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Abstract001

We introduce SpeechQC-Agent, a natural lan-002
guage–driven, multi-agent framework for auto-003
mated verification of large-scale, multilingual004
speech-text datasets. Our system leverages a005
central Large Language Model (LLM) to in-006
terpret user-specified verification prompts and007
orchestrate a set of specialized agents that per-008
form audio, transcript, and metadata quality009
checks. Each prompt is translated into a struc-010
tured, dependency-aware workflow graph, ex-011
ecuted through a combination of dynamically012
generated and pre-defined tools. To support013
evaluation, we release SpeechQC-Dataset, a014
synthetic yet realistic benchmark covering 15.5015
hours of Hindi dialogue across diverse speak-016
ers, domains, and error types. Experiments017
across two verification stages-QC1 (audio and018
metadata) and QC2 (transcript and content),019
show that ChatGPT-based agents outperform020
open-weight LLMs in planning accuracy and021
execution robustness. We further adapt recent022
agentic evaluation protocols to measure work-023
flow fidelity via subsequence and subgraph met-024
rics. Our framework enables scalable, repro-025
ducible, and instruction-driven speech dataset026
verification, laying the foundation for high-027
quality speech corpus creation in low-resource028
settings.029

1 Introduction030

India is the epicenter of linguistic diversity, with031

the Census of India (2001) reporting 30 languages032

spoken by more than a million native speakers.033

Yet, despite this diversity, even widely spoken lan-034

guages such as Hindi remain under-resourced in the035

context of publicly available speech-text datasets.036

Building speech technologies such as Automatic037

Speech Recognition (ASR), Text-to-Speech (TTS),038

and Speech Translation (ST), etc for these lan-039

guages is critically dependent on the availability040

of large-scale, high-quality, and diverse speech041

datasets. However, curating such datasets is a slow,042

labor-intensive process fraught with several chal- 043

lenges. The creation of speech datasets often in- 044

volves collaboration with multiple vendors, each 045

adhering to different conventions for audio encod- 046

ing formats, transcript formatting, and metadata 047

structure. This heterogeneity makes it difficult to 048

design unified processing pipelines. Beyond for- 049

mat inconsistencies, ensuring quality and diver- 050

sity requires extensive manual validation. This in- 051

cludes verifying transcript accuracy, detecting cor- 052

rupted or low-quality audio, and ensuring linguistic 053

and demographic balance in speaker representation. 054

The task becomes more complicated when high- 055

quality dataset is needed, either low-quality data 056

are discarded, or the process of validating good data 057

introduces significant delays. Several initiatives, 058

such as those of AI4Bharat and the Vaani collabo- 059

ration, have attempted to address this problem by 060

building open datasets for Indian languages(et al, 061

2024) However, these efforts remain constrained 062

by the scalability of human-in-the-loop verifica- 063

tion processes. Recruiting, training, and managing 064

large teams of annotators and evaluators is both 065

logistically and financially challenging, especially 066

for low-resource languages. 067

Recently, there has been significant progress in 068

using Large Language Models (LLMs) as agents 069

across various domains, demonstrating competitive 070

performance in tool use, planning, and decision- 071

making tasks. However, these advancements have 072

largely bypassed the domain of speech dataset qual- 073

ity control. The scarcity of specialized models and 074

benchmarks in this area stems from two key limita- 075

tions: the absence of comprehensive, high-quality 076

datasets that cover diverse real-world edge cases, 077

and the heterogeneity of speech-text data formats 078

across languages and vendors. These factors com- 079

plicate the development of robust agent workflows 080

and hinder the transfer of generalization capabili- 081

ties across tasks. 082

While some efforts in the agent community have 083
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Check the audio files of the speech dataset on sample rate, audio file corruption and domain with 
audio_dir: "xyz/test/"

Planning Steps:
1. Check if the sample rate is 16 KHz or 8 KHz.
2. Check if the audio files are corrupt or not.
3. Create the transcript of the audio files.
4. Based on the created transcript, calculate the domain of the audio file.
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Figure 1: Our system leverages structured prior knowl-
edge and parallel planning capabilities to generate effi-
cient, self-managing task workflows for speech dataset
verification.

focused on text-based data processing, they often084

encounter issues such as inconsistent environment085

configurations, difficulty adapting to novel data086

schemas, and poor performance in handling dataset087

diversity. Even with open-source text datasets,088

agents have been shown to hallucinate actions, re-089

peat steps unnecessarily, or fail to produce mean-090

ingful outputs due to a lack of contextual ground-091

ing. These issues are magnified when dealing092

with multimodal datasets like speech, where align-093

ment between audio, transcripts, and metadata is094

both critical and difficult to verify. Despite the095

promise of LLM-powered agents, their application096

to speech dataset curation remains underexplored097

and presents a novel set of challenges.098

In this paper, we introduce SpeechQC-Agent, a099

Natural Language driven multi-agent system de-100

signed to automate the quality control and verifica-101

tion of large-scale speech datasets. The system is102

built around a centralized Large Language Model103

(LLM) that orchestrates a set of specialized sub-104

agents to carry out format normalization, transcript105

validation, audio quality checks, and verification106

decisions. By allowing users to issue natural lan-107

guage prompts (e.g., "Check the audio files of the108

speech dataset on sample rate, audio file corruption109

and domain"), the system dynamically generates110

task-specific workflows and tools, reducing human111

dependency and enabling scalable dataset process-112

ing as shown in Figure 1.113

At the core of SpeechQC-Agent is a centralized114

LLM that interprets natural language task descrip-115

tions and orchestrates a set of modular sub-agents116

for data verification. The system accepts a speech117

dataset comprising raw audio, transcripts, and meta-118

data, along with an instruction prompt (e.g., “Check119

sample rate, detect audio corruption, and validate 120

transcript language”). This prompt is parsed into an 121

action list, which is validated and transformed into 122

a sequence of interdependent verification tasks. 123

Each task is represented as a node in a directed 124

acyclic graph (DAG), where edges encode execu- 125

tion dependencies. The LLM-based planner iden- 126

tifies which nodes can be executed in parallel and 127

assigns them to specialized agents (e.g., for audio 128

format checking, transcript validation, language 129

identification, or silence detection). Each agent 130

uses either pre-defined tools or tools synthesized 131

by the LLM to complete its task. An execution 132

engine schedules and monitors node completion, 133

ensuring retries in case of failure. The results are 134

compiled into a structured verification report and a 135

quality control dashboard, offering both automated 136

and human-interpretable summaries of data quality 137

(Figure 4). 138

This paper makes the following key contributions: 139

• Natural Language-Driven Workflow Gen- 140

eration: We introduce the first system to gen- 141

erate speech dataset verification workflows 142

directly from natural language prompts using 143

LLM-based planning, reducing reliance on 144

manual scripting or rigid rule systems. 145

• Modular Multi-Agent Execution Frame- 146

work: SpeechQC-Agent decomposes veri- 147

fication tasks into modular sub-agents, en- 148

abling task-level parallelism and structured de- 149

pendency management across a graph-based 150

workflow. 151

• Tool Synthesis and Reuse: Our architecture 152

combines dynamically generated tools (via 153

LLMs) with pre-defined, reusable components 154

tailored for common speech processing tasks 155

(e.g., VAD, Domain Identification, CTC scor- 156

ing), supporting both generalization and effi- 157

ciency. 158

• First Application to SpeechQC-Dataset: To 159

our knowledge, this is the first end-to-end 160

system that applies agentic workflow gener- 161

ation to real-world speech-text data quality 162

control across multiple languages and vendor 163

formats1 . 164

1Code and Dataset Availability:
https://anonymous.4open.science/r/Agents-Pipeline-1023
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2 Related Work165

Recent advances in LLMs and agent-based systems166

have led to the emergence of automated frame-167

works for task orchestration and tool-based reason-168

ing[(Liu et al., 2023, 2024; Zhong et al., 2024a;169

Song et al., 2023; Zhu et al., 2024; Sun et al., 2024;170

Xie et al., 2024; Tang et al., 2023; Zhong et al.,171

2024b)]. Within this landscape, our work intersects172

with three major areas: (1) LLM-powered multi-173

agent collaboration, (2) automated agentic work-174

flow generation and evaluation, and (3) modular175

and self-evolving agent systems. However, none of176

the existing work addresses the unique challenges177

of speech dataset quality verification, particularly178

in low-resource, multilingual settings.179

Recent research has explored the scaling behav-180

ior and design of collaborative multi-agent systems181

using LLMs. MacNet (Qian et al., 2024) introduces182

a directed acyclic network topology to support rea-183

soning among thousands of agents, showing that ir-184

regular collaborative topologies outperform regular185

ones. EvoMAC (Hu et al., 2024c) proposes a self-186

evolving multi-agent collaboration framework for187

software development, emphasizing requirement-188

level benchmarking. While these works focus on189

collaboration scaling, our system emphasizes task-190

specialized agent decomposition and coordination,191

with clear dependency resolution for audio/text val-192

idation workflows.193

AFlow (Zhang et al., 2024b) formalizes agentic194

workflows as DAGs composed of LLM-invoking195

nodes and edges, establishing a principled repre-196

sentation of modular planning. WorfBench and its197

evaluation protocol WorfEval (Qiao et al., 2024)198

go further by proposing a benchmark for agentic199

workflow generation, utilizing subsequence and200

subgraph matching algorithms to quantify plan-201

ning quality. We adapt these techniques to the202

speech domain by evaluating agent-planned veri-203

fication pipelines using graph-based metrics, but204

unlike AFlow(Zhang et al., 2024b), our workflows205

are grounded in real-world speech dataset curation206

tasks and evaluated using domain-specific metrics207

like WER/CER and transcript alignment accuracy.208

AgentPrune (Zhang et al., 2024a) addresses the209

issue of communication redundancy in multi-agent210

systems through message-passing graph pruning,211

optimizing communication overhead. In contrast,212

Multi-modal Agent Tuning (Gao et al., 2024a) in-213

troduces T3-Agent, a vision-language agent trained214

with MM-Traj(Gao et al., 2024b) for improved tool215
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Figure 2: SpeechQC-Dataset generation pipeline. Each
numbered step corresponds to an LLM or tool-based
operation within the multi-LLM workflow.

