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Learning by Restoring Broken 3D Geometry
Jinxian Liu , Bingbing Ni , Ye Chen , Zhenbo Yu , and Hang Wang

Abstract—The key point for an experienced craftsman to repair
broken objects effectively is that he must know about them deeply.
Similarly, we believe that a model can capture rich geometry
information from a shape/scene and generate discriminative rep-
resentations if it is able to find distorted parts of shapes/scenes
and restore them. Inspired by this observation, we propose a novel
self-supervised 3D learning paradigm named learning by restoring
broken shapes/scenes (collectively called 3D geometry). We first
develop a destroy-method cluster, from which we sample methods
to break some local parts of an object. Then the destroyed object
and the normal object are both sent into a point cloud network
to get representations, which are employed to segment points that
belong to distorted parts and further reconstruct/restore them to
normal. To perform better in these two associated pretext tasks,
the model is constrained to capture useful object features, such as
rich geometric and contextual information. The object represen-
tations learned by this self-supervised paradigm transfer well to
different datasets and perform well on downstream classification,
segmentation and detection tasks. Experimental results on shape
datasets and scene datasets demonstrate that our method achieves
state-of-the-art performance among unsupervised methods. We
also show experimentally that pre-training with our framework
significantly boosts the performance of supervised models.

Index Terms—3D point cloud, shape, scene, self-supervised,
representation.

I. INTRODUCTION

W E LIVE in a 3D world. It is natural to do shape and
scene understand in 3D domain. In the meanwhile, the

growing of low-cost 3D sensors, e.g., LiDAR and RGB-D cam-
eras, makes collecting 3D data easier and 3D understanding a
tremendous demand recently. Supervised learning is a mainstay
for large discriminative models in 3D computer vision [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
while large amounts of human-annotated data are the key to
achieving state-of-the-art performance. However, labeling such
kinds of irregular 3D data would be extremely labor-intensive.
This directly results in the small-scale of existing 3D datasets
and limits the performance of models on complex scenes.

In 2D domain, steady progress in un-/self-supervised rep-
resentation learning [15], [16], [17], [18], [19], [20], [21] has
emerged with encouraging results on multiple 2D visual tasks.
A Large-scale unlabeled dataset is fully utilized to pre-train
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a model with elaborately designed learning schemes, and the
model could be transferred to a usually much smaller tar-
get set and help boost its performance once fine-tuned. Con-
trastive learning [20], [21], [22] is the most successful paradigm
among these methods in 2D domain. This motivates us that
un-/self-supervised learning opens up the possibility to uti-
lize practically infinite unlabeled data. Compared with 2D im-
ages, we hold a point that 3D data naturally contains richer
structural and geometric information, which could be fully
extracted in a self-supervised manner and further utilized to
transfer to a labeled dataset. Moreover, 3D tasks are poten-
tially the biggest beneficiaries of self-supervised learning due
to that it is significantly harder to annotate 3D data than 2D
counterpart. In general, we firmly believe that it is necessary
and appropriate to explore un-/self-supervised learning in 3D
domain.

Recently, some works [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34] pay more attention to self-supervised
learning (SSL) on 3D domain. Most of these works explore SSL
in a generative or context-instance contrastive paradigm. [23],
[24], [25], [26] construct generative models to learn repre-
sentations of point clouds without manually-annotated labels.
However, point representations learned by these methods are
not strong enough to be used for complex downstream tasks
such as segmentation and detection. CAD shape retrieval and
classification are their application scenarios, yet they do not
perform well. [26], [27], [28], [30] develop various context-
instance/local-global contrastive self-supervised methods to
learn more discriminative representations. However, the pretext
tasks proposed in these methods are usually easy to converge so
that they get trivial solutions according to some clues that have
nothing to do with shape geometry. Moreover, most of these
methods are only applied to shape point clouds and it is difficult
to transfer them to real scene samples. [31], [32], [33] are works
published recently that follow most popular paradigm in 2D
domain, i.e., instance-instance contrastive. [31] takes different
views of a point cloud as positive samples, while [33] takes
single view 3D depth scans as input and merge results of voxel
and point data to enhance its performance. Methods following
the instance-instance contrastive paradigm do achieve great
results on classification tasks. However, elaborately sampling
hard examples and designing effective metrics are tedious for
achieving stable and good results. Moreover, lacking modeling
of local parts limits them to perform better on some fine-grained
tasks such as detection and segmentation.

Hence, developing a simple and general self-supervised
framework for both 3D shapes and scenes without elaborately
constructing contrast pairs and designing learning metrics is of
the utmost urgency. To this end, we propose a self-supervised
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Fig. 1. Illustration of our main idea. As shown, we destroy the shape/scene
parts with certain heuristic methods and there is a huge mismatch between the
distorted parts and the normal parts. We can easily distinguish the distorted parts
because we know the geometric characteristics of the object. Hence we think
a strong representation that encodes effective structure information should also
have the ability. We destroy shape/scene parts and train a network to distinguish
the destroyed parts and restore them to normal in an unsupervised pretext
task. Success in the pretext task indicates the network captures strong shape
representations, which can transfer well to downstream tasks.

learning scheme for point clouds in a context-instance paradigm
in this work. Our defined pretext task is intuitive and the
model performs better than all methods mentioned above on
downstream tasks. The proposed method is based on the prin-
ciple that each object in the 3D world is made up of shape
parts/elements/primitives (they do not need to contain specific
semantic information). The rule how these parts match with each
other and form the whole object reflects the robust geometric
characteristics, which imply local structure information and
semantic knowledge of the object. Hence, distorted local parts
will break such geometric characteristics of the shape. One can
easily distinguish distorted parts and even restore them if he fully
captures the geometric information of such an object. Motivated
by this principle, we think that a good 3D representation that
encodes rich structural and semantic information should have
the ability to find broken parts and correct them.

