© N o oA W N =

N = 4 o 4 4 a4 a4 a4
o © ® N o g b~ W N = O ©

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

Task Alignment Outweighs Framework Choice in
Scientific LLM Agents

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large language models (LLMs) equipped with external tools through agentic frame-
works promise to overcome domain-specific limitations by providing specialized
capabilities for scientific applications. However, the extent to which these systems
genuinely enhance performance in complex scientific domains remains poorly
understood. Here we present Corral, a modular benchmarking framework that sys-
tematically evaluates LLM-based agents across four expert-designed environments
spanning molecular dynamics, machine learning, catalysis, and spectroscopy in
chemistry and materials science. Through comprehensive evaluation of state-of-the-
art models using different agent scaffolds, we demonstrate that the choice of agentic
framework—whether ReAct or tool-calling—plays a surprisingly minor role in
determining success. Instead, performance depends critically on the semantic align-
ment between available tools and task requirements, measured through embedding
similarity. When this alignment is poor, even sophisticated reasoning frameworks
cannot compensate for inadequate tool provisioning and a lack of domain knowl-
edge. Conversely, when base models possess sufficient domain knowledge, agentic
frameworks can introduce unnecessary overhead without meaningful benefits. Our
findings challenge the assumption that agentic systems provide a universal solution
to model limitations, revealing instead that, currently, successful scientific agents
might require the same level of domain expertise in tool design that was promised
to be circumvented.

1 Introduction

Large language models (LLMs) excel at generating text but struggle when tasks require interacting
with external systems, accessing real-time information, or executing multi-step procedures [/1} [2]].
Agent frameworks have been proposed to address these limitations by enabling models to plan
sequences of actions, use specialized tools, and operate within specific environments [3| |4, |5, |6}
7, 18,19, [10]. This approach might be particularly critical in scientific applications, where precise
domain knowledge is essential for accurate decision-making [|11}|12f], in which base models show
limitations [|13]|14]. However, the extent to which these tools genuinely enhance model performance
remains unclear. While initiatives like the Model Context Protocol (MCP) [15] have improved
tool accessibility, the mere provision of additional tools can be counterproductive; tools may act as
distractors rather than valuable assets, leading to inefficient or erroneous outputs [[16}17].

Current evaluation methodologies predominantly focus on high-level metrics such as overall per-
formance, tool usage count, and execution time, with an emphasis on coding and machine learning
tasks [18]]. Although essential for assessing production-ready systems, these metrics often overlook
some of the critical components of the systems and do not provide practical guidance on how to
improve them [[19]. By focusing solely on the end result, without considering the process of tool uti-

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40

41
42
43
44
45

46

47
48
49

50
51

52
53
54
55

56

57

58
59
60

62
63

lization, these evaluations limit our understanding of the models’ true capabilities and can even result
in agents failing to fully comprehend the functions available to them [20]. This lack of granularity is
particularly problematic in scientific fields like chemistry or biology, where agents utilize tools not
only for retrieval, but also for experiment execution, and knowledge synthesis [21]].

Moreover, the importance of task-tool alignment is not properly understood. It is often unclear
whether the provided tools are truly relevant or if the agent understands when and how to use them.
Here, we demonstrate that the alignment between tasks and tools is indicative of agentic performance.
To do so, we built a novel modular benchmarking framework, systematically implemented multiple
scientific environments and agents, and conducted ablation studies.

Framework Environments Analysis
8 tool
g task
b contest
create adsorbate elucidate structure
; slab configuration from spectra -
. alignment
host environments
in corral server
~+error
3 recovery
! e ¥
g ‘s&h +post & prior
b - ® tooluse context
Iﬁ& train machine learning simulate material using 3 +tool
models on molecular dynamics description
_ execute agents material datasets simulation
in the environment tool context

Provide RESTful API endpoints

Figure 1: Representation of the core contribution in this work. We present the Corral framework,
which hosts environments on a server separating them from the agents, enabling an evaluation of how
the different components affect the results. This analysis of the different components allows us to
make actionable recommendations on how to improve LLM-based agents.

As illustrated in Figure[I] our main contributions are:

* We present Corral, a modular framework to implement, run, and test LLM-based agents.
Within Corral, four expert-designed environments are used to assess the performance of
current models.

* We benchmark two SOTA LLMs and two of the most widely implemented agent scaffolds,
providing a comprehensive evaluation of current agent capabilities.

* We perform an analysis of the factors that determine the success of an LLM-based agent. In
particular, we propose the use of embedding similarity between tools and tasks to estimate
agents’ performance. The alignment between tools and tasks is especially important when
the agent lacks the foundational knowledge required to carry out the task.

A detailed section on related research is presented in Appendix [A]

2 Corral ‘% : Agent Evaluation Framework

The Corral framework, represented in Figure[C.]] is designed to define, execute, and evaluate agent
capabilities within different isolated environments (code snippets demonstrating how to implement
the different components in the framework are shown in Appendix [E). Inspired by Aviary [22]]
and prior works [23} 24} 25[], we adopt a model similar to a Language Decision Process (LDP),
which is a specific formulation of a Partially Observable Markov Decision Process (POMDP) where
observations and actions are represented in text.

64

65
66
67

68
69

70

71

72
73

74
75

76

77

78
79

80
81

82

83

84

85

86

87

88
89

90
91
92
93

94

95
96
97

98
99

100
101

2.1 The Environment

The Environment (&) is responsible for serving the task guide to the agent (which includes the task
description and input data from previous tasks, if any), providing the necessary tools, and evaluating
the agent’s performance. Formally, the environment implements the core components of the LDP.

State Space (S). The state s in S represents a complete snapshot of the environment at a given
time step. In Corral, this is captured by the TaskState object. A state s; at time ¢ is a tuple:

St:(P,Mt,Ct,d70')€S (1)
where:

* P is the static task prompt or problem description.

o My = {my,ma,...,m;} is the set of messages exchanged between the agent and the
environment.

* Cy ={c1,ca,..., i } is the history of k tool calls made up to time ¢. Each ¢; is a ToolCall
object containing the tool name, arguments, result, and status.

* dis a boolean flag indicating if the task is completed (is_completed).
* ¢ is the final score, which is defined only when d is true.

During benchmarking, d and o are not observable to the agent. However, this could be used to
optimize the system interacting with the environment during training.

Tools. A key responsibility of the environment is provisioning a set of tools 7¢,,. Each tool
T € Teny 1s a function that maps a set of arguments to a result returned as a string.

