
URLB: Unsupervised Reinforcement Learning
Benchmark

Michael Laskin∗
UC Berkeley

mlaskin@berkeley.edu

Denis Yarats*

NYU, FAIR
denisyarats@cs.nyu.edu

Hao Liu
UC Berkeley

Kimin Lee
UC Berkeley

Albert Zhan
UC Berkeley

Kevin Lu
UC Berkeley

Catherine Cang
UC Berkeley

Lerrel Pinto
NYU

Pieter Abbeel
UC Berkeley, Covariant

Abstract

Deep Reinforcement Learning (RL) has emerged as a powerful paradigm to solve
a range of complex yet specific control tasks. Yet training generalist agents that
can quickly adapt to new tasks remains an outstanding challenge. Recent advances
in unsupervised RL have shown that pre-training RL agents with self-supervised
intrinsic rewards can result in efficient adaptation. However, these algorithms
have been hard to compare and develop due to the lack of a unified benchmark.
To this end, we introduce the Unsupervised Reinforcement Learning Benchmark
(URLB). URLB consists of two phases: reward-free pre-training and downstream
task adaptation with extrinsic rewards. Building on the DeepMind Control Suite,
we provide twelve continuous control tasks from three domains for evaluation and
open-source code for eight leading unsupervised RL methods. We find that the
implemented baselines make progress but are not able to solve URLB and propose
directions for future research. Code for the benchmark and implemented baselines
can be accessed at https://github.com/rll-research/url_benchmark.

1 Introduction

Deep Reinforcement Learning (RL) has been at the source of a number of breakthroughs in au-
tonomous control over the last five years. RL algorithms have been used to train agents to play Atari
video games directly from pixels [44, 45], learn robotic locomotion [52–54] and manipulation [2]
policies from raw sensory input, master the game of Go [58, 59], and play large-scale multiplayer
video games [6, 65]. While these results were significant advances in autonomous decision making, a
deeper look reveals a fundamental limitation. The above algorithms produced agents capable of only
solving the single task they were trained to solve. As a result, current RL approaches produce brittle
policies with poor generalization capabilities [16], which limits their applicability to many problems
of interest [23]. It is therefore important to move beyond today’s powerful but narrow RL systems
toward generalist systems capable of quickly adapting to new downstream tasks.

In contrast, in the fields of Computer Vision (CV) and Natural Language Processing (NLP), large-scale
unsupervised pre-training has enabled sample-efficient few-shot adaptation. In NLP, unsupervised
sequential modeling has produced powerful few-shot learners [8, 17, 50]. In CV, unsupervised
representation learning techniques such as contrastive learning have produced algorithms that are
dramatically more label-efficient than their supervised counterparts [14, 31, 32, 25] and more capable
of adapting to a host of downstream supervised tasks such as classification, segmentation, and object
detection. While these advances in unsupervised learning have also benefited RL in terms of learning

∗equal contribution, order determined by coin flip.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/rll-research/url_benchmark

action

Part 1: Unsupervised Pre-training
with Intrinsic Rewards

Part 2: Supervised Finetuning
to Downstream Tasks

observation
extrinsic reward

action

intrinsic
reward

observation
intrinsic reward

self-supervised
task

walk

flip

downstream tasks

run

Figure 1: Unlike supervised RL which requires reward interaction at every step, unsupervised RL
has two phases: (i) reward-free pre-training and (ii) fine-tuning to an extrinsic reward. During phase
(i) an agent explores the environment through reward-free interaction with the environment. The
quality of exploration depends on the intrinsic reward that the agent sets for itself. During phase (ii)
the quality of pre-training is evaluated by its adaptation efficiency to a downstream task.

efficiently from images [37, 38, 55, 62, 69] as well as introducing new architectures for RL [13, 35],
the resulting agents have remained narrow since they still optimize a single extrinsic reward as before.

Fully unsupervised training of RL algorithms requires not only learning self-supervised represen-
tations but also learning policies without access to extrinsic rewards. Recently, unsupervised RL
algorithms have begun to show progress toward more generalist systems by training policies without
extrinsic rewards. Exploration with self-supervised prediction has enabled agents to explore video
games from pixels [48, 49], mutual information-based approaches have demonstrated self-supervised
skill discovery and generalization to downstream tasks in continuous control domains [21, 30, 43, 57],
and maximal entropy RL has yielded policies capable of diverse exploration [42, 56, 68]. However,
comparing and developing new algorithms has been challenging due to a lack of a unified evaluation
benchmark. Reward-free RL algorithms often use different optimization schemes, different tasks for
evaluation, and have different evaluation procedures. Additionally, unlike more mature supervised
RL algorithms [27, 33, 54], there does not exist a unified codebase for unsupervised RL that can be
used to develop new methods quickly.

To make benchmarking and developing new unsupervised RL approaches easier, we introduce the
Unsupervised Reinforcement Learning Benchmark (URLB). Built on top of the widely adopted
DeepMind Control Suite [64], URLB provides a suite of domains of varying difficulty for unsu-
pervised pre-training with diverse downstream evaluation tasks. URLB standardizes evaluation of
unsupervised RL algorithms by defining fixed pre-training and fine-tuning procedures across all
baselines. Perhaps most importantly, we open-source code for URLB environments as well as 8
leading baselines that represent the main approaches taken towards unsupervised pre-training in RL
to date. Unlike prior code releases for unsupervised RL, URLB uses the same exact optimization
algorithm for each baseline which enables transparent benchmarking and lowers the barrier to entry
for developing new algorithms. We summarize the main contributions of this paper below:

1. We introduce URLB, a new benchmark for evaluating unsupervised RL algorithms, which
consists of three domains and twelve continuous control tasks of varying difficulty to
evaluate the adaptation efficiency of unsupervised RL algorithms.

2. We open-source a unified codebase for eight leading unsupervised RL algorithms. Each
algorithm is trained with the same optimization backbone for fairness of comparison.

3. We find that while the implemented baselines make progress on the proposed benchmark, no
existing unsupervised RL algorithm can solve URLB, and consequently identify promising
research directions to progress unsupervised RL.

The benchmark environments, algorithmic baselines, and pre-training and evaluation scripts are
available at https://github.com/rll-research/url_benchmark. We believe that URLB will
make the development of unsupervised RL agents easier and more transparent by providing a unified

2

https://github.com/rll-research/url_benchmark

Unsupervised RL Benchmark: Domains and Downstream Tasks

Walk

Run Flip

Walk

Run

Top right

Bottom left Bottom right

Top left

Walker Quadruped Jaco Arm

Stand

Jump

Stand

Figure 2: The three domains (walker, quadruped, jaco arm) and twelve downstream tasks considered
in URLB. The environments include tasks of varying complexity and require an agent pre-trained on
a given domain to adapt efficiently to the downstream tasks within that domain.

set of evaluation environments, systematic procedures for pre-training and evaluation, and algorithmic
baselines that share the same optimization backbone.

2 Preliminaries and Notation

Markov Decision Process: We consider the typical Reinforcement Learning setting where an agent’s
interaction with the environment is modeled through a Markov Decision Process (MDP) [63]. In this
work, we benchmark unsupervised RL algorithms in both fully observable MDPs where the agent
learns from coordinate state as well as partially observable MDPs (POMDPs) where the agent learns
from partially observable image observations. For simplicity we refer to both image and state-based
observations as o. At every timestep t, the agent sees an observation ot and selects an action at
based on its policy at ∼ πθ(·|ot). The agent then sees the next observation ot+1 and an extrinsic
reward rext

t provided by the environment (supervised RL) or an intrinsic reward rint
t defined through a

self-supervised objective (unsupervised RL). In this work, we pre-train agents with intrinsic rewards
rext
t and fine-tune them to downstream tasks with extrinsic rewards rext

t . Some algorithms considered
in this work condition the agent on a learned task vector which we denote as w.

Learning from pixels vs states: We benchmark unsupervised RL where environment observations
ot can be either proprioceptive states or RGB images. When learning from pixels, rather than
defining the self-supervised task directly as a function of image observations, it is usually more
convenient to first embed the image and compute the intrinsic reward as a function of these lower
dimensional features [10, 42, 43, 48]. We therefore define an embedding as zt = fξ(ot) where
fξ(ot) is an encoder function. We employ different encoder fξ architectures depending on whether
the algorithm receives pixel or state-based input. For pixel-based inputs we use the convolutional
encoder architecture from SAC-AE [66], while for state-based inputs we use the identity function by
default unless the unsupervised RL algorithm explicitly specifies a different encoding. The intrinsic
reward rint

t can be a function of any and all (zt,at,wt) depending on the algorithm. Finally, note
that the encoder fξ may or may not be shared with components of the base RL algorithm such as the
actor and critic.