Inspired by such observations, we propose a novel self-
supervised learning framework, i.e., learning by restoring bro-
ken 3D geometry, to capture representations of unlabeled 3D
point clouds. Theoretically, our proposed scheme works for any
type of 3D data (e.g., point clouds, voxel, mesh) with appropriate
adjustments. However, we take point cloud as our input for its
simplicity and broad applicability. The overview of our frame-
work is shown in Fig. 1, which is formulated as destroying local
parts of a 3D point cloud sample and encouraging the network to
distinguish the destroyed shape/scene parts and restore them to
normal. For simplicity, we collectively refer to shapes and scenes
as objects later in this paper. For success in this pretext task,
the trained model is constrained to capture rich geometric and
structural information of the 3D point cloud. To this end, we first
design an object-destroying module to break some local parts of
the 3D samples. Specifically, we randomly sample some points
of a point cloud, and then aggregate their neighbors to form some
local parts. To destroy these sampled local parts, we develop a
destroy-method cluster, from where we sample various methods
to destroy local parts of the 3D sample. In the destroy-method

cluster, we add some common data augmentation methods, such
as random rotation, random scaling, etc. In addition, we design
some simple yet effective parts destroying methods to enrich this
cluster. For example, we exchange sampled local parts, replace
the local parts with standard spheres or drag the local parts to
deform them. Given a normal 3D point cloud, we randomly
sample 1-3 methods to destroy its parts. Then we pair the
normal sample and destroyed sample and send them into a shared
network to extract features respectively, which are concatenated
to perform destroyed parts searching and restoring. Note that our
proposed framework is agnostic of network and can be applied to
different point cloud networks like PointNet [1], PointNet++ [2],
RSCNN [11] and MinkowskiNet [35]. In this paper, we modify
PointNet, RSCNN and MinkowskiNet as our feature extractors
respectively to evaluate our proposed method. With the features
of the normal shape, accurate structure information is obtained
so that the network is capable of performing better on the pretext
tasks. To perform destroyed parts searching and restoring when
given the concatenated features, we design two branches that
can be summarized as: 1) Distinguishing Branch: we imple-
ment a point-wise classifier to segment points that belong to
the distorted parts; 2) Restoring Branch: we further design a
self-reconstruction module to correct the distorted shape based
on the outputs of the Distinguishing branch.

After training the model on our proposed pretext task, we
can use the model to perform various downstream tasks, such
as classification, segmentation and detection. In this work, we
follow two main settings to conduct experiments on shape
datasets and real large scene datasets respectively. For setting
1, we utilize the ShapeNet [36] dataset as our source set for self-
supervised pre-training and evaluate the learned features on two
important 3D understanding tasks, i.e., shape classification and
segmentation. Experimental results on several datasets indicate
that our method achieves state-of-the-art performance among
unsupervised models on both classification and segmentation
tasks. We also show experimentally that pre-training with our
framework significantly boosts the performance of supervised
models. On the segmentation task, we also explore the effec-
tiveness of the learned features in a semi-supervised setting and
our method outperforms previous methods [31], [37], especially
when labels are most limited. In addition, our per-trained model
achieves competitive results on downstream tasks when only
using PointNet as the backbone network, which demonstrates
the strong feature learning ability of our framework. For set-
ting 2, we take MinkowskiNet as the backbone and train the
model with proposed pretext tasks on ScanNet [38]. Then we
perform downstream tasks (i.e., scene segmentation and object
detection) on S3DIS [39], SUN RGB-D [40] and ScanNet
following a pretraining-and-finetuning paradigm. Experimental
results show that our method performs better on most tasks than
published works.

Our main contributions are summarized as follows:
1) We propose a novel self-supervised learning scheme i.e.,

learning by restoring broken 3D geometry. This new learn-
ing framework is general for shape and scene data.

2) We design a destroy-method cluster to break local parts of
a 3D point cloud sample. Various methods can be added
to this cluster to further improve its performance.
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3) To make a fair comparison with various methods, we
follow two main settings and perform large amounts of
experiments on shape datasets and scene datasets.

4) Experimental results show that our method performs better
than state-of-the-art methods and shows great generaliza-
tion ability.

II. RELATED WORK

Self-Supervised Learning on 2D Domain. To overcome the
challenge that annotating data is high cost, many unsupervised
learning methods [15], [16], [17], [18], [19], [20], [21], [22],
[41], [42], [43], [44], [45] are proposed. Self-supervised learn-
ing is a kind of unsupervised learning method. It requires the
network to find free and plentiful supervised signals for training.
There are many self-supervised learning methods that have been
proposed in 2D vision (image/video processing). In [41], authors
propose to learn representations of images by letting the network
solve the Jigsaw puzzle, where random pairs of patches from an
unlabeled image are extracted and sent into a siamese network
to predict position relationship between them. Furthermore, [42]
defines a sort problem to perform self-supervised learning,
where serval patches are extracted from an image regularly and
a network is utilized to sort randomly shuffled input patches.
And many other works are proposed such as colorization [43],
inpainting [15], predicting rotation angle [44], etc. In addition,
many works [20], [21], [22], [41], [44], [45] focus on con-
trastive self-supervised learning recently and achieve superior
performance. They shed light on the potential of discriminative
models for representation, and can be divided into two types:
context-instance contrast and instance-instance contrast. The
context-instance contrast is also called global-local contrast,
which focuses on modeling the belonging relationship between
the local feature and its global representation. [41] and [44] can
be incorporated into such kind of contrast. Instance-instance
contrastive learning directly explores the relationships between
different samples with instance-level representations as met-
ric learning does. CMC [45], MoCo [20], SimCLR [21], and
BYOL [22] are recently proposed self-supervised algorithms
based on instance-instance contrast, and they outperform the
context-instance contrastive methods. Although these methods
achieve superior performance on the classification task, they do
not perform very well on pixel-wise tasks such as segmentation
due to that they pay no attention to the local and fine-grained
context information. In the field of video understanding, [46]
explores to design a self-supervised learning scheme of find-
ing corresponding pairs using visual tracking. The temporal
order of a video [47] is also utilized as supervised signals for
learning video representations. These proposed self-supervised
learning methods are all designed for 2D data (image and video).
Self-supervised learning, especially for that following instance-
instance contrast paradigm, has achieved great success in 2D do-
main. However, only few works explore the effectiveness of self-
supervised learning on 3D domain. In this work, we propose a
novel self-supervised learning scheme for 3D data (point cloud)
based on context-instance contrast paradigm, which achieves
state-of-the-art performance on various downstream tasks.

Deep Learning on Point Cloud Understanding. PointNet [1]
is a pioneering work to directly consume unordered and unstruc-
tured 3D point clouds, where MLPs and global max-pooling are
utilized to obtain both point-wise features and global structure
information. Despite PointNet well handles order invariances of
input data and achieves strong performance, it fails to aggregate
point-wise embeddings and capture local contextual information
among points. PointNet++ [2] mitigates this issue by proposing a
hierarchical learning architecture, where multi-scale local point
embeddings are grouped. Several subsequent works [3], [4],
[6], [48], [49], [50], [51], [52], [53], [54], [55], [56] employ
neighbor searching to aggregate the representations of neighbor
points and capture local geometry information. In addition,
some works [57], [58] imitate CNN to design regular kernels
and conduct convolution based on the correlation between
kernels and the local point set. Furthermore, a hierarchical
framework is usually constructed by stacking elaborately de-
signed convolution layers. Attention and transformer are also
introduced into the point cloud learning frameworks. Recently,
some works [59], [60], [61] pay more attention to designing
efficient point cloud learning architectures to facilitate real-time
3D scene understanding. All of the mentioned methods achieve
remarkable performance on 3D point cloud understanding tasks
with large amounts of labeled data. In this work, we propose a
self-supervised learning scheme. Almost all models mentioned
above can be trained with our proposed paradigm without any
human-annotated data. Then we fine-tune these models with
very little labeled data on downstream tasks. Our method is
label-efficient and boosts the performance of supervised models
after fine-tuning on various tasks and datasets.

