw output Salvagable Non-salvagable
(beacause LLM (because the error losses all
can rephrase and/or  possible medical context and
extract contextually  can lead to wrong entries)
similar correction)

Unfinetuned ASR ...look like the cranialomas I would expect in HP. They differential hypersen-  positive: paucity
actually look more sarcoidal to me. The reason I'say  sium nitose: hyper-
that is they, there’s a kind of positive of inflammatory  sensitivity pneumoni-
cells associated with them. They’re really tight and  tis,
well-formed. They’re very easy to see a low power.  cranialomas: granu-
And so HP is in the differential hypersensium nitose,  lomas
but I would be more worried about sarcoidosis.

LLM high-larbidia-stinal lymphadenocathy returns hilar lym-  returns lymphatic pattern dis-
_ phadenopathy tribution instead of a more
lymphin-giatic pattern distribution instead of a more appropriate lymphangitic pat-
appropriate hilar  tern distribution
mediastinal lym-
phadenopathy
Incomplete  UMLS  ...picnotic - LLM correctly returns py-
checker knotic however, UMLS(2020)

does not have the word py-
knotic if fails to pass the
UMLS check.

when the speaker’s voice is choppy or accented. There are no straightforward trivial solutions due
to: 1) the absence of openly available medical ASR models or data for fine-tuning in the medical
domain; 2) the inadequacy of medical named entity recognition models in detecting transcription
errors, because these models are typically trained on correctly spelled words; 3) the ineffectiveness
of methods like semantically searching over a medical glossary, such as UMLS, which only prove
effective when the erroneous text has significant similarity to the correct terms; and 4) the inability of
simpler methods like finding the longest common substring, which might work in finding a match in
the glossary/ontology for replacement, but cannot identify the wrong words/phrases in the first place.
To rectify ASR errors, we employed UMLS (a knowledge database) and a LLM (GPT-3.5). This,
however, introduces a new challenge of identifying incorrectly transcribed words and determining
which words were mistakenly "corrected" and correctly formatted by the LLM after error correction
and resolving unintended parsing errors [1]]. See Figure 3 in the main paper for LLM prompt examples
of ASR correction and medical and ROI text extraction from the corrected ASR text. Refer to Table[3]
for error examples of ASR correction using the LLM.

Image frame extraction and denoising. The image processing aspect of this task adds to its com-
plexity, as it requires static frame detection, quality control for frames, and histology magnification
classification. Each model utilized it these steps introduces its own biases and errors. We extract
time-intervals (chunks) from each video from which we extract representative image(s). For each
of the extracted chunks (t,,t,+1), the static chunk detection algorithm [1|is used to extract sub-
time-intervals with static frames within the chunk. If found, we save the median (in pixel space to
prevent blurry outputs) of the stable frames, else (i.e no stable duration of frames) we leverage the
structural similarity index (SSIM) method on histopathology key-frames to find the most dissimilar
histopathology image to make up the representative images for the chunk, essentially de-duplicating
the frames. Figure[7]demonstrates this process.
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Figure 7: Representative Frame Identification. If a Stable frame is found by Algorithmwithin the
candidate regions, we use it as the representative frame. If not, we use the most dissimilar frames
among unstable frames.

Algorithm 1 Static Video Chunk Detection Algorithm

1: procedure DETECTSTATICFRAMES(video, starttime, endtime)

»

24:
25:
26:
27:

video = video[starttime:endtime]
fizedFrames < ()
SSIMV alidated Frames + ()
prevFrame < first frame in video
for frame € rest of frames in video do
absDif f < absolute difference between frame and prevFrame
absDif fThresh < apply adaptive thresholding using a Gaussian filter to absDi f f
meanV al < mean value of absDif fThresh
if meanVal < 10 then
fizedFrames < fixedFramesU frame
else
if length of fixedFrames > minimum duration then
subclip < extract sub-clip of frames with constant background from fizedFrames
for patch € randomly selected patches in each frame of subclip do
SSIMV al + calculate SSIM of patch
if SSTMVal > threshold then
SSIMValidatedFrames < SSIMV alidatedF'rames U frame
end if
end for
end if
fizedFrames < ()
end if
prevFrame < frame
end for
staticTimestamps <— extract start and end times from SSIM ValidatedFrames
return staticTimestamps

