SpeechQC-Agent: A Natural Language Driven Multi-Agent System for
Speech Dataset Quality

Anonymous ACL submission

Abstract

We introduce SpeechQC-Agent, a natural lan-
guage—driven, multi-agent framework for auto-
mated verification of large-scale, multilingual
speech-text datasets. Our system leverages a
central Large Language Model (LLM) to in-
terpret user-specified verification prompts and
orchestrate a set of specialized agents that per-
form audio, transcript, and metadata quality
checks. Each prompt is translated into a struc-
tured, dependency-aware workflow graph, ex-
ecuted through a combination of dynamically
generated and pre-defined tools. To support
evaluation, we release SpeechQC-Dataset, a
synthetic yet realistic benchmark covering 15.5
hours of Hindi dialogue across diverse speak-
ers, domains, and error types. Experiments
across two verification stages-QC1 (audio and
metadata) and QC2 (transcript and content),
show that ChatGPT-based agents outperform
open-weight LLMs in planning accuracy and
execution robustness. We further adapt recent
agentic evaluation protocols to measure work-
flow fidelity via subsequence and subgraph met-
rics. Our framework enables scalable, repro-
ducible, and instruction-driven speech dataset
verification, laying the foundation for high-
quality speech corpus creation in low-resource
settings.

1 Introduction

India is the epicenter of linguistic diversity, with
the Census of India (2001) reporting 30 languages
spoken by more than a million native speakers.
Yet, despite this diversity, even widely spoken lan-
guages such as Hindi remain under-resourced in the
context of publicly available speech-text datasets.
Building speech technologies such as Automatic
Speech Recognition (ASR), Text-to-Speech (TTS),
and Speech Translation (ST), etc for these lan-
guages is critically dependent on the availability
of large-scale, high-quality, and diverse speech
datasets. However, curating such datasets is a slow,

labor-intensive process fraught with several chal-
lenges. The creation of speech datasets often in-
volves collaboration with multiple vendors, each
adhering to different conventions for audio encod-
ing formats, transcript formatting, and metadata
structure. This heterogeneity makes it difficult to
design unified processing pipelines. Beyond for-
mat inconsistencies, ensuring quality and diver-
sity requires extensive manual validation. This in-
cludes verifying transcript accuracy, detecting cor-
rupted or low-quality audio, and ensuring linguistic
and demographic balance in speaker representation.
The task becomes more complicated when high-
quality dataset is needed, either low-quality data
are discarded, or the process of validating good data
introduces significant delays. Several initiatives,
such as those of Al4Bharat and the Vaani collabo-
ration, have attempted to address this problem by
building open datasets for Indian languages(et al,
2024) Howeyver, these efforts remain constrained
by the scalability of human-in-the-loop verifica-
tion processes. Recruiting, training, and managing
large teams of annotators and evaluators is both
logistically and financially challenging, especially
for low-resource languages.

Recently, there has been significant progress in
using Large Language Models (LLMs) as agents
across various domains, demonstrating competitive
performance in tool use, planning, and decision-
making tasks. However, these advancements have
largely bypassed the domain of speech dataset qual-
ity control. The scarcity of specialized models and
benchmarks in this area stems from two key limita-
tions: the absence of comprehensive, high-quality
datasets that cover diverse real-world edge cases,
and the heterogeneity of speech-text data formats
across languages and vendors. These factors com-
plicate the development of robust agent workflows
and hinder the transfer of generalization capabili-
ties across tasks.

While some efforts in the agent community have

Check the audio files of the speech dataset on sample rate, audio file corruption and domain with
audio_dir: "xyz/test/"

5

\[Planning Steps:
1. Check if the sample rate is 16 KHz or 8 KHz.
2. Check if the audio files are corrupt or not
3. Create the transcript of the audio files.
4. Based on the created transcript, calculate the domain of the audio file.

Graph Workflow

/0\

@0 —
©—o

~N

Linear Workflow

& o0—-0—0—0—0Q

' ©

~{(_ parallel Execution Efficient

~» —» Sequential Execution Inefficient
J

s o
Natural Language-Driven Multi-Agent Workflow

—C Parallel Planning
\

@ Eficient Execution Structured Prior Knowledge
)

Figure 1: Our system leverages structured prior knowl-
edge and parallel planning capabilities to generate effi-
cient, self-managing task workflows for speech dataset
verification.

focused on text-based data processing, they often
encounter issues such as inconsistent environment
configurations, difficulty adapting to novel data
schemas, and poor performance in handling dataset
diversity. Even with open-source text datasets,
agents have been shown to hallucinate actions, re-
peat steps unnecessarily, or fail to produce mean-
ingful outputs due to a lack of contextual ground-
ing. These issues are magnified when dealing
with multimodal datasets like speech, where align-
ment between audio, transcripts, and metadata is
both critical and difficult to verify. Despite the
promise of LLM-powered agents, their application
to speech dataset curation remains underexplored
and presents a novel set of challenges.

In this paper, we introduce SpeechQC-Agent, a
Natural Language driven multi-agent system de-
signed to automate the quality control and verifica-
tion of large-scale speech datasets. The system is
built around a centralized Large Language Model
(LLM) that orchestrates a set of specialized sub-
agents to carry out format normalization, transcript
validation, audio quality checks, and verification
decisions. By allowing users to issue natural lan-
guage prompts (e.g., "Check the audio files of the
speech dataset on sample rate, audio file corruption
and domain"), the system dynamically generates
task-specific workflows and tools, reducing human
dependency and enabling scalable dataset process-
ing as shown in Figure 1.

At the core of SpeechQC-Agent is a centralized
LLM that interprets natural language task descrip-
tions and orchestrates a set of modular sub-agents
for data verification. The system accepts a speech
dataset comprising raw audio, transcripts, and meta-
data, along with an instruction prompt (e.g., “Check

sample rate, detect audio corruption, and validate
transcript language”). This prompt is parsed into an
action list, which is validated and transformed into
a sequence of interdependent verification tasks.
Each task is represented as a node in a directed
acyclic graph (DAG), where edges encode execu-
tion dependencies. The LLM-based planner iden-
tifies which nodes can be executed in parallel and
assigns them to specialized agents (e.g., for audio
format checking, transcript validation, language
identification, or silence detection). Each agent
uses either pre-defined tools or tools synthesized
by the LLM to complete its task. An execution
engine schedules and monitors node completion,
ensuring retries in case of failure. The results are
compiled into a structured verification report and a
quality control dashboard, offering both automated
and human-interpretable summaries of data quality
(Figure 4).
This paper makes the following key contributions:

* Natural Language-Driven Workflow Gen-
eration: We introduce the first system to gen-
erate speech dataset verification workflows
directly from natural language prompts using
LLM-based planning, reducing reliance on
manual scripting or rigid rule systems.

* Modular Multi-Agent Execution Frame-
work: SpeechQC-Agent decomposes veri-
fication tasks into modular sub-agents, en-
abling task-level parallelism and structured de-
pendency management across a graph-based
workflow.

* Tool Synthesis and Reuse: Our architecture
combines dynamically generated tools (via
LLMs) with pre-defined, reusable components
tailored for common speech processing tasks
(e.g., VAD, Domain Identification, CTC scor-
ing), supporting both generalization and effi-
ciency.

* First Application to SpeechQC-Dataset: To
our knowledge, this is the first end-to-end
system that applies agentic workflow gener-
ation to real-world speech-text data quality
control across multiple languages and vendor
formats' .

'Code and Dataset Availability:
https://anonymous.4open.science/r/Agents-Pipeline-1023

2 Related Work

Recent advances in LLMs and agent-based systems
have led to the emergence of automated frame-
works for task orchestration and tool-based reason-
ing[(Liu et al., 2023, 2024; Zhong et al., 2024a;
Song et al., 2023; Zhu et al., 2024; Sun et al., 2024;
Xie et al., 2024; Tang et al., 2023; Zhong et al.,
2024b)]. Within this landscape, our work intersects
with three major areas: (1) LLM-powered multi-
agent collaboration, (2) automated agentic work-
flow generation and evaluation, and (3) modular
and self-evolving agent systems. However, none of
the existing work addresses the unique challenges
of speech dataset quality verification, particularly
in low-resource, multilingual settings.

Recent research has explored the scaling behav-
ior and design of collaborative multi-agent systems
using LLMs. MacNet (Qian et al., 2024) introduces
a directed acyclic network topology to support rea-
soning among thousands of agents, showing that ir-
regular collaborative topologies outperform regular
ones. EvoMAC (Hu et al., 2024c) proposes a self-
evolving multi-agent collaboration framework for
software development, emphasizing requirement-
level benchmarking. While these works focus on
collaboration scaling, our system emphasizes task-
specialized agent decomposition and coordination,
with clear dependency resolution for audio/text val-
idation workflows.

AFlow (Zhang et al., 2024b) formalizes agentic
workflows as DAGs composed of LLM-invoking
nodes and edges, establishing a principled repre-
sentation of modular planning. WorfBench and its
evaluation protocol WorfEval (Qiao et al., 2024)
go further by proposing a benchmark for agentic
workflow generation, utilizing subsequence and
subgraph matching algorithms to quantify plan-
ning quality. We adapt these techniques to the
speech domain by evaluating agent-planned veri-
fication pipelines using graph-based metrics, but
unlike AFlow(Zhang et al., 2024b), our workflows
are grounded in real-world speech dataset curation
tasks and evaluated using domain-specific metrics
like WER/CER and transcript alignment accuracy.