3 URLB: Evaluation and Environments

3.1 Standardized of Pre-training and Fine-tuning Procedures

One reason why unsupervised RL has been hard to benchmark to date is that there is no agreed
upon procedure for training and evaluating unsupervised RL agents. To this end, we standardize pre-
training, fine-tuning, and evaluation in URLB. We split pre-training and fine-tuning into two phases
consisting of NPT and NFT environment steps respectively. During pre-training, we checkpoint
agents at 100k, 500k, 1M, 2M steps in order to evaluate downstream performance as a function
of pre-training steps. For adapting the pre-trained policy to downstream tasks, we evaluate in the
data-efficient regime where NFT is 100k, since we are interested in agents that are quick to adapt.

3

3.2 Evaluation

We evaluate the performance of an unsupervised RL algorithm by measuring how quickly it adapts to
a downstream task. For each fine-tuning task, we initialize the agent with the pre-trained network
parameters, fine-tune the agent for 100k steps and measure its performance on the downstream task.
This evaluation procedure is similar to how pre-trained networks in CV and NLP are fine-tuned
to downstream tasks such as classification, object detection, and summarization. There exist other
means of evaluating the quality of pre-trained RL agents such as measuring the diversity of data
collected during exploration or zero-shot generalization of goal-conditioned agents. However, it is
challenging to produce a general method to measure data diversity, and while zero-shot generalization
with goal-conditioned agents can be powerful such a benchmark would be limited to goal-conditioned
RL. For these reasons, data diversity and goal-conditioned zero-shot generalization are less common
evaluation metrics. In an effort to provide a general benchmark, we focus on the fine-tuning efficiency
of the agent after pre-training which allows us to evaluate a diverse set of baselines.

Unlike unsupervised methods in CV and NLP which focus solely on representation learning, unsu-
pervised pre-training in RL requires both representation learning and behavior learning. For this
reason, URLB benchmarks performance for both state-based and pixel-based agents. Benchmarking
both state and pixel-based RL separately is important because it allows us to decouple unsuper-
vised behavior learning from unsupervised representation learning. In state-based RL, the agent
receives a near-optimal representation of the world through coordinate states. Evaluating state-based
unsupervised RL agents allows us to isolate unsupervised behavior discovery without worrying
about representation learning as confounding factor. Evaluating pixel-based unsupervised RL agents
provides insight into how representations and behaviors can be learned jointly.

3.3 URLB Environments

We release a set of domains and downstream tasks for URLB that are based on the DeepMind
Control Suite (DMC) [64]. The three reasons for building URLB on top of DMC are (i) DMC is
already widely adopted and familiar to RL practitioners; (ii) DMC environments can be used with
both state and pixel-based inputs; (iii) DMC features environments of varying difficulty which is
useful for designing a benchmark that contains both challenging and feasible tasks. URLB evaluates
performance on 12 continuous control tasks (3 domains with 4 downstream tasks per domain). From
easiest to hardest, the URLB domains and tasks are:

Walker (Stand, Walk, Flip, Run): A biped constrained to a 2D vertical plane. Walker is a challenging
introduction domain for unsupervised RL because it requires the unsupervised agent to learn balancing
and locomotion skills in order to fine-tune efficiently. Quadruped (Stand, Walk, Jump, Run): A
quadruped within a a 3D space. Like walker, quadruped requires the agent to learn to balance and
move but is harder due to a high-dimensional state and action spaces and 3D environment. Jaco
Arm (Reach top left, Reach top right, Reach bottom left, Reach bottom right): Jaco Arm is a 6-DOF
robotic arm with a three-finger gripper. This environment tests the unsupervised RL agent’s ability to
control the robot arm without locking and perform simple manipulation tasks. It was recently shown
that this environment is particularly challenging for unsupervised RL [68].

4 URLB: Algorithmic Baselines for Unsupervised RL

In addition to introducing URLB, the other primary contribution of this work is open-sourcing a
unified codebase for eight leading unsupervised RL algorithms. To date, unsupervised RL algorithms
have been hard to compare due to confounding factors such as different evaluation procedures and
optimization schemes. While URLB provides standardized pre-training, fine-tuning, and evaluation
procedures, current algorithms are hard to compare since they rely on different optimization algo-
rithms. For instance, Curiosity [48] utilizes PPO [54] while APT [42] uses SAC [27] for optimization.
Moreover, even if two unsupervised RL methods use the same optimization algorithm, small dif-
ferences in implementation can result in large performance differences that are independent of the
pre-training algorithm. For this reason, it is important to provide a unified codebase with identical
implementations of the optimization algorithm for each baseline. Providing such a unified codebase
is one of the main contributions of this benchmark.

4

Algorithm 1 Unsupervised RL: Unsupervised Pre-training and Supervised Fine-tuning
Require: Randomly initialized actor πθ , critic Qφ, and encoder fξ networks, replay buffer D.
Require: Intrinsic rint and extrinsic rext reward functions, discount factor γ.
Require: Environment (env), M downstream tasks Tk, k ∈ [1, . . . ,M].
Require: pre-train NPT and fine-tune NFT steps.

1: for t = 1..NPT do . Part 1: Unsupervised Pre-training
2: at ← πθ(fξ(ot)) + ε and ε ∼ N (0, σ2)
3: ot+1 ∼ P (·|ot,at)
4: D ← D ∪ (ot,at,ot+1)
5: Update πθ , Qφ, and fξ using minibatches from D and intrinsic reward rint according to Eqs. 1 and 2.
6: end for
7: Outputs pre-trained parameters θPT, φPT, and ξPT

8: for Tk ∈ [T1, . . . , TM] do . Part 2: Supervised Fine-tuning
9: initialize θ ← θPT,φ← φPT, ξ ← ξPT, reset D

10: for t = 1..NFT do
11: at ← πθ(fξ(ot)) + ε and ε ∼ N (0, σ2)
12: ot+1, r

ext
t ∼ P (·|ot,at)

13: D ← D ∪ (ot,at, r
ext
t ,ot+1)

14: Update πθ , Qφ, and fξ using minibatches from D according to Eqs. 1 and 2.
15: end for
16: Evaluate performance of RL agent on task Tk
17: end for

4.1 Backbone RL Algorithm

Since most of the above algorithms rely on off-policy optimization (and some cannot be optimized
on-policy at all), we opt for a state-of-the-art off-policy optimization algorithm. While SAC [27] has
been the de facto off-policy RL algorithm for many RL methods in the last few years, it is prone to
suffering from policy entropy collapse. DrQ-v2 [67] recently showed that using DDPG [41] instead
of SAC as a learning algorithm leads to a more robust performance on tasks from DMC. For this
reason, we opt for DrQ-v2 [67] as our base optimization algorithm to learn from images, and DDPG,
as implemented in DrQ-v2, to learn from states. DDPG is an actor-critic off-policy algorithm for
continuous control tasks. The critic Qφ minimizes the Bellman error

LQ(φ,D) = E(ot,at,rt,ot+1)∼D

[(
Qφ(ot,at)− rt − γQφ̄(ot+1, πθ(ot+1)

)2
]
, (1)

where φ̄ is an exponential moving average of the critic weights. The deterministic actor πθ is learned
by maximizing the expected returns

Lπ(θ,D) = Eot∼D [Qφ(ot, πθ(ot))] . (2)

4.2 Unsupervised RL Algorithms

As part of URLB, we open-source code for eight leading or well-known algorithms across all three of
these categories all of which utilize the same optimization backbone. All algorithms provided with
URLB differ only in their intrinsic reward while keeping all other parts of the RL architecture the
same. We list all implemented baselines in Table 1 and provide a brief overview of the algorithms
considered, which are binned into three categories – knowledge-based, data-based, and competence-
based algorithms.2 For detailed descriptions of each method we refer the reader to Appendix A.

Knowledge-based Baselines: Knowledge-based methods aim to increase knowledge about the world
by maximizing prediction error. As part of the knowledge-based suite, we implement the Intrinsic
Curiosity Module (ICM) [48], Disagreement [49], and Random Network Distillation (RND) [10]. All
three methods utilize a function g to either predict the dynamics g(zt+1|zt,at) (ICM, Disagreement)
or predict the output of a random network g(zt,at) (RND), where z is the encoding of o. ICM and
RND maximize prediction error while Disagreement maximizes prediction uncertainty.

Data-based Baselines: Data-based methods aim to achieve data diversity by maximizing entropy.
We implement APT [42] and ProtoRL [68] both of which maximize entropy H(z) in different ways.

