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Abstract

We propose MisMatch, a novel consistency-driven semi-supervised segmentation frame-
work which produces predictions that are invariant to learnt feature perturbations. Mis-
Match consists of an encoder and a two-head decoder. One decoder pays positive attention
to the foreground regions of interest (RoI) on unlabelled images thereby learning dilated
features. The other decoder pays negative attention to the foreground on the same unla-
belled images thereby learning eroded features. We then apply a consistency regularisation
on the paired predictions. MisMatch outperforms state-of-the-art semi-supervised methods
on a CT-based pulmonary vessel segmentation task and a MRI-based brain tumour seg-
mentation task. In addition, we show that the effectiveness of MisMatch comes from better
model calibration than its fully supervised learning counterpart. Code can be found here:
https://github.com/moucheng2017/Learning_Morphological_Perturbation_SSL

Keywords: Semi-Supervised, Learning Augmentation, Differentiable Morphological Op-
erations, Attention, Calibration, Consistency Regularisation, Segmentation

1. Introduction

Medical image segmentation using deep learning requires expertly-labelled big data. Labels
are scarce because manual labelling of medical images by experts is prohibitively expensive
in both time and money. Semi-supervised learning (SSL) aims to tackle label scarcity by
leveraging information in the unlabelled data. To date, SSL has relied on two key assump-
tions: the cluster assumption and the smoothness assumption. The cluster assumption
states that data points belonging to the same cluster are more likely to be in the same
class (Cahpelle et al., 2006). The smoothness assumption presumes that data points are
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more dense in the centre of a cluster. According to the cluster and smoothness assump-
tions, the optimal decision boundary should lie in a low-density region between clusters
of data points. Consistency regularisation (Tarvainen and Valpola, 2017) with image-level
perturbations can locate the decision boundary for image classi�cation tasks, but does not
generalise to image segmentation (Fig. 1).

Figure 1: Illustration of consistency regularisation based SSL with data augmentation for:
(a) classi�cation; (b) segmentation. In (a), image-level perturbations with consis-
tency learns a decision boundary in a low-density region, which can separate data
points (images). This does not generalise to pixel-level data points: the decision
boundary in (b) does not lie in a low-density region, and cannot separate data
points (pixels).

Image-level Consistency Regularisation in Classi�cation. Consistency regular-
isation has achieved state-of-the-art performance across di�erent SSL image classi�cation
tasks, by forcing the model to produce perturbation-invariant predictions (Tarvainen and
Valpola, 2017; Sohn et al., 2020; Berthelot et al., 2020; Athiwaratkun et al., 2019). This
is illustrated in the cartoon of Fig. 1(a) where each data point is an image. Let's de�ne a
perturbation on a data point as randomly changing its position in the space. A consistency
loss (e.g. mean-squared error) is de�ned as the di�erence between the predictions on two
di�erent perturbations of one data point. Fig. 1(a) shows two di�erent perturbations (red
arrows) applied on the red data point lying in the high-density region, resulting in zero
consistency loss as neither of the red perturbed data points crosses the decision boundary.
On the other hand, when two di�erent perturbations (blue arrows) are applied on the blue
data point lying in the low-density region, the two corresponding predictions on the two
perturbed blue data points will be di�erent, leading to a valid consistency loss value which
drives the decision boundary to stay in the low-density region.

Pixel-level Consistency Regularisation in Segmentation. Image segmentation
operates at the pixel level, where the concept of a low-density region does not exist because
pixels are uniformly and densely distributed. Hence, the assumptions behind consistency-
based SSL are invalid for segmentation at the pixel level (French et al., 2020). This is
illustrated in the cartoon of Fig. 1(b), where the decision boundary does not correspond to
the edge of the region of interest, making segmentation di�cult/inaccurate. Fortunately,
(Ouali et al., 2020) reported that low-density regions can be observed at the feature level
and, more importantly, that low-density regions align well with the optimal decision bound-
aries, i.e., edges of regions of interest.