usage across modalities. Although both works em- 216

phasize tool efficiency, our work is domain-specific 217

and focuses on curating robust, reusable tools (e.g., 218

VAD, IndicLID(Madhani et al., 2023), CTC valida- 219

tors) either through LLM synthesis or predefined 220

libraries, optimized for speech data rather than gen- 221

eral tool usage. 222

The automated design of agentic systems (Hu 223

et al., 2024a) and AutoAgent (Tang et al., 224

2025) propose zero-code or low-code frame- 225

works to simplify LLM agent creation. Similarly, 226

AgentSquare (Shang et al., 2024) abstracts LLM 227

agents into a modular design space (planning, rea- 228

soning, tool use, memory), and introduces an agent 229

search protocol for optimal configurations. While 230

these works streamline agent generation, our focus 231

lies in end-to-end agentic verification of speech 232

corpora, leveraging modularity to accommodate 233

heterogeneous formats, languages, and annotation 234

inconsistencies, challenges not addressed in prior 235

agent frameworks. 236

In contrast to these prior efforts, we introduce a 237

domain-specific, evaluation-aware agentic frame- 238

work tailored for multilingual speech dataset ver- 239

ification. We integrate natural language task pars- 240

ing, structured workflow graph construction, tool 241

invocation, and dashboard-based summarization 242

into a single LLM-driven system. To our knowl- 243

edge, this is the first work to apply agentic planning 244

frameworks to real-world speech corpora curation 245

and to evaluate agent performance using workflow 246

graph metrics alongside speech-specific quality in- 247

dicators. 248

3 SpeechQC-Dataset Pipeline 249

In this section, we will discuss the data pipeline for 250

the evaluation of SpeechQC-Agent, including data 251
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creation, and quality verification.252

3.1 Data Creation Pipeline253

We develop SpeechQC-Dataset, a synthetic254

dataset generation framework powered by multi-255

LLMs. As illustrated in Figure 2, our system simu-256

lates realistic conversational interactions, speaker257

diversity, and common ASR artifacts to generate258

structured, high-quality audio-text pairs annotated259

with rich metadata.260

1. Prompt initialization: The pipeline begins261

with a carefully designed prompt (Figure 2, Step 1)262

that encodes task-specific intent, speaker roles, or263

domain constraints. This natural language prompt264

is provided to an LLM agent that orchestrates the265

conversation planning process.266

2. Conversation generation: An LLM-based267

agent (Figure 2, Step 3) generates a multi-turn con-268

versation from the prompt, simulating realistic hu-269

man dialogue. We employ long-form in-context270

examples to improve discourse coherence and prag-271

matic diversity. A controller agent (Figure 2, Step272

2) optionally invokes an LLM-as-a-Judge mecha-273

nism to monitor factuality or dialogue realism.274

3. Translation: The conversation is translated275

into one or more low-resource languages using mul-276

tilingual LLMs or specialized translation modules277

(Figure 2, Step 5). This ensures language coverage278

and enables cross-lingual generalization.279

4. Metadata extraction: A conversation pars-280

ing module extracts fine-grained interaction meta-281

data including speaker turn segmentation, utterance282

boundaries, intent types, and context tags (Figure 2,283

Steps 6 -7).284

5. Probabilistic perturbation: A randomized285

perturbation function injects controlled variabil-286

ity by applying operations such as tag insertion287

(e.g., <noise>, <html>), token swaps, or word-288

level noise (Figure 2, Step 8). The perturbation289

decision is sampled based on a threshold parameter290

α, introducing structured data variation.291

6. Speaker attribution: Synthetic speaker IDs292

are assigned to each utterance (Figure 2, Step 9) to293

simulate multi-speaker conversations. This speaker294

metadata is used to condition downstream audio295

synthesis, enabling voice diversity.296

7. TTS-Driven audio synthesis: A TTS model297

takes the transcript and speaker annotations to gen-298

erate speech audio (Figure 2, Step 13). The use299

of speaker-conditioned models ensures diversity in300

voice, accent, prosody, and gender.301

8. Optional corruption module: To simulate302
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Figure 3: Overview of the SpeechQC-Dataset verifica-
tion pipeline. (Left) QC1 verifies language, file-level
audio properties, and speaker consistency. (Right) QC2
evaluates transcript alignment, quality, domain consis-
tency, vocabulary coverage, and content duplication.

real-world speech recognition challenges, both au- 303

dio and transcripts may be selectively corrupted 304

with typical ASR errors (e.g., dropped tokens, au- 305

dio clipping). These corrupted examples support 306

evaluation of the robustness of SpeechQC-Agent 307

(left branch of “Syn. Data”). 308

9. Structured conversion: The final outputs, 309

including conversation text, speaker metadata, tran- 310

scripts, and audio files, are exported in standardized 311

formats .json or .xml (Figure 2, Step B) for com- 312

patibility with downstream evaluation and quality 313

control tasks. 314

10. Post-processing and validation: Custom 315

functions (e.g., fun1(), fun2(), Figure 2, Step 316

11) perform final cleaning, consistency checks, and 317

metadata linking. An LLM-as-a-Judge LLM(Gu 318

et al., 2024) can be invoked to check the generated 319

samples in multiple stages (Figure 2, Steps 2, 4, 6, 320

and 10) to prefer from data missing or hallucination 321

of LLMs. 322

This pipeline allows precise control over synthetic 323

dataset characteristics while incorporating the flexi- 324

bility and creativity of LLM-based agents, resulting 325

in a benchmark dataset suitable for evaluating and 326

training multi-agent speech verification systems. 327

3.2 Data Quality Verification 328

To further understand the data quality and to thor- 329

oughly investigate the data errors in the speech-text 330

dataset. We created SpeechQC-Dataset where we 331

introduce a list of errors in the data using both rule- 332

based and LLM-as-a-Judge approaches(Gu et al., 333

2024). 334

The performance of quality control agents, we 335

designed a comprehensive verification suite cover- 336

ing both audio and transcript modalities. Our sys- 337

tem is structured into two major verification stages: 338

QC1 (Audio and Metadata Verification) and QC2 339

(Transcript and Content Verification). These checks 340

are aligned with the multi-agent architecture of 341
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QC
Level Check Name Description

QC1 Language Identification (Audio) Uses multilingual models to detect the spoken language, independent of metadata.
QC1 File Format Validates that the audio file conforms to required encoding standards (e.g., WAV).
QC1 Corrupt File Detection Detects corrupted or zero-length audio files.
QC1 Sample Rate Check Verifies if the sample rate is 16kHz and above.
QC1 Silence Duration Calculates total silence duration per audio file.
QC1 Upsampling Detection Identifies audio upsampled from low fidelity (e.g., 8kHz to 16kHz).
QC1 Number of Speakers Estimates the number of unique speakers in the batch.
QC1 Per-Speaker Duration Measures cumulative speaking time per speaker to ensure speaker diversity.
QC1 Speaker Validity Checks if a speaker is repeated across batches (e.g., same vendor, same voice reused).
QC2 Audio-Transcript Alignment Aligns transcript with audio, regardless of format or file structure.
QC2 Timestamp-Based Segmentation Segments long audio using provided transcription time-stamps for utterance-level alignment.
QC2 Script Consistency Ensures transcript uses the correct native script, avoiding Romanized text unless intentional.
QC2 Code-Mixing Detection Identifies code-mixed utterances (e.g., English-Hindi), which may require for diverse dataset.
QC2 MOE Score (Mixture of Expert) Calculates WER and CER using multiple ASR models to quantify transcription quality.
QC2 CTC Score Computes the Connectionist Temporal Classification (CTC) loss using wav2vec model.
QC2 LLM Score Evaluates transcript coherence and fluency using LLM-as-a-Judge.
QC2 Transcript Normalization Removes HTML tags, other tags, or other extraneous tokens from the transcript.
QC2 Transliteration Consistency Checks Roman-to-native script transliteration for consistent representation.
QC2 Grapheme Analyzes the distribution of different characters.
QC2 Vocabulary Coverage Analyzes the distribution of rare words.
QC2 Domain Classification Assigns each sample to domain labels (e.g., agriculture, etc) to ensure topic diversity.
QC2 Content Repetition Check Flags duplicated or reused content within or across datasets, including public corpora overlaps.