28: end procedure

Aligning both modalities. The alignment of the images with their corresponding text requires the
implementation of unique algorithms. These algorithms are designed to reduce duplicate content
and ensure accurate mappings between image and text. See Figures [§] and [9] and Table [4] for a
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a demonstration of image-text alignment process. See Figure [I0] for sample images and their
corresponding medical and ROI texts and the sub-pathology classification provided by the LLM.
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Figure 8: Overview of use of timing and keywords for Alignment Images within a video chunk, i.e
{A, B, C}, I, att,, are aligned with medical texts extracted within the same chunk. The raw_keywords
within each example chunk is colour coded to illustrate matches with keywords extracted from the
medical texts and only matching keywords allow for the pairing of texts containing said keywords to
image frames with frame-times around raw_keywords times.
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Figure 9: Video Chunking algorithm illustrate. With each transition tag explained in Table EL we
leverage predicted histopathology frames at times / ¢1, - - - £,/ to segment videos into chunks. Chunks
at are minimum are 7'p in duration, this value is estimated based on the word-per-second of the video
with a minimum of 20 words being captured per chunk. Images within a chunk , unlike texts, are
not overlapping with other chunks . Text overlap is done to provide needed context for LLM text
correction and extraction.

A.2 Other data sources
A.2.1 PubMed Open Access Articles

We searched the PubMed open-access from 2010 — 2022 with keywords (pathology, histopathology,
whole-slide image, H&E, and 148 keywords from a histopathology glossaryﬂ). We utilized Entrez

to retrieved the top 10,000 most relevant articles for each keyword. This query yielded 109,518 unique
articles with PMCIDs. We extracted 162, 307 images and their corresponding captions. Using our
histopathology classifier and cropping multi-plane figures as described in[A:4] we extracted 59, 371
histopathology image and caption pairs with an average caption length of 54.02 tokens. Figure[TT]
demonstrates the pipeline of collecting data from PubMed.

“https://lab-ally.com/histopathology-resources/histopathology-glossary
"%http://www.ncbi.nlm.nih.gov/Entrez
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Table 4: All 6 (six) transition states for chunking narrative style videos. p(H);, is the binary
histo image classifier prediction at the current frame’s time ¢,, and p(H );, _, is the prediction at next
frame’s time ¢,,_1, where T’ is the cumulative running time and 7p is the estimated minimum chunk
time for the video, determined by the words per second of the video. Text and image chunks are
implemented as an ordered list of time intervals and image indexes.

P(H)Qt, P(H)Qtp_1 tn—tn_1>Tp T.>T, ‘ Text chunk ‘ Image chunk ‘ Tag

0 0 - - - - A

1 - - end = t,; append(s, e); reset
state is empty append prior in
dex; reset state

append index to chunk state, iw B

] 0 - - | start = max(tn_1,tn — Tp) | append index to chunk state | C
end = t,; append(s, e); reset state; | append index to chunk state; re} D

1 - start = t, — T} set state

1 1 :
1 end = t,; append(s, e); reset state; | append index to chunk state; ret E

0 start =t, — T, set state
0 | - | append index to chunk state | F

A.2.2 Histopathology Image Retrieval from LAION

The Large-scale Artificial Intelligence Open Network (LAION-5B) [52] curated over 5 billion pairs
of images and text from across the Internet, including a substantial volume of histopathology-related
data. We tapped into this resource by retrieving the 3000 most similar LAION samples for each of the
1,000 pairs of images and text sampled from PubMed and QUILT, using a CLIP model pre-trained
on the LAION data. The retrieval process utilized both image and text embeddings, with cosine
similarity serving as the distance metric. Subsequently, we eliminated the duplicate images and
removed all non-English pairs from the remaining pairs using LangDetectEl Consequently, the
process yielded 22, 682 image and text pairs.