Unsupervised Point Cloud Understanding. Unsupervised
point cloud understanding aims to capture effective informa-
tion from unlabeled point cloud data and utilize the learned
features to handle downstream tasks. Classic methods perform
unsupervised point cloud feature learning mainly based on auto-
encoders [23], [24], [25], [26], [62] and generative adversarial
networks [62], [63], [64]. Despite the promising performance on
several specific tasks, these methods suffer from lacking local
structural supervision, which limits the feature learning ability
and transferability. Certain recent efforts focus on learning both
structure information and semantic knowledge by defining pre-
text tasks [27], [28], [30], [37], [65]. RS [27] splits the shape
into 3x3x3 voxels and trains the network to reconstruct the
shape whose parts have been randomly rearranged by finding
the correct voxel assignment. However, RS restores the shape by
simply rearranging shape parts according to the predicted voxel
assignment. Such a high-level pretext task cannot constrain
the model to capture effective geometry information and learn
discriminative representations. Many fine-grained methods that
distort and restore the shape do not apply to RS but they work
well in our framework. PointGLR [28] explores high-level se-
mantic knowledge contained in point clouds by bidirectional
reasoning between local representations at different abstraction
hierarchies in a network and global representation of the 3D
object, which achieves extraordinary performance on classifica-
tion tasks. Inspired by the great success that contrast learning
achieved in 2D domain, PointContrast [31] is the first work that
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Fig. 2. Framework of the proposed self-supervised learning scheme. The framework consists of an Object-Destroying module, a point cloud encoding network
and two task-related branches. We design a method cluster to distort object parts. The abnormal part distinguishing branch and abnormal part restoring branch are
designed to segment points that belong to destroyed parts and restore the destroyed object to normal respectively.

proposes a contrastive self-supervised learning framework in
3D domain. It is the first time to demonstrate the transferabil-
ity of learned representation in 3D point clouds to high-level
scene understanding. Based on PointContrast [31], Contrastive
Scene Contexts [32] integrates the spatial information into the
contrastive learning framework and improves the performance
over PointContrast [31], especially on complex tasks such as
instance segmentation. Under this perspective, we propose a new
self-supervised scheme, which simultaneously employs local
and global self-supervision. Our method captures discriminative
embeddings that outperform other unsupervised methods on
downstream tasks and achieves better performance than state-of-
the-art supervised methods after fine-tuning with all or limited
labeled data.

3D Shape Assembly. Shape assembly [66], [67], [68], [69],
[70], [71], [72] is another research topic that is related to our
work. It aims at assembling a set of parts into a complete object.
These methods usually have to predict the pose and translation
of each part and learn to reconstruct the original shape. However,
most of them [66], [67], [68], [69], [70], [71] use the PartNet [73]
dataset, where the parts are decomposed with semantic infor-
mation. In other words, additional supervisions/annotations are
provided and semantic cues are taken to do shape assembly,
bypassing the geometric cues. To overcome this problem, [72]
proposes to cut the shape randomly following the self-supervised
fashion. A Neural Shape Mating module is developed in [72] to
reconstruct the shape based on the randomly decomposed parts.
In general, the function of our reconstruction/restoration module
is similar to the assembly module in these methods. However,
the key points of shape assembly lie in predicting the pose and
translation of each part, because the decomposed objects are
intact and do not need to be restored. The parts in our work are
broken using various methods, the model needs to find all broken
parts in the shape/scene first and then restore them. Moreover,
these methods only focus on shape assembly, while our method
can be applied to both shape and scene data.

III. METHODOLOGY

To learn discriminative, robust and generalizable 3D repre-
sentations from unlabeled point cloud data and enhance the

networks ability in 3D point cloud understanding, we propose a
novel self-supervised framework named learning by restoring
broken geometry. Our method enables the model to capture
effective structural and contextual information by destroying the
local object parts and constraining the network to distinguish and
restore them to normal.

A. Overview

Our framework contains an Object-Destroying module, a
point cloud Encoder, a Distinguishing Branch D and a Restoring
Branch R, as illustrated in Fig. 2. First, we disorganize the 3D
object and destroy the geometric structure of the normal object.
Then we use the encoder to generate features of both the normal
object and the destroyed one. The features are concatenated as
the input of branch D and R to distinguish the destroyed object
parts and further restore them to normal. Here, the features
of the normal object are utilized as the template to provide
accurate structure information so that the network is capable of
performing well on the pretext tasks, which enables the model
to exploit effective object features.

Assume an object S = {s1, s2, . . ., sN} is a point set withN
points, the Object-Destroying module randomly samples some
parts and then utilizes a combination of approaches sampled
from a destroy-method cluster to distort the sampled parts. We
define the points of distorted parts as incorrect points. The
incorrect points together with the parts that are not selected form
a new object S∗. Intuitively, the new object may not conform the
geometric characteristics of the original object. Considering the
geometric characteristics implicitly represent the relationships
among different object parts and imply semantic knowledge
of the object, we design the Distinguishing Branch D to seek
out the incorrect points that break the geometric construction
of the original object, which encourages the model to better
understand 3D objects and learn effective structure and semantic
information. Based on the distinguishing results, if the model
is able to move the incorrect points to correct positions and
restore the geometric characteristics of the normal object, we can
conclude that the model explores more fine-grained geometric
and contextual features of input objects. Hence the Restoring
Branch R is designed to reconstruct input objects. To succeed
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in such a pretext task, the encoder is constrained to fully exploit
useful geometry information.

B. Object Destroying

1) Destroy-Method Cluster: The Object-Destroying module
is designed to destroy the geometric structure of input 3D objects
by disorganizing the object parts. To simulate as many situations
where objects are broken as possible, we design a method cluster
to destroy the input object in this work, including (1) randomly
rotate the sampled part along X,Y or Z axis; (2) randomly
translate sampled points to new positions; (3) randomly scale
the sampled part; (4) crop the sampled part and replace it with a
random sphere; and (5) exchange the coordinates of two sampled
parts.