Table 1: Overview of Data Quality Control (QC) Modules used by the SpeechQC-Agent for analyzing SpeechQC-
Dataset and other speech datasets.

SpeechQC-Agent, enabling both modular and par-342

allelized validation workflows.343

QC1: Audio and Metadata Verification. As344

shown in the left panel of Figure 3, QC1 begins345

by applying a multilingual language identification346

model to determine the spoken language directly347

from the audio (Step 1). Subsequent checks vali-348

date the audio format, sampling rate, silence dura-349

tion, frequency upsampling artifacts, and number350

of channels (Step 2). To handle speaker-related351

verification, we use speaker embedding-based clus-352

tering to identify unique speakers (Step 4) and val-353

idate whether speakers are reused across batches354

by comparing against known public and private355

datasets (Step 3). Additional statistics such as num-356

ber of speakers (Step 5) and total speaking time per357

speaker (Step 6) are computed to assess speaker358

diversity and duration balance.359

QC2: Transcript and Content Verification.360

The right panel of Figure 3 depicts QC2, which361

starts by aligning the transcript with the correspond-362

ing audio using a timestamp-agnostic model (Step363

1). Transcript quality is scored using three different364

metrics: (i) Connectionist Temporal Classification365

(CTC) loss from a pretrained wav2vec2.0 model,366

(ii) Mixture-of-Experts (MoE) relative WER/CER367

scores from multiple ASR models, and (iii) LLM-368

as-a-Judge scores evaluating fluency and coherence369

(Step 2). Domain labels (Step 3) are inferred to en-370

sure topic coverage and diversity. Further checks371

analyze the distribution of graphemes (Characters)372

and vocabulary rarity (Step 4), using an internal vo- 373

cabulary list (Step 5). Finally, content duplication 374

is measured using n-gram and embedding-based 375

overlap with both intra-dataset and public corpus 376

references (Step 6). 377

Checklist Overview. Table 1 summarizes the ver- 378

ification checks included in both QC1 and QC2. 379

Each verification step is designed to capture a dif- 380

ferent aspect of dataset quality-ranging from file 381

integrity and speaker redundancy to transcription 382

reliability, script consistency, and domain align- 383

ment. 384

4 Methodology 385

In this section, we describe our proposed 386

SpeechQC-Agent, a natural language-driven, 387

LLM-coordinated multi-agent framework designed 388

specifically for speech dataset quality verification. 389

The framework takes as input a batch of speech data 390

(waveforms, transcripts, metadata) and a natural- 391

language verification request. It then (i) decom- 392

poses the request into atomic checks, (ii) builds an 393

executable directed acyclic graph (DAG) of those 394

checks, (iii) instantiates or retrieves the required 395

tools, and (iv) executes the graph while monitor- 396

ing progress. All modules are themselves agents 397

coordinated by a central planner LLM. Figure 1 398

illustrates the pipeline, which consists of the fol- 399

lowing stages: 400
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Figure 4: Architecture of the SpeechQC-Agent sys-
tem. Given a natural language task description (A),
a central planner LLM interprets the input and gener-
ates an ordered action list (C), which is validated (D)
and mapped to a node list (E). Dependencies among
nodes are resolved into a nested structure (F) and used
to generate a topologically sorted workflow graph (G).
Each node is executed (H) using dynamically synthe-
sized (I) or pre-defined tools (J). Execution is monitored
for completeness, and outputs (L) are aggregated into
a structured Data Verification Dashboard (M) for final
review.

4.1 Task Parsing and Action Generation401

The SpeechQC-Agent: central planning agent (A-
B) is the primary interface for interacting with the
user. It receives tasks from the user, comprehends
the tasks in natural language tasks description q,
a central planning agent leverages an LLM to in-
terpret and decompose it into a structured action
list A = [a1, a2, a3, ..., an]. Each action corre-
sponds to a specific atomic quality check, such as
CheckSampleRate , DetectAudioCorruption , or

ValidateTranscript etc.

A← PlannerLLMθ(q)

This planning process uses a combination of lexi-402

cal mapping (e.g., “VAD”→ SilenceCheck ) and403

semantic prompting of an LLM to infer implied404

actions. Moreover, a lightweight rule-based LLM405

verifier ensures the consistency of A with known406

hard constraints. For instance, if q mentions silence407

or VAD, the agent appends asilence to A if missing408

by the central planning agent.409

4.2 Node Generation and Dependency Graph410

Construction411

We define an agentic workflow as a series of
LLM invokes in which the action list is fur-
ther transformed into executable nodes V =

{v1, v2, . . . , vn}. Each node vi represents a spe-
cific discrete verification subtask performed by an
LLM. The dependencies between nodes are explic-
itly captured to construct a Directed Acyclic Graph
(DAG):

G = (V,E)

where edges E represent dependencies between sub- 412

tasks, which also govern the execution sequence. 413

While graph structures can represent workflow
relationships W , they require complex extensions
beyond basic DAGs to naturally express parallel
execution and conditional logic(Hu et al., 2024b).
Neural networks enable adaptive transitions but
lack percise control over workflow execution(Liu
et al., 2023). In contrast, code representation inher-
ently support all the above relationships through
standard programming constructs. Therefore, we
adopt code(Zhuge et al., 2024) as our primary edge
structure to maximize expressivity. Then, the nodes
are first linearly sequenced using topological sort-
ing, followed by the establishment of parallel or
sequential execution relationships:

C(V )⇒ TopologicalSort⇒ G

4.3 Tool Synthesis and Retrieval 414

Each verification node vi is associated with an exe-
cutable tool Ti. Tools are selected or synthesized
via: 1) Dynamic LLM-based tool synthesis Tgen:
The agent prompts an LLM to generate the tools
and callable functions. The tools are generated
on-demand for new or customized tasks. and 2)
Predefined tool repository Tlib: A curated set of
robust tools pre-generated using ChatGPT-4o for
stable performance when synthesis fails or confi-
dence is low. The overall tool set is represented
as:

T = Tgen ∪ Tlib

The tool selection may be revised if the tool fails 415

validation checks or runtime execution. 416

4.4 Workflow Execution and Monitoring 417

We execute the workflow graph G following the
topological order with dependency-aware paral-
lelism. A monitoring agent uses a separate LLM to
track the execution status of each node, ensuring
completeness and robustness. Let yi be the output
of node vi. If yi = ∅ or an exception is detected,
the execution checker retries Ti up to r times. This
guarantees completeness:

∀vi ∈ V, ∃ŷi ̸= ∅ ∨ fail(vi)
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Nodes that fail to execute are automatically retried418

or escalated for manual inspection.419

4.5 Output Aggregation and Dashboard420

Generation421

Upon completion, outputs from all executed nodes422

are aggregated into structured reports and visual423

dashboards. These dashboards enable users to in-424

teractively inspect and review quality metrics, error425

distributions, and execution logs for transparency426

and auditability. This enables both human ana-427

lysts and downstream systems to filter or prioritize428

batches for data verification task.429

4.6 Modularity and Extensibility430

SpeechQC-Agent is modular by design, with each431

stage (action parsing, node building, tool genera-432

tion, execution) being LLM-agent pluggable. New433

tasks can be added by: either by extending the ac-434

tion ontology or defining a new node schema or435

supplying new tool definitions or enabling auto-436

synthesis. This architecture generalizes across ven-437

dor schemas, speech domains, and languages with-438

out manual scripting, making it especially suited439

for multi-source, low-resource datasets. It also en-440

sures adaptability and scalability to diverse speech441

dataset curation challenges.442

5 Experiment443

5.1 Dataset444

To evaluate the performance of SpeechQC-Agent,445

we introduce the SpeechQC-Dataset, a synthetic446

speech-text dataset specifically designed to address447

the challenges of quality control in multilingual,448

low-resource language settings, with a focus on449

Indian languages using the Devanagari script.450

The SpeechQC-Dataset was created through a451

multi-step pipeline using advanced large language452

models (LLMs) and Text-to-Speech (TTS) tech-453

nologies to build a diverse corpus. Three LLMs,454

Llama 3.3 70B-versatile, GPT-4o + 4o mini, and455

DeepSeek-R1-distill Llama-70B, generated En-456

glish conversations across 11 domains and 55 set-457

tings, ensuring varied dialogue styles encountered458

in everyday conversation. These were translated459

into Devanagari script for Indian linguistic rele-460

vance, formatted, and converted to audio via a461

TTS model, incorporating speaker-specific traits462

for voice diversity. Detailed metadata, including463

verbatim text, duration, scenario, speaker ID, native464

Model File-Format Corrupt Sample-Rate Domain
ChatGPT-4o-mini 100 100 100 28.17
ChatGPT-4.1-mini 100 100 100 60.32
deepseek-r1-distill-llama-70b 0 100 – 0
llama-3.1-8b-instant 0 100 0 0
llama-3.3-70b-versatile 100 100 100 7.54

Table 2: QC1 evaluation across four subtasks. Detect
file format error, corrupt file error, sample rate error and
domain identification error.