Task (K). A task IC defines a specific, self-contained problem. It is formally a tuple:

K= (P7 ’TreqafscoreaIO) (2)
where:

* P is the task prompt given to the agent.

* Treq C Tenw is the specific subset of tools required for this task.

* fscore 18 the custom scoring function used to implement the reward function R.
* [is the initial input data for the task.

Task Group (G). A task group allows for the creation of complex workflows by defining dependen-
cies between tasks. Formally, a task group is a directed graph:

Gg=(\V,E) (€)
where V = {K;}¥ | is a set of N tasks serving as the vertices of the graph. The set E C V x V
contains the directed edges, where an edge (K;, XC;) € E implies that the output of task /C; is a
required input for task XC;. The directed nature of the graph guarantees a well-defined execution
order.

2.2 The Agent

The Agent is the decision-making entity that interacts with the environment to solve a task. It is
implemented as a policy 7 that maps the history of observations to a probability distribution over the
available actions.

Action Space (A4). The action space .A consists of all possible actions the agent can take. This
space is the union of all possible tool calls and a special submission action, submit.

A= (U call(Ti,argsi)> U submit(answer) 4)

Ti€Tenv

where args, represents a set of arguments for tool ;. An action a; € A is thus either a tool invocation
or the submission of a final answer.

102
103

104
105
106

107

108
109
110
111
112
113

114
115

116
117
118

119
120
121

122
123
124

125
126
127

128
129

130

131
132
133
134
135

136
137
138
139
140

Policy (7). The policy 7 selects an action a; at time ¢ based on the history of observations h; =
(01,02,...,0).

ag ~ 7T(|ht) (5)

The - stands for any possible action a from the entire action space 4. The Corral framework is
agnostic to the internal reasoning of the agent, allowing for different implementations of 7, such as
ReAct [26], planning algorithms [27]], or simple tool-calling models.

2.3 Interaction Dynamics

The Corral runner orchestrates the agent-environment interaction over a series of tasks (Figure|C.1
illustrates the Corral framework). Each task is part of a separate and isolated environment on the
Corral server. Within its corresponding isolated environment, the agent’s interaction unfolds over
a sequence of discrete time steps, concluding only when it executes the submit action. Upon this
terminal action, the Corral runner finalizes the interaction with the current environment and proceeds
to the next task.

Transition Function (7'). The state transition function T : S x A — S describes how the state
evolves.

St+1 = T(st,at) (6)

If a; = call(r,args), the environment executes the tool and updates the state by appending a new
ToolCall record to the history Cy, resulting in Cyy;. If a; = submit(answer), the environment
updates the state by setting d to true and computing a score.

Observation Space (O) and Function (7). After the environment transitions to a new state s;1,
the agent receives an observation 0,41 € O. The observation function Z : S — O could be stochastic
depending up on the tool.

Ot41 = Z(St+1) (7)

The observation is typically the string-based result or error message from the most recent tool call,
which corresponds to the result or error_message field in the last element of the tool call history
Ct+ 1-

Reward Function (R). The reward function R : § x A — R provides the feedback signal to the

agent. In Corral, during benchmarking, rewards are sparse and terminal. A reward is only issued

when the agent takes the submit action.

scor if = submit

R(sp,a) = fscore(answer) if a; submi (answer) ®)
0 otherwise

The reward is the agent’s score in that particular task. In our experiments, we stick to binary rewards
(either O or 1).

3 Results

The environments for our evaluations, detailed in Appendix [F| are deliberately designed to represent
a spectrum of complexity and require specialized knowledge. The ML and OPENCATALYST tasks
are more aligned with standard computational workflows, while molecular dynamics (MD) requires
nuanced scientific knowledge, and especially SPECTRA requires reasoning over and validating the
hypotheses it generates based on chemical observations.

To disentangle the effect of the framework in the policy, we compare two agent strategies, ReAct [26]
and tool-calling. ReAct promotes an iterative thought-action-observation loop. The tool-calling
agent is a more direct, function-execution approach, which might be more efficient for well-defined
workflows. We probe the capability of the core reasoning engine of the policy () by testing two
different foundation models.

141

142
143
144
145
146
147
148
149

150
151
152
153
154
155

156
157
158
159
160
161
162
163

164

165
166

3.1 Overall Performance

Figure [2] shows the agents’ ability to successfully complete the task within five attempts (pass@5,
metrics used in the work are detailed in Appendix [B). The illustration provides a high-level view of
their capabilities across the four scientific environments, which are ranked by the domain expertise
required to solve the tasks. The SPECTRA environment requires most domain-specific skills, the ML
environment the least. The results underscore the significant impact of domain complexity on the
policy’s () ability to achieve a high reward, RR. Interestingly, these results follow an inverse trend
compared to the number of tool calls, as reported in Appendix [H] suggesting that agents tend to
sample more tools when unsure of how to solve the tasks.

> s (Claude 3.5 Sonnet
S ¢ s GPT-40
pectra ° @ React Agent
. ° ‘ Tool-Calling Agent
DA
(2] .
2 >
5 B
0 MD
5 >
- ©
—E OpenCatalyst .
g .
o N
>
L 2
ML ;
L J

0.0 0.2 0.4 0.6 0.8 1.0

pass@5 Score

Figure 2: Impact of domain expertise on agent performance across environments. This plot
shows the pass@5 scores for each agent across the four environments, ordered by the level of required
domain expertise (from low at the bottom to high at the top). There is a clear inverse correlation: as
the need for specialized knowledge increases, the agents’ ability to successfully complete the task
within five attempts decreases. This visualizes the significant challenge that deep domain expertise
poses to the agents’ policies.

Performance and Domain Familiarity Comparison In the OPENCATALYST and ML environments,
both Claude-3.5 Sonnet and GPT-4o0 achieve near-perfect scores. This suggests that for these
tasks, the policies () can effectively map the initial task prompt P to the correct sequence of tool
calls. Conversely, environments demanding deep, specialized knowledge as MD and SPECTRA, result
in lower scores. The particularly low scores in the SPECTRA environment highlight the difficulty the
policy faces in interpreting chemical data to select the optimal sequence of actions from 4.

Agent and Model Comparison In the more demanding MD and SPECTRA environments, the
differences between agents are very small. This is surprising since the tool-calling agent is a much
simpler implementation that does not enforce agents’ reasoning compared with ReAct. However, in
other environments where we suspect that the policies are trained on the reasoning chain in ReAct,
it turns out to be helpful. Claude-3.5 Sonnet consistently shows a slight performance advantage
over GPT-4o, especially in these challenging domains. This might suggest that Claude-3.5 Sonnet
is more familiar with chemistry and material science compared to GPT-4o0, consistent with prior
research [[14]13].