Feature-level Consistency Regularisation for Segmentation. Following the in-
tuition above (see Fig. 1), appropriate feature-level perturbations should cross low-density
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regions in feature space, corresponding to the periphery of the foreground regions of in-
terests. Naturally, we are inspired by the classic morphological operations dilation and
erosion, which respectively add or remove boundary pixels to a given region of interest
while preserving its shape. However, classic morphological operations are not di�erentiable
thereby not suitable for being integrated into deep learning models. In Sec. 3.1, we show a
baseline which straightforwardly applies morphological operations on the features are not
ideal for consistency regularisation. A previous approach proposed hand-crafted feature
perturbations (Ouali et al., 2020), which do not generalise well and not di�erentiable.

In this paper we introduce MisMatch, a deep, end-to-end framework for semi-supervised
segmentation with consistency regularisation. The key novelty of MisMatch is to avoid
the non-di�erentiable hand-crafted perturbations by using attention mechanisms to learn
di�erentiable morphological perturbations at the feature level directly from the data.

2. Methods

The overarching concept behind MisMatch is to leverage di�erent attention mechanisms to
respectively dilate and erode the foreground features, which are combined in a consistency-
driven framework for semi-supervised segmentation. As shown in Fig.2, MisMatch is a
framework which can be integrated into any encoder-decoder based segmentation architec-
ture.

Shape-Constrained Morphological Operations At Feature Level. Whereas clas-
sical morphological operations change the boundary of the foreground at the image level
and not di�erentiable, our network topology is designed to learn to morph the features.
We combine two concepts. First, results in (Wei et al., 2018; Chen et al., 2017; Luo et al.,
2016; Xu et al., 2020b) showing that Atrous convolution can enlarge foreground features by
increasing false positives on the foreground boundary. Second, results in (Luo et al., 2016;
Xu et al., 2020b) showing that skip-connections can shrink foreground features. In combi-
nation, we can achieve learning-based feature perturbations with both Atrous convolution
and skip-connections for consistency-driven semi-supervised segmentation.

Architecture of MisMatch. We use U-net (Ronneberger et al., 2015) as backbone
due to its popularity in medical imaging. Our MisMatch ( Fig 2 ) has two components: an
encoder (f e) and a two-head decoder (f d1 and f d2). The �rst decoder ( f d1) comprises a series
of Positive Attention Shifting Blocks, which dilates the foreground. The second decoder (f d2)
contains a series ofNegative Attention Shifting Blocks, which erodes the foreground. The
details of the architecture is in Fig.6.

2.1. Positive Attention Shifting Block in f d1

The Positive Attention Shifting Block (PASB) (Pink block in Fig.6) dilates foreground
features with positive attention to the foreground. Each PASB has two parallel branches,
namely the main branch and the side branch. The main branch is used for processing
visual information and it has the same architecture with a decoder block in a standard
U-net, which comprises two consecutive convolutional layers with kernel size 3 followed by
ReLU and normalisation layers. The side branch is used to generate a dilating attention
mask to guide the main branch to enlarge its foreground features. To do so, the side branch
uses two consecutive Atrous convolutional layers with kernel size 3 and dilation rate at 5,
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Figure 2: MisMatch learns con�dence-invariant predictions on the foreground: decoderf d1

dilates foreground features and decoderf d2 erodes foreground features. The �nal
prediction is the average between outputs off d1 and f d2. Any encoder-decoder
segmentation network could be used. We visualise the features in the last convo-
lutional blocks in each decoder.

each followed by ReLU and a normalisation layer. In order to learn the magnitude of feature
change at each pixel, we apply a Sigmoid function at the end of the side branch. We use
element-wise multiplication of the output of the side branch with the output of the main
branch to perturb the features of the main branch. We then apply a skip-connection on the
perturbed main branch output to yield the �nal output of the PASB.