Model Cost

gpt-4o-mini < $0.01
gpt-4.1-mini $0.08
llama-3.3-70b-versatile $0.04
llama-3.1-8b-instant $0.06
deepseek-r1-distill-llama-70b $0.05
meta-llama/llama-4-scout-17b-16e-instruct $0.04
meta-llama/llama-4-maverick-17b-128e-instruct $0.05

Table 3: Inference cost (USD / 1K tokens) per 1,000
tokens for different LLMs.

language, gender, and domain fields, was compiled 465

into a CSV file for thorough analysis. 466

In constructing this metadata and selecting 467

speaker specific details, we utilized the LA- 468

HAJA (Javed et al., 2024) dataset as a reference 469

to extract speaker IDs and corresponding demo- 470

graphic details such as native language, gender, 471

age group, and native state, while replacing their 472

transcripts and audio files with our own synthetic 473

conversations and normalized data to align with 474

the goals of SpeechQC-Agent. This pipeline simu- 475

lates realistic interactions and introduces controlled 476

variability for ASR challenges, making it an ideal 477

benchmark for systems like SpeechQC-Agent. 478

5.2 Quality Verification Framework 479

We evaluate our system across two stages: QC1 480

(Audio & Metadata Verification) and QC2 (Tran- 481

script & Content Verification). Table 1 outlines 482

the 22 specific checks performed by SpeechQC- 483

Agent. QC1 validates language ID, file integrity, 484

sampling rate, silence, speaker reuse, and upsam- 485

pling. QC2 assesses transcript alignment (WER, 486

CER), CTC loss, code-mixing, transliteration con- 487

sistency, domain labeling, vocabulary coverage, 488

and duplication. For both QC1 and QC2, the 489

dataset is organized into subfolders: QC1-1, QC1- 490

2, and QC1-3 for audio-related checks, and QC2-1, 491

QC2-2, and QC2-3 for transcript-related checks. 492

Here, ’-1’ represents individual QC transforma- 493

tions, ’-2’ indicates randomly paired transforma- 494

tions, and ’-3’ denotes cases where three or more 495

QC transformations are applied. 496
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LLM Variant Roman Script Mean WER # HTML Tags # EN Tokens

ChatGPT-4.1-mini 99.64 0.094 99.96 100
deepseek-r1-distil-70B 85.2 0.334 0 0
Llama-3.3-70B-versatile 99.46 0.120 100 78.70
ChatGPT-4o-mini 66.40 1.151 98.33 68.17
Llama-3.1-8B-instant 0 - 0 91.34

Table 4: QC2 evaluation across four subtasks. Lower
WER, Roman script, HTML Tags and English Tokens
the accuracy calcuated based on detection.

Model Accuracy (%) Time (sec)

gpt-4o-mini 75 354.207
gpt-4.1-mini 75 136.545
llama-3.3-70b-versatile 62.5 64.056
llama-3.1-8b-instant 25 80.326
deepseek-r1-distill-llama-70b 25 72.693
llama-4-scout-17b-16e-instruct 37.5 50.920
llama-4-maverick-17b-128e-instruct 37.5 117.039

Table 5: LLM performance on QC1 instructions. Each
model was evaluated using 3 audio samples each from
QC1-1, QC1-2, and QC1-3. The number of missed tasks
and total execution time (in seconds) are reported.

5.3 Baselines and LLM Variants497

We compare multiple LLM variants as the plan-498

ning and execution agents, including: ChatGPT-499

4o, ChatGPT-4.1, DeepSeek-R1-distill, LLaMA-500

3.3-70B, and LLaMA-3.1-8B. Evaluation covers:501

(1) task execution accuracy, (2) hallucinated steps,502

(3) cost per 1K tokens (Table 3), and (4) runtime.503

6 Results504

Table 2 summarizes performance across four key505

QC1 checks: file format, sample rate, file corrup-506

tion, and domain inference. ChatGPT-4.1-mini507

and ChatGPT-4o-mini achieved perfect accuracy508

on format, corruption, and sample rate checks, with509

ChatGPT-4.1 scoring highest on domain inference510

(60.32%). In contrast, LLaMA-3.1 and DeepSeek511

failed to complete most tasks, indicating weak512

grounding or poor tool invocation capabilities. Ta-513

ble 5 further details execution accuracy and time,514

showing that ChatGPT-4o-mini completed all tasks515

correctly within 354 seconds.516

Table 4 shows QC2 task performance: ChatGPT-517

4.1-mini achieved the lowest WER (0.094), high518

Roman script fidelity (99.64%), and zero HTML519

artifacts. Table 6 highlights per-task accuracy and520

hallucination. LLaMA-3.3 exhibited strong perfor-521

mance on domain and vocabulary checks (QC2-522

2, QC2-3), while ChatGPT-4o-mini excelled on523

alignment and LLM-score metrics (QC2-1, QC2-524

2). Table 10 reveals partial metric logging across525

baselines, suggesting room for improvement in re-526

producible evaluation pipelines.527

As shown in Table 3, ChatGPT-4.1 incurs higher528

Model Accuracy Hallucinated Tasks Time (sec)

gpt-4o-mini 3 0 347.397
gpt-4.1-mini 3 0 298.261
llama-3.3-70b-versatile 2 0 37.380
llama-3.1-8b-instant 1 0 60.542
deepseek-r1-distill-llama-70b 12.5 2 65.314
llama-4-scout-17b-16e-instruct 0 6 80.937
llama-4-maverick-17b-128e-instruct 37.5 8 86.163

Table 6: Evaluation of LLMs on QC2 instructions. Each
model was prompted to execute 8 quality verification
tasks (language check, WER/CTC computation, nor-
malization, etc.) for 3 audio samples. Models were
evaluated based on task completion accuracy and hallu-
cination rate.

cost ($0.08/1K tokens) compared to LLaMA-3.3 529

($0.04), but offers better planning quality and re- 530

liability. Table 5 presents task execution times, 531

with LLaMA-3.3 being the fastest (64s) among ac- 532

curate models, suggesting an accuracy-efficiency 533

tradeoff. While ChatGPT models were slower, they 534

produced fewer hallucinated nodes and avoided 535

redundant actions. 536

7 Conclusion 537

We introduced SpeechQC-Agent, a natural 538

language–driven, LLM-coordinated multi-agent 539

framework for automated verification of multi- 540

lingual speech datasets. By interpreting natu- 541

ral language prompts, the system generates struc- 542

tured, dependency-aware workflows and executes 543

them using both synthesized and pre-defined tools. 544

To evaluate system performance, we constructed 545

SpeechQC-Dataset, a diverse synthetic benchmark 546

reflecting real-world vendor and language variabil- 547

ity. Experiments across audio-level (QC1) and 548

transcript-level (QC2) checks show that commer- 549

cial LLMs like ChatGPT-4o and 4.1 consistently 550

outperform open-weight models in planning accu- 551

racy and execution robustness. We further adapt 552

workflow evaluation metrics, such as subsequence 553

and subgraph F1, to the speech domain, enabling 554

reproducible assessment. Overall, this work rep- 555

resents the first application of agentic workflow 556

systems to speech dataset curation, offering a scal- 557

able and traceable alternative to manual quality 558

control pipelines. 559

Limitations 560

While SpeechQC-Agent presents a promising 561

framework for automating speech dataset quality 562

control, several limitations remain: 563

564

Instruction Following in Open-Weight LLMs: 565

Open-source models such as LLaMA-3.1 and 566

8



DeepSeek exhibit weak grounding in complex567

prompts, often failing to decompose tasks accu-568

rately or invoking incomplete workflows. This569

hinders reliable performance in real-world applica-570

tions without careful prompt engineering or model571

fine-tuning.572

Tool Generation Hallucinations: Despite struc-573

tured planning, LLMs sometimes hallucinate tools574

or invoke modules irrelevant to the task. While our575

fallback to pre-defined tools mitigates this, fully576

robust on-the-fly tool generation remains an open577

problem.578

Metric Logging Gaps: Certain verification met-579

rics, such as silence duration via SoX, CTC loss580

distributions, and LLM-human agreement scores,581

are not yet logged in a reproducible format across582

all baselines. This limits the ability to audit and583

compare agent decisions post hoc.584
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Figure 5: Complete audio processing summary for di-
rectory xyz/test/ including speaker diarization metrics,
Voice Activity Detection (VAD) silence analysis, and
comprehensive quality control validation
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A Compute Infrastructure695