3.2 Decomposing Tasks

To validate our hypothesis that the policy, 7, is less likely to converge on a successful action trajectory
for unfamiliar tasks, we evaluate the tasks in two different formats. As single tasks (K), and chained

167
168
169
170

171

172
173
174
175
176
177

178
179
180
181
182
183
184
185

186
187

189

190

191
192
193
194
195

OpenCatalyst MD

1.00 1.00
o 0.75F 0.75 "
@ 0.50 0.50 @ Claude 3.5 Sonnet
§ GPT-40
& 025f 025"

0.00t 0.00L

® ReAct Agent
ML Spectra & Tool-Calling Agent

1.00 M— 1.00¢
i 0.75F 0.75
©
® 050r 050 F .
©
& 025+ 0.25f 8

0.00 - 0.00 -

Single Chained Single Chained

Figure 3: Performance comparison between single and chained tasks. This plot shows the pass@5
scores when the task is decomposed into simple one-step tasks, and when it is not. All tools are in
COMPREHENSIVE verbosity (refer to Appendix [D|for a detailed explanation about the different levels
of tool descriptions considered). In the more challenging MD and SPECTRA environments, all agent
configurations show a significant increase in overall score when the task is presented as a chained
sequence of sub-tasks. Table comparing results for all different tool verbosity in Table[J.1T]

tasks, where the single tasks are broken down to smaller single-step problems, forming a task group
G. In a chained configuration, dependencies are defined and the output of task /C; serves as the initial
input, /o, for task /C; (see example in Appendix[F:4.3). By breaking down the tasks into smaller tasks,
the action space (or the action trajectory) over which the policies have to reason is constrained.

Improved Performance through Decomposition in Complex Domains As shown in Figure[3] for
the MD and SPECTRA environments, all agent and model configurations show a significant improvement
in performance when moving from a single task to a chained one. For example, in the SPECTRA
environment, the Claude-3.5 Sonnet tool-calling agent’s score jumps from below 0.25 on the
single task to nearly 0.50 on the chained task. This strongly suggests that decomposing a complex
problem into a structured sequence of smaller tasks provides a crucial scaffold that helps agents
succeed if many domain skills are needed.

Performance Breakdown by Task Categories To further ground our understanding that lower
performance could be attributed to the inability of the model to reason and validate scientific
hypotheses and tasks, we classified all the decomposed tasks into a set of categories (“retrieval”,
“code execution”, “experiment execution”, “reasoning”, and ‘“validation”). For example, fetching
a structure from Materials Project (MP)[28]] in the OPENCATALYST environment is classified as
“retrieval”’, while running a Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
simulation is classified as “experiment execution”. This classification was done manually by the

experts who designed the environments.

Figure {] plots the average pass@5 score for each of the categories. This breakdown reveals that
the primary challenge for current agents lies in higher-order reasoning, validation of the generated
history, and execution rather than simple tool use. Again, as for the single task results, we observe
that both agents, ReAct and tool-calling, perform very similarly despite the difference in complexity.

3.3 Tool Verbosity Ablation

It is well known that the amount of context provided to an LLM is important for the performance [29,
30]. In an attempt to systematically understand the importance of this for the agent performance, we
encoded the tool descriptions in a structured format (described in Appendix [D) and ablated the effect
of only showing parts of this to the model. We evaluated agent performance across three progressively
detailed verbosity levels: BRIEF, WORKFLOW, and COMPREHENSIVE. This tiered approach allows us

196
197

198
199
200
201
202
203
204
205

207

208
209
210
211
212
213
214
215
216
217
218

219
220
221

1.00 Q==as

o mm Claude 3.5 Sonnet
0.75

0.50 h

verage pass@5

o N
5 &

A
o
g

Retrieva Code Execution Experiment Execution Reasoning Validation

Task Categories

Figure 4: Performance breakdown by task categories. This figure illustrates the average pass@5
scores of different agent configurations across five task categories. All tasks were manually classified
into different categories by the experts who designed the environments. While agents excel at concrete
tasks like “retrieval” and “code execution”, performance declines for more complex categories such

as “experiment execution”, “reasoning”, and “validation”. The average score here is the mean of
pass@5 scores for each of the chained tasks.

mmmmm Claude 3.5 Sonnet

1.0
GPT-40
7o)
© - @ React Agent
& 0 3 * ‘ Tool-Calling Agent
o
‘ @ Single
0.0 O Chained
Single Chained Ablation
(single)

Figure 5: Results comparing single, chained, and the ablation for the Spectra environment.
The figure shows that by incorporating a new tool, the distance between tools and tasks is closed,
resulting in a massive improvement in the scores of the single task being comparable to the ones in
the chained task.

to measure how performance scales as the agent is supplied with increasingly rich contextual and
operational knowledge about its tools.

Level of Description Is Not All You Need As detailed in Table[J.T1] for OPENCATALYST and ML
environments, performance is consistently high for the three levels of tool description that were
considered. For the most complex environments, SPECTRA and MD, the scores, despite being worse
than for the other environments, do not show a clear trend in which verbosity is better. For example,
in the SPECTRA environment, it is possible to see that the best score overall is achieved in the BRIEF
description scenario by the tool-calling agent in the chained fashion. However, that same agent
has a very similar performance when the tool descriptions follow the WORKFLOW level. Similarly,
when evaluating the full or single task, the best score is obtained with the COMPREHENSIVE level of
description.

3.4 Dependence on Task and Tool Similarity

In our analysis, we observe that the SPECTRA environment performs much worse than the rest of
the environments, independent of the level of detail in the tool description. We hypothesize that
this is because the tools provided in this environment are less aligned with the most difficult step
in the tasks compared to other environments. To probe this hypothesis, we embedded the tools
and task descriptions and measured their distances. A detailed description of how the embeddings
are obtained and the distances calculated is provided in Appendix [K] Table [T]shows that SPECTRA
shows the largest mean minimum distances between tasks and tools, followed by the MD, ML, and
OPENCATALYST environments. This ordering correlates with the overall performance of the agents
in these environments. Additionally, SPECTRA presents the second-highest mean distance between
tasks, only after ML. We hypothesize that the larger distances between consecutive tasks in ML explain
the scores observed for Pass”k, detailed in Appendix

This correlation can be used to strategically improve agentic systems. To test this, we augmented the
SPECTRA environment with a new tool that works as a hypothesis generator by proposing molecular
fragments for the candidate molecule. While this value might seem insignificant, as Figure [5|shows,

222
223
224

225

226
227
228
229
230
231
232
233

234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249

251

Table 1: Embedding distance analysis. Mean cosine distances between consecutive tasks in a chain,
between all tasks and tools, and between the minimum or closest tool to each task. The results show
that SPECTRA is among the highest values for the measured distances, which could explain the bad
results in this environment.