2.2. Negative Attention Shifting Block in f d2

The Negative Attention Shifting Block (Purple block in Fig.6) erodes foreground features
using negative attention to the foreground. Following PASB, we design the NASB again as
two parallel branches. The main branch is the same with the one in the PASB. The side
branch is similar with the main branch but with a skip-connection on each convolutional
layer. We also apply a Sigmoid function on the output of the side branch to learn the
perturbation magnitude at each pixel. Then we multiply the learnt eroding attention mask
from the side branch with the output of the main branch. We also apply a skip-connection
on the perturbed main branch output to yield the �nal output of the NASB.
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2.3. Loss Functions

We use a streaming training setting to avoid over-�tting on limited labelled data so the
model doesn't repeatedly see the labelled data during each epoch. For labelled data we apply
a standard Dice loss (Milletari et al., 2016) with the output of each decoder. For unlabelled
data we apply a mean squared error loss between the outputs of the two decoders. This
consistency regularisation is weighted by hyper-parameter� between 0.0005 to 0.004, which
is also annealed during the training. Similar to SimSiam(Chen and He, 2021), we cut the
gradients via detaching operation in Pytorch when applying the consistency regularisation
on the two decoders.

3. Experiments

CARVE 2014 The Classi�cation of pulmonary arteries and veins (CARVE) dataset (Char-
bonnier et al., 2015) has 10 fully annotated non-contrast low-dose thoracic CT scans. Each
case has between 399 and 498 images, acquired at various resolutions between (282 x 426)
to (302 x 474). 10-fold cross-validation on the 10 labelled cases is performed. In each fold,
we split cases as: 1 for labelled training data, 3 for unlabelled training data, 1 for validation
and 5 for testing. We have more than 2000 slices for testing. We only used slices containing
more than 100 foreground pixels. We prepared datasets with di�ering amounts of labelled
slices: 5, 10, 30, 50, 100. It is worthy to mention the most 100 slices is equal to about 10%
of the whole available labelled data. We cropped 176� 176 patches from four corners of
each slice. Full label training uses 4 training cases. Normalisation was performed at case
wise.

BRATS 2018 BRATS 2018 (Menze et al., 2015) has 210 high-grade glioma and 76
low-grade glioma MRI volumes, each case containing 155 slices. We focus on binary seg-
mentation of whole tumours in high grade cases. We randomly selected 1 case for labelled
training, 2 cases for validation and 40 cases for testing. We have 6200 slices for testing. We
centre cropped slices at 176� 176. For labelled training data, we discarded empty slices
and extracted the �rst 20 slices containing tumours with areas of more than 5 pixels. To see
the impact of the amount of unlabelled training data, we used di�erent numbers of slices at
3100 (20 cases), 4650 (30 cases) and 6200 (40 cases) respectively. Case-wise normalisation
was performed and all modalities were concatenated.

Experimental Settings We performed �ve sets of experiments/analysis: 1) compar-
isons with baselines including supervised learning and state-of-the-art semi-supervised learn-
ing approaches (Sohn et al., 2020; Tarvainen and Valpola, 2017; Chen et al., 2019; Ouali
et al., 2020) using either data or feature augmentation; 2) investigation of the impact of the
amount of labelled data and unlabelled data on MisMatch performance; 3) ablation study
of the decoder architectures; 4) ablation study on the hyper-parameter, on the CARVE
dataset using 5 labelled slices; 5) calibration analysis of MisMatch, cross-validation on the
CARVE with 50 labelled slices.