2We borrow this terminology from the following unsupervised RL tutorial [61].

5

Table 1: Unsupervised RL Algorithms implemented in URLB.
Name Algo. Type Intrinsic Reward

ICM [48] Knowledge ‖g(zt+1|zt,at)− zt+1‖2
Disagreement [49] Knowledge Var{gi(zt+1|zt,at)} i = 1, . . . , N
RND [10] Knowledge ‖g(zt,at)− g̃(zt,at)‖22
APT [42] Data

∑
j∈random log ‖zt − zj‖ j = 1, . . . ,K

ProtoRL [68] Data
∑
j∈prototypes log ‖zt − zj‖ j = 1, . . . ,K

SMM [40] Competence log p∗(z)− log qw(z)− log p(w) + log d(w|z)
DIAYN [21] Competence log q(w|z) + const.
APS [43] Competence rAPT

t (z) + log q(z|w)

Walker Quadruped Jaco
States (pre-training for 2× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Random Init
Knowledge-Based
Data-Based
Competence-Based

Walker Quadruped Jaco
Pixels (pre-training for 2× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Figure 3: Aggregate results for each algorithm category after pre-training the agent with intrinsic
rewards for 2M environment steps and finetuning with extrinisc rewards for 100k steps as described
in Sec. 3.2. Scores are normalized by the asymptotic performance on each task (i.e., DrQ-v2 and
DDPG performance after training from 2M steps on pixels and states correspondingly) and we show
the mean and standard error of each category. Each algorithm is evaluated across ten random seeds.
To provide an aggregate view of each algorithm category, the scores are averaged over individual
tasks and methods (see Appendix C for detailed results for each algorithm and downstream task).
The Random Init baseline represents DrQ-v2 and DDPG trained from a random initialization for
100k steps. Full results can be found in Section C.

Both methods utilize a particle estimator [60] to maximize the entropy by maximizing the distance
between k-nearest neighbors (kNN) for each state or observation embedding z. Since computing kNN
over the entire replay buffer is expensive, APT estimates entropy across transitions in a randomly
sampled minibatch. ProtoRL improves on APT by clustering the replay buffer with a contrastive deep
clustering algorithm SWaV [12]. The centroids of the clusters are called prototypes, which are used
by ProtoRL to estimate entropy.

Competence-based Baselines: Competence-based algorithms, learn an explicit skill vector w by
maximizing the mutual information between the encoded observation and skill I(z;w). This mutual
information can be decomposed in two ways, I(z;w) = H(z)−H(z|w) = H(w)−H(w|z). We
provide baselines for both decompositions. The former decomposition is utilized in skill discovery
algorithms such as DIAYN [21], VIC [24], VALOR [1], which are conceptually similar. For URLB,
we implement DIAYN. The latter decomposition, though less common, is implemented in the
APS [43], which uses a particle estimator for the entropy term and successor features to represent the
conditional entropy [30]. Lastly, we implement SMM [40] which combines both decompositions into
one objective. Note that the SMM paper describes both skill-based and skill-free variants, so it can
be categorized as both competence and data-based.

5 Experiments

We evaluate the algorithms listed in Table 1 by pre-training with the intrinsic reward objective and
fine-tuning on the downstream task as described in Section 3.2. For DrQ-v2 optimization we fix the
hyper-parameters from [67] and for algorithm-specific hyper-parameters we perform a grid sweep

6

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker

Random Init
Knowledge-Based
Data-Based
Competence-Based

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco

(a) State-based learning.

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker

Random Init
Knowledge-Based
Data-Based
Competence-Based

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco

(b) Pixel-based learning.

Figure 4: We display the fine-tuning efficiency as a function of pre-training steps. As in Fig. 3 scores
are asymptotically normalized, averaged across tasks and algorithms on a per-category basis, and
evaluated over ten seeds. Our expectation is that a longer pre-training phase should lead to more
efficient fine-tuning. However, in several cases the empirical evidence goes against our intuition
demonstrating that longer pre-training is not always beneficial. Understanding this shortcoming
of current methods is an important direction for future research. Detailed results can be found in
Figures 6 and 7.

and pick the best performing parameters. We benchmark both state and pixel-based experiments
and keep all non-algorithm-specific architectural details the same with a full description available in
Appendix B. Performance on each downstream task is evaluated over ten random seeds and we display
the mean scores and standard errors. We summarize the main results of our evaluation in Figures 3
and 4, which show evaluation scores grouped by algorithm category, described in Section 4.2, and
environment, described in Section 3.3. An extensive list of results across all algorithms considered in
this work can be found in Appendix C.

By benchmarking a wide array of exploration algorithms on both state and pixel-based tasks we
are able to get perspective on the current state of unsupervised RL. Overall, we find that while
unsupervised RL shows promise, it is still far from solving the proposed benchmark and many open
questions need to be addressed to make progress toward unsupervised pre-training for RL. We note
that solving the benchmark means matching the asymptotic DrQ-v2 (for pixels) and DDPG (for states)
performance within 100k steps of fine-tuning. The motivation for this definition is that unsupervised
RL agents get access to unlimited reward-free environment interactions. After pre-training, we seek
to develop agents that adapt quickly to the desired downstream task. We list our observations below:

O1: None of the implemented unsupervised RL algorithms solve the benchmark. Despite access to up
to 2M pre-training steps, after 100k steps of fine-tuning no method matches asymptotic performance
on most tasks. The best-performing benchmarked algorithms achieve 40− 70% normalized return
whereas the benchmark is considered solved when the agent achieves near 100% normalized returns.
This suggests that we are still far as a community from efficient generalization in deep RL.

O2: Unsupervised RL is not universally better than random initialization. We also observe that
fine-tuning an unsupervised RL baseline is not always preferable to fine-tuning from a random
initialization. In particular when learning from states, a random initialization is competitive with
most baselines. However, when learning from pixels fine-tuning from random initialization degrades
suggesting that representation learning is an important component of unsupervised pre-training.

7

O3: There exists a large gap in performance between exploring from states and exploring from pixels.
Another observation that supports representation learning as an important aspect of exploration is
that exploration algorithms degrade substantially when learning from pixels compared to learning
from state. Shown in Figure 3, most algorithms lose 20− 50% when learning from pixels compared
to state and especially so on the harder environments (Quadruped, Jaco Arm). These results suggest
that better representation learning during pre-training is an important research direction.

O4: In aggregate, competence-based approaches underperform knowledge-based and data-based
approaches. While knowledge-based and data-based approaches both perform competitively across
URLB, we find that competence-based approaches are lagging behind. Specifically, there is no
competence-based approach that achieves state-of-the-art mean performance on any of the URLB
tasks, which points to competence-based unsupervised RL as an impactful research direction with
significant room for improvement.

O5: There is not a single leading unsupervised RL algorithm for both states and pixels. We observe
that there is no single state-of-the-art algorithm for unsupervised RL. At 2M pre-training steps,
APT [42] and ProtoRL [68] are the leading algorithms for state-based URLB while ICM [48]
achieves leading performance on pixel-based URLB despite the existence of more sophisticated
knowledge-based methods [49, 10] (see Figure 5).

O6: For many unsupervised RL algorithms, rather than monotonically improving performance decays
as a function of pre-training steps. We desire and would expect that the fine-tuning efficiency of
unsupervised RL algorithms would improve as a function of pre-training steps. Surprisingly, we
find that for 9 out of 18 experiments shown in Figure 4, performance either does not improve or
even degrades as a function of pre-training steps. We see this as potentially the biggest drawback of
current unsupervised RL approaches – they do not scale with the number of environment interactions.
Developing algorithms that improve monotonically as a function of pre-training steps is an open and
impactful line of research.

O7: New fine-tuning strategies will likely be needed for fast adaptation. While not investigated
in depth in this benchmark, new fine-tuning strategies could play a large role in the adoption of
unsupervised RL. Perhaps part of the issue raised in O6 could be addressed with better fine-tuning.
The algorithms in URLB are all fine-tuned by initializing the actor-critic with the pre-trained weights
and fine-tuning with an extrinsic reward. There are likely other better strategies for fine-tuning,
particularly for competence based approaches that are conditioned on the skill w.

6 Related work

Deep Reinforcement Learning Benchmarks. Part of the accelerated progress in deep RL over the
last few years has been due to the existence of stable benchmarks. Specifically, the Atari Arcade
Learning Environment [5], the OpenAI gym [7], and more recently the DeepMind Control (DMC)
Suite [64] have become standard benchmarks for evaluating supervised RL agents in both state
and pixel-based observation spaces and discrete and continuous action spaces. Open-sourcing code
for algorithms has been another aspect that accelerated progress in deep RL. For instance, Duan
et al. [19] not only presented a benchmark for continuous control but also provided baselines for
common supervised RL algorithms, which led to the development of the widely used OpenAI
gym benchmark [7] and baselines [18]. The combination of challenging yet feasible benchmarks
and open-sourced code were important components in the discovery of many widely adopted RL
algorithms [27, 44, 52–54].