Task Tools Mean Qf Verbosity Distance Tools-Tasks
consecutive
Mean Mean of
tasks .
Minimum
brief 0.70 0.52
SPECTRA 15 0.52 workflow 0.75 0.59
comprehensive 0.84 0.73
brief 0.64 0.58
MD 4 0.26 workflow 0.65 0.60
comprehensive 0.72 0.66
brief 0.61 0.38
OPENCATALYST 6 0.38 workflow 0.60 0.42
comprehensive 0.71 0.57
brief 0.68 0.39
ML 12 0.65 workflow 0.65 0.40
comprehensive 0.72 0.52

we find that with this tool Claude-3.5 Sonnet now performs comparably in both single and chained
settings. GPT-4o0, which is less proficient in spectroscopic tasks in other benchmarks [13]], fails to
leverage this additional tool.

4 Conclusion

Large language models have demonstrated remarkable capabilities across diverse tasks, yet significant
performance gaps persist in specialized domains like chemistry and materials science. The field
has responded with increasing enthusiasm for agentic systems—frameworks that equip LLMs with
external tools and reasoning scaffolds. This approach emerged from a compelling belief: that
agents could serve as a universal bridge, compensating for any base model’s limitations simply by
providing domain-specific tools. The promise was elegant in its simplicity—rather than training
specialized models for each domain, we could build flexible agents that adapt to any task through
careful framework engineering and tool provisioning.

Our systematic evaluation using our Corral framework reveals this foundational assumption to be
deeply flawed. Through comprehensive benchmarking across four expert-designed environments
spanning molecular dynamics, machine learning, catalysis, and spectroscopy, we demonstrate that
the choice of agentic framework—whether ReAct, or tool-calling—plays a surprisingly minor role in
determining success. Instead, performance depends critically on the alignment between available
tools and task requirements, coupled with the base model’s existing domain knowledge. When models
already possess adequate domain expertise, agentic frameworks introduce unnecessary overhead
without meaningful benefits. Conversely, when domain knowledge is absent, only meticulously
crafted tools that precisely match task demands can bridge the gap—a requirement that eliminates the
promised flexibility and demands exactly the kind of deep domain expertise that agents were meant
to circumvent.

These findings fundamentally challenge the notion that agentic systems provide a universal solution
to model limitations. Rather than offering a flexible path around the need for specialized knowledge,
agents reveal themselves to be highly dependent on the very expertise they promised to democratize.
Our work highlights an enduring truth: the absence of domain-specific knowledge in foundation
models cannot be overcome through framework sophistication alone, but only through targeted tool
design that requires the same level of domain expertise as training specialized models—suggesting
that domain-specific models are far less obsolete than one might think.

252

254

264

274

284

304

References

(1]

(2]
(3]
(4]
(5]

(6]
(71
(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Andrew D. White. “The future of chemistry is language”. In: Nature Reviews Chemistry 7.7
(May 2023), pp. 457-458. 1SSN: 2397-3358. DOI:|10.1038/541570-023-00502-0. URL:
http://dx.doi.org/10.1038/s41570-023-00502-0.

Nawaf Alampara et al. “General purpose models for the chemical sciences”. In: arXiv preprint
arXiv: 2507.07456 (2025).

David Silver and Richard S Sutton. “Welcome to the era of experience”. In: Google Al 1
(2025).

John Yang et al. “SWE-agent: Agent-Computer Interfaces Enable Automated Software Engi-
neering”. In: arXiv preprint arXiv: 2405.15793 (2024).

Bang Liu et al. “Advances and Challenges in Foundation Agents: From Brain-Inspired Intelli-
gence to Evolutionary, Collaborative, and Safe Systems”. In: arXiv preprint arXiv: 2504.01990
(2025).

Samuel Schmidgall et al. “Agent Laboratory: Using LLM Agents as Research Assistants”. In:
arXiv preprint arXiv: 2501.04227 (2025).

Zhengyao Jiang et al. “AIDE: AI-Driven Exploration in the Space of Code”. In: arXiv preprint
arXiv: 2502.13138 (2025).

Xingyao Wang et al. “OpenHands: An Open Platform for Al Software Developers as Generalist
Agents”. In: arXiv preprint arXiv: 2407.16741 (2024).

Theodore R. Sumers et al. “Cognitive Architectures for Language Agents”. In: arXiv preprint
arXiv: 2309.02427 (2023).

Noah Shinn et al. “Reflexion: Language Agents with Verbal Reinforcement Learning”. In:
arXiv preprint arXiv: 2303.11366 (2023).

Al4n Aspuru-Guzik and Varinia Bernales. “The rise of agents: Computational chemistry
is ready for (R)evolution”. In: Polyhedron (July 2025), p. 117707. 1SSN: 0277-5387. DOI:
10.1016/j.poly.2025.117707. URL: http://dx.doi.org/10.1016/7.poly.2025!
117707.

Santiago Miret and NM Anoop Krishnan. “Enabling large language models for real-world
materials discovery”. In: Nature Machine Intelligence (2025), pp. 1-8.

Adrian Mirza et al. “A framework for evaluating the chemical knowledge and reasoning
abilities of large language models against the expertise of chemists”. In: Nature Chemistry
(2025), pp. 1-8.

Nawaf Alampara et al. “Probing the limitations of multimodal language models for chemistry
and materials research”. In: Nature Computational Science (2025), pp. 1-10.

Anthropic. Model Context Protocol. Protocol Specification. Open protocol for connecting Al
applications to external data sources and tools. Anthropic, PBC, Nov. 2024. URL: https :
//modelcontextprotocol.io,

Varatheepan Paramanayakam et al. “Less is More: Optimizing Function Calling for LLM
Execution on Edge Devices”. In: Design, Automation & Test in Europe Conference, DATE 2025,
Lyon, France, March 31 - April 2, 2025. IEEE, 2025, pp. 1-7. DOI:|10.23919/DATE64628 |
2025.10992798. URL: https://doi.org/10.23919/DATE64628.2025.10992798.
Guozhao Mo et al. “LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?” In:
arXiv preprint arXiv: 2508.01780 (2025).