A.2.3 Twitter Data from OpenPath

We utilized a list of tweets curated by Huang et al. [24] which totaled up to 55, 000 unique tweets
and 133, 511 unique image-text pairs. This exhibits a one-to-many relationship that leans towards the
image side, differentiating our work from the OpenPath approach, where we had one image matching
with multiple captions (as in the case of MS-COCO captions). In order to maintain comparability
with OpenPath, we followed their text pre-processing pipeline given in [24]].

A.3 Histopathology and Magnification classifier

We use an ensemble of three histopathology image classifiers. To ensure robustness, our ensemble
approach consists of two small Conv-NeXt models [38]] and one linear classifier fine-tuned with DINO
features [[L1]]. This combination is necessary due to the homogenous appearance of histopathology
images and the risk of false positives from similar pinkish-purple images. One Conv-NeXt model is
trained in detecting non-H&E Immunohistochemistry (IHC) stained tissue images, while the other
models are trained to handle all IHC stains and tissue types. The training data includes eight sub-
groups of the TCGA WSI dataset and a mix of general-domain images, PowerPoint (slide) images,
and scientific figure datasets. See Table [5]for details of these datasets.

For the magnification classifier, we finetune a pretrained ConvNeXt-Tiny model [38], with standard
preset hyperparameters for a few epochs and select the best performing model on the validation set.
To generate a training set for the magnification model, TCGA subsets were segmented into patches
using a method similar to [64]. These patches were generated at various magnifications, which were
then categorized into three labels: 0:{1.25x, 2.5x, 5x, 10x}, 1:{20x}, 2:{40x}. The TCGA subsets
were chosen to ensure a diverse representation of tissue morphologies and cancer types, thereby
ensuring robust and comprehensive model training. The model was also trained on cytopathology
microscopy images and various IHC stains beyond H&E to enhance the model’s generalizability

"https://github.com/fedelopez77/langdetect
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Image

Medical TEXT

ROI Text

Sub-pathology
Classification

['There are clusters of cells with micro-follicular
formations.','Nuclear pseudo-inclusions, oval
nuclei, nuclear grooves, and small nucleoli are
present in some cells.’]

['clusters of cells', 'micro-follicular
formations', 'nuclear pseudo-
inclusions', 'oval nuclei', 'nuclear
grooves', 'small nucleoli’]

['Endocrine’,
'Cytopathology',
'Head and Neck']

['Cluster of macrophages and T cells is
characteristic of acute rheumatic fever.',
'Aschoff body is a characteristic feature of acute
rheumatic fever.’, 'Macrophages with elongated
chromatin are called Anitchkow cells and are
commonly seen in Aschoff bodies.', 'Pancarditis
with Aschoff bodies is present.']

['Cluster of macrophages and T cells',
'Aschoff body', 'Macrophages with
elongated chromatin', 'Anitchkow
cells', 'Pancarditis']

['Cardiac!,
'Hematopathology',
'Endocrine']

['An 80-year-old man has a scar-like plaque on
the scalp that has been called malignant on a
biopsy.', 'The tissue affected by the plaque
extends from the epidermis to the galea
aponeurotica, near the periosteum of the
skull.', 'The skin, dermis, and subcutis are all
affected by the process.']

['scar-like plaque on the scalp’,
'malignant on a biopsy', 'skin, dermis,
and subcutis affected by the process']

['Dermatopathology
!, 'Soft tissue',
'Hematopathology']

['Inflammatory cells surrounding cartilage can
indicate acute chondritis, with neutrophils being
the principal cell type.', 'Chronic chondritis may
be diagnosed if lymphocytes are the
predominant inflammatory cell type.']

['cartilage’, 'inflammatory cells']

['Hematopathology'
, 'Bone’,
'Dermatopathology’
1

['Large histiocytes with abundant cytoplasm
identified as Rosai-Dorfman histiocytes.', 'S100
stain showed perivascular cuffing.’, 'Initial
diagnosis of inflammatory pseudotumor of the
orbit.', 'Rosai-Dorfman disease may burn out
and leave behind fibrotic pockets.']