3.1. Baselines

The backbone is a 2D U-net (Ronneberger et al., 2015) with 24 channels in the �rst encoder.
To ensure a fair comparison we use the same U-net as the backbone across all baselines.
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The �rst baseline utilises supervised training on the backbone, is trained with labelled
data, augmented with 
ipping and Gaussian noise and is denoted as \Sup1". To investigate
how unlabelled data improves performance, our second baseline \Sup2" utilises supervised
training on MisMatch, with the same augmentation. Because MisMatch uses consistency
regularisation, we focus on comparisons with �ve consistency regularisation SSL methods:
1) \mean-teacher" (MT) (Tarvainen and Valpola, 2017), with Gaussian noise, which has
inspired most of the current state-of-the-art SSL methods; 2) the current state-of-the-art
model called \FixMatch" (FM) (Sohn et al., 2020). To adapt FixMatch for a segmentation
task, we use Gaussian noise as weak augmentation and \RandomAug" (Cubuk et al., 2020)
without shearing for strong augmentation. We do not use shearing for augmentation because
it impairs spatial correspondences of pixels of paired dense outputs; 3) a state-of-the-art
model with multi-head decoder (Ouali et al., 2020) for segmentation (CCT), with random
feature augmentation including Dropout(Srivastava et al., 2014), VAT(Miyato et al., 2017)
and CutOut(DeVries and Taylor, 2017), et al. This baseline is also similar to models
recently developed (French et al., 2020; Ke et al., 2020); 4) a further recent model in
medical imaging (Chen et al., 2019) using image reconstruction as an extra regularisation
(MTA), augmented with Gaussian noise; 5) a U-net with two standard decoders, where we
respectively apply traditional erosion and dilation on the features directly in each decoder,
augmented with Gaussian noise (Morph)". Our MisMatch model has been trained without
any augmentation. See Appendix.A for details of training and implementation.

4. Results and Discussion

Labelled Supervised Semi-Supervised
Slices Sup1 Sup2 MTA MT FM CCT Morph MM

5 48.32� 4.97 50.75� 2.0 54.91� 1.82 56.56� 2.38 49.30� 1.81 52.54� 1.74 52.93� 2.19 60.25 � 3.77
10 53.38� 2.83 55.55� 4.42 57.78� 3.66 57.99� 2.57 51.53� 3.72 55.25� 2.52 57.08� 2.96 60.04 � 3.64
30 52.09� 1.41 53.98� 4.42 60.78� 4.63 60.46� 3.74 55.16� 5.93 60.81� 4.09 60.19� 4.97 63.59 � 4.46
50 60.69� 2.51 64.79� 3.46 68.11� 3.39 67.21� 3.05 62.91� 6.99 65.06� 3.42 64.88� 3.25 69.39 � 3.74
100 68.74� 1.84 73.1� 1.51 72.48� 1.61 71.48� 1.57 72.58� 1.84 72.07� 1.75 72.11� 1.88 74.83 � 1.52

Param. (M) 1.8 2.7 2.1 1.88 1.88 1.88 2.54 2.7
Infer.Time(s) 4.1e-3 1.8e-1 7.2e-3 4.3e-3 4.5e-3 1.5e-1 8e-3 1.8e-1

P values 9.13e-5 1.55e-2 4.5e-3 4.3e-4 1.05e-2 1.8e-3 2.2e-3 {

Table 1: MisMatch (MM) vs Baselines on CARVE. Metric is Intersection over Union (IoU):
mean (std) under 10-fold cross validation. P values from Mann-Whitney U-Test
against MisMatch. Red: best model. Blue:2nd best model.

Unlabelled Supervised Semi-Supervised
Slices Sup1 Sup2 MTA MT FM CCT Morph MM
3100 53.74� 10.19 55.76� 11.03 50.53� 8.76 55.29� 10.21 57.92� 12.35 56.61� 11.7 53.88� 9.99 58.94 � 11.41
4650 53.74� 10.19 55.76� 11.03 47.36� 6.65 58.32� 12.07 54.29� 9.69 56.94� 10.93 55.82� 11.03 60.74 � 12.96
6200 53.74� 10.19 55.76� 11.03 50.11� 8.00 56.92� 12.20 56.78� 11.39 57.37� 11.74 54.5� 9.75 58.81 � 12.18

Table 2: MisMatch (MM) vs Baselines on BRATS. Metric is Intersection over Union (IoU).
Each model was trained 3 times. Red: best model. Blue:2nd best model.
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Segmentation Performance: 1) MisMatch consistently and substantially outper-
forms supervised baselines, e.g. 24% improvement over Sup1 on 5 labelled slices, CARVE;
2) MisMatch consistently outperforms previous SSL methods (Sohn et al., 2020; Tarvainen
and Valpola, 2017; Chen et al., 2019; Ouali et al., 2020) in Table 1, across di�erent data
sets, e.g. statistical di�erence when 6.25% labels (100 slices comparing to 1600 slices of full
label) are used on CARVE (Table 1); 3) more labelled training data consistently produces
a higher mean IoU and lower standard deviation (Table 2). Visual results can be found in
Fig.8 in Appendix.E.