Mahmoud Mohammadi et al. “Evaluation and Benchmarking of LLM Agents: A Survey”. In:
arXiv preprint arXiv: 2507.21504 (2025).

Nawaf Alampara, Mara Schilling-Wilhelmi, and Kevin Maik Jablonka. “Lessons from the
trenches on evaluating machine-learning systems in materials science”. In: arXiv preprint
arXiv: 2503.10837 (2025).

Xuangi Gao et al. “MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use
Capabilities in Large Language Models”. In: arXiv preprint arXiv: 2505.16700 (2025).
Mayk Caldas Ramos, Christopher J. Collison, and Andrew D. White. “A review of large
language models and autonomous agents in chemistry”. In: Chemical Science 16.6 (2025),
pp. 2514-2572. 1SSN: 2041-6539. DOI: 10.1039/d4sc03921a. URL: http://dx.doi.org/
10.1039/D4SC03921A.

https://doi.org/10.1038/s41570-023-00502-0
http://dx.doi.org/10.1038/s41570-023-00502-0
https://doi.org/10.1016/j.poly.2025.117707
http://dx.doi.org/10.1016/j.poly.2025.117707
http://dx.doi.org/10.1016/j.poly.2025.117707
http://dx.doi.org/10.1016/j.poly.2025.117707
https://modelcontextprotocol.io
https://modelcontextprotocol.io
https://modelcontextprotocol.io
https://doi.org/10.23919/DATE64628.2025.10992798
https://doi.org/10.23919/DATE64628.2025.10992798
https://doi.org/10.23919/DATE64628.2025.10992798
https://doi.org/10.23919/DATE64628.2025.10992798
https://doi.org/10.1039/d4sc03921a
http://dx.doi.org/10.1039/D4SC03921A
http://dx.doi.org/10.1039/D4SC03921A
http://dx.doi.org/10.1039/D4SC03921A

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

Siddharth Narayanan et al. “Aviary: training language agents on challenging scientific tasks”.
In: arXiv preprint arXiv: 2412.21154 (2024).

Thomas Carta et al. “Grounding Large Language Models in Interactive Environments with
Online Reinforcement Learning”. In: arXiv preprint arXiv: 2302.02662 (2023).

Muning Wen et al. “Reinforcing language agents via policy optimization with action decompo-
sition”. In: arXiv preprint arXiv:2405.15821 (2024).

Yifan Song et al. “Trial and error: Exploration-based trajectory optimization for 1lm agents”.
In: arXiv preprint arXiv:2403.02502 (2024).

Shunyu Yao et al. “ReAct: Synergizing Reasoning and Acting in Language Models”. In:
International Conference on Learning Representations (2022).

Chan Hee Song et al. “LLM-Planner: Few-Shot Grounded Planning for Embodied Agents
with Large Language Models”. In: arXiv preprint arXiv: 2212.04088 (2022).

Matthew K Horton et al. “Accelerated data-driven materials science with the Materials Project”.
In: Nature Materials (2025), pp. 1-11.

Yushi Bai et al. “LongBench v2: Towards Deeper Understanding and Reasoning on Realistic
Long-context Multitasks”. In: arXiv preprint arXiv: 2412.15204 (2024).

Cheng-Ping Hsieh et al. “RULER: What’s the Real Context Size of Your Long-Context
Language Models?” In: arXiv preprint arXiv: 2404.06654 (2024).

10

324
325

326

337
338
339

341
342
343
344
345

346
347
348
349
350
351

353
354
355

356

357
358

359

360
361

362
363

364

Appendix

A Related Work

LLM-based Agents LILM-based agents demonstrated proficiency in coding tasks [1]. This has
extended to specialized domains including ML development [2]], algorithm optimization [3]], and Al
research automation [4]]. CodeAct Agent is a multi-agent system that enables agents to either converse
with humans in natural language for clarification and confirmation or perform tasks by executing code,
such as running bash commands, Python scripts, or browser-specific programming languages [5]].
Similarly, AIDE is an ML-focused agent that autonomously drafts, debugs, and optimizes code
through iterative tree-search strategies based on user-defined goals and metrics [6].

In science, agents have targeted distinct phases of the research pipeline, including data retrieval [/, |8],
simulation execution [9, |10, |11} |12]], and data analysis [[13]]. Some notable examples are those that
can run certain lab experiments [[14} |15} [16]].

Scientific Agent Benchmarks The advancements in agents are facilitated by high-quality bench-
marking frameworks that rigorously quantify agent capabilities in coding [17, 18| |19} 20|, chem-
istry [21]], and materials science [22,23]]. Tian et al. [24]] demonstrated limitations of agents replicating
real-world scientific scripts. Even top-performing models achieved below 10 % accuracy in generat-
ing specialized scientific code. This performance gap extends to other scientific contexts, as shown
by Cui et al. [25]]’s multi-domain benchmark featuring complex tasks like DFT calculations and
materials property extraction. Complementary approaches like Aviary [26] or AutoGen [27]] address
system design by isolating environments from agents. These “agent gym” frameworks enable tool
decoupling and targeted optimization, yielding performance gains.

Existing benchmarks target specific scientific tasks given diverse evaluation needs [28},29]. There
have also been attempts to measure whether the provided tools are truly relevant or if the agent
understands when and how to use them. One proposed way to assess this is by checking if expected
tools are used at each step [30]], but this approach is inadequate for environments requiring open-ended
planning and strategic reasoning [28},[19]. In such cases, the agent’s ability to decompose a task and
strategically select tools becomes paramount, and currently, there is no way to measure this ability.

Overall, there is no systematic understanding that can be used as practical guidance for improving
scientific agents. By systematically ablating the components within the agentic framework for a set of
scientific environments, our work identifies critical performance limitations and provides actionable
pathways for agent improvement.

B Metrics

To evaluate the overall performance of the benchmark, we employ a suite of metrics that capture
different aspects of the agent’s capabilities, from correctness and efficiency to resource consumption.

B.1 Average Score

The average score provides a measure of the mean performance across all tasks. It is calculated as the
average of the mean scores for each individual task.

Let T be the set of all task IDs, and for each task ¢ € T, let S; be the set of scores for each trial of
that task. The average score for a single task ¢ is given by:

1
e 2t (B1)

SES

The overall average score is then the mean of these individual task averages:

1
Average Score = m Z Lt (B2)
teT

11

370

371
372
373

374
375

376

377

378
379
380

381

383

384
385
386

387

388
389
390
391

392

393

394

395

396

397

B.2 Overall Success Rate
The overall success rate is the average of the success rates of all individual tasks. A trial is considered
successful if its score is greater than zero and no error message is generated.