Assume that the center point of the sampled part is p =
(x, y, z). The scale e is defined as the largest distance from all
points of the part to the center. For method (1), we generate a
rotation matrix M given a randomly sampled rotation axis. For
example, when rotating a part P = {p1,p2, . . .,pK} along Z
axis, we multiple each point pk of the part P with the rotation
matrix

pnew =

⎡
⎢⎣
cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎤
⎥⎦pk, (1)

where k ∈ {1, 2, . . .,K} and θ ∈ [−π, π]. For method (2), we
add a random translation value t to all points of the sampled
part, where the translation value t ∈ [0.5e, 1.5e]. For method
(3), we first calculate the relative coordinates of each point to
the center. Then the relative coordinates are multiplied with a
random scale factor and added to the center to form the scaled
part. The scale factor is randomly sampled from [0.5, 1.5]. For
method (4), we generate a set of points within a sphere with the
center c = p and the radius r ∈ [0.5e, 1.5e]. Then we remove
all points of the sampled part and add the points of the generated
sphere. For method (5), given two sampled parts P and Q and
corresponding center points p and q, we first calculate relative
coordinates pr and qr for each point. Then we exchange the two
parts by adding each relative coordinate to another center:

pnew = pr + q, (2)

qnew = qr + p. (3)

To destroy the geometry of the sampled parts diversely, we
randomly select and combine several methods for each sampled
part.

These methods are based on commonly used point cloud data
augmentation, and they perform very well in our work on shape
datasets. For more geometrically complex and semantically rich
samples such as scene point clouds, they cannot help the network
to capture fine-grained information. In a large scene sample,
some local parts may share similar geometric characteristics
such as the local distribution of curvature while have different
semantic labels. We therefore need to design some destroying
methods to change its geometric characteristics (e.g., curvature)

Fig. 3. Visualization of our dragging method. The red arrows denote the
dragging process, while the black arrows denote the moving according to the
dragging point. σ is used to normalize the scale. Best viewed in color.

slightly and let the network find fine distinctions. When do-
ing downstream tasks, the network will capture discriminative
representations even though some parts share similar geometric
characteristics.

To this end, we design an object-dragging method to help the
model to capture more fine-grained representations and perform
better on more complex tasks such as segmentation and object
detection on scene datasets (as shown in Section IV-B). Just
like kneading the plasticine, the object dragging is designed to
drag a corner of the object to a point at 3D space. The points
of the object will move along the direction of dragging, and
the moving distances are inversely proportional to the distances
between the points and the corner of the object. Assume that
the selected corner of the object is the point sd = (xd, yd, zd).
We drag the point sd to the position sd′ = (xd′ , yd′ , zd′). All
points of the object S move towards sd′ with distance being
inversely proportional to the distance between each point and
sd. As a result, the point si moves towards si′ = (xi′ , yi′ , zi′),
whose position is written as

si′ = ||sd′ − sd|| ·
(
1− ||si − sd||

σ

)
· sd′ − si
||sd′ − si|| + si,

(4)

where ||sd′ − sd|| ·
(
1− ||si−sd||

σ

)
denotes the moving dis-

tance for point si. σ is a hyper-parameter used to normalize the
scale. sd′−si

||sd′−si|| in the formulation denotes the moving direction
for point si. Some geometric characteristics (e.g., curvature,
size, etc.) of the object will be destroyed through our proposed
object dragging. Moreover, we can adjust the degree of the
destroying by controlling the parameter σ. The part far away
from the drag point will change a little when we set the σ small.
We give two 2D examples as shown in Fig. 3 to demonstrate this
point. All methods described above form this destroy-method
cluster. Any method used/designed to disorganize/destroy/break
the local parts of an object can be added to this cluster and further
enhance our self-supervised framework.

2) Random Part Sampling: For the input object, this module
randomly samples some object parts and then randomly selects
certain distortion approaches from the cluster to generate the de-
stroyed object. We sample two object parts as an example to illus-
trate our approach. Note that our method theoretically supports
any number of parts to be sampled. Specifically, we randomly
select two points si = (xi, yi, zi) and sj = (xj , yj , zj) from
the input point cloud S = {s1, s2, . . ., sN} as center points.
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Fig. 4. Visualization of normal models (row 1 and 3) and broken models (row
2 and row 4) disorganized by Object-Destroying module.

Following the grouping layer in PointNet++, we employ ball
query to sample two clusters of points P = {p1,p2, . . .,pK}
and Q = {q1, q2, . . ., qK} from S, where all points in P /Q
are within a radius to si/sj (an upper limit of K is set in our
implementation). We represent the point set that is not sampled
as

S ′ = S \ {P ∪Q}. (5)

For the sampled parts P and Q, a combination of distortion
approaches is utilized to generate distorted versions P ∗ and Q∗.
Then the new object S∗ can be expressed as

S∗ = S ′ ∪ P ∗ ∪Q∗, (6)

which denotes the destroyed object that breaks the original
geometric structure. The visual examples of normal objects and
destroyed objects are shown in Fig. 4. Note that we explain
our method with only two parts for simplicity and clarity. The
number of sampled parts depends on the size of the input
shape/scene. More than two parts can be sampled to perform
destroying.

As shown in Fig. 2, to encourage the network to better
understand the geometric characteristics of the correct object,
we employ the original object as a template and the encoder
extracts high-dimensional features of both the new object and
original object. Intuitively, if the two objects have a point-to-
point correspondence, the Distinguishing Branch tends to dis-
cern incorrect points according to transformation of coordinates
rather than the geometric properties of the correct object. To
avoid such correspondence in coordinates and getting trivial
solutions, we use random sampling to choose two subsets of
points T = {t1, t2, . . ., tN ′}, T ∗ = {t∗1, t∗2, . . ., t∗N ′} from S
and S∗ respectively, where N ′ = N/2. Moreover, we perform
simple random data augmentation on both T and T ∗ for the
purpose of better representation learning, which further breaks
the point-to-point correspondence between normal objects and

disorganized objects. In the meanwhile, the Object-Destroying
module generates pseudo-labels for T ∗. We express it as Y =
{y1, y2, . . ., yN ′ } such that yi ∈ {0, 1}, where yi = 1 means the
corresponding point belongs to distorted parts (i.e., P ∗ and Q∗).
The output of Object-Destroying can be expressed as a tuple
t = [T, T ∗,Y].

C. Object Encoding

Theoretically, almost all learning-based networks that take
point clouds as the input and output high-dimensional features
can be utilized as the encoder of the proposed framework. In our
implementation, we employ three networks, i.e., PointNet [1],
RSCNN [11] and MinkowskiNet [35], as the encoder that maps
input point sets from euclidean space R

n×3 into the latent
space Z ∈ R

n×d respectively. PointNet is a simple MLP-Based
network and RSCNN is a strong point-based shape encoder
that involves local and hierarchical designs. MinkowskiNet is
a voxel-based network widely used in shape classification and
scene segmentation. We employ three different networks to
achieve superior performance and demonstrate great generality
of our method. Specifically, for each object T ∗, the encoder
extracts its point-wise features l∗ ∈ R

n×dl and global feature
g∗ ∈ R

1×dg to encode richer local and global information than
the original space. When using PointNet as the encoder, global
and point-wise features are defined the same as proposed in [1].
For RSCNN [11], we utilize the architecture for classification
(single-scale neighborhood version) as our backbone and gener-
ate point-wise features by attaching certain feature propagation
layers. For MinkowskiNet, we use the max-pooled point-wise
features as the global features. For the purpose of guiding
the network to correctly discern those disorganized parts, we
also extract the global feature g of the original object T . The
concatenation of g, g∗ and l∗ is fed into the Distinguishing
Branch D and Restoring Branch R simultaneously. Through
the task of discerning the disorganized parts and restoring the
original object, the encoder is encouraged to generate strong
object representations that facilitate high-quality classification,
segmentation, detection and other 3D point cloud understanding
tasks.