Ablation Studies We performed ablation studies on the architecture of the decoders
of MisMatch (Fig3(a)) with cross-validation on 5 labelled slices of CARVE: 1) \MM-a", a
two-headed U-net with standard convolutional blocks in decoders, this model can be seen as
no feature perturbation, however, they are essentially slightly di�erent because of random
initialisation, we denote the decoder of U-net asf d0; 2) \MM-b", a standard decoder of
U-net and a negative attention shifting decoder f d2, this one can be seen as between no
perturbation and learnt erosion perturbation; 3) \MM-c", a standard decoder of U-net and
a positive attention shifting decoder f d1, this one can be seen as between no perturbation
and learnt dilation perturbation; 4) \MM", f d1 and f d2 (Ours). As shown in Fig3(b),
our MisMatch ("MM") outperforms other combinations in 8 out of 10 experiments and it
performs on par with the others in the rest 2 experiments. We also tested� at 0, 0.0005,
0.001, 0.002, 0.004 with the same experimental setting. The optimal� appears at 0.002 in
Fig.3(c).

Figure 3: (a) Ablation studies on decoder architectures. (b) Performance di�erences be-
tween other possible decoder combinations against our used design. (c) Ablation
study on the hyper-parameter alpha which weights the consistency loss. All ex-
periments were performed on 5 labelled slices with CARVE with cross-validation

MisMatch Is Better Calibrated We conjugate that MisMatch utilises unlabelled
images to improve model calibration (Guo et al., 2017), leading to better segmentation
performance. Model calibration re
ects the trustworthiness of the network predictions,
which are crucial in clinical applications. Following (Guo et al., 2017), we setBm as the
subset of all pixels whose prediction con�dence is in intervalI m . We de�ne accuracy as
how many pixels are correctly classi�ed in each con�dence interval. The accuracy ofBm is:
acc(Bm ) = 1

jB m j

P
i 2 B m

1(ŷi = yi ). Where ŷi is the predicted label andyi is the ground truth
label at pixel i in Bm . The average con�dence withinBm is de�ned with the use of p̂i which
is the raw probability output of the network at each pixel: conf (Bm ) = 1

jB m j

P
i 2 B m

p̂i . The
plot for comparing the accuracy and con�dence for each interval is called Reliability map
(Fig.4), the gap between the accuracy and the con�dence is called expected calibration error,
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Figure 4: Reliability diagrams of one testing image. Blue: Con�dence. Red: Accuracy.
(a): Sup1 (Supervised learning with U-net). (b): Outputs of positive attention
decoders. (c): Outputs of negative attention decoders. (d): Average outputs of
the two decoders. The smaller the gap between the accuracy and the con�dence,
the better the network is calibrated.

Figure 5: Expected calibration error (ECE) against segmentation performances (IoU) from
cross-validation on CARVE with 50 labelled slices.ECE =

P M
m=1

jB m j
n jacc(Bm )�

conf (Bm )j. The lower the ECE value, the better the model is calibrated.

the smaller the gap, the better the network is calibrated. As shown in the testing result
in Fig.4 and Fig.5 from experiments trained on 50 labelled slices of CARVE, MisMatch
produces better calibrated predictions.

5. Conclusion

We propose MisMatch, a consistency-driven SSL framework with attention-based feature
augmentation for semi-supervised segmentation of medical images. MisMatch promises
strong clinical utility by reducing the number of training labels required by more than 90%:
when trained on just 10% of labels, MisMatch achieves a similar performance (IoU: 75%)
to models that are trained with all available labels (IoU: 77%). Future work can further
explore the calibration of models to understand why consistency regularisation works.
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