AgentPrune (Zhang et al., 2024a) addresses the
issue of communication redundancy in multi-agent
systems through message-passing graph pruning,
optimizing communication overhead. In contrast,
Multi-modal Agent Tuning (Gao et al., 2024a) in-
troduces T3-Agent, a vision-language agent trained
with MM-Traj(Gao et al., 2024b) for improved tool

o (2]
&

' Lm

——
(]

razd:r?n() - Conv. Details

funt()
+

(<] o o o

w80
. Speak =
0+0 s o
i . ,.w Final j
TTS Model Files
oth Audio or Transeri

Figure 2: SpeechQC-Dataset generation pipeline. Each
numbered step corresponds to an LLM or tool-based
operation within the multi-LLM workflow.

usage across modalities. Although both works em-
phasize tool efficiency, our work is domain-specific
and focuses on curating robust, reusable tools (e.g.,
VAD, IndicLID(Madhani et al., 2023), CTC valida-
tors) either through LLM synthesis or predefined
libraries, optimized for speech data rather than gen-
eral tool usage.

The automated design of agentic systems (Hu
et al.,, 2024a) and AutoAgent (Tang et al,
2025) propose zero-code or low-code frame-
works to simplify LLM agent creation. Similarly,
AgentSquare (Shang et al., 2024) abstracts LLM
agents into a modular design space (planning, rea-
soning, tool use, memory), and introduces an agent
search protocol for optimal configurations. While
these works streamline agent generation, our focus
lies in end-to-end agentic verification of speech
corpora, leveraging modularity to accommodate
heterogeneous formats, languages, and annotation
inconsistencies, challenges not addressed in prior
agent frameworks.

In contrast to these prior efforts, we introduce a
domain-specific, evaluation-aware agentic frame-
work tailored for multilingual speech dataset ver-
ification. We integrate natural language task pars-
ing, structured workflow graph construction, tool
invocation, and dashboard-based summarization
into a single LLM-driven system. To our knowl-
edge, this is the first work to apply agentic planning
frameworks to real-world speech corpora curation
and to evaluate agent performance using workflow
graph metrics alongside speech-specific quality in-
dicators.

3 SpeechQC-Dataset Pipeline

In this section, we will discuss the data pipeline for
the evaluation of SpeechQC-Agent, including data

creation, and quality verification.

3.1 Data Creation Pipeline

We develop SpeechQC-Dataset, a synthetic
dataset generation framework powered by multi-
LLMs. As illustrated in Figure 2, our system simu-
lates realistic conversational interactions, speaker
diversity, and common ASR artifacts to generate
structured, high-quality audio-text pairs annotated
with rich metadata.

1. Prompt initialization: The pipeline begins
with a carefully designed prompt (Figure 2, Step 1)
that encodes task-specific intent, speaker roles, or
domain constraints. This natural language prompt
is provided to an LLM agent that orchestrates the
conversation planning process.

2. Conversation generation: An LLM-based
agent (Figure 2, Step 3) generates a multi-turn con-
versation from the prompt, simulating realistic hu-
man dialogue. We employ long-form in-context
examples to improve discourse coherence and prag-
matic diversity. A controller agent (Figure 2, Step
2) optionally invokes an LLLM-as-a-Judge mecha-
nism to monitor factuality or dialogue realism.

3. Translation: The conversation is translated
into one or more low-resource languages using mul-
tilingual LLMs or specialized translation modules
(Figure 2, Step 5). This ensures language coverage
and enables cross-lingual generalization.

4. Metadata extraction: A conversation pars-
ing module extracts fine-grained interaction meta-
data including speaker turn segmentation, utterance
boundaries, intent types, and context tags (Figure 2,
Steps 6 -7).

5. Probabilistic perturbation: A randomized
perturbation function injects controlled variabil-
ity by applying operations such as tag insertion
(e.g., <noise>, <html>), token swaps, or word-
level noise (Figure 2, Step 8). The perturbation
decision is sampled based on a threshold parameter
«, introducing structured data variation.

6. Speaker attribution: Synthetic speaker IDs
are assigned to each utterance (Figure 2, Step 9) to
simulate multi-speaker conversations. This speaker
metadata is used to condition downstream audio
synthesis, enabling voice diversity.

7. TTS-Driven audio synthesis: A TTS model
takes the transcript and speaker annotations to gen-
erate speech audio (Figure 2, Step 13). The use
of speaker-conditioned models ensures diversity in
voice, accent, prosody, and gender.

8. Optional corruption module: To simulate

Figure 3: Overview of the SpeechQC-Dataset verifica-
tion pipeline. (Left) QC1 verifies language, file-level
audio properties, and speaker consistency. (Right) QC2
evaluates transcript alignment, quality, domain consis-
tency, vocabulary coverage, and content duplication.

real-world speech recognition challenges, both au-
dio and transcripts may be selectively corrupted
with typical ASR errors (e.g., dropped tokens, au-
dio clipping). These corrupted examples support
evaluation of the robustness of SpeechQC-Agent
(left branch of “Syn. Data”).

9. Structured conversion: The final outputs,
including conversation text, speaker metadata, tran-
scripts, and audio files, are exported in standardized
formats . json or . xml (Figure 2, Step B) for com-
patibility with downstream evaluation and quality
control tasks.

10. Post-processing and validation: Custom

functions (e.g., fun1(), fun2(), Figure 2, Step
11) perform final cleaning, consistency checks, and
metadata linking. An LLM-as-a-Judge LLM(Gu
et al., 2024) can be invoked to check the generated
samples in multiple stages (Figure 2, Steps 2, 4, 6,
and 10) to prefer from data missing or hallucination
of LLMs.
This pipeline allows precise control over synthetic
dataset characteristics while incorporating the flexi-
bility and creativity of LLM-based agents, resulting
in a benchmark dataset suitable for evaluating and
training multi-agent speech verification systems.

3.2 Data Quality Verification

To further understand the data quality and to thor-
oughly investigate the data errors in the speech-text
dataset. We created SpeechQC-Dataset where we
introduce a list of errors in the data using both rule-
based and LLM-as-a-Judge approaches(Gu et al.,
2024).

The performance of quality control agents, we
designed a comprehensive verification suite cover-
ing both audio and transcript modalities. Our sys-
tem is structured into two major verification stages:
QC1 (Audio and Metadata Verification) and QC2
(Transcript and Content Verification). These checks
are aligned with the multi-agent architecture of

QC

Check Name Description
Level
QC1 Language Identification (Audio) Uses multilingual models to detect the spoken language, independent of metadata.
QC1 File Format Validates that the audio file conforms to required encoding standards (e.g., WAV).
QC1 Corrupt File Detection Detects corrupted or zero-length audio files.
QC1 Sample Rate Check Verifies if the sample rate is 16kHz and above.
QC1 Silence Duration Calculates total silence duration per audio file.
QC1 Upsampling Detection Identifies audio upsampled from low fidelity (e.g., 8kHz to 16kHz).
QC1 Number of Speakers Estimates the number of unique speakers in the batch.
QC1 Per-Speaker Duration Measures cumulative speaking time per speaker to ensure speaker diversity.
QC1 Speaker Validity Checks if a speaker is repeated across batches (e.g., same vendor, same voice reused).
QC2 Audio-Transcript Alignment Aligns transcript with audio, regardless of format or file structure.
QC2 Timestamp-Based Segmentation ~Segments long audio using provided transcription time-stamps for utterance-level alignment.
QC2 Script Consistency Ensures transcript uses the correct native script, avoiding Romanized text unless intentional.
QC2 Code-Mixing Detection Identifies code-mixed utterances (e.g., English-Hindi), which may require for diverse dataset.
QC2 MOE Score (Mixture of Expert) Calculates WER and CER using multiple ASR models to quantify transcription quality.
QC2 CTC Score Computes the Connectionist Temporal Classification (CTC) loss using wav2vec model.
QC2 LLM Score Evaluates transcript coherence and fluency using LLM-as-a-Judge.
QC2 Transcript Normalization Removes HTML tags, other tags, or other extraneous tokens from the transcript.
QC2 Transliteration Consistency Checks Roman-to-native script transliteration for consistent representation.
QC2 Grapheme Analyzes the distribution of different characters.
QC2 Vocabulary Coverage Analyzes the distribution of rare words.
QC2 Domain Classification Assigns each sample to domain labels (e.g., agriculture, etc) to ensure topic diversity.
QC2 Content Repetition Check Flags duplicated or reused content within or across datasets, including public corpora overlaps.

Table 1: Overview of Data Quality Control (QC) Modules used by the SpeechQC-Agent for analyzing SpeechQC-

Dataset and other speech datasets.

SpeechQC-Agent, enabling both modular and par-
allelized validation workflows.

QC1: Audio and Metadata Verification. As
shown in the left panel of Figure 3, QC1 begins
by applying a multilingual language identification
model to determine the spoken language directly
from the audio (Step 1). Subsequent checks vali-
date the audio format, sampling rate, silence dura-
tion, frequency upsampling artifacts, and number
of channels (Step 2). To handle speaker-related
verification, we use speaker embedding-based clus-
tering to identify unique speakers (Step 4) and val-
idate whether speakers are reused across batches
by comparing against known public and private
datasets (Step 3). Additional statistics such as num-
ber of speakers (Step 5) and total speaking time per
speaker (Step 6) are computed to assess speaker
diversity and duration balance.