Compute details: For all our pre-training and696

fine-tuning experiments, we used two NVIDIA697

A100-SXM4-80GB GPUs. Each training requires698

4-48 hours.699

Software and Packages details: We implement700

all our models in PyTorch2701

702

B Dataset Composition703

To evaluate the robustness of our audio and tran-704

script quality control mechanisms, we constructed705

a synthetic dataset with intentional flaws from the706

LAHAJA dataset and custom-generated data. The707

2https://pytorch.org/

dataset comprises four subsets to test specific qual- 708

ity control aspects across diverse error profiles and 709

sources. 710

- Vendor A (Audio-Specific): Applied QC1 711

transformations (e.g., File Format Conversion, Cor- 712

rupt File Simulation, Sample Rate Reduction) to 713

3,000 LAHAJA entries (1,000 individual, 1,000 714

paired, 1,000 multiple QC1). 715

- Vendor B (Transcript Quality): Applied 716

QC2 transformations (e.g., Audio-Transcript Mis- 717

alignment, Script Inconsistency, Transcript De- 718

normalization) to 3,000 LAHAJA entries (1,000 719

individual, 1,000 paired, 1,000 multiple QC2). 720

- Vendor C (Mixed Flaws): Applied both QC1 721

and QC2 transformations to 100 random LAHAJA 722

entries for combined audio-transcript testing. 723

- Vendor D (Synthetic Data): Generated an in- 724

dependent dataset using LLMs and TTS models 725

for synthetic audio and transcripts with controlled 726

quality parameters. 727

C Further Analysis 728

Table 9 presents a comparative analysis of 729

LLM performance on QC1 tasks involving au- 730

dio and metadata verification. Among all eval- 731

uated models, ChatGPT-4o-mini exhibited the 732

most reliable behavior, successfully complet- 733

ing all five tasks including file format valida- 734

tion, corruption detection, sample rate check- 735

ing, speaker duration estimation, and speaker va- 736

lidity matching. ChatGPT-4.1-mini also per- 737

formed well in most categories but failed to cor- 738

rectly handle valid speaker identification. In 739

contrast, llama-3.3-70b-versatile completed 740

all core tasks but introduced unnecessary oper- 741

ations, indicating weaker task-grounding. No- 742

tably, llama-3.1-8b-instant, while the fastest 743

model, failed to execute most tasks and strug- 744

gled with topological reasoning and task mapping. 745

deepseek-r1-distill-llama-70b demonstrated 746

partial success in speaker tasks but did not en- 747

gage with other checks and required more itera- 748

tions. These results highlight the trade-offs be- 749

tween speed, instruction-following capability, and 750

task reliability across model families, reinforcing 751

the need for instruction-grounded evaluation in 752

speech data quality workflows. 753

Table 10 reveals substantial metric-coverage 754

gaps: none of the QC-1 audio-metadata checks 755

(format integrity, silence detection, up-sampling, 756

language ID, speaker diversity or reuse) are logged, 757
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Table 7: Domains and Settings with LLM Attribution

Domain Setting LLM Used

Indian Agri. Village farm on crops GPT Models
Agri fair innovations GPT Models
Rural sustainable workshop Llama Model
Farmers’ crop tips Llama Model
School farm trip DeepSeek

Indian Law Mock court basics GPT Models
Library governance talk GPT Models
Civic rights discussion Llama Model
Town hall governance Llama Model
Constitution lecture DeepSeek

Indian Finance Budgeting workshop GPT Models
Digital banking expo GPT Models
Savings community chat Llama Model
Loan process at bank Llama Model
Banks’ role in class DeepSeek

Indian Sports Sports event at park GPT Models
Movie event planning GPT Models
Fitness benefits in gym Llama Model
Dance prep in area Llama Model
Cinema fan club DeepSeek

Indian Military Fitness drills camp GPT Models
Military history talk GPT Models
Veterans’ community event Llama Model
Defence awareness seminar Llama Model
Armed forces career fair DeepSeek

Indian Politics Democracy school talk GPT Models
Political history session GPT Models
Civic duties debate Llama Model
Voting cultural event Llama Model
Civic podcast DeepSeek

Indian Edu. Rural learning school GPT Models
Student science fair GPT Models
Exam study group Llama Model
Parent-teacher engagement Llama Model
University education day DeepSeek

Indian Science Tech innovation exhibit GPT Models
Basic coding workshop GPT Models
Tech future school club Llama Model
Eco-tech startup hub Llama Model
Digital tools outreach DeepSeek

Indian Rural Dev. Infrastructure village meet GPT Models
Sanitation campaign GPT Models
Amenities workshop Llama Model
Renewable energy event Llama Model
Model village project DeepSeek

Indian Business Entrepreneurship fair GPT Models
Small business seminar GPT Models
Trade at marketplace Llama Model
Supply-demand class Llama Model
Financial planning DeepSeek

Indian Art Art evolution exhibit GPT Models
Cultural fair performance GPT Models
Modern art club Llama Model
Architecture history Llama Model
Heritage preservation DeepSeek

Model Task Accuracy Hallucination
ChatGPT-4o-mini QC2-1 92.34 0

QC2-2 91.49 0
QC2-3 47.99 0

ChatGPT-4.1-mini QC2-1 1 57.21
QC2-2 1 10.89
QC2-3 98.07 6.35

deepseek-r1-distill-llama-70b QC2-1 0 0
QC2-2 0 0
QC2-3 0 0

llama-3.1-8b-instant QC2-1 27.64 10.57
QC2-2 18.02 0
QC2-3 0 0

llama-3.3-70b-versatile QC2-1 0 0
QC2-2 95.74
QC2-3 91.58 0

Table 8: Evaluation of different LLMs on quality con-
trol tasks (QC2-1 to QC2-3) measuring Accuracy and
Hallucination rate in percent.

Figure 6: Distribution of speakers in the SpeechQC-
Dataset by native language accent (left) and age group
(right). The dataset exhibits broad linguistic diversity,
with representation from 19 native languages, and cov-
ers a wide range of age groups, ensuring demographic
balance for robust speech technology evaluation.

and several critical QC-2 dimensions, segmenta- 758

tion accuracy, CER, LLM-as-a-judge agreement, 759

transliteration accuracy, vocabulary diversity, do- 760

main match, and duplication detection, remain un- 761

populated or only partially captured. Closing these 762

gaps will require integrating raw SoX/ffprobe di- 763

agnostics, diarisation statistics, IndicTrans compar- 764

isons, lexical-entropy measures and embedding- 765

based duplication scores, enabling a truly end-to- 766

end, metrics-complete evaluation pipeline for fu- 767

ture batches. 768

D Additional Data Information 769

It includes 15.51 hours of Hindi speech data from 770

110 unique speakers, with a balanced gender split 771

of 54 female and 56 male. Speakers cover age 772

groups of 18-30, 30-45, 45-60, and 60+, and rep- 773

resent 19 native languages, led by Telugu, Malay- 774

alam, Bengali, Hindi, and others (Fig 6). The data 775

set spans 11 domains, such as agriculture and sci- 776

ence and technology, in 55 conversational settings 777
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LLMs File Format Corrupt File Sample Rate Speaker (Duration) Valid Speaker Remarks

llama-3.1-8b-instant Not performing Not performing Not performing Not performing (2/3) Not performing Fastest model, but failed to recognize tasks, construct valid workflows, or execute code reliably.
llama-3.3-70b-versatile Completed Completed Completed Completed Completed Completed all tasks, but performed additional actions not requested in the instruction.
deepseek-r1-distill-llama-70b Not performing Not performing Not performing Completed Not performing Needed more iterations to complete tasks and exhibited unnecessary tool usage.
ChatGPT-4.1-mini Completed Completed Completed Completed Failed Executed all required tasks with good flow, but failed in valid speaker verification.
ChatGPT-4o-mini Completed Completed Completed Completed Completed Completed all tasks accurately with coherent planning and no unnecessary operations.

Table 9: Performance of LLMs on QC1 verification tasks. Each model is evaluated on its ability to execute file
format validation, corruption detection, sample rate checks, speaker duration analysis, and valid speaker matching.
Remarks provide qualitative insights into model behavior during task execution.

Protocol Block Metric In Sheet? Missing Evidence / Action

QC1 - Audio & Metadata
File format & corruption Accuracy 2 Log SoX/ffprobe checks per file
Silence hours Precision/Recall 2 Duration histograms with silence detector
Upsampling (8→16 kHz) Binary accuracy 2 FFT-based up-sampling flag per file
Language ID (MMS) Accuracy 2 MMS predictions + meta-tags
Speaker hours / diversity Completeness, SDI 2 Diarisation output, per-ID hours
Speaker reuse detection Match-rate 2 Embedding match vs. public pools

QC2 - Transcript & Content
Audio-text alignment WER, CER 1 CER still missing
Segmentation by timestamps Seg. accuracy 2 Gold vs. predicted boundaries
Script validity Script-match % 3 Need total-token denominator
CTC quality score Avg. CTC 1 -
LLM-as-Judge rating 1-5 score, 2 Per-utt. ratings + agreement
Normalization noise HTML-error rate 1 Tag counts → rate per K tokens
Transliteration match Accuracy 2 IndicTrans vs. transcript tokens
Vocab / grapheme diversity Diversity score 2 Entropy or TTR statistics
Domain verification Domain-match 3 Need gold domain labels
Duplication detection Dup. score 3 Embedding-similarity counts

Table 10: Coverage of the full QC-metric suite. 1 = logged, 2 = partially logged, 3 = not present.