D. Abnormal Part Distinguishing

For a broken object, the first task is to distinguish the de-
stroyed parts by taking the normal object as a template/reference.
Hence, distinguishing the parts that make the object violate the
geometric construction enables the model to better understand
3D objects and capture more effective object features. Hence the
Distinguishing Branch is designed to seek out all incorrect points
of the destroyed object. We formulate the task as a point-wise
classification. This task is defined as

Fζ : Z ∈ R
N ′×d �→ Y ∈ R

N ′×2, (7)

which maps the high-dimensional features extracted by the
point cloud encoder into predicted categories, i.e., whether
the corresponding point belongs to distorted parts or not. In
our method, we use PointNet/RSCNN/MinkowskiNet as the
encoder, we concatenate the global features g∗, g ∈ R

1×dg and
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the point-wise features l∗ ∈ R
N ′×dl as the input of this branch.

The classification is formed by several MLP layers. The output
of Distinguishing Branch is denoted as Ŷ = {ŷ1, ŷ2, . . ., ˆyN ′ },
where ŷi represents the probability distribution formulated by
softmax function.

E. Abnormal Part Restoring

The second and more challenging task is to restore the de-
stroyed parts of the broken object. Solving this problem will help
the network know more details about the 3D object and learn
more discriminative representations. To this end, we develop
a Restoring Branch paralleled with Distinguishing Branch and
encourage the model to restore the original object. This branch
aims at constraining the encoder to capture more contextual
and geometric information contained in point clouds. Thus the
Restoring Branch is naturally designed to move the incorrect
points to original locations. We formulate the task as reconstruc-
tion based on the results of Distinguishing Branch. We define
the function of Restoring Branch as

Rφ : Z ∈ R
N ′×d �→ P ∈ R

N ′×3. (8)

Through decoding the high-dimensional features extracted by
the encoder, the Restoring Branch performs point-wise displace-
ment prediction and tries to output a point cloud T̄ as similar
as possible to the original point set T by the function R. Here,
we use Chamfer Distance (CD) to measure the distance between
the reconstructed T̄ and the original T . The Chamfer Distance
is often applied as the cost of the reconstruction task, which
finds the nearest neighbor of each point and computes their
euclidean distance in a bidirectional way between two point sets.
In our method, considering the disorganized parts dominate the
performance of reconstruction, we modify the Chamfer Distance
and attach larger weights to the predicted incorrect points than
the correct ones, which is written as

Lc =
∑
p∈T

λp̄ min
p̄∈T̄

‖p− p̄‖22 +
∑
p̄∈T̄

λp̄ min
p∈T

‖p− p̄‖22, (9)

where λp̄ denotes the weight attached to each point in the
reconstructed set. Here, we set λp̄ ∈ {0.5, 1.0}, where λp̄ is set
to 0.5 and 1.0 for points that belong to normal and distorted parts
respectively. We associate the two tasks with this design, which
makes them mutually reinforced. The network is also further
enhanced and performs better in downstream tasks.

To accurately restore the coordinates of incorrect points, the
point-wise local features l∗ and global feature g∗ are utilized
because features of the correct points are favorable for the
network to exploit the point relation information and then find
proper locations of incorrect points. The same as Distinguishing
Branch, we employ the global feature of the original object
g as a template. Thus the input of Restoring Branch is the
concatenation of l∗, g∗ and g. The output is a reconstructed
point set T̄ ∈ R

N ′×3.

F. Objective Function

The Distinguishing Branch is trained by classical cross-
entropy loss and supervised by the pseudo-labels Y =

{y1, y2, . . ., yN ′ }, which is written as

Ls = − 1

N ′

N ′∑
i=1

yi log ŷi, (10)

where yi ∈ Y and ŷi denotes the output probability distribution
formulated by softmax function. We train the Restoring Branch
with a modified Chamfer Distance Loss as formulated in (9).

The two branches are jointly optimized and the overall objec-
tive function of our proposed scheme is a combination of two
losses

L = Ls + βLc, (11)

where β is used to balance contributions of the two terms such
that two branches contribute equally to the whole network.

Our common goal is to encourage the encoder to learn more
discriminative object features through training it with the Restor-
ing Broken Objects task. We define the encoder as

Eθ : P ∈ R
N ′×3 �→ Z ∈ R

N ′×d, (12)

and any parametric non-linear function parameterized by θ can
be used as the encoder. Hence the optimal problem of the
proposed framework can be expressed as

min
{θ,ζ,φ}

Ls + βLc. (13)

After optimization, the encoder generates more effective fea-
tures and performs better on specific downstream tasks like
shape classification, shape part segmentation, scene segmenta-
tion and detection.

IV. EXPERIMENTS

In this section, we evaluate the proposed self-supervised
learning framework qualitatively in two settings. To make a
fair comparison with shape-based self-supervised methods, we
train the point-based model (i.e., PointNet and RS-CNN) on
the large shape dataset ShapeNet [36] with our paradigm and
perform down-stream tasks (i.e., classification and part seg-
mentation) on shape datasets. On the other hand, we also train
the voxel-based model (i.e., SR-UNet) on the large-scale scene
dataset ScanNet [38] and perform various down-stream tasks
(i.e., segmentation and detection) to compare with recently
proposed contrastive SSL frameworks [31], [32]. The summary
of our experiments are presented in Fig. 5. Moreover, we conduct
some ablation studies to demonstrate the effectiveness of each
component introduced by our method and analyze the robustness
of our method to hyper-parameters. Note that all ablation studies
are performed in the first setting (i.e., shape-based.)

A. Experiments With Shape-Based Setting

Datasets. ShapeNet [36] contains more than 50,000 3D
shapes across 55 categories of man-made objects. ShapeNet-
Part dataset [74] contains 16,681 objects from 16 categories of
ShapeNet dataset. Each category contains 2-6 parts and there
are 50 parts in total. ModelNet data, i.e., ModelNet40 and Mod-
elNet10, comprising 9832/3991 training objects and 2468/908
test objects in 40 and 10 classes respectively. ScanNet [38]
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Fig. 5. The summary of experiments performed under shape-based setting and scene-based setting. Performing down-stream tasks with the fixed backbone denotes
unsupervised transfer learning or training without fine-tuning. SVM denotes that we use a SVM-based classifier as the classification head. MLP denotes MLP-based
classifier in classification and MLP-based point-wise classifier in segmentation. We use VoteNet as the detection architecture in scene-based experiments.

contains 1,513 scanned and reconstructed real-world indoor
scenes. We follow the practice in [8], [28] to obtain shape
point clouds from ScanNet according to the semantic voxel
labels and form the ScanNet object dataset, which contains 17
categories.