Let T be the set of all tasks. The success rate for a single task ¢, denoted as S Ry, is the proportion of
successful trials for that task. The overall success rate is then:

1
Overall Success Rate = m Z SR, (B3)
teT

B.3 PassQk

The pass@Qk [31]] metric evaluates the probability that at least one out of k trials for a given task
succeeds. It is a valuable metric for assessing the likelihood of achieving a correct solution within a
limited number of attempts. The overall passQF is the average of the task-specific pass@¥k values.

For a single task, let n be the total number of trials and ¢ be the number of successful trials. The
probability of a single trial succeeding is p = ¢/n. The pass@k is then calculated as:

k
pass@k =1— (1 —p)k =1— (1 - 5) (B4)
n
The overall pass@Xk is the average of this value across all tasks:
1
Overall pass@k = m Z pass@k; (BS)

teT

B4 Passk

The pass”k (pass-hat-k) metric [31]] measures the probability that all % trials for a given task succeed.
This metric is a stricter evaluation of reliability and consistency. The overall pass”k is the average of
the task-specific pass™k values.

Using the same notation as for pass@Fk, the pass”k for a single task is given by:

k
pass"k = p* = (£> (B6)
n
The overall pass™k is the average of this value across all tasks:
1
Overall pass"k = m Z pass”k B7)
teT

B.5 Token Usage

To measure the computational cost, we record the token usage for each trial. The total token usage is
the sum of tokens consumed across all trials in the benchmark. This can be broken down into prompt
tokens, completion tokens, and total tokens.

B.6 Tool Call Statistics

We also track the usage and success of tool calls made by the agent. This includes the total number
of successful and failed tool calls across all trials and tasks. For failed tool calls, the failure is
also classified to invalid_tool (invalid tool name), invalid_args (invalid tool arguments) or
execution_error (error in executing the tool).

B.7 Duration Metrics

We measure various aspects of the benchmark’s execution time:

¢ Total Tool Execution Duration: The sum of the execution time for all tool calls across all
trials.

* Overall Average Trial Duration: The average duration of a single trial across all tasks.

» Total Duration: The total time taken to run all trials for all tasks in the benchmark.

12

398

399
400
401
402
403
404

C Corral framework and API Routes

Agents @ ReAct Corral server
W x Tera] Task group
. calling «— Task 1 Task 2
‘ ' "~ -
i & Planner sy
e task prompt e task prompt
I e score() e score()
O R S tools tools
o e > =
° report @ = @
code data web lab
Corral runner execution retriever search verification

RESTful API calls ==+ can easily add more

Figure C.1: Illustration of the Corral framework. The architecture is composed of the Corral
server (implementing the environment dynamics), agents (the policies), and the Corral runner
(orchestrating the agent-environment interaction over a series of tasks).

To facilitate interaction between the agent and the environments, we have developed a benchmark
server with a RESTful API. This server exposes a set of endpoints that allow the agent to retrieve
task information, interact with the provided tools, and submit its final answer. The API is designed
to be clear, consistent, and stateless, adhering to the principles of REST. The available endpoints
are detailed in Table @ Each endpoint is described with its HTTP method, URL path, a brief
description of its functionality, and any relevant path or query parameters.

Table C.1: Benchmark Server API Endpoints. The table specifies all
the endpoints that the server hosting the environments admits.

Method Path Description
Task and Environment Discovery
GET /tasks Retrieves a list of all available task IDs in the
benchmark.
GET /dependency_chain Indicates whether any tasks in the benchmark are
part of a dependency chain.
GET /tasks/{task_id}/ Fetches the specific prompt for a given task. The
prompt {task_id} is a path parameter representing the

unique identifier for the task.

GET /tasks/{task_id}/guide Returns the complete environment guide for a
task, including the prompt and a detailed descrip-
tion of the available tools. Accepts an optional
verbosity query parameter (e.g., MINIMAL or
WORKFLOW) to control the level of detail in the tool
descriptions.

Tool Interaction and Introspection

GET /tasks/{task_id}/tools Returns a structured JSON object detailing the
available tools for a task, compatible with function-
calling APIs. The level of detail in the argument de-
scriptions is controlled by the optional verbosity
query parameter.

13

405

406
407
408
409
410
411
412

413

414

415

416

417

418

419
420

421
422

423

424
425

426

427

Table C.1 continued from previous page

Method Path Description
GET /tasks/{task_id}/ Provides a guide to the tools available for a specific
tools/guide task. Also accepts the optional verbosity query
parameter.
POST /tasks/{task_id}/ Executes a specified tool with the provided argu-
tools/execute ments within the task’s environment. The tool

name and arguments are sent in the request body.

State Management and Task Submission

GET /tasks/{task_id}/state Retrieves the current state of the specified task
environment.
POST /tasks/{task_id}/ Submits a final answer for the task. The submit-
submit ted answer is in the request body. The response
includes the score and the final state of the trial.
GET /tasks/{task_id}/ Gets the completion status of a task, including
status whether it is completed, the final score, the submit-
ted answer, and tool usage statistics.
GET /tasks/{task_id}/ Retrieves the states of all trials that have been run
trials for a specific task.
GET /tasks/{task_id}/ Fetches the state of a specific trial for a given task,
trials/{trial_id} identified by its unique {trial_id}.

D Structured Tool Descriptions and Verbosity Levels

To systematically ablate the information provided to the agent, we developed a structured, tag-based
format for all tool docstrings. This allows us to programmatically control the content of the tool
descriptions presented to the LLM at different verbosity levels. When a new tool is developed, its
function docstring is written once in a comprehensive, structured format. During the setup of a
benchmark run, our framework dynamically parses this complete docstring. Based on the selected
verbosity strategy (e.g., BRIEF, WORKFLOW), it then filters and formats the content to generate the
precise, tailored tool description that will be exposed to the agent.

D.1 Documentation Tags

Each part of the tool’s documentation is enclosed in a specific tag, allowing for granular filtering.
The primary tags used are:

[BRIEF] A single-sentence, high-level summary of the tool’s function.

[DETAILED] A more thorough explanation of what the tool does and how it works internally.
[PROCEDURAL] Guidance on when and why to use the tool in a problem-solving process.

[CONTEXTUAL] Information about the tool’s operational context, such as its dependencies or data
sources.

[WORKFLOW_INTEGRATION] An explicit, structured guide on how the tool fits into a multi-step plan,
outlining prerequisites, the current action, and follow-up steps.