QC2: Transcript and Content Verification.
The right panel of Figure 3 depicts QC2, which
starts by aligning the transcript with the correspond-
ing audio using a timestamp-agnostic model (Step
1). Transcript quality is scored using three different
metrics: (i) Connectionist Temporal Classification
(CTC) loss from a pretrained wav2vec2.0 model,
(i1) Mixture-of-Experts (MoE) relative WER/CER
scores from multiple ASR models, and (iii) LLM-
as-a-Judge scores evaluating fluency and coherence
(Step 2). Domain labels (Step 3) are inferred to en-
sure topic coverage and diversity. Further checks
analyze the distribution of graphemes (Characters)

and vocabulary rarity (Step 4), using an internal vo-
cabulary list (Step 5). Finally, content duplication
is measured using n-gram and embedding-based
overlap with both intra-dataset and public corpus
references (Step 6).

Checklist Overview. Table 1 summarizes the ver-
ification checks included in both QC1 and QC2.
Each verification step is designed to capture a dif-
ferent aspect of dataset quality-ranging from file
integrity and speaker redundancy to transcription
reliability, script consistency, and domain align-
ment.

4 Methodology

In this section, we describe our proposed
SpeechQC-Agent, a natural language-driven,
LLM-coordinated multi-agent framework designed
specifically for speech dataset quality verification.
The framework takes as input a batch of speech data
(waveforms, transcripts, metadata) and a natural-
language verification request. It then (i) decom-
poses the request into atomic checks, (ii) builds an
executable directed acyclic graph (DAG) of those
checks, (iii) instantiates or retrieves the required
tools, and (iv) executes the graph while monitor-
ing progress. All modules are themselves agents
coordinated by a central planner LLM. Figure 1
illustrates the pipeline, which consists of the fol-
lowing stages:

® ®§?—
? Task-Description] i)? Action List

¥
] —> ? Node List |
LY.

Check the audio files of V:
| 0000,
o R
with audio_ir: "xyz/test/" | Dependency @ﬂ
ae LY.,
o 53] 53]
v Execution <—— " Workflow Graph | <—— Nested List |
/
(I Vo A
\ Pre-defined | | © © 060
AR, ,® Voo O—_ T '
+ Tools

/1o [@—e @ '
T o)

Figure 4: Architecture of the SpeechQC-Agent sys-
tem. Given a natural language task description (A),
a central planner LLM interprets the input and gener-
ates an ordered action list (C), which is validated (D)
and mapped to a node list (E). Dependencies among
nodes are resolved into a nested structure (F) and used
to generate a topologically sorted workflow graph (G).
Each node is executed (H) using dynamically synthe-
sized (I) or pre-defined tools (J). Execution is monitored
for completeness, and outputs (L) are aggregated into
a structured Data Verification Dashboard (M) for final
review.

4.1 Task Parsing and Action Generation

The SpeechQC-Agent: central planning agent (A-
B) is the primary interface for interacting with the
user. It receives tasks from the user, comprehends
the tasks in natural language tasks description g,
a central planning agent leverages an LLLM to in-
terpret and decompose it into a structured action
list A = a1, az,as,...,a,]. Each action corre-
sponds to a specific atomic quality check, such as
CheckSampleRate , DetectAudioCorruption , or

ValidateTranscript etc.
A + Planner LLMy(q)

This planning process uses a combination of lexi-
cal mapping (e.g., “VAD” — SilenceCheck) and
semantic prompting of an LLM to infer implied
actions. Moreover, a lightweight rule-based LLM
verifier ensures the consistency of A with known
hard constraints. For instance, if ¢ mentions silence
or VAD, the agent appends a;jence to A if missing
by the central planning agent.

4.2 Node Generation and Dependency Graph
Construction

We define an agentic workflow as a series of
LLM invokes in which the action list is fur-
ther transformed into executable nodes V' =

{v1,v9,...,v,}. Each node v; represents a spe-
cific discrete verification subtask performed by an
LLM. The dependencies between nodes are explic-
itly captured to construct a Directed Acyclic Graph
(DAG):

G=(V,E)

where edges E represent dependencies between sub-
tasks, which also govern the execution sequence.

While graph structures can represent workflow
relationships W, they require complex extensions
beyond basic DAGs to naturally express parallel
execution and conditional logic(Hu et al., 2024b).
Neural networks enable adaptive transitions but
lack percise control over workflow execution(Liu
et al., 2023). In contrast, code representation inher-
ently support all the above relationships through
standard programming constructs. Therefore, we
adopt code(Zhuge et al., 2024) as our primary edge
structure to maximize expressivity. Then, the nodes
are first linearly sequenced using topological sort-
ing, followed by the establishment of parallel or
sequential execution relationships:

C (V) = TopologicalSort = G

4.3 Tool Synthesis and Retrieval

Each verification node v; is associated with an exe-
cutable tool T;. Tools are selected or synthesized
via: 1) Dynamic LLM-based tool synthesis Tcp:
The agent prompts an LLM to generate the tools
and callable functions. The tools are generated
on-demand for new or customized tasks. and 2)
Predefined tool repository 7j;;: A curated set of
robust tools pre-generated using ChatGPT-40 for
stable performance when synthesis fails or confi-
dence is low. The overall tool set is represented
as:
T = Tgen U Tyip

The tool selection may be revised if the tool fails
validation checks or runtime execution.

4.4 Workflow Execution and Monitoring

We execute the workflow graph G following the
topological order with dependency-aware paral-
lelism. A monitoring agent uses a separate LLM to
track the execution status of each node, ensuring
completeness and robustness. Let 3’ be the output
of node v;. If 4 = () or an exception is detected,
the execution checker retries 7; up to 7 times. This
guarantees completeness:

Yo, €V, 3y # 0v fail(vi)

Nodes that fail to execute are automatically retried
or escalated for manual inspection.

4.5 Output Aggregation and Dashboard
Generation

Upon completion, outputs from all executed nodes
are aggregated into structured reports and visual
dashboards. These dashboards enable users to in-
teractively inspect and review quality metrics, error
distributions, and execution logs for transparency
and auditability. This enables both human ana-
lysts and downstream systems to filter or prioritize
batches for data verification task.

4.6 Modularity and Extensibility

SpeechQC-Agent is modular by design, with each
stage (action parsing, node building, tool genera-
tion, execution) being LLM-agent pluggable. New
tasks can be added by: either by extending the ac-
tion ontology or defining a new node schema or
supplying new tool definitions or enabling auto-
synthesis. This architecture generalizes across ven-
dor schemas, speech domains, and languages with-
out manual scripting, making it especially suited
for multi-source, low-resource datasets. It also en-
sures adaptability and scalability to diverse speech
dataset curation challenges.

5 Experiment

5.1 Dataset

To evaluate the performance of SpeechQC-Agent,
we introduce the SpeechQC-Dataset, a synthetic
speech-text dataset specifically designed to address
the challenges of quality control in multilingual,
low-resource language settings, with a focus on
Indian languages using the Devanagari script.

The SpeechQC-Dataset was created through a
multi-step pipeline using advanced large language
models (LLMs) and Text-to-Speech (TTS) tech-
nologies to build a diverse corpus. Three LLMs,
Llama 3.3 70B-versatile, GPT-40 + 40 mini, and
DeepSeek-R1-distill Llama-70B, generated En-
glish conversations across 11 domains and 55 set-
tings, ensuring varied dialogue styles encountered
in everyday conversation. These were translated
into Devanagari script for Indian linguistic rele-
vance, formatted, and converted to audio via a
TTS model, incorporating speaker-specific traits
for voice diversity. Detailed metadata, including
verbatim text, duration, scenario, speaker ID, native

Model File-Format Corrupt Sample-Rate Domain

ChatGPT-40-mini 100 100 100 28.17
ChatGPT-4.1-mini 100 100 100 60.32
deepseek-r1-distill-llama-70b 0 100 - 0
1lama-3.1-8b-instant 0 100 0 0
1lama-3.3-70b-versatile 100 100 100 7.54

Table 2: QCI1 evaluation across four subtasks. Detect
file format error, corrupt file error, sample rate error and
domain identification error.

Model Cost
gpt-4o-mini < $0.01
gpt-4.1-mini $0.08
Ilama-3.3-70b-versatile $0.04
Ilama-3.1-8b-instant $0.06
deepseek-r1-distill-llama-70b $0.05
meta-llama/llama-4-scout-17b-16e-instruct $0.04
meta-llama/llama-4-maverick-17b-128e-instruct ~ $0.05

Table 3: Inference cost (USD / 1K tokens) per 1,000
tokens for different LLMs.

language, gender, and domain fields, was compiled
into a CSV file for thorough analysis.

In constructing this metadata and selecting
speaker specific details, we utilized the LA-
HAJA (Javed et al., 2024) dataset as a reference
to extract speaker IDs and corresponding demo-
graphic details such as native language, gender,
age group, and native state, while replacing their
transcripts and audio files with our own synthetic
conversations and normalized data to align with
the goals of SpeechQC-Agent. This pipeline simu-
lates realistic interactions and introduces controlled
variability for ASR challenges, making it an ideal
benchmark for systems like SpeechQC-Agent.

5.2 Quality Verification Framework

We evaluate our system across two stages: QC1
(Audio & Metadata Verification) and QC2 (Tran-
script & Content Verification). Table 1 outlines
the 22 specific checks performed by SpeechQC-
Agent. QC1 validates language 1D, file integrity,
sampling rate, silence, speaker reuse, and upsam-
pling. QC2 assesses transcript alignment (WER,
CER), CTC loss, code-mixing, transliteration con-
sistency, domain labeling, vocabulary coverage,
and duplication. For both QCI1 and QC2, the
dataset is organized into subfolders: QC1-1, QC1-
2, and QC1-3 for audio-related checks, and QC2-1,
QC2-2, and QC2-3 for transcript-related checks.
Here, ’-1’ represents individual QC transforma-
tions, ’-2’ indicates randomly paired transforma-
tions, and ’-3’ denotes cases where three or more
QC transformations are applied.