In addition to Atari, OpenAi gym, and DeepMind control, there have been many other benchmarks
designed to study different aspects of supervised RL. DeepMind lab [4] benchmarks 3D navigation
from pixels, ProcGen [15, 16] measures generalization of supervised agents in procedurally generated
environments, D4RL [22] and RL unplugged [26] benchmark performance of offline RL methods,
B-Pref [39] benchmarks performance of preference-based RL methods, Metaworld [70] measures
the performance of multi-task and meta-RL algorithms, and SafetyGym [51] measures how RL
agents can achieve tasks with safety constraints. However, while the existing benchmarks are
suitable for supervised RL algorithms, there is no such benchmark and collections of easy-to-use
baseline algorithms for unsupervised RL, which is our primary motivation for accelerating progress
in unsupervised RL through URLB.

8

Unsupervised Reinforcement Learning. While investigations into unsupervised deep RL appeared
shortly after the landmark DQN [44], the field has experienced accelerated progress over the last year,
which has been in part due to advents in unsupervised representation learning in CV [14, 31, 32]
and NLP [8, 17, 50] as well as the development for stable RL optimization algorithms [27, 33, 41,
54]. However, unlike CV and NLP which focus solely on unsupervised representation learning,
unsupervised RL has required both unsupervised representation and behavioral learning.

Unsupervised Representation Learning for Deep RL: In order for an RL algorithm to learn a policy
π(a|s) it must first have a good representation for the state s. When working with coordinate
state, the representation is supplied by a the human task designer but when operating from image
observations o, we must first transform the observations into latent vectors z. This transformation
comprises the study of representation learning for RL. One of the first seminal works on unsupervised
representation learning for RL showed that unsupervised auxiliary tasks improve performance of
supervised RL [34]. Over the last two years, a series of works in unsupervised representation learning
for RL with world models [28, 29] contrastive learning [38, 62, 68], autoencoders [66], and data
augmentation [37, 67, 69] have dramaticaly improved learning efficiency from pixels. On many tasks
from the DMC suite, learning from pixels is now as data-efficient as learning from state [38].

Unsupervised Behavioral Learning for Deep RL: One caveat is that the above algorithms are not fully
unsupervised since they still optimize for an extrinsic reward but with an auxiliary unsupervised loss.
Fully unsupervised RL also requires unsupervised learning of behaviors, which is typically achieved
by optimizing for an intrinsic reward [47]. Given that representation learning is already heavily
benchmarked for RL [28, 38, 69], URLB focuses mostly on unsupervised behavior learning. Many
recent algorithms have been proposed for intrinsic behavioral learning, which include prediction
methods [9, 48, 49], maximal entropy-based methods [11, 42, 43, 46, 56, 68], and maximal mutual
information-based methods [21, 30, 43, 57]. However, these methods use different pre-training and
evaluation procedures, different optimization algorithms, and different environments. To make fully
unsupervised RL algorithm comparisons transparent and easier to develop, we introduce URLB.

7 Conclusion

We presented URLB, a benchmark designed to measure the performance of unsupervised RL algo-
rithms. URLB consists of a suite of twelve evaluation tasks of varying difficulty from three domains
and standardized procedures for pre-training and evaluation. We’ve open-sourced implementations
and evaluation scores for eight leading unsupervised RL algorithms from all major algorithm cat-
egories. To minimize confounding factors, we utilized the same optimization method across all
baselines. While none of the implemented baselines solve URLB, many make substantial progress
suggesting a number of fruitful directions for unsupervised RL research. We hope that this benchmark
makes the development and comparison of unsupervised RL algorithms easier and clearer.

Limitations. There are a number of limitations for both URLB and unsupervised RL methods
in general. While URLB tasks are designed to be challenging, they are far from the visual and
combinatorial complexity of real-world robotics. However, existing algorithms are unable to solve the
benchmark meaning there is substantial room for improvement on the URLB tasks before moving on
to even more challenging ones. While we present standardized pre-training and evaluation procedures,
there can be many other ways of measuring the quality of the exploration algorithm. For instance,
the quality of pre-training can be evaluated not only through policy adaptation but also through
dataset diversity which we do not consider in this paper. In this work, similar to the Atari [5] and
DMC [64] benchmarks for supervised RL we do not consider goal-conditioned RL which can be
quite powerful for exploration [20]. For generality, we chose the currently most commonly used
evaluation procedure that allowed us to benchmark a diverse set of leading exploration algorithms
but, of course, other choices are available and would be interesting to investigate in future work.

Potential negative impacts. Unsupervised RL has the benefits of requiring zero extrinsic reward
interactions during pre-training, and due to this the resulting agents may develop policies that are not
aligned with human intent. This could be problematic in the long-term if not addressed early and
carefully because as unsupervised robotics get more capable they can inadvertently inflict harm on
themselves or the environment. Methods for constraining exploration within a broad set of human
preferences (e.g. explore without harming the environment) is an interesting and important direction
for future research in order to produced safe agents.

9

Acknowledgements

This work was partially supported by Berkeley DeepDrive, BAIR, the Berkeley Center for Human-
Compatible AI, the Office of Naval Research grant N00014-21-1-2769, and DARPA through the
Machine Common Sense Program.

References
[1] Achiam, Joshua, Edwards, Harrison, Amodei, Dario, and Abbeel, Pieter. Variational option

discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[2] Akkaya, Ilge, Andrychowicz, Marcin, Chociej, Maciek, Litwin, Mateusz, McGrew, Bob, Petron,
Arthur, Paino, Alex, Plappert, Matthias, Powell, Glenn, Ribas, Raphael, et al. Solving rubik’s
cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[3] Barreto, Andre, Borsa, Diana, Quan, John, Schaul, Tom, Silver, David, Hessel, Matteo,
Mankowitz, Daniel, Zidek, Augustin, and Munos, Remi. Transfer in deep reinforcement
learning using successor features and generalised policy improvement. In International Confer-
ence on Machine Learning, pp. 501–510. PMLR, 2018.

[4] Beattie, Charles, Leibo, Joel Z, Teplyashin, Denis, Ward, Tom, Wainwright, Marcus, Küttler,
Heinrich, Lefrancq, Andrew, Green, Simon, Valdés, Víctor, Sadik, Amir, et al. Deepmind lab.
arXiv preprint arXiv:1612.03801, 2016.

[5] Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowling, Michael. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[6] Berner, Christopher, Brockman, Greg, Chan, Brooke, Cheung, Vicki, Dębiak, Przemysław,
Dennison, Christy, Farhi, David, Fischer, Quirin, Hashme, Shariq, Hesse, Chris, et al. Dota 2
with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[7] Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang,
Jie, and Zaremba, Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared, Dhariwal,
Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell, Amanda, et al. Language
models are few-shot learners. In Advances in Neural Information Processing Systems, 2020.

[9] Burda, Yuri, Edwards, Harri, Pathak, Deepak, Storkey, Amos, Darrell, Trevor, and Efros,
Alexei A. Large-scale study of curiosity-driven learning. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=rJNwDjAqYX.

[10] Burda, Yuri, Edwards, Harrison, Storkey, Amos, and Klimov, Oleg. Exploration by random
network distillation. In International Conference on Learning Representations, 2019.

[11] Campos, Víctor, Sprechmann, Pablo, Hansen, Steven Stenberg, Barreto, Andre, Kapturowski,
Steven, Vitvitskyi, Alex, Badia, Adria Puigdomenech, and Blundell, Charles. Beyond fine-
tuning: Transferring behavior in reinforcement learning. In ICML 2021 Workshop on Unsuper-
vised Reinforcement Learning, 2021.

[12] Caron, Mathilde, Misra, Ishan, Mairal, Julien, Goyal, Priya, Bojanowski, Piotr, and Joulin,
Armand. Unsupervised learning of visual features by contrasting cluster assignments. In
Advances in Neural Information Processing Systems, 2020.

[13] Chen, Lili, Lu, Kevin, Rajeswaran, Aravind, Lee, Kimin, Grover, Aditya, Laskin, Michael,
Abbeel, Pieter, Srinivas, Aravind, and Mordatch, Igor. Decision transformer: Reinforcement
learning via sequence modeling, 2021.