['Large histiocytes', 'perivascular
cuffing', 'fibrotic pockets'

['Dermatopathology
!, 'Soft tissue',
'Hematopathology']

['Epidermal acanthosis and papillomatosis
resembling a wart or seborrheic keratosis.’,
'Presence of large sebaceous glands that drain
directly through their duct out to the skin
surface, which is abnormal.', 'Presence of a
demodex mite.']

['Epidermal acanthosis and
papillomatosis', 'large sebaceous
glands', 'demodex mite']

['Dermatopathology
!, 'Soft tissue',
'Hematopathology']

['Histological description of glandular tissue
with little atypia but located in a place where it
does not belong can be a helpful criteria to
discern the presence of malignancy.’, 'Glands
located on the periphery and infiltrating into
adventitia and peripancreatic tissue may be
malignant.']

['glandular tissue', 'pancreas',]

['Gastrointestinal',
'Pancreatic',
'Hematopathology']

Figure 10: A collection of sample images from our dataset, accompanied by corresponding medical
text, ROI text, and the top three sub-pathology classifications derived from the ASR text using the
LLM.

across different conditions. Only the ACROBAT and TCGA datasubsets are preprocessed to divide
the WSIs into patches at various scales.

A.4 Support Models, Ontology Databases and Algorithms

This section describes the support models, ontology databases and handcrafted algorithms utilized
within our pipeline for both searching and parsing our data.

Ontology databases. We employ various ontologies, both specific to histopathology and general
ones. Among them are OCHV [2]], FMA [42], BCGOITEl NCIT [[19], MPATH [51]], HPATH [62], and
CMPO [29]. These ontologies serve a dual purpose. First, we used histopathology-specific ontologies
(HPATH, MPATH, BCGO, and CMPO) to provide words/phrases to condition the LLM, enabling it
to identify incorrect words. Second, all ontologies, in conjunction with UMLS, are used to obtain
terms or phrases for validating the output of the LLM.

"https://bioportal bioontology.org/ontologies/BCGO
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Figure 11: (a) Search PubMed open access database, filter based on keywords, date, language and
sort by relevance. (b) Download paper and media for each search result. (c) Extract and pair figures
and captions. (d) Separate multi-plane figures, find histopathology images and their magnification.
(e) Final result.

Table 5: Datasets used to train the histopathology image classifier. [um per pixel - MPP]

Data Source Subset #WSI  #pathces  Train-Test Magnification Image-size
GBM 19
LuSC 2 89,022 - 40x
LIHC 20
TCGA (H&E Stain) SARC 23 169,431 84715-16943 97,071 -20x 384 x 384
KIRC 16 16,660 - 10x
KICH 4 4,748 - 5%
BRCA 17 1,465 - 2.5x
SKCM 19 466 - 1.25x
H&E K167 99 50589 28105-22484  (10x, 5%, 2.5x) 384 x 384

ACROBAT Weitz et al. [61] ER . PGR. HER?2

BCI Liu et al. [36] - 4,870 20x (0.46 MPP) 1024 x 1024
CCESD Liu et al. [35] - - 686 100x/400x 2048 x 1536
Smear Hussain et al. [25]] - - 963 400x 2048 x 1536
Celeb Liu et al. [37] - - 202,599 8,103-1,944

Places Zhou et al. [69] - - 36,550 2,109-1,372

AI2D Kembhavi et al. [32] - - 4,903 0.7-0.3%

DocFig Jobin et al. [27] - - 33,004 0.8-0.2%

SciFig-pilot Karishma [30] - - 1,671 0.8-0.2%

SlideImages Morris et al. [40] - - 8,217 0.8-0.2%

TextVQA Singh et al. [54] - - 28,472 0.8-0.2%

SlideShare-1M Araujo et al. [3] - - 49,801 0.8-0.2%

Sub-pathology types. The list of all 18 sub-pathology types used to prompt LLM on the text
classification task are: Bone, Cardiac, Cyto, Dermato, Endocrine, Gastrointestinal, Genitourinary,
Gynecologic, Head and Neck, Hemato, Neuro, Ophthalmic, Pediatric, Pulmonary, Renal, Soft
tissue, and Breast Histopathology. Figure [12]provides the LLM prompt to retrieve the top three
sub-pathology classification based on a given text.