1lama-4-scout-17b-16e-instruct 0 80.937

LLM Variant Roman Script Mean WER # HTML Tags # EN Tokens Model Accuracy Hallucinated Tasks Time (sec)
ChatGPT-4.1-mini 99.64 0.094 99.96 100 gpt-4o-mini 3 0 347.397
deepseek-r1-distil-70B 85.2 0.334 0 0 gpt-4.1-mini 3 0 298.261
Llama-3.3-70B-versatile 99.46 0.120 100 78.70 1lama-3.3-70b-versatile 2 0 37.380
ChatGPT-40-mini 66.40 1.151 98.33 68.17 1lama-3.1-8b-instant 1 0 60.542
Llama-3.1-8B-instant 0 - 0 91.34 deepseek-r1-distill-1lama-70b 12,5 2 65.314

6

8

Table 4: QC2 evaluation across four subtasks. Lower
WER, Roman script, HTML Tags and English Tokens
the accuracy calcuated based on detection.

Model Accuracy (%) Time (sec)
gpt-4o-mini 75 354.207
gpt-4.1-mini 75 136.545
1lama-3.3-70b-versatile 62.5 64.056
1lama-3.1-8b-instant 25 80.326
deepseek-r1-distill-1lama-70b 25 72.693
1lama-4-scout-17b-16e-instruct 37.5 50.920
1lama-4-maverick-17b-128e-instruct 37.5 117.039

Table 5: LLM performance on QC1 instructions. Each
model was evaluated using 3 audio samples each from
QC1-1, QC1-2, and QC1-3. The number of missed tasks
and total execution time (in seconds) are reported.

5.3 Baselines and LLM Variants

We compare multiple LLM variants as the plan-
ning and execution agents, including: ChatGPT-
40, ChatGPT-4.1, DeepSeek-R1-distill, LLaMA-
3.3-70B, and LLaMA-3.1-8B. Evaluation covers:
(1) task execution accuracy, (2) hallucinated steps,
(3) cost per 1K tokens (Table 3), and (4) runtime.

6 Results

Table 2 summarizes performance across four key
QCI checks: file format, sample rate, file corrup-
tion, and domain inference. ChatGPT-4.1-mini
and ChatGPT-4o0-mini achieved perfect accuracy
on format, corruption, and sample rate checks, with
ChatGPT-4.1 scoring highest on domain inference
(60.32%). In contrast, LLaMA-3.1 and DeepSeek
failed to complete most tasks, indicating weak
grounding or poor tool invocation capabilities. Ta-
ble 5 further details execution accuracy and time,
showing that ChatGPT-40-mini completed all tasks
correctly within 354 seconds.

Table 4 shows QC2 task performance: ChatGPT-
4.1-mini achieved the lowest WER (0.094), high
Roman script fidelity (99.64%), and zero HTML
artifacts. Table 6 highlights per-task accuracy and
hallucination. LLaMA-3.3 exhibited strong perfor-
mance on domain and vocabulary checks (QC2-
2, QC2-3), while ChatGPT-40-mini excelled on
alignment and LL.M-score metrics (QC2-1, QC2-
2). Table 10 reveals partial metric logging across
baselines, suggesting room for improvement in re-
producible evaluation pipelines.

As shown in Table 3, ChatGPT-4.1 incurs higher

1lama-4-maverick-17b-128e-instruct 375 86.163

Table 6: Evaluation of LLMs on QC?2 instructions. Each
model was prompted to execute 8 quality verification
tasks (language check, WER/CTC computation, nor-
malization, etc.) for 3 audio samples. Models were
evaluated based on task completion accuracy and hallu-
cination rate.

cost ($0.08/1K tokens) compared to LLaMA-3.3
($0.04), but offers better planning quality and re-
liability. Table 5 presents task execution times,
with LLaMA-3.3 being the fastest (64s) among ac-
curate models, suggesting an accuracy-efficiency
tradeoff. While ChatGPT models were slower, they
produced fewer hallucinated nodes and avoided
redundant actions.

7 Conclusion

We introduced SpeechQC-Agent, a natural
language—driven, LLM-coordinated multi-agent
framework for automated verification of multi-
lingual speech datasets. By interpreting natu-
ral language prompts, the system generates struc-
tured, dependency-aware workflows and executes
them using both synthesized and pre-defined tools.
To evaluate system performance, we constructed
SpeechQC-Dataset, a diverse synthetic benchmark
reflecting real-world vendor and language variabil-
ity. Experiments across audio-level (QC1) and
transcript-level (QC2) checks show that commer-
cial LLMs like ChatGPT-40 and 4.1 consistently
outperform open-weight models in planning accu-
racy and execution robustness. We further adapt
workflow evaluation metrics, such as subsequence
and subgraph F1, to the speech domain, enabling
reproducible assessment. Overall, this work rep-
resents the first application of agentic workflow
systems to speech dataset curation, offering a scal-
able and traceable alternative to manual quality
control pipelines.

Limitations

While SpeechQC-Agent presents a promising
framework for automating speech dataset quality
control, several limitations remain:

Instruction Following in Open-Weight LLMs:
Open-source models such as LLaMA-3.1 and

DeepSeek exhibit weak grounding in complex
prompts, often failing to decompose tasks accu-
rately or invoking incomplete workflows. This
hinders reliable performance in real-world applica-
tions without careful prompt engineering or model
fine-tuning.

Tool Generation Hallucinations: Despite struc-
tured planning, LLMs sometimes hallucinate tools
or invoke modules irrelevant to the task. While our
fallback to pre-defined tools mitigates this, fully
robust on-the-fly tool generation remains an open
problem.

Metric Logging Gaps: Certain verification met-
rics, such as silence duration via SoX, CTC loss
distributions, and LLM-human agreement scores,
are not yet logged in a reproducible format across
all baselines. This limits the ability to audit and
compare agent decisions post hoc.

References

Tahir Javed et al. 2024. Indicvoices: Towards building
an inclusive multilingual speech dataset for indian
languages. In Annual Meeting of the Association for
Computational Linguistics.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao
Yuan, Yue Fan, Yawei Wu, Yunde Jia, Song-Chun
Zhu, and Qing Li. 2024a. Multi-modal agent tuning:
Building a vim-driven agent for efficient tool usage.
arXiv preprint arXiv:2412.15606.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao
Yuan, Yue Fan, Yawei Wu, Yunde Jia, Song-Chun
Zhu, and Qing Li. 2024b. Multi-modal agent tuning:
Building a vim-driven agent for efficient tool usage.
ArXiv, abs/2412.15606.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and
Jian Guo. 2024. A survey on llm-as-a-judge. ArXiv,
abs/2411.15594.

Shengran Hu, Cong Lu, and Jeff Clune. 2024a. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

Shengran Hu, Cong Lu, and Jeff Clune. 2024b.
Automated design of agentic systems. ArXiv,
abs/2408.08435.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu,
Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng Chen.
2024c. Self-evolving multi-agent collaboration net-
works for software development. arXiv preprint
arXiv:2410.16946.

Tahir Javed, Janki Nawale, Sakshi Joshi, Eldho George,
Kaushal Bhogale, Deovrat Mehendale, and Mitesh M

Khapra. 2024. Lahaja: A robust multi-accent bench-
mark for evaluating hindi asr systems. arXiv preprint
arXiv:2408.11440.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2024. A survey of nl2sql with large
language models: Where are we, and where are we
going? arXiv preprint arXiv:2408.05109.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2023. A dynamic llm-powered agent network
for task-oriented agent collaboration.

Yash Madhani, Mitesh M. Khapra, and Anoop
Kunchukuttan. 2023. Bhasa-abhijnaanam: Native-
script and romanized language identification for 22
indic languages. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024. Scaling
large-language-model-based multi-agent collabora-
tion. arXiv preprint arXiv:2406.07155.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin
Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. 2024. Benchmark-
ing agentic workflow generation. arXiv preprint
arXiv:2410.07869.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu,
Fengli Xu, and Yong Li. 2024. Agentsquare: Au-
tomatic 1lm agent search in modular design space.
arXiv preprint arXiv:2410.06153.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2998-3009.

Yiyou Sun, Junjie Hu, Wei Cheng, and Haifeng Chen.
2024. Dfa-rag: Conversational semantic router for
large language model with definite finite automaton.
In International Conference on Machine Learning.

Jiabin Tang, Tianyu Fan, and Chao Huang. 2025. Au-
toagent: A fully-automated and zero-code framework
for llm agents. arXiv e-prints, pages arXiv—2502.

Nan Tang, Chenyu Yang, Ju Fan, and Lei Cao.
2023. Verifai: Verified generative ai. ArXiv,
abs/2307.02796.