[14] Chen, Ting, Kornblith, Simon, Norouzi, Mohammad, and Hinton, Geoffrey E. A simple
framework for contrastive learning of visual representations. In International conference on
machine learning, 2020.

10

https://openreview.net/forum?id=rJNwDjAqYX

[15] Cobbe, Karl, Klimov, Oleg, Hesse, Chris, Kim, Taehoon, and Schulman, John. Quantifying
generalization in reinforcement learning. In International Conference on Machine Learning,
2019.

[16] Cobbe, Karl, Hesse, Chris, Hilton, Jacob, and Schulman, John. Leveraging procedural genera-
tion to benchmark reinforcement learning. In International conference on machine learning,
2020.

[17] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
2019.

[18] Dhariwal, Prafulla, Hesse, Christopher, Klimov, Oleg, Nichol, Alex, Plappert, Matthias, Radford,
Alec, Schulman, John, Sidor, Szymon, Wu, Yuhuai, and Zhokhov, Peter. Openai baselines.
https://github.com/openai/baselines, 2017.

[19] Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John, and Abbeel, Pieter. Benchmarking
deep reinforcement learning for continuous control. In International conference on machine
learning, 2016.

[20] Ecoffet, Adrien, Huizinga, Joost, Lehman, Joel, Stanley, Kenneth O., and Clune, Jeff. First re-
turn, then explore. arXiv preprint arXiv:2004.12919, 2020. doi: 10.1038/s41586-020-03157-9.

[21] Eysenbach, Benjamin, Gupta, Abhishek, Ibarz, Julian, and Levine, Sergey. Diversity is all
you need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019.

[22] Fu, Justin, Kumar, Aviral, Nachum, Ofir, Tucker, George, and Levine, Sergey. D4rl: Datasets
for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[23] Gleave, Adam, Dennis, Michael, Wild, Cody, Kant, Neel, Levine, Sergey, and Russell, Stuart.
Adversarial policies: Attacking deep reinforcement learning. In International Conference on
Learning Representations, 2020.

[24] Gregor, Karol, Rezende, Danilo Jimenez, and Wierstra, Daan. Variational intrinsic control. In
International Conference on Learning Representations, 2017.

[25] Grill, Jean-Bastien, Strub, Florian, Altché, Florent, Tallec, Corentin, Richemond, Pierre H,
Buchatskaya, Elena, Doersch, Carl, Pires, Bernardo Avila, Guo, Zhaohan Daniel, Azar, Moham-
mad Gheshlaghi, et al. Bootstrap your own latent: A new approach to self-supervised learning.
In Advances in Neural Information Processing Systems, 2020.

[26] Gulcehre, Caglar, Wang, Ziyu, Novikov, Alexander, Paine, Tom Le, Colmenarejo, Sergio Gomez,
Zolna, Konrad, Agarwal, Rishabh, Merel, Josh, Mankowitz, Daniel, Paduraru, Cosmin, et al. Rl
unplugged: A suite of benchmarks for offline reinforcement learning. In Advances in Neural
Information Processing Systems, 2020.

[27] Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and Levine, Sergey. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

[28] Hafner, Danijar, Lillicrap, Timothy, Fischer, Ian, Villegas, Ruben, Ha, David, Lee, Honglak,
and Davidson, James. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, 2019.

[29] Hafner, Danijar, Lillicrap, Timothy, Ba, Jimmy, and Norouzi, Mohammad. Dream to con-
trol: Learning behaviors by latent imagination. In International Conference on Learning
Representations, 2020.

[30] Hansen, Steven, Dabney, Will, Barreto, André, Warde-Farley, David, de Wiele, Tom Van,
and Mnih, Volodymyr. Fast task inference with variational intrinsic successor features. In
International Conference on Learning Representations, 2020.

11

https://github.com/openai/baselines

[31] He, Kaiming, Fan, Haoqi, Wu, Yuxin, Xie, Saining, and Girshick, Ross B. Momentum contrast
for unsupervised visual representation learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020.

[32] Hénaff, Olivier J., Srinivas, Aravind, Fauw, Jeffrey De, Razavi, Ali, Doersch, Carl, Eslami, S.
M. Ali, and van den Oord, Aäron. Data-efficient image recognition with contrastive predictive
coding. In International Conference on Machine Learning, 2020.

[33] Hessel, Matteo, Modayil, Joseph, van Hasselt, Hado, Schaul, Tom, Ostrovski, Georg, Dabney,
Will, Horgan, Dan, Piot, Bilal, Azar, Mohammad Gheshlaghi, and Silver, David. Rainbow: Com-
bining improvements in deep reinforcement learning. In Conference on Artificial Intelligence,
2018.

[34] Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Wojciech Marian, Schaul, Tom, Leibo, Joel Z.,
Silver, David, and Kavukcuoglu, Koray. Reinforcement learning with unsupervised auxiliary
tasks. In International Conference on Learning Representations, 2017.

[35] Janner, Michael, Li, Qiyang, and Levine, Sergey. Reinforcement learning as one big sequence
modeling problem. CoRR, abs/2106.02039, 2021.

[36] Kingma, Diederik P and Welling, Max. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[37] Laskin, Michael, Lee, Kimin, Stooke, Adam, Pinto, Lerrel, Abbeel, Pieter, and Srinivas, Aravind.
Reinforcement learning with augmented data. In Advances in Neural Information Processing
Systems, 2020.

[38] Laskin, Michael, Srinivas, Aravind, and Abbeel, Pieter. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on Machine Learning,
2020.

[39] Lee, Kimin, Smith, Laura, Dragan, Anca, and Abbeel, Pieter. B-pref: Benchmarking preference-
based reinforcement learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

[40] Lee, Lisa, Eysenbach, Benjamin, Parisotto, Emilio, Xing, Eric P., Levine, Sergey, and Salakhut-
dinov, Ruslan. Efficient exploration via state marginal matching. CoRR, abs/1906.05274,
2019.

[41] Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa,
Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations, 2016.

[42] Liu, Hao and Abbeel, Pieter. Behavior from the void: Unsupervised active pre-training. arXiv
preprint arXiv:2103.04551, 2021.

[43] Liu, Hao and Abbeel, Pieter. APS: active pretraining with successor features. In International
Conference on Machine Learning, 2021.

[44] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[45] Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Tim-
othy, Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine Learning, 2016.

[46] Mutti, Mirco, Pratissoli, Lorenzo, and Restelli, Marcello. A policy gradient method for task-
agnostic exploration. In Conference on Artificial Intelligence, 2021.

[47] Oudeyer, Pierre-Yves, Kaplan, Frdric, and Hafner, Verena V. Intrinsic motivation systems
for autonomous mental development. IEEE transactions on evolutionary computation, 11(2):
265–286, 2007.

12

[48] Pathak, Deepak, Agrawal, Pulkit, Efros, Alexei A, and Darrell, Trevor. Curiosity-driven
exploration by self-supervised prediction. In International Conference on Machine Learning,
2017.

[49] Pathak, Deepak, Gandhi, Dhiraj, and Gupta, Abhinav. Self-supervised exploration via disagree-
ment. In International Conference on Machine Learning, 2019.

[50] Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David, Amodei, Dario, and Sutskever, Ilya.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[51] Ray, Alex, Achiam, Joshua, and Amodei, Dario. Benchmarking safe exploration in deep
reinforcement learning. arXiv preprint arXiv:1910.01708, 2019.

[52] Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael, and Moritz, Philipp. Trust
region policy optimization. In International Conference on Machine Learning, 2015.

[53] Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan, Michael, and Abbeel, Pieter. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations, 2016.

[54] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[55] Schwarzer, Max, Anand, Ankesh, Goel, Rishab, Hjelm, R Devon, Courville, Aaron, and
Bachman, Philip. Data-efficient reinforcement learning with self-predictive representations. In
International Conference on Learning Representations, 2021.

[56] Seo, Younggyo, Chen, Lili, Shin, Jinwoo, Lee, Honglak, Abbeel, Pieter, and Lee, Kimin.
State entropy maximization with random encoders for efficient exploration. In International
Conference on Machine Learning, 2021.

[57] Sharma, Archit, Gu, Shixiang, Levine, Sergey, Kumar, Vikash, and Hausman, Karol. Dynamics-
aware unsupervised discovery of skills. In International Conference on Learning Representa-
tions, 2020.

[58] Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang, Aja, Guez,
Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354, 2017.

[59] Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, Ioannis, Lai, Matthew, Guez,
Artfhur, Lanctot, Marc, Sifre, Laurent, Kumaran, Dharshan, Graepel, Thore, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[60] Singh, Harshinder, Misra, Neeraj, Hnizdo, Vladimir, Fedorowicz, Adam, and Demchuk, Eugene.
Nearest neighbor estimates of entropy. American Journal of Mathematical and Management
Sciences, 23(3-4):301–321, 2003.