Evaluation Metrics. For the classification task on ModelNet
and ScanNet object datasets, we use classification accuracy
as the metric. For segmentation on ShapeNetPart dataset, we
evaluate our scheme with part classification accuracy and mean
Intersection-over-Union (mIoU). For each sample, IoU is com-
puted for each part that belongs to that object category. The mean
of all part IoUs is regarded as the IoU for that sample. Ins.mIoU
is defined as the mean of IoUs over all instances, and Cat. IoU
is computed as an average IoU over all the instances under that
category.

Model Pre-Training. Following the experimental protocol
introduced in [62], we pre-train the encoder with our proposed
scheme across all categories of the ShapeNet dataset, and then
transfer the pre-trained model to the downstream tasks (i.e.,
classification on ModelNet&ScanNet object and part segmen-
tation on ShapeNetPart). We take PointNet and RSCNN as
our backbone. The Object-Destroying module, Distinguishing
Branch and Restoring Branch are all discarded and only the
encoder is used in downstream tasks. During pre-training, each
shape in ShapeNet is sampled to 2,048 points initially. The
Object-Destroying module samples two clusters of points from
the input point set as stated in Section III-B and we set the
upper limit number of part points K to 256. After disorganizing
the input shape, we sample the new point set to 1,024 points
to weaken the point-to-point correspondence between the new
shape and the original one. The joint training converges within 20
epochs with Adam optimizer and batch size 32. The learning rate
is set to 0.001 and the loss weight coefficientβ forLc is set to 4.0.

Notably, only 3D coordinates are used during self-supervised
training.

1) Shape Classification: To evaluate the performance of our
proposed scheme on shape feature learning, we first conduct
transfer experiments from ShapeNet to ModelNet/ScanNet ob-
ject dataset. Following [37], [62], we extract the shape features
of the ModelNet/ScanNet object samples with the pre-trained
model without any parameter fine-tuning. Then we train a linear
SVM on the embeddings of ModelNet/ScanNet object train split
and report the classification accuracy on the ModelNet/ScanNet
object test split. Each point cloud contains 1,024 points and we
only use the coordinates as the input.

Results on ModelNet/ScanNet object are shown in Tables I
and II (“Unsupervised Transfer Learning”). To perform fair
comparisons, we reproduce PointGLR [28] without using anno-
tated normal information as unsupervised signals. Our method
achieves competitive results when only using PointNet as the
encoder. When utilizing RSCNN, our method outperforms all
previous unsupervised counterparts and the results on ModelNet
are comparable to certain fully-supervised models. Since the
pre-training of the encoder and the training of the SVM are based
on different datasets, the results imply the strong transferability
of our framework, which is regarded as a significant application
of self-supervised representation learning. Notably, ShapeNet
is a synthetic dataset sampled from CAD models and ScanNet
object is a scanned real-world dataset, the domain gap between
these two datasets is considered to be large. Thus the superior
performance on ScanNet object further demonstrates that our
model generalizes well to unseen categories and the learned
features are generic.

As stated in Section II, RS [27] also disorganizes the shape and
discerns the incorrect points. However, our method is motivated
to offer a pipeline to destroy the geometric structure of object
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TABLE I
SHAPE CLASSIFICATION RESULTS ON MODELNET. RESULTS OF BOTH

SUPERVISED AND UNSUPERVISED MODELS ARE REPORTED. “UNSUPERVISED

TRANSFER LEARNING” DENOTES THE PARAMETERS OF THE PRE-TRAINED

MODELS ARE FIXED ON DOWNSTREAM TASKS, WHILE “SUPERVISED

FINE-TUNING” DENOTES THE PRE-TRAINED MODELS ARE FINE-TUNED ON

TARGET TASKS. “RI” DENOTES THE MODEL IS TRAINED ON TARGET DATASET

FROM SCRATCH. “MN” DENOTES MODELNET. OUR RESULTS ARE MEASURED

WITHOUT USING TRICKS LIKE VOTING

TABLE II
SHAPE CLASSIFICATION RESULTS ON SCANNET OBJECT. THE CLASSIFICATION

ACCURACY OF OUR METHOD AND THE STATE-OF-THE-ART UNSUPERVISED

METHOD ARE REPORTED. “RI” DENOTES THE MODEL IS TRAINED ON

SCANNET OBJECT FROM SCRATCH. WE ALSO LIST THE INCREMENTS OF

PRE-TRAINING

parts and then distinguish and restore the distortion. We utilize a
cluster of approaches to distort shape parts, which do not apply
to RS. Also, we employ the features of the original shape as
the template to facilitate feature learning. The Restoring Branch
also contributes a lot for training the encoder, thus our method
outperforms RS by a large margin.

Supervised Fine-Tuning. We think the most important appli-
cation of self-supervised learning is to make full use of abun-
dant unlabeled data and boost the performance of supervised
methods. Following [31], we employ the supervised fine-tuning

TABLE III
SHAPE PART SEGMENTATION RESULTS WITHOUT FINE-TUNING. PART

CLASSIFICATION ACCURACY AND INS.MIOU ON SHAPENETPART DATAST ARE

REPORTED. ALL COMPARED METHODS ARE EVALUATED IN A

SEMI-SUPERVISED MANNER (I.E., 1%, 5% OF TRAINING DATA IS SAMPLED),
WHERE THE PARAMETERS OF PRE-TRAINED MODELS ARE FIXED

strategy to evaluate the effectiveness of our proposed Learning
by Restoring Broken 3D Geometry. Specifically, we pre-train
the model with our framework and fine-tune the weights on
downstream tasks and compare the results with the randomly
initialized model (not pre-trained). Under this perspective, we
conduct extensive experiments on ModelNet/ScanNet object
and the results are also shown in Tables I and II (“Super-
vised Fine-Tuning”). Note that pre-training with PointGLR [28]
slightly benefits the supervised tasks while our method signif-
icantly boosts the performance, especially on ScanNet object.
Pre-training with our framework can be utilized as a strong
initializer for supervised models.

2) Part Segmentation: Shape part segmentation is formed
as a fine-grained point-wise classification task to predict the
part category label of each point in a given object. Hence we
explore the learned point-wise embeddings through such a task.
In this section, we evaluate the learned features on ShapeNetPart
dataset and report part classification accuracy and mIoU.