[SYNTACTICAL] Concrete, valid usage examples of the tool’s syntax.

[RAISES] A list of potential exceptions or errors the tool might raise, including conditions and
recovery suggestions.

[LIMITATIONS] Known limitations or edge cases where the tool might not perform as expected.

[EXAMPLES] Illustrative examples, often for arguments or return values.

14

428

429
430

431
432

433
434

436
437

438

439
440
441

442

443

D.2 Verbosity Levels

Our ablation studies focus on three distinct verbosity levels, which are constructed by including
content from a specific subset of the tags described above.

e BRIEF: Includes only content from the [BRIEF] tags. This provides the agent with the most
minimal functional description.

* WORKFLOW: Includes content from [BRIEF], [DETAILED], [PROCEDURAL],
[CONTEXTUAL], and [WORKFLOW_INTEGRATION]. This level is designed to give the
agent rich strategic and operational context.

* COMPREHENSIVE: Includes all available tags. This level equips the agent with complete
knowledge for robust execution, including syntax, error handling, and limitations.

D.3 Example: The get_structure_from_mp_text Tool

The following examples demonstrate the exact text shown to the agent for the same tool at each of the
three verbosity levels. Note that the descriptive tags themselves are filtered out, and only the enclosed
content is presented.

Example: BRIEF Verbosity Description

Retrieve a pymatgen structure from Materials Project using its API and return CIF content as
text.

Args:
mp_id: Materials Project identifier string.
Returns:

str: CIF content string containing the crystal structure data.

Example: WORKFLOW Verbosity Description

Retrieve a pymatgen structure from Materials Project using its API and return CIF content as
text.

This tool connects to the Materials Project database to download crystal structure data for a
given material ID. It retrieves the structure object and converts it to CIF (Crystallographic
Information File) format, which is the standard format for storing crystal structure information.
CIF is then returned as string

When to use: Use when you need to retrieve bulk crystal structures from the Materials Project
database. Best suited for materials with known MP IDs. Usually first step in simulation
workflows. Recommended for obtaining crystal structures for preparing bulk structures,
supercells, bulk cells, slabs etc. Avoid when you need multiple structures.

How this tool works: Connects to Materials Project API using authentication key. Searches
for the specified material ID (MP ID) in the database (MP ID is given as input parameter
or if other tools are available to search for MP ID based on available information, then use
those tools). Retrieves the pymatgen Structure object containing atomic positions and lattice
parameters. Converts the structure to CIF format string for compatibility with other tools.
Returns standardized crystallographic data suitable for further processing.

Workflow: 1. [PREREQUISITE] Ensure that the other more specific tools are not suitable
and you dont have to retrieve multiple structures 2. [CURRENT] Apply this tool with a valid
MP ID to retrieve bulk structure 3. [FOLLOW_UP] Use the CIF output with slab generation
tools like enumerate_slabs_text to create slab structures

15

Args:

mp_id: Materials Project identifier string. The unique identifier used by Materials Project
to catalog materials. Should be in the format "mp-XXXXX" where XXXXX is
a numerical ID. This ID corresponds to a specific material entry in the Materials
Project database.

Returns:

str: CIF content string containing the crystal structure data. A properly formatted CIF
(Crystallographic Information File) string containing all necessary information about
the crystal structure, including lattice parameters, atomic positions, space group,
and symmetry operations. This format is widely compatible with crystallographic
software and other structure analysis tools.

444 J

Example: COMPREHENSIVE Verbosity Description

Retrieve a pymatgen structure from Materials Project using its API and return CIF content as
text.

This tool connects to the Materials Project database to download crystal structure data for a
given material ID. It retrieves the structure object and converts it to CIF (Crystallographic
Information File) format, which is the standard format for storing crystal structure information.
CIF is then returned as string.

When to use: Use when you need to retrieve bulk crystal structures from the Materials Project
database. Best suited for materials with known MP IDs. Usually first step in simulation
workflows. Recommended for obtaining crystal structures for preparing bulk structures,
supercells, bulk cells, slabs etc. Avoid when you need multiple structures.

How this tool works: Connects to Materials Project API using authentication key. Searches
for the specified material ID (MP ID) in the database...

Workflow: 1. [PREREQUISITE] Ensure that the other more specific tools are not suitable... 2.
[CURRENT] Apply this tool with a valid MP ID to retrieve bulk structure 3. [FOLLOW_UP]
Use the CIF output with slab generation tools...

Usage examples:
get_structure_from_mp_text("mp—149") # Silicon structure

get_structure_from_mp_text("mp-20066") # CO02 structure

Exceptions:

* ConnectionError: When unable to connect to Materials Project APL. Recovery:
Check internet connection and MP_API_KEY.

* KeyError: When the specified MP ID is not found. Recovery: Verify MP ID syntax
and existence on the Materials Project website.

Limitations:

 Limited to materials available in the Materials Project database.

* May not include the most recent experimental structures.
Args:
mp_id: Materials Project identifier string. The unique identifier used by Materials Project...

Should be in the format "mp-XXXXX"... Syntax: "mp-" followed by digits (e.g.,
"mp-149", "mp-20066"). Examples: "mp-149" (Silicon), "mp-20066" (CO2).

445

16

446

447

448
449
450
451
452

453
454

455
456
457
458
459
460
461
462

464
465
466
467
468
469
470
471
472
473
474
475

479

478
479
480
481

482
483

484
485
486
487
488
489
490
491

Returns:

str: CIF content string containing the crystal structure data. A properly formatted CIF
string containing all necessary information... Example:

generated using pymatgen

data_Si

_symmetry_space_group_name_H-M P 1°
_cell_length_a 3.83996459

E Corral Framework Usage Examples

The Corral framework is built using such a modular design that is simple to implement agents,
add new environments, and run the benchmark. For example, the code block below shows how to
benchmark an agent using the Corral framework. It needs to set up the environment, create a logger
for tracking experiments, and then run a benchmark with an agent, outputting the results such as the
overall score.

from corral.evaluate import BenchmarkInterface, MatAgentBenchmark
from corral.agents.react import ReActAgent
from corral.report import CorralWandbLogger

Setup environments server running
interface = BenchmarkInterface("http://localhost:8000")

Setup the WandB logger

wandblogger = CorralWandbLogger (
project="corral",
group="experiment_group",
name="run_name",

)

Setup the agent
agent = ReActAgent (model="gpt-40", max_iterations=10, temperature=0.1)