[61] Srinivas, Aravind and Abbeel, Pieter. Unsupervised learning for reinforcement learning, 2021.
URL https://icml.cc/media/icml-2021/Slides/10843_QHaHBNU.pdf.

[62] Stooke, Adam, Lee, Kimin, Abbeel, Pieter, and Laskin, Michael. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, 2021.

[63] Sutton, Richard S and Barto, Andrew G. Reinforcement learning: An introduction. MIT Press,
2018.

[64] Tassa, Yuval, Doron, Yotam, Muldal, Alistair, Erez, Tom, Li, Yazhe, Casas, Diego de Las,
Budden, David, Abdolmaleki, Abbas, Merel, Josh, Lefrancq, Andrew, et al. Deepmind control
suite. arXiv preprint arXiv:1801.00690, 2018.

[65] Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M, Mathieu, Michael, Dudzik, Andrew,
Chung, Junyoung, Choi, David H, Powell, Richard, Ewalds, Timo, Georgiev, Petko, et al.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

13

https://icml.cc/media/icml-2021/Slides/10843_QHaHBNU.pdf

[66] Yarats, Denis, Zhang, Amy, Kostrikov, Ilya, Amos, Brandon, Pineau, Joelle, and Fergus, Rob.
Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

[67] Yarats, Denis, Fergus, Rob, Lazaric, Alessandro, and Pinto, Lerrel. Mastering visual continuous
control: Improved data-augmented reinforcement learning, 2021.

[68] Yarats, Denis, Fergus, Rob, Lazaric, Alessandro, and Pinto, Lerrel. Reinforcement learning
with prototypical representations. In International Conference on Machine Learning, 2021.

[69] Yarats, Denis, Kostrikov, Ilya, and Fergus, Rob. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2021.

[70] Yu, Tianhe, Quillen, Deirdre, He, Zhanpeng, Julian, Ryan, Hausman, Karol, Finn, Chelsea, and
Levine, Sergey. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, 2020.

14

Appendix:
Unsupervised Reinforcement Learning Benchmark

A Unsupervised Reinforcement Learning Baselines

A.1 Knowledge-based Baselines

Prediction methods train a forward dynamics model f(ot+1|ot,at) and define a self-supervised task
based on the outputs of the model prediction.

Curiosity [48]: The Intrinsic Curiosity Module (ICM) defines the self-supervised task as the error
between the state prediction of a learned dynamics model ẑ′ ∼ g(z′|z,a) and the observation. The
intuition is that parts of the state space that are hard to predict are good to explore because they were
likely to be unseen before. An issue with Curiosity is that it is susceptible to the noisy TV problem
wherein stochastic elements of the environment will always cause high prediction error while not
being informative for exploration:

rICM
t ∝ ‖g(zt+1|zt,at)− zt+1‖2.

Disagreement [49]: Disagreement is similar to ICM but instead trains an ensemble of forward models
and defines the intrinsic reward as the variance (or disagreement) among the models. Disagreement
has the favorable property of not being susceptible to the noisy TV problem, since high stochasticity in
the environment will result high prediction error but low variance if it has been thoroughly explored:

rDisagreement
t ∝ Var{gi(zt+1|zt,at)} i = 1, . . . , N.

RND [10]: Random Network Distillation (RND) defines the self-supervised task by predicting the
output of a frozen randomly initialized neural network f̃ . This differs from ICM only in that instead
of predicting the next state, which is effectively an environment-defined function, it tries to predict
the vector output of a randomly defined function. Similar to ICM, RND can suffer from the noisy TV
problem:

rRND
t ∝ ‖g(zt,at)− g̃(zt,at)‖22.

A.2 Data-based Baselines

Recently, exploration through state entropy maximization has resulted in simple yet effective al-
gorithms for unsupervised pre-training. We implement two leading variants of this approach for
URLB.

APT [42]: Active Pre-training (APT) utilizes a particle-based estimator [60] that uses K nearest-
neighbors to estimate entropy for a given state or image embedding. Since APT does not itself perform
representation learning, it requires an auxiliary representation learning loss to provide latent vectors
for entropy estimation, although it is also possible to use random network embeddings [56]. We
provide implementations of APT with the forward g(zt+1|zt,at) and inverse dynamics h(at|zt+1, zt)
representation learning losses:

rAPT
t ∝

∑
j∈random

log ‖zt − zj‖ j = 1, . . . ,K.

ProtoRL [68]: ProtoRL devises a self-supervised pre-training scheme that allows to decouple
representation learning and exploration to enable efficient downstream generalization to previously
unseen tasks. For this, ProtoRL uses the contrastive clustering assignment loss from SWaV [12]
and learns latent representations and a set of prototypes to form the basis of the latent space. The
prototypes are then used for more accurate estimation of entropy of the state-visitation distribution
via KNN particle-based estimator:

rProto
t ∝

∑
j∈prototypes

log ‖zt − zj‖ j = 1, . . . ,K.

15

A.3 Competence-based Baselines

Competence-based approaches learn skills w that maximize the mutual information between encoded
observations (or states) and skills I(z;w). The mutual information has two decompositions I(z;w) =
H(w)−H(w|z) = H(z)−H(z|w). We provide baselines for both decompositions.

SMM [40]: SMM minimizes DKL(pπ(z) ‖ p∗(z)), which maximizes the state entropy, while
minimizing the cross entropy from the state to the target state distribution. When using skills,
H(z) can be rewritten as H(z|w) + I(z;w). H(z|w) can maximized by optimizing the reward
r = log qw(z), which is estimated using a VAE [36] that models the density of z while executing
skill w. Similar to other mutual information methods that decompose I(z;w) = H(w)−H(w|z),
SMM learns a discriminator d(w|z) over a set of discrete skills with a uniform prior that maximizes
H(w):

rSMM
t =∆ log p∗(z)− log qw(z)− log p(w) + log d(w|z).

DIAYN [21]: DIAYN and similar algorithms such as VIC [24] and VALOR [1] are perhaps the best
competence-based exploration algorithms. These methods estimate the mutual information through
the first decomposition I(z;w) = H(w)−H(w|z). H(w) is kept maximal by drawing w ∼ p(w)
from a discrete uniform prior distribution and the density −H(w|z) is estimated with a discriminator
log q(w|z).

rDIAYN
t ∝ log q(w|z) + const.

APS [43]: APS is a recent leading mutual information exploration method that uses the second
decomposition I(z;w) = H(z) − H(z|w). H(z) is estimated with a particle estimator as in
APT [42] while H(z|w) is estimated with successor features as in VISR [30].3

rAPS
t ∝ rAPT

t (z) + log q(z|w)

B Hyper-parameters

In Table 2 we present a common set of hyper-parameters used in our experiments, while in table 3 we
list individual hyper-parameters for each method.

Table 2: A common set of hyper-parameters used in our experiments.
Common hyper-parameter Value
Replay buffer capacity 106

Action repeat 1 states-based and 2 for pixels-based
Seed frames 4000
n-step returns 3
Mini-batch size 1024 states-based and 256 for pixels-based
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024 states-based and 50 for pixels-based
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames up to 2× 106

Number fine-turning frames 1× 105

3In this benchmark, the generalized policy improvement(GPI) [3] that is used in Atari games for APS and
VISR is not implemented for continuous control experiments.

16

Table 3: Per algorithm sets of hyper-parameters used in our experiments.
ICM hyper-parameter Value
Representation dim. 512
Reward transformation log(r + 1.0)
Forward net arch. (|O|+ |A|)→ 1024→ 1024→ |O| ReLU MLP
Inverse net arch. (2× |O|)→ 1024→ 1024→ |A| ReLU MLP

Disagreement hyper-parameter Value
Ensemble size 5
Forward net arch: (|O|+ |A|)→ 1024→ 1024→ |O| ReLU MLP

RND hyper-parameter Value
Representation dim. 512
Predictor & target net arch. |O| → 1024→ 1024→ 512 ReLU MLP
Normalized observation clipping 5

APT hyper-parameter Value
Representation dim. 512
Reward transformation log(r + 1.0)
Forward net arch. (512 + |A|)→ 1024→ 512 ReLU MLP
Inverse net arch. (2× 512)→ 1024→ |A| ReLU MLP
k in NN 12
Avg top k in NN True

ProtoRL hyper-parameter Value
Predictor dim. 128
Projector dim. 512
Number of prototypes 512
Softmax temperature 0.1
k in NN 3
Number of candidates per prototype 4
Encoder target EMA rate (τenc) 0.05

SMM hyper-parameter Value
Skill dim. 4
Skill discrim lr 10−3

VAE lr 10−2

DIAYN hyper-parameter Value
Skill dim 16
Skill sampling frequency (steps) 50
Discriminator net arch. 512→ 1024→ 1024→ 16 ReLU MLP

APS hyper-parameter Value
Representation dim. 512
Reward transformation log(r + 1.0)
Successor feature dim. 10
Successor feature net arch. |O| → 1024→ 1024→ 10 ReLU MLP
k in NN 12
Avg top k in NN True
Least square batch size 4096

17

C Per-domain Individual Results

Individual fine-tuning results for each methods are shown in Figure 5. Furthermore, Figures 6 and 7
demonstrate individual results of states and pixels based fine-tuning performance as a function of
pre-training steps for each considered method and task.