(Table 7). Its strength lies in its extensive demo-778

graphic and linguistic diversity, paired with broad779

domain coverage, making it a vital tool for inclu-780

sive speech technologies.781

E Future Work782

Future work will explore fine-tuning LLMs on783

speech-specific reasoning tasks, integrating real-784

world vendor datasets, and extending the system785

to correction tasks (e.g., ASR post-editing) and786

multilingual alignment.787

F Discussion788

Our experiments demonstrate that SpeechQC-789

Agent successfully operationalizes natural790

language-driven agentic workflows for speech791

dataset verification. Key findings include:792

• ChatGPT-4.1 and 4o variants consistently793

outperform open-weight LLMs in execution794

grounding, especially on QC2 tasks involv-795

ing complex judgment (e.g., transcript fluency,796

transliteration).797

• Modular agent architecture and topological798

planning enable robust execution and paral-799

lelism, particularly useful in large datasets800

with heterogeneous error profiles. 801

• SpeechQC-Dataset offers a diverse, control- 802

lable, and reproducible benchmark to evalu- 803

ate speech QC pipelines-something not previ- 804

ously available for the community. 805

Nevertheless, limitations remain. Instruction- 806

following in open-weight LLMs remains brittle, 807

and hallucination handling during tool generation 808

needs reinforcement. Metric logging in produc- 809

tion still requires integration of raw ffprobe/SoX 810

logs and alignment modules. These insights set the 811

stage for further exploration into fine-tuning LLMs 812

for speech quality workflows, zero-shot error cor- 813

rection, and cross-lingual transfer. 814

G Prompts 815
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Task Selection Prompt

Prompt:
You are given the following functions:
1. ASR Transcription
2. Number of Speakers calculation and duration per speaker
3. Quality of Transcript
4. Graphene or character calculation
5. Vocab calculation
6. Language identification
7. Audio length calculation
8. Silence calculation (using VAD)
9. Sample rate check
10. CTC score calculation
11. Upsampling Check
12. Check if speakers are new or old
13. Check the domain of the speech dataset
14. Map transcriptions to audio files using forced alignment
15. Language identification using ASR transcriptions and IndicLID
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10
18. Transliteration - Convert Roman script words to Native script using Transliteration for a
specified file and language

Based on the prompt, reply with task numbers that have to be done without any explanation or
reasoning.

Input:
Prompt: {user_prompt}

Output Format:
Example: 1,3,5
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Topological Sorting Prompt

Prompt:
You are given the following functions:
1. ASR Transcription using audio files
2. Number of Speakers calculation and duration per speaker using audio files
3. Quality of Transcript using transcriptions
4. Graphene or character calculation using transcriptions
5. Vocab calculation using transcriptions
6. Language identification using transcriptions
7. Audio length calculation using audio files
8. Silence calculation (using VAD) using audio files
9. Sample rate check using audio files
10. CTC score calculation using audio files and transcriptions
11. Upsampling Check using audio files
12. Check if speakers are new or old using the results from number of speakers calculation
13. Check the domain of the speech dataset using transcriptions from ASR
14. Map transcriptions to audio files using forced alignment, using ground truth transcriptions
15. Language identification using ASR transcriptions and IndicLID, using transcriptions from ASR
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10, using
transcriptions from ASR
18. Transliteration - Convert Roman script words to Native script using Transliteration, using a
specified file and language code from the prompt

We have to do tasks: {resp_1}.

Make a Topological sorting for what is the best way to proceed with these tasks, sequentially and
concurrently.

Guidelines:
- We can do tasks concurrently if they are independent of each other.
- Task 12 depends on task 2.
- Task 13 depends on task 1.
- Task 14 depends on the ground truth conversion process.
- Task 15 depends on task 1.
- Task 17 depends on task 1.
- Task 18 is independent.

Output Format:
Example: [[1,3], [5], [8]] (this means do 1 and 3 concurrently, then do 5, and finally do 8)

Finally, give me the topological sorting for the tasks: {resp_1} without any explanation or
reasoning.
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Input Source Determination Prompt

Prompt:
Determine the source of the following inputs for task {task_id}:
{json.dumps(required_inputs, indent=2)}

Parameters:
Possible sources:
- User prompt: {state.get(’user_prompt’, ”)}
- Previous task outputs in CombinedStateDict: {json.dumps(k: v for k, v in state.items() if k not in
[’folder_path’, ’user_prompt’, ’execution_log’, ’task_inputs’, ’topological_sort’], indent=2)}
- Default: folder_path={state.get(’folder_path’, ”)}

Output Format:
Return a JSON object mapping each input to its source value or an error message if not found.

Corruption Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder_path’]}.

Write a Python script to:
- Attempt to open and read each audio file.
- If a file fails to load or raises an error, mark it as corrupted and capture the error message.

Save a CSV listing all files and their status ("Corrupt" or "Valid") as audio_validity.csv in the same
directory.

Finally, Respond with "Success" if all files are valid, otherwise "Invalid".

Audio Extension and Format Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder_path’]}.

Write a Python script to:
1. Confirm that each file except {file_path} has a valid audio extension (only .wav or .mp3). Ignore
files with extensions: .csv, .xml, and .json (do not process, validate or flag them).
2. For audio files, also check if they are in WAV format by attempting to read them using a library
like wave or librosa.
3. Create a CSV with columns: Filename, Valid_Extension, Is_WAV_Format, Status
4. Status should be "Pass" only if both extension is valid and format is WAV.
5. Save the CSV as audio_format_check.csv in the same directory.

Respond with "Success" if all files pass, otherwise "Invalid".
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Sample Rate Check Prompt

Prompt:
You are given a folder with audio files at this path: {state[’folder_path’]}.

Write a Python script to:
1. Check each audio file’s sample rate
2. Create a CSV with columns: Filename, Sample_Rate, Status
3. Store "Pass" in Status if sample rate is 16000 Hz, otherwise "Fail"
4. Save the CSV as sample_rate_check.csv in the same directory

Use libraries like librosa, soundfile, or wave to check the sample rate.

Ground Truth File Conversion Prompt

Prompt:
You are given a file of ground truths of audios {state[’folder_path’]} at {file_path}.

1. Get the structure of the txt, csv, json, xml file.
2. Identify the element/column that contains the filename and transcriptions (ground truth). If
there is no such column, return "Invalid".
3. Convert the file to CSV with added columns of Filename and Transcription.
4. Save the updated CSV with the new column to the same directory as new_transcriptions.csv.

Finally, Respond with "Success" if all steps are done, otherwise "Invalid".
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Conversation Generation Prompt

Prompt:
You are a conversation generator tasked with creating realistic dialogue between exactly two
speakers in English.
Topic: {topic}
Setting: {setting}
Speakers: {speaker1} and {speaker2}

Requirements:
- The conversation must be rich in content related to the specified topic and reflect the given setting.
- Generate a long conversation with approximately 100 dialogue exchanges.
- Format the output strictly as:
{speaker1}: sentence1
{speaker2}: sentence2
{speaker1}: sentence3
...and so on.
- Do not include any explanations, actions, or additional text outside the conversation format.
- Ensure the conversation flows naturally and is meaningful with detailed exchanges relevant to the
setting and topic.

Output:

Translation Prompt

Prompt:
Translate the following sentence into {language} while maintaining realism and natural flow.
Guidelines:
- The conversation should primarily be in {language}, but preserve certain English words
commonly used by {language} speakers.
- Enclose all preserved English words within <eng>...</eng> tags.
- Randomly and sparsely insert conversational effect tags such as [babble], [bg-speech], [laugh],
[music], [no-speech], [noise], [overlap], or [silence].
- Use <initial>...</initial> tags for any initials or abbreviations.
- Avoid overusing English words and tags; include them only when contextually appropriate.
- Output only the translated sentence without any explanation.