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang.
2024. Haichart: Human and ai paired visualization
system. ArXiv, abs/2406.11033.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun,
Guancheng Wan, Kun Wang, Dawei Cheng, Jef-
frey Xu Yu, and Tianlong Chen. 2024a. Cut the
crap: An economical communication pipeline for
Ilm-based multi-agent systems. arXiv preprint
arXiv:2410.02506.

https://api.semanticscholar.org/CorpusID:268248422
https://api.semanticscholar.org/CorpusID:268248422
https://api.semanticscholar.org/CorpusID:268248422
https://api.semanticscholar.org/CorpusID:268248422
https://api.semanticscholar.org/CorpusID:268248422
https://api.semanticscholar.org/CorpusID:274965020
https://api.semanticscholar.org/CorpusID:274965020
https://api.semanticscholar.org/CorpusID:274965020
https://api.semanticscholar.org/CorpusID:274234014
https://api.semanticscholar.org/CorpusID:271892234
https://api.semanticscholar.org/CorpusID:263608687
https://api.semanticscholar.org/CorpusID:263608687
https://api.semanticscholar.org/CorpusID:263608687
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:258887508
https://api.semanticscholar.org/CorpusID:267522819
https://api.semanticscholar.org/CorpusID:267522819
https://api.semanticscholar.org/CorpusID:267522819
https://api.semanticscholar.org/CorpusID:259360404
https://api.semanticscholar.org/CorpusID:270559276
https://api.semanticscholar.org/CorpusID:270559276
https://api.semanticscholar.org/CorpusID:270559276

Figure 5: Complete audio processing summary for di-
rectory xyz/test/ including speaker diarization metrics,
Voice Activity Detection (VAD) silence analysis, and
comprehensive quality control validation

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024b. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024a. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In An-
nual Meeting of the Association for Computational
Linguistics.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024b. De-
bug like a human: A large language model debugger
via verifying runtime execution step-by-step. arXiv
preprint arXiv:2402.16906.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and
Nan Tang. 2024. Are large language models good
statisticians? ArXiv, abs/2406.07815.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. GPTSwarm: Language agents
as optimizable graphs. In Forty-first International
Conference on Machine Learning.

A Compute Infrastructure

Compute details: For all our pre-training and
fine-tuning experiments, we used two NVIDIA
A100-SXM4-80GB GPUs. Each training requires
4-48 hours.

Software and Packages details: We implement
all our models in PyTorch?

B Dataset Composition

To evaluate the robustness of our audio and tran-
script quality control mechanisms, we constructed
a synthetic dataset with intentional flaws from the
LAHAIJA dataset and custom-generated data. The

Zhttps://pytorch.org/

10

dataset comprises four subsets to test specific qual-
ity control aspects across diverse error profiles and
sources.

- Vendor A (Audio-Specific): Applied QC1
transformations (e.g., File Format Conversion, Cor-
rupt File Simulation, Sample Rate Reduction) to
3,000 LAHAIJA entries (1,000 individual, 1,000
paired, 1,000 multiple QC1).

- Vendor B (Transcript Quality): Applied
QC2 transformations (e.g., Audio-Transcript Mis-
alignment, Script Inconsistency, Transcript De-
normalization) to 3,000 LAHAIJA entries (1,000
individual, 1,000 paired, 1,000 multiple QC2).

- Vendor C (Mixed Flaws): Applied both QClI
and QC2 transformations to 100 random LAHAJA
entries for combined audio-transcript testing.

- Vendor D (Synthetic Data): Generated an in-
dependent dataset using LLMs and TTS models
for synthetic audio and transcripts with controlled
quality parameters.

C Further Analysis

Table 9 presents a comparative analysis of
LLM performance on QC1 tasks involving au-
dio and metadata verification. Among all eval-
uated models, ChatGPT-40-mini exhibited the
most reliable behavior, successfully complet-
ing all five tasks including file format valida-
tion, corruption detection, sample rate check-
ing, speaker duration estimation, and speaker va-
lidity matching. ChatGPT-4.1-mini also per-
formed well in most categories but failed to cor-
rectly handle valid speaker identification. In
contrast, 11ama-3.3-70b-versatile completed
all core tasks but introduced unnecessary oper-
ations, indicating weaker task-grounding. No-
tably, 11ama-3.1-8b-instant, while the fastest
model, failed to execute most tasks and strug-
gled with topological reasoning and task mapping.
deepseek-r1-distill-11lama-70b demonstrated
partial success in speaker tasks but did not en-
gage with other checks and required more itera-
tions. These results highlight the trade-offs be-
tween speed, instruction-following capability, and
task reliability across model families, reinforcing
the need for instruction-grounded evaluation in
speech data quality workflows.

Table 10 reveals substantial metric-coverage
gaps: none of the QC-1 audio-metadata checks
(format integrity, silence detection, up-sampling,
language ID, speaker diversity or reuse) are logged,

https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:268032812
https://api.semanticscholar.org/CorpusID:270391790
https://api.semanticscholar.org/CorpusID:270391790
https://api.semanticscholar.org/CorpusID:270391790
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg

Table 7: Domains and Settings with LLM Attribution

Domain Setting LLM Used
Indian Agri. Village farm on crops GPT Models
Agri fair innovations GPT Models
Rural sustainable workshop Llama Model
Farmers’ crop tips Llama Model
School farm trip DeepSeek
Indian Law Mock court basics GPT Models
Library governance talk GPT Models
Civic rights discussion Llama Model
Town hall governance Llama Model
Constitution lecture DeepSeek
Indian Finance Budgeting workshop GPT Models
Digital banking expo GPT Models
Savings community chat Llama Model
Loan process at bank Llama Model
Banks’ role in class DeepSeek
Indian Sports Sports event at park GPT Models
Movie event planning GPT Models
Fitness benefits in gym Llama Model
Dance prep in area Llama Model
Cinema fan club DeepSeek
Indian Military Fitness drills camp GPT Models
Military history talk GPT Models
Veterans’ community event Llama Model
Defence awareness seminar Llama Model
Armed forces career fair DeepSeek
Indian Politics Democracy school talk GPT Models
Political history session GPT Models
Civic duties debate Llama Model
Voting cultural event Llama Model
Civic podcast DeepSeek
Indian Edu. Rural learning school GPT Models
Student science fair GPT Models
Exam study group Llama Model
Parent-teacher engagement Llama Model
University education day DeepSeek
Indian Science Tech innovation exhibit GPT Models
Basic coding workshop GPT Models
Tech future school club Llama Model
Eco-tech startup hub Llama Model
Digital tools outreach DeepSeek
Indian Rural Dev. Infrastructure village meet GPT Models
Sanitation campaign GPT Models
Amenities workshop Llama Model
Renewable energy event Llama Model
Model village project DeepSeek
Indian Business Entrepreneurship fair GPT Models
Small business seminar GPT Models
Trade at marketplace Llama Model
Supply-demand class Llama Model
Financial planning DeepSeek
Indian Art Art evolution exhibit GPT Models
Cultural fair performance GPT Models
Modern art club Llama Model
Architecture history Llama Model
Heritage preservation DeepSeck

11

Model Task | Accuracy | Hallucination
ChatGPT-40-mini QC2-1 92.34 0
QC2-2 91.49 0
QC2-3 47.99 0
ChatGPT-4.1-mini QC2-1 1 57.21
QC2-2 1 10.89
QC2-3 98.07 6.35
deepseek-r1-distill-llama-70b | QC2-1 0 0
QC2-2 0 0
QC2-3 0 0
llama-3.1-8b-instant QC2-1 27.64 10.57
QC2-2 18.02 0
QC2-3 0 0
llama-3.3-70b-versatile QC2-1 0 0
QC2-2 95.74
QC2-3 91.58 0

Table 8: Evaluation of different LLMs on quality con-
trol tasks (QC2-1 to QC2-3) measuring Accuracy and
Hallucination rate in percent.

Accent (Native Language) Distribution Age Group Distribution

Sviaipay oo
o

045

Figure 6: Distribution of speakers in the SpeechQC-
Dataset by native language accent (left) and age group
(right). The dataset exhibits broad linguistic diversity,
with representation from 19 native languages, and cov-
ers a wide range of age groups, ensuring demographic
balance for robust speech technology evaluation.

and several critical QC-2 dimensions, segmenta-
tion accuracy, CER, LL.M-as-a-judge agreement,
transliteration accuracy, vocabulary diversity, do-
main match, and duplication detection, remain un-
populated or only partially captured. Closing these
gaps will require integrating raw SoX/ffprobe di-
agnostics, diarisation statistics, IndicTrans compar-
isons, lexical-entropy measures and embedding-
based duplication scores, enabling a truly end-to-
end, metrics-complete evaluation pipeline for fu-
ture batches.

D Additional Data Information

It includes 15.51 hours of Hindi speech data from
110 unique speakers, with a balanced gender split
of 54 female and 56 male. Speakers cover age
groups of 18-30, 30-45, 45-60, and 60+, and rep-
resent 19 native languages, led by Telugu, Malay-
alam, Bengali, Hindi, and others (Fig 6). The data
set spans 11 domains, such as agriculture and sci-
ence and technology, in 55 conversational settings

LLMs File Format Corrupt File Sample Rate

Speaker (Duration)

Valid Speaker Remarks

1lama-3.1-8b-instant Not performing ~ Not performing ~ Not performing

1lama-3.3-70b-versatile Completed Completed Completed Completed
deepseek-r1-distill-1lama-7¢b Not performing Not performing ~ Not performing Completed
ChatGPT-4.1-mini Completed Completed Completed Completed
ChatGPT-4o-mini Completed Completed Completed Completed

Not performing (2/3) Not performing

Fastest model, but failed to recognize tasks, construct valid workflows, or execute code reliably.
Completed all tasks, but performed additional actions not requested in the instruction.

Needed more iterations to complete tasks and exhibited unnecessary tool usage.

Executed all required tasks with good flow, but failed in valid speaker verification.

Completed all tasks accurately with coherent planning and no unnecessary operations.

Completed
Not performing
Failed
Completed

Table 9: Performance of LLMs on QC1 verification tasks. Each model is evaluated on its ability to execute file
format validation, corruption detection, sample rate checks, speaker duration analysis, and valid speaker matching.
Remarks provide qualitative insights into model behavior during task execution.