Walker Quadruped Jaco
States (pre-training for 1× 105)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

DrQ-v2@100k
ICM
Disagreement
RND
APT
ProtoRL
SMM
DIAYN
APS

Walker Quadruped Jaco
Pixels (pre-training for 1× 105)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
States (pre-training for 5× 105)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
Pixels (pre-training for 5× 105)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
States (pre-training for 1× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
Pixels (pre-training for 1× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
States (pre-training for 2× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker Quadruped Jaco
Pixels (pre-training for 2× 106)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Figure 5: Individual results of fine-tuning for 100k steps after different degrees of pre-training for
each considered method. The performance is aggregated across all the tasks within a domain and
normalized with respect to the optimal performance.

18

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100
No

rm
al

ize
d

Re
tu

rn
 (%

)
Walker: Flip

ICM
Disagreement
RND
APT

ProtoRL
SMM
DIAYN
APS

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Run

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Stand

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Walk

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Jump

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Run

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Stand

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Walk

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Bottom Left

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Bottom Right

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Top Left

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Top Right

Figure 6: Individual results of fine-tuning efficiency as a function of pre-training steps for states-based
learning.

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Flip
ICM
Disagreement
RND
APT

ProtoRL
SMM
DIAYN
APS

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Run

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Stand

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Walker: Walk

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Jump

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Run

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Stand

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Quadruped: Walk

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Bottom Left

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Bottom Right

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Top Left

1× 105 5× 105 1× 106 2× 106

Pre-training Frames
0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

 (%
)

Jaco: Reach Top Right

Figure 7: Individual results of fine-tuning efficiency as a function of pre-training steps for pixels-based
learning.

19

D Finetuning Learning Curves

We provide finetuning learning curves for agents pre-trained for 2M steps with intrinsic rewards.

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d
Sc

or
e

walker_stand

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Sc

or
e

walker_walk

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
Sc

or
e

walker_run

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
Sc

or
e

walker_flip

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

quadruped_walk

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Sc

or
e

quadruped_run

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Sc

or
e

quadruped_stand

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Sc

or
e

quadruped_jump

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Sc

or
e

jaco_reach_top_left

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
Sc

or
e

jaco_reach_top_right

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Sc

or
e

jaco_reach_bottom_left

0.2 0.4 0.6 0.8 1.0
Env Steps 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
Sc

or
e

jaco_reach_bottom_right

ICM
Disagreement

RND
APT

ProtoRL
DIAYN

APS SMM

Finetuning Learning Curves

Figure 8: Finetuning curves for each evaluated unsupervised algorithm for each task considered in
this benchmark after the agent has been pre-trained with intrinsic rewards.

20

E Individual Numerical Results

The individual numerical results of fine-tuning for each task and each method are presented in Table 4
for states-based learning, and in Table 5 for pixels-based learning.

Pre-trainining for 1× 105 frames
Domain Task DDPG (DrQ-v2) ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 538±27 535±19 559±20 581±21 580±28 523±16 388±36 352±22 638±33
Run 325±25 384±24 437±24 437±33 424±28 250±34 244±28 259±26 428±26

Stand 899±23 944±5 937±6 947±6 925±9 926±24 738±61 784±68 872±34
Walk 748±47 805±46 911±14 857±32 888±19 831±31 592±53 584±25 731±70

Quadruped

Jump 236±48 291±35 261±45 383±57 334±48 220±33 386±56 267±34 589±57
Run 157±31 195±31 198±40 203±20 161±27 138±21 224±33 179±26 420±49

Stand 392±73 390±59 420±76 446±17 559±57 425±82 430±86 350±55 662±64
Walk 229±57 185±20 265±45 229±26 173±29 141±23 227±47 193±29 664±56

Jaco

Reach bottom left 72±22 117±24 100±20 121±19 124±19 86±20 64±13 64±15 156±9
Reach bottom right 117±18 155±10 179±6 161±8 141±14 82±21 68±17 44±8 164±10

Reach top left 116±22 152±24 143±14 141±15 136±23 110±19 33±6 26±6 153±13
Reach top right 94±18 159±15 159±15 168±9 175±6 116±22 47±12 59±12 186±7

Pre-trainining for 5× 105 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 538±27 554±27 568±42 685±46 594±29 501±19 472±30 380±24 637±36
Run 325±25 416±18 485±25 499±21 410±27 228±18 328±19 241±19 337±25

Stand 899±23 930±7 940±8 946±5 930±5 925±17 906±18 762±44 869±27
Walk 748±47 846±30 923±5 869±23 826±40 865±16 791±43 632±34 778±58

Quadruped

Jump 236±48 252±41 452±45 542±51 282±48 225±32 387±56 350±59 493±55
Run 157±31 184±42 368±28 377±28 182±22 153±29 205±26 258±24 347±39

Stand 392±73 422±49 649±53 722±49 470±80 433±63 499±78 459±54 743±46
Walk 229±57 237±43 412±67 498±68 217±29 209±47 238±27 218±24 553±74

Jaco

Reach bottom left 72±22 94±16 145±13 113±11 123±15 106±18 61±10 38±9 134±6
Reach bottom right 117±18 119±15 136±15 144±6 136±13 115±19 82±10 63±11 131±8

Reach top left 116±22 125±18 165±9 121±16 118±18 122±23 57±9 29±10 124±11
Reach top right 94±18 151±8 181±7 150±8 170±8 120±22 60±10 43±6 106±10

Pre-trainining for 1× 106 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 538±27 524±20 586±36 610±27 505±22 480±17 486±17 338±23 531±24
Run 325±25 344±30 488±23 482±23 373±22 254±29 332±40 249±24 352±31

Stand 899±23 922±15 919±11 946±5 916±20 905±25 903±18 870±34 846±28
Walk 748±47 845±27 880±19 873±24 821±35 848±29 746±51 553±33 808±61

Quadruped

Jump 236±48 306±42 595±39 615±53 400±53 287±52 349±63 365±15 415±46
Run 157±31 157±24 444±39 444±42 237±35 206±32 280±40 343±25 400±48

Stand 392±73 428±79 736±51 763±79 526±58 436±62 391±36 529±52 712±57
Walk 229±57 140±24 729±46 644±70 246±33 266±64 312±63 525±76 505±84

Jaco

Reach bottom left 72±22 114±9 144±9 114±10 125±10 122±22 58±8 43±13 87±8
Reach bottom right 117±18 126±10 129±10 106±13 128±12 113±20 62±9 34±6 109±9

Reach top left 116±22 146±11 156±10 136±13 110±5 114±19 61±7 12±2 108±13
Reach top right 94±18 143±10 159±10 132±10 149±11 123±21 61±9 31±9 101±9

Pre-trainining for 2× 106 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 538±27 514±25 491±21 515±17 477±16 480±23 505±26 381±17 461±24
Run 325±25 388±30 444±21 439±34 344±28 200±15 430±26 242±11 257±27

Stand 899±23 913±12 907±15 923±9 914±8 870±23 877±34 860±26 835±54
Walk 748±47 713±31 782±33 828±29 759±35 777±33 821±36 661±26 711±68

Quadruped

Jump 236±48 205±33 668±24 590±33 462±48 425±63 298±39 578±46 538±42
Run 157±31 133±20 461±12 462±23 339±40 316±36 220±37 415±28 465±37

Stand 392±73 329±58 840±33 804±50 622±57 560±71 367±42 706±48 714±50
Walk 229±57 143±31 721±56 826±19 434±64 403±91 184±26 406±64 602±86

Jaco

Reach bottom left 72±22 106±8 134±8 101±12 88±12 121±22 40±9 17±5 96±13
Reach bottom right 117±18 119±9 122±4 100±10 115±12 113±16 50±9 31±4 93±9

Reach top left 116±22 119±12 117±14 111±10 112±11 124±20 50±7 11±3 65±10
Reach top right 94±18 137±9 140±7 140±10 136±5 135±19 37±8 19±4 81±11

Table 4: Individual results of fine-tuning for 1× 105 frames after different levels of pre-training in
the states-based settings.