Input:
Sentence: {content}

Output Format:
Translation: [Translated sentence will be provided here in the specified format with appropriate
tags.]
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Conversation Metadata Prompt

Prompt:
Generate conversation metadata based on the provided conversation content.
Input:
Conversation: {translated_content}

Output Format:
Generate conversation metadata in the following JSON format:
{"domain":"<domain>","topic":"<topic>","language":"{language}","conversation_name":"{conv_id}-
GPT"}

Instructions:
- Determine the "domain" and "topic" based on the conversation content.
- Set "language" to the predominant language of the conversation.
- Use the provided "conversation_name" as is.
- Provide only the raw JSON string without any explanation or formatting wrappers.
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Speaker Details Prompt

Prompt:
Generate speaker information for two speakers based on the provided conversation content.
Input:
Conversation: {translated_content}

Output Format:
Generate speaker information for {speaker1} and {speaker2} in the following JSON format:
{
"{speaker1}": {
"speakers": [
{
"gender": "<male or female>",
"speakerId": "<alphanumeric ID>",
"recorderId": "<alphanumeric ID>",
"nativity": "{language}",
"ageRange": "<age range like 25-34>"
}
]
},
"{speaker2}": {
"speakers": [
{
"gender": "<male or female>",
"speakerId": "<alphanumeric ID>",
"recorderId": "<alphanumeric ID>",
"nativity": "{language}",
"ageRange": "<age range like 35-44>"
}
]
}
}

Instructions:
- Follow the exact JSON structure shown above with all opening and closing braces properly
matched.
- Randomly assign values for "gender" (choose either "male" or "female").
- For "speakerId", use a format like "S-XXXXX" where X is a digit.
- For "recorderId", use a format like "RXXX" where X is a digit.
- Set "nativity" to exactly "{language}" as provided.
- For "ageRange", use one of these formats: "18-24", "25-34", "35-44", "45-54", "55-64", "65+".
- Ensure the JSON is properly formatted and valid - all quotes, commas, and braces must be
correctly placed.
- Provide only the raw JSON string without any explanation, markdown formatting, or code blocks.
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Transcription Function Prompt

Prompt:
Transcribe audio files from a specified folder and return the transcription output in CSV format.
This task assumes that all audio files are in Hindi.
Input:
- A folder path containing audio files.
- The folder must exist and be a valid directory.
- All audio files should be in Hindi.

Output Format:
A dictionary with the following structure:
{
"A" [where A is node in the node graph]: "<CSV transcription result or error message>",
"audio_dir": "<Path to the input folder>"
}

Instructions:
- Validate that the provided folder path exists and is a directory.
- If invalid, return the error message: "A": "Error: Invalid audio directory".
- If valid, perform transcription of all audio files in the folder.
- Use the transcribe_folder_to_csv() function for transcription.
- Assume the source language is "Hindi".
- Log the transcription process using appropriate logging levels (info and error).
- Return the transcription results in the key "A" along with the input directory.

Silence Detection Prompt

Prompt:
Perform silence detection on all audio files within a specified directory and return the result.
Input:
- A directory path containing audio files to be processed.
- The folder must exist and be a valid directory.

Output Format:
A dictionary with the following structure:
{
"D": "<Silence detection result or error message>"
}

Instructions:
- Check if the provided audio directory exists and is valid.
- If the directory is invalid or not found, return the error message: "D": "Error: Invalid audio
directory".
- If valid, apply silence detection to all audio files in the directory using the process_folder_vad()
function.
- Log the beginning of the detection process with an info-level message.
- Return the result under the key "D".
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Vocabulary Extraction Prompt

Prompt:
Extract unique words (vocabulary) from the transcriptions in a CSV file and save them into a new
column. Output the updated CSV with the extracted vocabulary.
Input:
- A directory containing a CSV file, typically named indicconf_hypothesis.csv.
- The CSV must have a column named Transcription or Ground_Truth (case-insensitive).

Output Format:
A dictionary in the following format:
{
"vocab_output": "<Path to vocab_list.csv or error message>"
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio_dir/indicconf_hypothesis.csv.
- If the file doesn’t exist, return: "vocab_output": "Error: CSV file <path> not found".
- Within the CSV, identify the transcription column by searching for ’Transcription’ or
’Ground_Truth’ (case-insensitive).
- For each row, extract a list of **unique words** from the transcription.
- Store the list in a new column named vocab_list.
- Save the updated CSV as vocab_list.csv in the same directory.
- Return "vocab_output": "CSV saved at: <path>" if successful.
- If the agent fails to complete the task or the file is not created, return an appropriate error message.
- Handle and log all exceptions clearly.
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Character Extraction Prompt

Prompt:
Extract unique characters from each transcription in a CSV file and save them into a new column.
Output the updated CSV with the extracted characters.
Input:
- A directory containing a CSV file, typically named indicconf_hypothesis.csv.
- The CSV must have a column named Transcription or Ground_Truth (case-insensitive).

Output Format:
A dictionary in the following format:
{
"character_output": "<Path to character_list.csv or error message>"
}

Instructions:
- Locate the CSV file using the key "A" in state, or fallback to
audio_dir/indicconf_hypothesis.csv.
- If the file doesn’t exist, return: "character_output": "Error: CSV file <path> not
found".
- Identify the transcription column by searching for ’Transcription’ or ’Ground_Truth’ (case-
insensitive).
- For each row, extract a list of **unique characters** from the transcription.
- Store the list in a new column named character_list.
- Save the updated CSV as character_list.csv in the same directory.
- If the script completes successfully and the file is created, return: "character_output": "CSV
saved at: <path>".
- If the agent fails or the output file is not found, return an appropriate error message.
- Log any exceptions during processing clearly and accurately.
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Audio Length Calculation Prompt

Prompt:
Calculate the duration of each audio file in a given folder and save the results in a CSV file.
Input:
- A valid directory path containing audio files.

Output Format:
A dictionary in the format:
{
"audio_length_output": "<Result of operation or error message>"
}

Instructions:
- Check if the audio_dir exists and is a directory. If invalid, return: "audio_length_output":
"Error: Invalid audio directory".
- Write a Python script that performs the following tasks:
1. Iterate over all audio files in the directory.
2. Calculate the duration of each audio file in seconds.
3. Store the filename and corresponding duration in a CSV with columns: Filename,
Audio_length.
4. Save the resulting CSV as audio_length.csv in the same folder.
- Execute the script using the [python_repl] tool.
- Return the script’s output message under the key "audio_length_output".
- In case of failure or exceptions, return an appropriate error message.
- Log errors clearly to aid debugging.
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Devanagari Script Verification Prompt

Prompt:
Verify whether each transcription in a CSV file is written in the Devanagari script using Unicode
checks.
Input:
- Path to a CSV file (e.g., indicconf_hypothesis.csv) with a column containing ground truth
text.

Output Format:
A dictionary in the format:
{
"language_verification_output": "<Result of operation or error message>"
}

Instructions:
- Load the CSV file and identify the transcription column (case-insensitive: ’Ground_Truth’,
’Transcription’, etc.).
- For each row:
1. Remove whitespace and punctuation from the transcription.
2. Check if all remaining characters fall within the Unicode range U+0900–U+097F (Devanagari
script).
3. If they do, set Is_Devanagari to True; otherwise False.
4. If the transcription is empty or only punctuation, set Is_Devanagari to False.
- Add a new column Is_Devanagari to the CSV.
- Save the output file as language_verification.csv in the same directory.
- Ensure the final CSV includes: Filename, Transcription, Is_Devanagari.
- Use the [python_repl] tool to execute the script.
- On success, return "Success"; else provide an error message.
- Handle edge cases and log any errors encountered.
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CTC Score Computation Prompt

Prompt:
Compute Connectionist Temporal Classification (CTC) alignment scores from audio-transcription
pairs and classify alignment quality.
Input:
- A directory containing audio files (audio_dir)
- A CSV file (e.g., indicconf_hypothesis.csv) with aligned transcripts, identified via key ’A’

Output Format:
A dictionary in the format:
{
"ctc_score_output": "<CSV output path or error message>"
}

Instructions:

• Load the CSV and audio directory.

• For each audio file, compute alignment scores using the transcriptions in the CSV.

• Use process_audio_directory() to return segment-wise alignment with scores and times-
tamps.

• Aggregate results by:

– Grouping by filename.
– Combining the segment labels into a full transcript (Aligned_Transcript).
– Taking the average CTC score as CTC_Score.
– Serializing segment-level details (label, start, end, score) into JSON under
Aligned_Segments.

• Classify the score using:

– Good if score > 0.7
– Medium if score > 0.5
– Poor otherwise

• Save the final CSV with columns: Filename, Aligned_Segments, Aligned_Transcript,
CTC_Score, CTC_Status.

• Output the result to ctc_scores.csv in the same directory as the input CSV.

• Log and report errors appropriately.
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Valid Speaker Verification Prompt

Prompt:
Analyze speaker presence across files to determine whether a speaker is "New" or "Old" based on
repetition across files.
Input:
- A directory containing a CSV named num_speakers.csv with columns:

• File Name

• Number of Speakers

• Speaker Durations - JSON object mapping speaker IDs to durations

Output Format:
A dictionary:
{
"valid_speaker_output": "<CSV output path or error message>"
}
Instructions:

1. Load num_speakers.csv.

2. Build a dictionary to track how many files each speaker appears in.

3. For each row:

• Skip if Number of Speakers == "Error".
• If only one speaker and SPEAKER_00 is reused across files, mark as Old.
• If multiple speakers and any speaker is reused across files, mark as Old.
• Otherwise, mark the speaker as New.