Protocol Block Metric In Sheet? Missing Evidence / Action

QCI - Audio & Metadata

File format & corruption Accuracy 2 Log SoX/ffprobe checks per file
Silence hours Precision/Recall 2 Duration histograms with silence detector
Upsampling (8—16 kHz) Binary accuracy 2 FFT-based up-sampling flag per file
Language ID (MMS) Accuracy 2 MMS predictions + meta-tags
Speaker hours / diversity Completeness, SDI 2 Diarisation output, per-ID hours
Speaker reuse detection Match-rate 2 Embedding match vs. public pools
QC?2 - Transcript & Content

Audio-text alignment WER, CER 1 CER still missing

Segmentation by timestamps Seg. accuracy 2 Gold vs. predicted boundaries
Script validity Script-match % 3 Need total-token denominator

CTC quality score Avg. CTC 1 -

LLM-as-Judge rating 1-5 score, 2 Per-utt. ratings + agreement
Normalization noise HTML-error rate 1 Tag counts — rate per K tokens
Transliteration match Accuracy 2 IndicTrans vs. transcript tokens
Vocab / grapheme diversity Diversity score 2 Entropy or TTR statistics

Domain verification Domain-match 3 Need gold domain labels
Duplication detection Dup. score 3 Embedding-similarity counts

Table 10: Coverage of the full QC-metric suite. 1 = logged, 2 = partially logged, 3 = not present.

(Table 7). Its strength lies in its extensive demo-
graphic and linguistic diversity, paired with broad
domain coverage, making it a vital tool for inclu-
sive speech technologies.

E Future Work

Future work will explore fine-tuning LLMs on
speech-specific reasoning tasks, integrating real-
world vendor datasets, and extending the system
to correction tasks (e.g., ASR post-editing) and
multilingual alignment.

F Discussion

Our experiments demonstrate that SpeechQC-
Agent successfully operationalizes natural
language-driven agentic workflows for speech
dataset verification. Key findings include:

e ChatGPT-4.1 and 4o variants consistently
outperform open-weight LLMs in execution
grounding, especially on QC2 tasks involv-
ing complex judgment (e.g., transcript fluency,
transliteration).

* Modular agent architecture and topological
planning enable robust execution and paral-
lelism, particularly useful in large datasets

12

with heterogeneous error profiles.

* SpeechQC-Dataset offers a diverse, control-
lable, and reproducible benchmark to evalu-
ate speech QC pipelines-something not previ-
ously available for the community.

Nevertheless, limitations remain. Instruction-
following in open-weight LLMs remains brittle,
and hallucination handling during tool generation
needs reinforcement. Metric logging in produc-
tion still requires integration of raw ffprobe/SoX
logs and alignment modules. These insights set the
stage for further exploration into fine-tuning LLMs
for speech quality workflows, zero-shot error cor-
rection, and cross-lingual transfer.

G Prompts

Task Selection Prompt

Prompt:

You are given the following functions:

1. ASR Transcription

2. Number of Speakers calculation and duration per speaker

. Quality of Transcript

. Graphene or character calculation

. Vocab calculation

. Language identification

. Audio length calculation

. Silence calculation (using VAD)

9. Sample rate check

10. CTC score calculation

11. Upsampling Check

12. Check if speakers are new or old

13. Check the domain of the speech dataset

14. Map transcriptions to audio files using forced alignment

15. Language identification using ASR transcriptions and IndicLID

16. Normalization by removing HTML and other tags from transcriptions in JSON or XML files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10
18. Transliteration - Convert Roman script words to Native script using Transliteration for a
specified file and language

0N N LB~ W

Based on the prompt, reply with task numbers that have to be done without any explanation or
reasoning.

Input:
Prompt: {user_prompt}

Output Format:
Example: 1,3,5

13

Topological Sorting Prompt

Prompt:

You are given the following functions:

1. ASR Transcription using audio files

2. Number of Speakers calculation and duration per speaker using audio files

. Quality of Transcript using transcriptions

. Graphene or character calculation using transcriptions

. Vocab calculation using transcriptions

. Language identification using transcriptions

. Audio length calculation using audio files

. Silence calculation (using VAD) using audio files

9. Sample rate check using audio files

10. CTC score calculation using audio files and transcriptions

11. Upsampling Check using audio files

12. Check if speakers are new or old using the results from number of speakers calculation

13. Check the domain of the speech dataset using transcriptions from ASR

14. Map transcriptions to audio files using forced alignment, using ground truth transcriptions
15. Language identification using ASR transcriptions and IndicLID, using transcriptions from ASR
16. Normalization by removing HTML and other tags from transcriptions in JSON or XML files
17. Evaluate transcript coherence and fluency using LLM-as-a-Judge and score out of 10, using
transcriptions from ASR

18. Transliteration - Convert Roman script words to Native script using Transliteration, using a
specified file and language code from the prompt

0 NN LB~ W

We have to do tasks: {resp_1}.

Make a Topological sorting for what is the best way to proceed with these tasks, sequentially and
concurrently.

Guidelines:

- We can do tasks concurrently if they are independent of each other.
- Task 12 depends on task 2.

- Task 13 depends on task 1.

- Task 14 depends on the ground truth conversion process.

- Task 15 depends on task 1.

- Task 17 depends on task 1.

- Task 18 is independent.

Output Format:
Example: [[1,3], [5], [8]] (this means do 1 and 3 concurrently, then do 5, and finally do 8)

Finally, give me the topological sorting for the tasks: {resp_1} without any explanation or
reasoning.

14

Input Source Determination Prompt

Prompt:
Determine the source of the following inputs for task {task_id}:
{json.dumps(required_inputs, indent=2)}

Parameters:

Possible sources:

- User prompt: {state.get(’user_prompt’, ”)}

- Previous task outputs in CombinedStateDict: {json.dumps(k: v for k, v in state.items() if k not in
[folder_path’, "user_prompt’, ’execution_log’, "task_inputs’, *topological_sort’], indent=2)}

- Default: folder_path={state.get(’folder_path’, *)}

Output Format:
Return a JSON object mapping each input to its source value or an error message if not found.

Corruption Check Prompt

Prompt:
You are given a folder with audios at this path: {state[’folder_path’]}.

Write a Python script to:
- Attempt to open and read each audio file.

- If a file fails to load or raises an error, mark it as corrupted and capture the error message.

Save a CSV listing all files and their status ("Corrupt" or "Valid") as audio_validity.csv in the same
directory.

Finally, Respond with "Success" if all files are valid, otherwise "Invalid".

Audio Extension and Format Check Prompt

Prompt:
You are given a folder with audios at this path: {state[folder_path’]}.

Write a Python script to:

1. Confirm that each file except {file_path} has a valid audio extension (only .wav or .mp3). Ignore
files with extensions: .csv, .xml, and .json (do not process, validate or flag them).

2. For audio files, also check if they are in WAV format by attempting to read them using a library
like wave or librosa.

3. Create a CSV with columns: Filename, Valid_Extension, Is_WAV_Format, Status

4. Status should be "Pass" only if both extension is valid and format is WAV.

5. Save the CSV as audio_format_check.csv in the same directory.

Respond with "Success" if all files pass, otherwise "Invalid".

Sample Rate Check Prompt

Prompt:
You are given a folder with audio files at this path: {state[’folder_path’]}.

Write a Python script to:

1. Check each audio file’s sample rate

2. Create a CSV with columns: Filename, Sample_Rate, Status

3. Store "Pass" in Status if sample rate is 16000 Hz, otherwise "Fail"
4. Save the CSV as sample_rate_check.csv in the same directory

Use libraries like librosa, soundfile, or wave to check the sample rate.

Ground Truth File Conversion Prompt

Prompt:
You are given a file of ground truths of audios {state[’folder_path’]} at {file_path}.

1. Get the structure of the txt, csv, json, xml file.

2. Identify the element/column that contains the filename and transcriptions (ground truth). If
there is no such column, return "Invalid".

3. Convert the file to CSV with added columns of Filename and Transcription.

4. Save the updated CSV with the new column to the same directory as new_transcriptions.csv.

Finally, Respond with "Success" if all steps are done, otherwise "Invalid".

16

Conversation Generation Prompt

Prompt:

You are a conversation generator tasked with creating realistic dialogue between exactly two
speakers in English.

Topic: {topic}

Setting: {setting}

Speakers: {speakerl} and {speaker2}

Requirements:

- The conversation must be rich in content related to the specified topic and reflect the given setting.
- Generate a long conversation with approximately 100 dialogue exchanges.

- Format the output strictly as:

{speakerl}: sentencel

{speaker2}: sentence2

{speakerl}: sentence3

...and so on.

- Do not include any explanations, actions, or additional text outside the conversation format.

- Ensure the conversation flows naturally and is meaningful with detailed exchanges relevant to the
setting and topic.

Output:

Translation Prompt

Prompt:

Translate the following sentence into {language} while maintaining realism and natural flow.
Guidelines:

- The conversation should primarily be in {language}, but preserve certain English words
commonly used by {language} speakers.

- Enclose all preserved English words within <eng>...</eng> tags.

- Randomly and sparsely insert conversational effect tags such as [babble], [bg-speech], [laugh],
[music], [no-speech], [noise], [overlap], or [silence].

- Use <initial>...</initial> tags for any initials or abbreviations.

- Avoid overusing English words and tags; include them only when contextually appropriate.

- Output only the translated sentence without any explanation.

Input:
Sentence: {content}

Output Format:
Translation: [Translated sentence will be provided here in the specified format with appropriate

tags.]