Pre-processing multi-plane figures. Many figures in academic papers are multi-plane, which means
a number of sub-figures (Charts, graphs, histopathology and non-histopathology sub-figures) are
placed next to each other to make a larger figure. We extracted individual images from multi-plane
figures to create multiple instance bags. To locate boundaries and white gaps between sub-figures,
we utilized Sobel filters. Binary thresholding was then used to find the contours surrounding the
sub-figures. We employ image size and image ratio thresholds to remove undesirable sub-figures and
our histopathology classifier to maintain just histopathology sub-figures. We supply the histological
sub-figures individually for this type of figure by appending "_[0-9]+" to the end of the multi-plane
figure id. If a figure is divided into more than 5 sub-figures, we preserve the original image to ensure
that the resolution of these sub-figures remains reasonable. Figure [I3]shows an overview of this
pre-processing step in different scenarios of successful and unsuccessful crops.
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Figure 12: Prompting LLM with few-shot examples to extract the top three sub-pathology classifica-

You are a histopathology text classifier

Imagine you are a text classifier. Classify the given text into one of the following
surgical pathology types namely: Bone, Cardiac, Cytopathology, Dermatopathology,
Endocrine, Gastrointestinal, Genitourinary, Gynecologic, Head and Neck,
Hematopathology, Neuropathology, Ophthalmic, Pediatric, Pulmonary, Renal, Soft
tissue, Breast pathology. Output only the top 3 pathology types in an ordered python
list

"Radicular cyst arises within the periodontal ligament space,
particularly the periapex from the epithelial cell of malassez. These
radicular cysts are caused by inflammation following the death of the
pulp extending into the periapical radix. Radicular cysts caused by
inflammation are always associated with a non vital tooth."

"['Soft tissue’, 'Dermatopathology’, 'Hematopathology'l]"

INPUT:

"There is a lesion with slight thickening of the muscularis mucosa and
submucosa. There is a subtle change in the lamina propria that doesn't
look quite like normal stromal cells. Description of slight thickening of
the muscularis mucosa and submucosa with subtle changes in the lamina
propria. Highlighted field shows the changes more dramatically. Abnormal
cells in the lamina propria that appear pink and spindly."

OUTPUT: "['Gastrointestinal', 'Soft tissue', 'Hematopathology'l"

tion of a given text.

Gastric cancer

Para-carcinoma

Figure 13: (a), (b), and (c) successfully cropped sub-figures where histopathology images (green box)
are kept and non-histopathology (red box) images are removed. (b) histopathology crops are kept as
not separated because the individual crops don’t meet the size threshold so the original figure is kept.

(d)

(d) Unsuccessful crop due to minimal gap between sub-figures. Original image is stored.
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A.5 Privacy preserving steps

In order to ensure privacy while handling the dataset, several steps were taken to protect sensitive
information. These steps include:

* Reduction of Signal to Noise using a LLM: To protect the privacy of the dataset, a LLM
was utilized to reduce the signal-to-noise ratio. By applying the LLM, irrelevant or sensitive
information was masked or removed.

* Exclusion of Videos Not Fully in Narrative Style: Videos that did not adhere to a fully
narrative style were intentionally left out of the dataset. This step was taken to minimize
the risk of including any potentially private or sensitive content that could compromise
individuals’ privacy.

* Release of Video IDs and Reconstruction Code: Instead of directly releasing the complete
dataset, only video IDs from YouTube were made public. Additionally, the code is provided
to enable researchers to recreate the dataset.

* Collection from Diverse Channels: Data collection was performed from a wide range of
sources, including both large and small channels. This approach aimed to decrease the risk
of overfitting to specific channel types, thereby mitigating privacy concerns associated with
potential biases linked to particular channels.
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