Following [25], [37], we first conduct the shape segmentation
experiments in a semi-supervised manner, i.e., we randomly
sample 1% and 5% of the ShapeNetPart train set as training
data. We use the pre-trained model to extract the point features
of all samples without any parameter fine-tuning, and then train
a 4-layer MLP-based [2048, 4096, 1024, 50] classifier on the
sampled training set. The evaluation is conducted on all the test
samples of ShapeNetPart.

The results are shown in Table III. Our method significantly
outperforms other unsupervised models [25], [37], [77], which
shows that our pre-trained model captures more effective point
embeddings that transfer well to segmentation tasks. Especially
when using only 1% of training data, our RSCNN model out-
performs all previous methods by a large margin. Considering
Multi-Task [37] employs a heavier graph-based backbone, our
PointNet model is also competitive. The results demonstrate that
through pre-training with the proposed self-supervised scheme,
a very small number of labeled samples are sufficient to achieve
strong performance on the downstream task. Some results are
visualized in Fig. 6. Despite the training data is limited, our
model segments the fine-grained details well.

Supervised Fine-Tuning. The shape segmentation experi-
ments under a supervised fine-tuning strategy are also con-
ducted. We report mIoU under several training-data sampling
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Fig. 6. The segmentation results on ShapeNetPart dataset. Row 1/2: Results predicted by the model trained on 1%/5% data with encoder fixed. Row 3: Ground
truth.

TABLE IV
SHAPE PART SEGMENTATION RESULTS WITH FINE-TUNING STRATEGY. “RI”
DENOTES THE MODEL IS NOT PRE-TRAINED. “FT” DENOTES THE MODEL IS

PRE-TRAINED WITH THE CORRESPONDING UNSUPERVISED SCHEME AND

FINE-TUNED ON TARGET TASK

strategies (i.e., 1%, 5%, 100%) and make comparisons with
PointContrast [31] in Table IV. As shown, our RSCNN model
fine-tuned on 5% labeled samples achieves a Ins.mIoU that is
only 3.9% less than the fully-supervised model trained from
scratch. Compared to the randomly initialized model, our pre-
trained model achieves remarkable performance improvements,
especially when only 1% labeled data is obtained (+4.3% for
PointNet and +2.7% for RSCNN). We can conclude that pre-
training with our framework on unlabeled data significantly
boosts the performance and can be regarded as a strong initializer
for supervised models, especially when labeled data is limited,
which is a critical application of self-supervised learning.

B. Experiments With Scene-Based Setting

Datasets. ScanNet [38] is the largest indoor scene dataset,
which contains a collection of 1,500 indoor scenes created with
a light-weight RGB-D scanning procedure. We pre-train the

model on this dataset with our proposed learning paradigm.
We create a point cloud dataset on the top of ScanNet fol-
lowing [31]. Specifically, we sub-sample RGB-D scans from
the raw ScanNet videos every 25 frames and align the 3D
point clouds in the same world coordinates. A total number of
200 K point clouds are sampled to form the pre-train dataset.
After pre-training, we perform various downstream tasks on
Stanford Large-Scale 3D Indoor Spaces (S3DIS) [39], SUN
RGB-D [40] and ScanNet [38]. S3DIS contains 6 large-scale
indoor areas collected from 3 office buildings. Each point cloud
is annotated with semantic labels of 13 object categories. We
do the pre-processing and data augmentations following the
common settings [31]. Semantic segmentation results on Area 5
and 6-fold cross-validation are reported. We also perform object
detection on SUN-RGB-D, which contains about 5 K RGB-D
training images annotated with amodal-oriented 3D bounding
boxes for 37 object categories. The depth images are converted to
point clouds using the provided camera parameters. In addition,
we perform semantic segmentation and detection on ScanNet
to see whether the pre-trained weights can further improve the
results on ScanNet itself.

Evaluation Metrics. We use mIoU and mAcc as the metrics
for scene semantic segmentation. For 3D detection, we use
mAP@0.5 and mAP@0.25 as the metric.

Model Pre-Training. We pre-train our model on the ScanNet
following the same setting to PointContrast [31] and Con-
trastivSceneContext [32] (CSC). We also use the same network
for a fair comparison, i.e., a 34 layers Sparse Residual U-Net
(SR-UNet) based on Minkowski convolution. In this part, we
add the proposed dragging method into the destroying-method
cluster. Four parts for each scene point cloud are sampled to
break its geometric structure and the upper limit number of part
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TABLE V
SEMANTIC SEGMENTATION RESULTS ON S3DIS AREA 5 (FOLD 1). PER-CATEGORY IOU, MIOU AND MACC ARE REPORTED IN THE TABLE. OUR METHOD ACHIEVES

BEST MIOU AND MACC AMONG ALL SELF-SUPERVISED AND SUPERVISED METHODS. W/O DRAGGING DENOTES DESTROYING SAMPLES WITHOUT DRAGGING

points K is set to 4,096. We use SGD with learning rate and
batch size to be 0.1 and 32 respectively to optimize the model
for 60 K steps. The learning rate is decreased by a factor of 0.99
every 1,000 steps. Then we fine-tune the pre-trained model on
various downstream tasks to prove effectiveness of our proposed
self-supervised method.

1) Semantic Segmentation on S3DIS: We use the widely
taken Area 5 Test split for training and testing. We train the model
using the SGD with learning rate to be 0.8 and batch size to be
48. The Polynomial LR scheduler with a power factor of 0.9 is
taken to optimize the network. We report the results on Table V,
from which we see that our method achieves an improvement
of 4.72 mIoU compared with training from scratch. In the
meantime, our method even performs better than PointContrast
and CSC, which are state-of-the-art self-supervised methods
for scene point clouds. Note that PointContrast and CSC need
to elaborately construct positive-positive and positive-negative
pairs and design metric object functions for training. However,
our method is easy to be implemented and robust to various
hyper-parameters (as shown in Section IV-C). Moreover, our
method achieves state-of-the-art results compared with other
supervised point cloud segmentation methods and performs best
on most categories among 13 classes. These results fully demon-
strate that our proposed self-supervised pre-training method
does capture rich geometric and semantic information from
3D scenes and has great generalization ability. We also report
the results that we do not add the dragging method into the
destroying cluster and prove that more fine-grained destroying
method does improve the tasks on scene datasets. We present
some visualization results in Fig. 7 to further prove that our
method does achieve significantly better performance than the
model trained from random initialization.

2) Object Detection on SUN RGB-D: Object detection is
a more complex task compared with semantic segmentation,
which needs the network to predict bounding boxes and their
corresponding category labels. Following the setting used in
PointContrast and CSC, we take the strongest detection frame-
work VoteNet [81] and replace its backbone network with SR-
UNet. We perform this kind of downstream task first on SUN
RGB-D dataset and report the results in Table VI. Our method
achieves better mAP@0.5 than state-of-the-art self-supervised
method CSC and ranks only second to CSC using mAP@0.25

TABLE VI
OBJECT DETECTION RESULTS ON SUN RGB-D. OUR METHOD ACHIEVES THE

BEST MAP@0.5 PERFORMANCE AND RANKS SECOND USING THE MAP@0.25
AS METRIC

TABLE VII
SEMANTIC SEGMENTATION RESULTS ON SCANNET VALIDATION SET. OUR

METHOD ACHIEVES COMPARABLE RESULTS TO CSC

as metric. Results without dragging are also shown in Table VI.
We show some visualization results in Fig. 8.