17

Conversation Metadata Prompt

Prompt:

Generate conversation metadata based on the provided conversation content.
Input:

Conversation: {translated_content}

Output Format:
Generate conversation metadata in the following JSON format:

{"domain":"<domain>","topic":"<topic>","language":"{language}","conversation_name":" {conv_id }-
GPT"}

Instructions:
- Determine the "domain" and "topic" based on the conversation content.

- Set "language" to the predominant language of the conversation.
- Use the provided "conversation_name" as is.
- Provide only the raw JSON string without any explanation or formatting wrappers.

18

Speaker Details Prompt

Prompt:

Generate speaker information for two speakers based on the provided conversation content.
Input:

Conversation: {translated_content}

Output Format:
Generate speaker information for {speakerl} and {speaker2} in the following JSON format:
{

"{speakerl}": {

"speakers": [

{

"gender": "<male or female>",

"speakerld": "<alphanumeric ID>",

"recorderld": "<alphanumeric ID>",

"nativity": "{language}",

"ageRange": "<age range like 25-34>"

}

]

[

"{speaker2}": {

"speakers": [

{

"gender": "<male or female>",
"speakerld": "<alphanumeric ID>",
"recorderld": "<alphanumeric ID>",
"nativity": "{language}",
"ageRange": "<age range like 35-44>

n

Instructions:

- Follow the exact JSON structure shown above with all opening and closing braces properly
matched.

- Randomly assign values for "gender" (choose either "male" or "female").

- For "speakerId", use a format like "S-XXXXX" where X is a digit.

- For "recorderld", use a format like "RXXX" where X is a digit.

- Set "nativity" to exactly "{language}" as provided.

- For "ageRange", use one of these formats: "18-24", "25-34", "35-44", "45-54", "55-64", "65+".
- Ensure the JSON is properly formatted and valid - all quotes, commas, and braces must be
correctly placed.

- Provide only the raw JSON string without any explanation, markdown formatting, or code blocks.

19

Transcription Function Prompt

Prompt:

Transcribe audio files from a specified folder and return the transcription output in CSV format.
This task assumes that all audio files are in Hindi.

Input:

- A folder path containing audio files.

- The folder must exist and be a valid directory.

- All audio files should be in Hindi.

Output Format:
A dictionary with the following structure:

{

"A" [where A is node in the node graph]: "<CSV transcription result or error message>",
"audio_dir": "<Path to the input folder>"

}

Instructions:

- Validate that the provided folder path exists and is a directory.

- If invalid, return the error message: "A": "Error: Invalid audio directory”.

- If valid, perform transcription of all audio files in the folder.

- Use the transcribe_folder_to_csv() function for transcription.

- Assume the source language is "Hindi".

- Log the transcription process using appropriate logging levels (info and error).
- Return the transcription results in the key "A" along with the input directory.

Silence Detection Prompt

Prompt:

Perform silence detection on all audio files within a specified directory and return the result.
Input:

- A directory path containing audio files to be processed.

- The folder must exist and be a valid directory.

Output Format:
A dictionary with the following structure:

{

"D": "<Silence detection result or error message>"

}

Instructions:

- Check if the provided audio directory exists and is valid.

- If the directory is invalid or not found, return the error message: "D": "Error: Invalid audio
directory".

- If valid, apply silence detection to all audio files in the directory using the process_folder_vad()
function.

- Log the beginning of the detection process with an info-level message.

- Return the result under the key "D".

20

Vocabulary Extraction Prompt

Prompt:

Extract unique words (vocabulary) from the transcriptions in a CSV file and save them into a new
column. Output the updated CSV with the extracted vocabulary.

Input:

- A directory containing a CSV file, typically named indicconf_hypothesis.csv.

- The CSV must have a column named Transcription or Ground_Truth (case-insensitive).

Output Format:
A dictionary in the following format:

{

"vocab_output": "<Path to vocab_list.csv or error message>"

}

Instructions:

- Locate the CSV file wusing the key "A" in state, or fallback to
audio_dir/indicconf_hypothesis.csv.

- If the file doesn’t exist, return: "vocab_output”: "Error: CSV file <path> not found"”.

- Within the CSV, identify the transcription column by searching for ’Transcription’ or
’Ground_Truth’ (case-insensitive).

- For each row, extract a list of **unique words** from the transcription.

- Store the list in a new column named vocab_list.

- Save the updated CSV as vocab_list.csv in the same directory.

- Return "vocab_output”: "CSV saved at: <path>" if successful.

- If the agent fails to complete the task or the file is not created, return an appropriate error message.
- Handle and log all exceptions clearly.

21

Character Extraction Prompt

Prompt:

Extract unique characters from each transcription in a CSV file and save them into a new column.
Output the updated CSV with the extracted characters.

Input:

- A directory containing a CSV file, typically named indicconf_hypothesis.csv.

- The CSV must have a column named Transcription or Ground_Truth (case-insensitive).

Output Format:

A dictionary in the following format:

{

"character_output": "<Path to character_list.csv or error message>"
}

Instructions:

- Locate the CSV file wusing the key "A” in state, or fallback to
audio_dir/indicconf_hypothesis.csv.

- If the file doesn’t exist, return: "character_output”: "Error: CSV file <path> not
found".

- Identify the transcription column by searching for *Transcription’ or *Ground_Truth’ (case-
insensitive).

- For each row, extract a list of **unique characters** from the transcription.

- Store the list in a new column named character_list.

- Save the updated CSV as character_list.csv in the same directory.

- If the script completes successfully and the file is created, return: "character_output”: "CSV
saved at: <path>".

- If the agent fails or the output file is not found, return an appropriate error message.

- Log any exceptions during processing clearly and accurately.

22

Audio Length Calculation Prompt

Prompt:

Calculate the duration of each audio file in a given folder and save the results in a CSV file.
Input:

- A valid directory path containing audio files.

Output Format:

A dictionary in the format:

{

"audio_length_output": "<Result of operation or error message>"
}

Instructions:

- Check if the audio_dir exists and is a directory. If invalid, return: "audio_length_output"”:
"Error: Invalid audio directory”.

- Write a Python script that performs the following tasks:

1. Iterate over all audio files in the directory.

2. Calculate the duration of each audio file in seconds.

3. Store the filename and corresponding duration in a CSV with columns: Filename,
Audio_length.

4. Save the resulting CSV as audio_length.csv in the same folder.

- Execute the script using the [python_repl] tool.

- Return the script’s output message under the key "audio_length_output”.

- In case of failure or exceptions, return an appropriate error message.

- Log errors clearly to aid debugging.

23

Devanagari Script Verification Prompt

Prompt:

Verify whether each transcription in a CSV file is written in the Devanagari script using Unicode
checks.

Input:

- Path to a CSV file (e.g., indicconf_hypothesis.csv) with a column containing ground truth
text.

Output Format:
A dictionary in the format:

{

"language_verification_output": "<Result of operation or error message>"

}

Instructions:

- Load the CSV file and identify the transcription column (case-insensitive: ’Ground_Truth’,
"Transcription’, etc.).

- For each row:

1. Remove whitespace and punctuation from the transcription.

2. Check if all remaining characters fall within the Unicode range U+0900-U+097F (Devanagari
script).

3. If they do, set Is_Devanagari to True; otherwise False.

4. If the transcription is empty or only punctuation, set Is_Devanagari to False.

- Add a new column Is_Devanagari to the CSV.

- Save the output file as language_verification.csv in the same directory.

- Ensure the final CSV includes: Filename, Transcription, Is_Devanagari.

- Use the [python_repl] tool to execute the script.

- On success, return "Success”; else provide an error message.

- Handle edge cases and log any errors encountered.

24

CTC Score Computation Prompt

Prompt:

Compute Connectionist Temporal Classification (CTC) alignment scores from audio-transcription
pairs and classify alignment quality.

Input:

- A directory containing audio files (audio_dir)

- A CSV file (e.g., indicconf_hypothesis.csv) with aligned transcripts, identified via key ’A’

Output Format:

A dictionary in the format:

{

"ctc_score_output": "<CSV output path or error message>"
}

Instructions:

* Load the CSV and audio directory.
* For each audio file, compute alignment scores using the transcriptions in the CSV.

e Use process_audio_directory() to return segment-wise alignment with scores and times-
tamps.

» Aggregate results by:

— Grouping by filename.
— Combining the segment labels into a full transcript (Aligned_Transcript).
— Taking the average CTC score as CTC_Score.

— Serializing segment-level details (label, start, end, score) into JSON under
Aligned_Segments.

* Classify the score using:

— Good if score > 0.7
— Medium if score > 0.5
— Poor otherwise

e Save the final CSV with columns: Filename, Aligned_Segments, Aligned_Transcript,
CTC_Score, CTC_Status.

* Output the result to ctc_scores. csv in the same directory as the input CSV.

* Log and report errors appropriately.

25

Valid Speaker Verification Prompt

Prompt:

Analyze speaker presence across files to determine whether a speaker is "New" or "Old" based on
repetition across files.

Input:

- A directory containing a CSV named num_speakers. csv with columns:

e File Name
e Number of Speakers
* Speaker Durations - JSON object mapping speaker IDs to durations

Output Format:
A dictionary:

{

"valid_speaker_output": "<CSV output path or error message>"

}

Instructions:
1. Load num_speakers.csv.
2. Build a dictionary to track how many files each speaker appears in.

3. For each row:

e Skip if Number of Speakers == "Error".

* If only one speaker and SPEAKER_09 is reused across files, mark as O1d.
* If multiple speakers and any speaker is reused across files, mark as Old.
* Otherwise, mark the speaker as New.