4. For each row, populate:

• Filename

• Speaker_Status (New or Old)
• Common_File (the current file name if status is Old, else empty)

5. Save the result to valid_speaker.csv in the same directory.

6. Respond with "Success" if the script runs without errors and file is saved. Otherwise, return
"Invalid".
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Domain Checker Prompt

Prompt:
You are a Hindi language expert. Analyze the following normalized Hindi transcript and determine
the general domain of the speech dataset.
Instructions:

• Return the domain as a single word (e.g., News, Call Center, Interview, Conversation,
Education).

Input:
A CSV file indicconf_hypothesis.csv located inside a directory, containing a column named
transcriptions with normalized Hindi transcripts.
Expected Output:
A new column domain added to the CSV, representing the predicted domain of each transcription.
The final output is saved as domain_check.csv in the same directory.
Agent Behavior:

1. Validate the input directory and CSV.

2. Iterate over each row in the transcriptions column.

3. For each transcript, send a prompt to the language model to classify the domain.

4. If the LLM fails, label the domain as Unknown.

5. Save the resulting DataFrame with the new domain column to domain_check.csv.
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IndicLID Language Identification Agent Prompt

Prompt Objective:
Identify the language of each transcript using the IndicLID model.
Input Description:

• A folder containing a CSV file (default name: indicconf_hypothesis.csv).

• The CSV should include a column named transcriptions and optionally Filename.

Instructions:

1. For each row in the CSV:

• Extract the transcript and filename.
• If the transcript is empty or NaN, assign Language_Code = Unknown, Confidence =
0.0, Model_Used = IndicLID.

• Otherwise, use the IndicLID model to perform language identification.

2. If language identification fails for a transcript, mark it with Language_Code = Error.

3. Store all results in a new DataFrame with columns: Filename, Transcription,
Language_Code, Confidence, Model_Used.

4. Save the output as indiclid_language_identification.csv in the same directory.

Expected Output:
A CSV file containing language identification results for each transcript, with confidence scores
and the model used (IndicLID).

28



Text Normalization and Tag Removal Agent Prompt

Prompt Objective:
Normalize transcription text by cleaning ground truth data in a CSV file.
Input Description:

• A directory containing a CSV file named indicconf_hypothesis-gt.csv.

• The file should have a column named Transcriptions or ground_truth (case-insensitive).

Instructions:

1. Read the CSV file and identify the transcription column (Transcriptions or
ground_truth).

2. Clean each transcript using the following rules:

• Remove HTML tags like <b> and </b>.
• Remove any text enclosed in square brackets (e.g., [START]).
• Remove symbols such as #, $, and %.

3. Add a new column named normalized_transcripts with the cleaned text.

4. Save the updated CSV as normalized_list.csv in the same directory.

Expected Output:
A new CSV file with the original columns and an additional normalized_transcripts column
saved as normalized_list.csv.
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LLM-Based Transcription Quality Scoring Agent Prompt

Prompt Objective:
Evaluate the fluency and coherence of ASR-generated transcriptions using a Language Model
(LLM) and assign scores and comments.
Input Description:

• A directory path containing a CSV file named indicconf_hypothesis.csv.

• The CSV contains:

– Filename column (case-insensitive).
– One of ground_truth or transcriptions columns (case-insensitive), containing ASR

outputs.

Instructions:

1. Load the CSV file.

2. For each transcription:

• Analyze sentence fluency and meaning very strictly.
• Score each transcription from 0 to 10:

– 10: Highly meaningful and fluent Hindi sentence.
– 0: Nonsensical or contains language other than Hindi.
– Gradually decrease score based on fluency degradation.

• Provide a brief Evaluation_Comment justifying the score.

3. Create a new CSV file with the columns: Filename, Transcription, LLM_Score, and
Evaluation_Comment.

4. Save the output as llm_scores.csv in the same directory.

5. Handle errors gracefully during execution.

Expected Output:
A CSV file named llm_scores.csv containing scored and reviewed transcriptions.
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English Word Count Agent Prompt

Prompt Objective:
Determine the number of English words present in each line of a normalized transcript using an
LLM.
Input Description:

• A directory path that contains a CSV file named normalized_list.csv.

• The CSV must have a column named ground_truth, containing the transcription text.

Instructions:

1. Load the normalized_list.csv file.

2. For each row in the ground_truth column:

• Construct a prompt asking a language expert to count the number of English words
(case-insensitive) in the given text.

• Extract the integer response.
• If the LLM fails, assign -1 for that row.

3. Append the count as a new column called english_word_count.

4. Save the updated CSV as english_word_count.csv in the same directory.

Prompt Template:

You are a language expert. Count and return only the number of English words (case-
insensitive) in the following text.

Text:
{ground_truth_text}

Respond with just the number.

Expected Output:
A CSV named english_word_count.csv containing an additional column english_word_count
with English word frequencies per row.
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Utterance Duplicate Checker Agent Prompt

Prompt Objective:
Identify and report duplicate utterances across all text-based columns in a CSV.
Input Description:

• A directory containing a CSV file named normalized_list.csv.

Instructions:

1. Load the normalized_list.csv file.

2. Iterate through each column of the DataFrame.

3. For columns with text (dtype == object):

• Detect duplicated utterances (preserve all duplicates using keep=False).
• For each unique duplicated utterance, count the number of occurrences.
• Record the column name, the duplicated utterance, and the count.

4. Save the results in a new CSV called duplicate_utterances.csv containing:

• column_name, utterance, and count

5. If no duplicates are found, return a message indicating that.

Expected Output:

• A CSV file named duplicate_utterances.csv if duplicates exist.

• Otherwise, a message stating "No duplicate utterances found."
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WER Computation Agent Prompt

Prompt Objective:
Compute Word Error Rate (WER) between normalized reference transcriptions and predicted
hypotheses.
Input Description:

• A directory containing two CSV files:

– normalized_list.csv with the column normalized_transcripts.
– indicconf_hypothesis.csv with the column transcriptions.

Instructions:

1. Ensure both CSVs exist and contain the same number of rows.

2. For each row, compute the Word Error Rate (WER) between:

• Reference← normalized_transcripts

• Hypothesis← transcriptions

3. Use the jiwer library for WER calculation.

4. Handle exceptions on a per-row basis to ensure continuity even if some rows fail.

5. Save the output in a CSV named wer.csv with columns:

• Reference, Hypothesis, and WER

Expected Output:

• A CSV file named wer.csv saved in the same directory.

• Each row shows the WER score for the respective transcription pair.
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Graph Builder Agent Prompt

Prompt Objective:
Construct a ‘StateGraph‘ from a structured list of task groups while filtering by a valid task set.
Input Description:

• structure: A list of lists where each sublist represents a group of task IDs that can be
executed in parallel.

• valid_tasks: A set of valid task identifiers (as strings). Only these will be included in the
final graph.

Instructions:

1. Filter the structure to retain only task IDs present in valid_tasks.

2. If the resulting structure is empty but valid_tasks is non-empty, use all numeric valid tasks
as a fallback.

3. Add each valid task as a node in the graph using node_map, which maps task_id to a tuple:
(node_name, function, description).

4. Add a dummy start node and connect it to the first group.

5. Connect each group to the next group, allowing fan-in/fan-out connections.

6. Connect the last group to the terminal END node.

Expected Output:

• A compiled StateGraph object that respects the dependency structure implied by the group-
ings and task validity.

• An error is raised if no valid tasks remain after filtering.

34



Prompt Checker Agent Prompt

Prompt Objective:
Analyze a user’s natural language prompt to determine whether the currently selected task IDs
are appropriate, and update the task list if any are missing based on defined task descriptions and
selection rules.
Input Description:

• user_prompt: A natural language prompt provided by the user describing the task they want
to perform.

• selected_tasks: A comma-separated string of task numbers (e.g., "1,2,5") that have been
initially selected for execution.

Task Descriptions:

• Contains 24 predefined task definitions, ranging from ASR transcription to WER computation.

Selection Rules:

• Uses keyword and semantic rules (e.g., “if prompt mentions ‘Vocab calculation’, include task
5”) to guide inclusion.

• Tasks 1 and 15 are linked if language identification is mentioned.

• Certain tasks (e.g., 9, 23, 24) trigger the inclusion of dependent tasks (e.g., task 16).

Instructions to the LLM:

1. Analyze the user_prompt and determine which tasks are required based on semantic under-
standing and rules.

2. Compare the determined tasks with selected_tasks.

3. If any tasks are missing, return Status: Missing, with task IDs and an explanation.

4. If all are correct, return Status: Correct and the list of tasks.

5. Format the output as:

Status: <Correct|Missing>
Tasks: <comma-separated task IDs>
Explanation: <why tasks were added (if Missing)>

Execution Loop:

• Repeats for a maximum of 3 iterations to ensure task completeness.

• Dynamically updates task list with each LLM feedback.

• Calls select_tasks() if new insights are needed.

Output:

• Returns the final list of task IDs as a comma-separated string.
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