3) Semantic Segmentation and Object Detection on ScanNet:
We perform semantic segmentation and object detection on
ScanNet v2, which is generated from ScanNet dataset used
for pre-training. Our method further improves the downstream
tasks on ScanNet even pre-training the model on the dataset
from the same source. For semantic segmentation, we also
use the SR-UNet to perform per-point prediction. For object
detection, we follow VoteNet [81] and replace the backbone
network with our trained SR-UNet. Experimental results are
summarized in Tables VII and VIII, from which we see that our
method achieves better or comparable results to state-of-the-art
self-supervised methods. Especially for object detection, our
method improves mAP@0.5 by 1.4 and mAP@0.25 by 1.0
compared with the strongest method ever CSC. We also provide
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Fig. 7. Visualization results for semantic segmentation on S3DIS and ScanNet. We present results of S3DIS and ScanNet on column 1-3 and column 4-6
respectively. Our method improves the model trained from random initialization significantly.

TABLE VIII
OBJECT DETECTION RESULTS ON SCANNET VALIDATION SET. OUR METHOD

ACHIEVES THE BEST RESULTS COMPARED WITH ALL SELF-SUPERVISED

METHODS PRESENTED IN THE TABLE

some visualization results of segmentation and detection in
Figs. 7 and 8 respectively.

C. Ablation Study

In this section, we explore the crucial components and
hyper-parameters of our self-supervised learning framework. All
the experiments in this section are conducted on ModelNet40
dataset and we fix the encoder (RSCNN) after pre-training.

Component Analyses. We first analyze the relationship be-
tween the improvements of our method on downstream tasks

TABLE IX
RELATIVE PERFORMANCE GAINS OF POINTNET AND RSCNN. ALL RESULTS IN

THIS TABLE ARE CALCULATED UNDER THE FINE-TUNED SETTING. “R-INC”
DENOTES RELATIVE PERFORMANCE IMPROVEMENTS

and the capacity/style of different models. Then we conduct
ablation study to investigate the effectiveness of each branch in
our framework. We remove the corresponding loss when inves-
tigating the effect of such a branch. Besides, we perform points
down-sampling and data augmentation to break the coordinate
correspondence. Hence we also conduct experiments to explore
the effectiveness of such operations.

RSCNN models local geometry information and has a hi-
erarchical structure, giving it a larger capacity and better rep-
resentation ability than PointNet. As shown in Table IX, we
report the relative performance improvements of PointNet and
RSCNN in different datasets and tasks. We observe that RSCNN
transfers a little better to most down-stream tasks than PointNet.
The reasons may lie in that larger models are easier to overfit
on down-stream tasks and our proposed self-supervised learning
method alleviates this problem. Even for a large model, it is hard
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Fig. 8. Visualization results for object detection on SUN RGB-D and ScanNet. We present results of SUN RGB-D and ScanNet on column 1-3 and column 4-6
respectively. We observe that the model pre-trained with our method achieves more accurate object detection than the model trained from random initialization.

to overfit our designed pre-text tasks (destroying and restoring),
especially performing on a large scale and unlabeled dataset.
Thereby, pre-training large models on our proposed pre-text
tasks endow the models with strong and generalizable repre-
sentation ability. Initializing the down-stream models with the
pre-trained parameters makes it harder to overfit down-stream
tasks. In summary, large models are easier to be overfitted than
small models, while our proposed self-supervised paradigm al-
leviates this overfitting problem and brings more improvements
for large models when compared with small models.

The results shown in Table X indicate that the Distinguishing
Branch plays a more important role than the Restoring Branch,
while Restoring Branch can further improve performance. We
also compare the ablated version without features from the
template shape and the accuracy degrades to 87.8%, which
convincingly verifies the effectiveness of utilizing the features
of original shapes. Moreover, we verify the effectiveness of our
modified CD loss as described in Section III-E by replacing it
with the original version. The results show that our modified
CD loss improves the original version by 0.5% accuracy for
classification on ModelNet40.

Finally, we explore how the approach cluster in Object-
Destroying module affects the performance of the scheme. The

TABLE X
COMPONENT ANALYSES. ACCURACY RESULTS ON MODELNET40 ARE SHOWN

results are shown in Table XI. Notably, our method achieves
competitive performance by only randomly translating and rotat-
ing sampled parts, which strongly demonstrates the effectiveness
of our pipeline. We also generate abnormal objects by only
adding noise to the original shapes and the accuracy degrades
to 87.2%, which proves the importance of altering geometric
structure on the pre-task.

Parameter Analyses. In our implementation, we randomly
select 2 center points for the shape setting. Then we sample
K points within a radius to each center. In fact, if we further
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TABLE XI
EFFECTIVENESS OF THE DISTORTION APPROACHES. ACCURACY RESULTS ON

MODELNET40 ARE SHOWN

Fig. 9. Parameter analyses on the point numbers of each distorted part. When
the number of destroyed parts is set to 2, we achieve best performance by setting
the point numbers of each distorted part to 256.

increase the number of selected center points, K needs to be
elaborately designed. Smaller K fails to break the geometric
construction of each selected local region, while larger K (e.g.,
4 parts and K = 256 select 1024 points) completely destroys
the global structure of the shape, which also has a negative
effect on our task. Hence, 2 is an appropriate number of the
selected parts. We explore how the number of incorrect points
(i.e., the hyper-parameter K as stated in Section III-B) affects
the performance of the model in this part. The results are shown
in Fig. 9. We can observe that good performance is achieved
when K is set to 256. No obvious improvements show up when
further increasing K.

V. CONCLUSION

We propose a self-supervised framework for point cloud
analysis named Learning by Restoring Broken 3D Geometry.
Large amounts of experiments are performed with shape setting
and scene setting respectively on various datasets. This method is
based on an intuitive principle that a network is strong enough
to extract discriminative representation of 3D model when it
has ability to restore broken 3D models. Then a framework
containing abnormal part distinguishing and restoring module is
designed to perform self-supervised learning. Experiments with
both shape setting and scene setting are performed to demon-
strate effectiveness of our proposed framework. Experimental

results prove that our method transfers well to various down-
stream tasks and achieves state-of-the-art performance among
almost all un-/self-supervised methods. Notably, Learning by
Restoring Broken 3D Geometry can be regarded as a general
pipeline and we provide a simple and effective implementation
for point clouds. It is an easily extensible framework and has
great compatibility.
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