21

Pre-trainining for 1× 105 frames
Domain Task DrQ-v2 ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 81±23 252±54 80±33 214±38 25±1 293±33 24±1 132±24 38±7
Run 41±11 110±21 57±14 78±13 25±1 135±13 22±1 50±6 26±1

Stand 212±28 315±67 250±62 261±34 162±9 353±67 133±8 233±22 162±9
Walk 141±53 302±45 192±68 263±43 43±16 320±52 23±1 138±25 29±2

Quadruped

Jump 278±35 226±40 173±15 223±30 160±24 246±33 211±25 204±24 182±32
Run 156±21 156±13 112±12 145±17 134±21 156±27 148±18 173±23 133±24

Stand 309±47 329±49 259±31 350±43 266±37 342±35 297±36 350±48 265±48
Walk 151±31 160±10 134±24 154±16 119±17 168±24 149±18 157±23 161±27

Jaco

Reach bottom left 23±10 18±7 12±4 41±7 0±0 38±11 1±1 12±4 0±0
Reach bottom right 23±8 30±12 23±8 57±8 0±0 37±9 1±0 10±3 0±0

Reach top left 40±9 31±11 30±9 66±9 0±0 59±14 2±1 19±4 2±1
Reach top right 37±9 37±13 22±8 48±7 3±2 45±16 4±3 24±8 4±2

Pre-trainining for 5× 105 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 81±23 260±39 360±16 222±37 28±2 210±44 25±1 117±18 32±2
Run 41±11 110±15 131±19 103±13 26±1 85±16 23±1 47±4 27±1

Stand 212±28 499±62 398±65 289±26 155±11 355±61 139±9 243±16 161±9
Walk 141±53 305±51 348±46 258±33 37±10 250±54 23±1 125±19 48±19

Quadruped

Jump 278±35 286±50 214±24 366±44 147±26 229±42 201±20 248±28 212±27
Run 156±21 198±29 153±19 261±38 112±20 144±27 138±16 197±24 178±23

Stand 309±47 398±69 298±35 453±47 229±42 355±67 279±26 313±31 281±51
Walk 151±31 193±31 129±20 206±30 111±20 157±25 139±13 140±19 141±24

Jaco

Reach bottom left 23±10 65±20 30±8 47±8 0±0 31±14 1±1 12±3 0±0
Reach bottom right 23±8 56±16 34±10 52±6 0±0 35±11 1±0 7±2 0±0

Reach top left 40±9 87±22 47±11 55±8 1±1 35±15 2±1 20±4 2±1
Reach top right 37±9 68±17 33±5 61±8 2±1 42±14 4±3 21±5 1±1

Pre-trainining for 1× 106 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 81±23 256±49 305±34 250±29 46±17 244±37 26±1 126±26 42±12
Run 41±11 116±16 155±12 96±13 26±1 84±11 24±1 47±4 30±3

Stand 212±28 534±73 565±37 374±37 150±13 480±63 145±6 251±19 170±10
Walk 141±53 285±45 433±29 316±41 36±9 258±39 25±1 137±25 54±25

Quadruped

Jump 278±35 345±47 199±31 368±38 156±27 237±50 201±20 319±38 184±29
Run 156±21 179±11 140±24 297±36 115±21 108±16 139±13 165±17 155±22

Stand 309±47 430±44 257±35 559±51 229±42 338±71 279±26 319±27 275±48
Walk 151±31 251±25 104±19 274±19 115±21 152±28 139±13 213±20 146±23

Jaco

Reach bottom left 23±10 65±19 42±10 46±9 0±0 36±13 1±1 8±3 0±0
Reach bottom right 23±8 88±23 58±11 44±9 0±0 43±10 1±0 4±1 0±0

Reach top left 40±9 76±19 89±19 59±7 6±4 41±10 2±1 20±4 2±0
Reach top right 37±9 87±24 49±12 47±7 2±1 47±12 4±3 22±6 5±1

Pre-trainining for 2× 106 frames
Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 81±23 231±34 339±16 280±31 28±2 223±27 26±1 114±21 38±9
Run 41±11 98±11 154±9 133±15 25±2 87±18 24±1 45±3 30±3

Stand 212±28 401±40 552±92 389±49 155±11 467±69 145±6 298±71 172±10
Walk 141±53 274±44 424±36 321±43 35±8 297±48 25±1 132±19 37±5

Quadruped

Jump 278±35 312±18 194±21 383±28 164±27 197±35 201±20 262±22 199±29
Run 156±21 249±21 143±25 284±18 121±20 137±35 139±13 190±18 156±24

Stand 309±47 506±40 305±35 561±43 243±41 290±56 279±26 426±40 331±43
Walk 151±31 231±15 145±10 294±20 122±21 138±35 139±13 184±23 146±24

Jaco

Reach bottom left 23±10 72±20 106±18 39±3 0±0 21±5 1±1 7±2 1±0
Reach bottom right 23±8 58±19 90±15 47±9 0±0 28±7 1±0 9±3 1±1

Reach top left 40±9 89±22 127±21 60±6 0±0 47±16 2±1 11±2 2±1
Reach top right 37±9 69±18 118±23 76±11 1±1 52±12 4±3 16±3 10±3

Table 5: Individual results of fine-tuning for 1× 105 frames after different levels of pre-training in
the pixels-based settings.

F Compute Resources

URLB is designed to be accessible to the RL research community. Both state and pixel-based
algorithms are implemented such that each algorithm requires a single GPU. For local debugging
experiments we used NVIDIA RTX GPUs. For large-scale runs used to generate all results in this
manuscripts, we used NVIDIA Tesla V100 GPU instances. All experiments were run on internal
clusters. Each algorithm trains in roughly 30 mins - 12 hours depending on the snapshot (100k, 500k,
1M, 2M) and input (states, pixels). Since this benchmark required roughly 8k experiments (2 states /
pixels, 12 tasks, 8 algorithms, 10 seeds, 4 snapshots) a total of 100 V100 GPUs were used to produce
the results in this benchmark. Researchers who wish to build on URLB will, of course, not need to
run this many experiments since they can utilize the results presented in this benchmark.

22

G Intuition on Competence-based Approaches Underperform on URLB

Across the three methods - data-based, knowledge-based, and competence-based - the best data-based
and knowledge-based methods are competitive with one another. For instance, RND (a leading
knowledge-based methods) and ProtoRL (a leading data-based method) achieve similar finetuning
scores. Both are maximizing data diversity in two different ways - one through maximizing prediction
error and the other through entropy maximization.

On the other hand, competence-based methods as a whole do much worse than data-based and
knowledge-based ones. We hypothesize that this is due to current competence-based methods only
supporting small skill spaces. Competence-based methods maximize a variational lower bound to the
mutual information of the form:

I(τ ; z) = H(z)−H(z|τ) = H(z) + E[log p(z|τ)] ≥ H(z) + E[log q(z|τ)]

where q(z|s) is called the discriminator. The discriminator can be interpreted as a classifier from
s → z (or vice versa depending on how you decompose I(s; z)). In order to have an accurate
discriminator, z is chosen to be small in practice (DIAYN - z is a 16 dim one-hot, SMM - z is 4 dim
continuous, APS - z is 10 dim continuous).

OpenAI gym environments for continuous control mask this limitation because they terminate if
the agent falls over and hence leak extrinsic signal about the downstream task into the environment.
This means that the agent learns only useful behaviors that keep it balanced and therefore a small
skill vector is sufficient for classifying these behaviors. However, in DeepMind control (and hence
URLB) the episodes have fixed length and therefore the set of possible behaviors is much larger.
If the skill space is too small, the most likely skills to be classified are different configurations of
the agent lying on the ground. We hypothesize that building more powerful discriminators would
improve competence-based exploration.

23

	Introduction
	Preliminaries and Notation
	URLB: Evaluation and Environments
	Standardized of Pre-training and Fine-tuning Procedures
	Evaluation
	URLB Environments

	URLB: Algorithmic Baselines for Unsupervised RL
	Backbone RL Algorithm
	Unsupervised RL Algorithms

	Experiments
	Related work
	Conclusion
	Unsupervised Reinforcement Learning Baselines
	Knowledge-based Baselines
	Data-based Baselines
	Competence-based Baselines

	Hyper-parameters
	Per-domain Individual Results
	Finetuning Learning Curves
	Individual Numerical Results
	Compute Resources
	Intuition on Competence-based Approaches Underperform on URLB