4. For each row, populate:

e Filename
e Speaker_Status (New or 01d)
e Common_File (the current file name if status is 01d, else empty)

5. Save the result to valid_speaker.csv in the same directory.

6. Respond with "Success" if the script runs without errors and file is saved. Otherwise, return
"Invalid".

26

Domain Checker Prompt

Prompt:

You are a Hindi language expert. Analyze the following normalized Hindi transcript and determine
the general domain of the speech dataset.

Instructions:

¢ Return the domain as a single word (e.g., News, Call Center, Interview, Conversation,
Education).

Input:

A CSV file indicconf_hypothesis.csv located inside a directory, containing a column named
transcriptions with normalized Hindi transcripts.

Expected Output:

A new column domain added to the CSV, representing the predicted domain of each transcription.
The final output is saved as domain_check. csv in the same directory.

Agent Behavior:

1. Validate the input directory and CSV.

2. Iterate over each row in the transcriptions column.

3. For each transcript, send a prompt to the language model to classify the domain.
4. If the LLM fails, label the domain as Unknown.

5. Save the resulting DataFrame with the new domain column to domain_check.csv.

27

IndicLID Language Identification Agent Prompt

Prompt Objective:
Identify the language of each transcript using the IndicL.ID model.
Input Description:

* A folder containing a CSV file (default name: indicconf_hypothesis.csv).
* The CSV should include a column named transcriptions and optionally Filename.
Instructions:

1. For each row in the CSV:

 Extract the transcript and filename.

o If the transcript is empty or NaN, assign Language_Code = Unknown, Confidence =
0.0, Model_Used = IndicLID.

* Otherwise, use the IndicLID model to perform language identification.
2. If language identification fails for a transcript, mark it with Language_Code = Error.

3. Store all results in a new DataFrame with columns: Filename, Transcription,
Language_Code, Confidence, Model_Used.

4. Save the output as indiclid_language_identification.csv in the same directory.

Expected Output:
A CSV file containing language identification results for each transcript, with confidence scores
and the model used (IndicLID).

28

Text Normalization and Tag Removal Agent Prompt

Prompt Objective:
Normalize transcription text by cleaning ground truth data in a CSV file.
Input Description:

* A directory containing a CSV file named indicconf_hypothesis-gt.csv.
¢ The file should have a column named Transcriptions or ground_truth (case-insensitive).
Instructions:

1. Read the CSV file and identify the transcription column (Transcriptions or
ground_truth).

2. Clean each transcript using the following rules:

* Remove HTML tags like and .
* Remove any text enclosed in square brackets (e.g., [START]).
* Remove symbols such as #, $, and %.

3. Add a new column named normalized_transcripts with the cleaned text.
4. Save the updated CSV as normalized_list.csv in the same directory.

Expected Output:
A new CSV file with the original columns and an additional normalized_transcripts column
saved as normalized_list.csv.

29

LLM-Based Transcription Quality Scoring Agent Prompt

Prompt Objective:

Evaluate the fluency and coherence of ASR-generated transcriptions using a Language Model
(LLM) and assign scores and comments.

Input Description:

* A directory path containing a CSV file named indicconf_hypothesis.csv.

e The CSV contains:

— Filename column (case-insensitive).

— One of ground_truth or transcriptions columns (case-insensitive), containing ASR
outputs.

Instructions:
1. Load the CSV file.

2. For each transcription:

* Analyze sentence fluency and meaning very strictly.
* Score each transcription from 0 to 10:
— 10: Highly meaningful and fluent Hindi sentence.
— 0: Nonsensical or contains language other than Hindi.
— Gradually decrease score based on fluency degradation.
* Provide a brief Evaluation_Comment justifying the score.

3. Create a new CSV file with the columns: Filename, Transcription, LLM_Score, and
Evaluation_Comment.

4. Save the output as 11m_scores. csv in the same directory.
5. Handle errors gracefully during execution.

Expected Output:
A CSV file named 11m_scores.csv containing scored and reviewed transcriptions.

30

English Word Count Agent Prompt

Prompt Objective:

Determine the number of English words present in each line of a normalized transcript using an
LLM.

Input Description:

* A directory path that contains a CSV file named normalized_list.csv.
* The CSV must have a column named ground_truth, containing the transcription text.
Instructions:
1. Load the normalized_list.csv file.

2. For each row in the ground_truth column:

* Construct a prompt asking a language expert to count the number of English words
(case-insensitive) in the given text.

 Extract the integer response.
e If the LLM fails, assign -1 for that row.

3. Append the count as a new column called english_word_count.
4. Save the updated CSV as english_word_count.csv in the same directory.
Prompt Template:

You are a language expert. Count and return only the number of English words (case-
insensitive) in the following text.

Text:
{ground_truth_text}

Respond with just the number.
Expected Output:

A CSV named english_word_count.csv containing an additional column english_word_count
with English word frequencies per row.

31

Utterance Duplicate Checker Agent Prompt

Prompt Objective:
Identify and report duplicate utterances across all text-based columns in a CSV.
Input Description:

* A directory containing a CSV file named normalized_list.csv.
Instructions:
1. Load the normalized_list.csv file.
2. Iterate through each column of the DataFrame.

3. For columns with text (dtype == object):

* Detect duplicated utterances (preserve all duplicates using keep=False).
* For each unique duplicated utterance, count the number of occurrences.
* Record the column name, the duplicated utterance, and the count.

4. Save the results in a new CSV called duplicate_utterances.csv containing:

e column_name, utterance, and count

9

. If no duplicates are found, return a message indicating that.
Expected Output:

* A CSV file named duplicate_utterances.csv if duplicates exist.

* Otherwise, a message stating "No duplicate utterances found.”

32

WER Computation Agent Prompt

Prompt Objective:

Compute Word Error Rate (WER) between normalized reference transcriptions and predicted
hypotheses.

Input Description:

* A directory containing two CSV files:

— normalized_list.csv with the column normalized_transcripts.
— indicconf_hypothesis.csv with the column transcriptions.

Instructions:
1. Ensure both CSVs exist and contain the same number of rows.

2. For each row, compute the Word Error Rate (WER) between:

e Reference <— normalized_transcripts
e Hypothesis < transcriptions

3. Use the jiwer library for WER calculation.
4. Handle exceptions on a per-row basis to ensure continuity even if some rows fail.

5. Save the output in a CSV named wer . csv with columns:

* Reference, Hypothesis, and WER
Expected Output:

* A CSYV file named wer . csv saved in the same directory.

* Each row shows the WER score for the respective transcription pair.

33

Graph Builder Agent Prompt

Prompt Objective:
Construct a ‘StateGraph‘ from a structured list of task groups while filtering by a valid task set.
Input Description:

* structure: A list of lists where each sublist represents a group of task IDs that can be
executed in parallel.

* valid_tasks: A set of valid task identifiers (as strings). Only these will be included in the
final graph.

Instructions:
1. Filter the structure to retain only task IDs present in valid_tasks.

2. If the resulting structure is empty but valid_tasks is non-empty, use all numeric valid tasks
as a fallback.

3. Add each valid task as a node in the graph using node_map, which maps task_id to a tuple:
(node_name, function, description).

4. Add a dummy start node and connect it to the first group.
5. Connect each group to the next group, allowing fan-in/fan-out connections.
6. Connect the last group to the terminal END node.

Expected Output:

* A compiled StateGraph object that respects the dependency structure implied by the group-
ings and task validity.

* An error is raised if no valid tasks remain after filtering.

34

Prompt Checker Agent Prompt

Prompt Objective:

Analyze a user’s natural language prompt to determine whether the currently selected task IDs
are appropriate, and update the task list if any are missing based on defined task descriptions and
selection rules.

Input Description:

* user_prompt: A natural language prompt provided by the user describing the task they want
to perform.

* selected_tasks: A comma-separated string of task numbers (e.g., "1,2,5") that have been
initially selected for execution.

Task Descriptions:
* Contains 24 predefined task definitions, ranging from ASR transcription to WER computation.
Selection Rules:

» Uses keyword and semantic rules (e.g., “if prompt mentions ‘Vocab calculation’, include task
5”) to guide inclusion.

 Tasks 1 and 15 are linked if language identification is mentioned.
* Certain tasks (e.g., 9, 23, 24) trigger the inclusion of dependent tasks (e.g., task 16).
Instructions to the LLM:

1. Analyze the user_prompt and determine which tasks are required based on semantic under-
standing and rules.

2. Compare the determined tasks with selected_tasks.
3. If any tasks are missing, return Status: Missing, with task IDs and an explanation.
4. If all are correct, return Status: Correct and the list of tasks.

5. Format the output as:

Status: <Correct|Missing>
Tasks: <comma-separated task IDs>
Explanation: <why tasks were added (if Missing)>

Execution Loop:
* Repeats for a maximum of 3 iterations to ensure task completeness.
* Dynamically updates task list with each LLM feedback.
 Calls select_tasks() if new insights are needed.

Output:

» Returns the final list of task IDs as a comma-separated string.

35

	Introduction
	Related Work
	SpeechQC-Dataset Pipeline
	Data Creation Pipeline
	Data Quality Verification

	Methodology
	Task Parsing and Action Generation
	Node Generation and Dependency Graph Construction
	Tool Synthesis and Retrieval
	Workflow Execution and Monitoring
	Output Aggregation and Dashboard Generation
	Modularity and Extensibility

	Experiment
	Dataset
	Quality Verification Framework
	Baselines and LLM Variants

	Results
	Conclusion
	Compute Infrastructure
	Dataset Composition
	Further Analysis
	Additional Data Information
	Future Work
	Discussion
	Prompts