Run benchmark
runner = MatAgentBenchmark (interface, agent, logger=wandblogger)

result = runner.bench()

print (f"Overall score: {result.total_score:.2f}")

The next code block focuses on setting up and running a Corral environment server. In it, a custom
environment is defined by implementing the Environment class, specifying the task, problem, and
expected answer. The server is then created to host the benchmark tasks and make them accessible to
agents for evaluation.

from corral.base import Environment
from corral.server import create_benchmark_server

class MyEnvironment (Environment) :
def __init__(self, task_id: str, problem: str, answer: str):
self .problem = problem
self.correct_answer = answer

super () . __init__(task_id)

17

492

494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

818

520
521
522

523
524

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

849

542

544

545
546

547

549
550
551
552

Add your tools
self.add_tool(my_custom_tool)

def get_task_prompt(self) -> str:
return f"Solve this problem: {self.probleml}"

def score(self) -> float:
if self.state.submitted_answer is None:
return 0.0
return 1.0 if self.state.submitted_answer == self.
correct_answer else 0.0

Define your tasks

environments = {
"task_1": MyEnvironment ("task_1", "Problem 1", "Answer 1"),
"task_2": MyEnvironment ("task_2", "Problem 2", "Answer 2"),
}
Create server
if __name__ == "__main__":
app = create_benchmark_server (environments)

import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8000)

Similarly, the code block below demonstrates how to create a custom agent within the Corral
framework. To that, one can define a custom agent class that extends BaseAgent and implement the
logic for the agent’s task processing. This agent interacts with the benchmark interface to retrieve
task information and use tools to solve problems.

from corral.agents.base_agent import BaseAgent
from corral.evaluate import BenchmarkInterface

class MyAgent (BaseAgent):
def __init__(self, model: str, x*kwargs):
super () . __init__(model, #**kwargs)

Add your agent-specific initialization
def run(self, interface: BenchmarkInterface, task_id: str) -> str:
Get task information

guide = interface.get_task_guide(task_id)

Your agent logic here
Use interface.execute_tool () to call tools

return "Your final answer"

Lastly, the next code block defines a custom tool for the environment,
calculate_molecular_weight, which can be used by agents to perform specific tasks, in
this case, calculating the molecular weight of a given chemical formula.

from corral.utils import tool

Qtool
def calculate_molecular_weight(formula: str) -> float:
"""[BRIEF]Calculate molecular weight from chemical formula. [/
BRIEF]

18

563

564
565

566

568
569
570
571
572
573
574

576
577
578
579
580
581
582

583
584
585
586
587
588
589

590
591
592
593
594
595

596
597

598

599
600

Args:
formula: Chemical formula (e.g., PH20 7, ’CH4’)

Returns:

Molecular weight in g/mol
Implementation here
pass

F Detailed Environment Descriptions

We compiled four expert-curated environments, with over 35 domain-specific tools, and over 20
specialized scoring functions.

F.1 Overview of the Environments

We implement multiple environments, covering diverse problems in chemistry and materials research.

Spectra Spectroscopic analysis is a fundamental technique in chemistry for determining the
structure of unknown compounds, using data from methods such as nuclear magnetic resonance
(NMR), infrared (IR) spectroscopy, or mass spectrometry (MS). This environment evaluates LLM
agents on the task of molecular structure elucidation from spectroscopic data, requiring them to plan
the experiments and output a valid SMILES representation of the compounds. This environment
mimics a virtual lab where the agent has to first plan what experiments to run, then propose different
molecular hypotheses based on the different experiments that it performs, validate those hypotheses,
and finally return the valid elucidated molecular structure.

MD MD simulations are widely used to study the atomic-scale behavior of materials, providing
information on structural, thermal, and mechanical properties at timescales that are difficult to access
experimentally [32]. The MD environment explores the ability of agents to use this technique with
the software LAMMPS [33]]. Agents in this environment can retrieve atomic structures from MP [34]],
write LAMMPS input scripts, and perform simulations to compute target properties. While the
implementation is shared, we define three separate environments based on the task being performed:
Surface Energy, Melting, and Quenching simulations.

OpenCatalyst This environment is inspired by the Open Catalyst Project computational work-
flow [35]]. Catalysis plays a pivotal role in addressing critical global challenges, including renewable
energy generation (e.g., fuel cells, solar fuels) and sustainable chemical production (e.g., ammonia
synthesis). The discovery of novel catalysts is challenging due to the vast chemical space and diversity
of possible surfaces, terminations, adsorption sites, and adsorbate orientations. This environment
evaluates agents on performing the key and early steps of a typical catalysis simulation pipeline,
which is to create a catalyst slab-adsorbate configuration.

ML ML models are increasingly used in materials science to accelerate property predictions and
reduce reliance on costly first-principles simulations or experiments. This environment evaluates
agents on constructing and training an XGBoost model [36] to predict the formation energies of
oxide, nitride, and sulphide polymorphs using data from MP. Agents must retrieve relevant crystal
structures, curate polymorph datasets, perform feature engineering, train, and evaluate the model with
both test set metrics and cross-validation, and save the results in a structured format.

Below, we provide detailed descriptions of each environment, including associated tasks and scoring
functions used to evaluate agent performance.

F.2 Spectra

This environment simulates a virtual lab, providing tools to run various experimental analyses, such
as carbon or proton NMR. The scoring function of the single task is simply comparing the smiles to

19

601
602

603

604
605
606
607

check if they correspond to the same molecule. The different scoring functions of the chained tasks
correspond to counting the number of certain atoms, some functional groups, etc.

F.2.1 Tools

Note that for the experimental tools in the SPECTRA environment, no arguments are required. This is
because agents are prompted in an environment in which the sample at hand is already loaded into
the experimental equipment. For the actual “experimental” tools, we used simulation tools available
through API services [37, 38}, (39} 40]

Table F.2: Spectra Tools. The table describes each tool available in the
spectra environment, including its arguments, return values, and potential
erTors.

Tool

get_formula_from_smiles

Arguments: smiles (string): SMILES representation of a molecule.

Return: Generates the chemical formula of the molecule in Hill notation (C, H, then
alphabetical order). Uses RDKit to parse the SMILES string and compute the
formula. Returns a string formula if successful, or an error message if the SMILES
is invalid.

Raise: Raises Exception for unparseable SMILES strings.

search_by_smiles

Arguments: smiles (string): SMILES representation of the compound to search for in
the NMRShift database.

top_k (int, optional, default 10): Maximum number of results to return.
Return: Searches the NMRShift database for entries matching or chemically similar to the
provided SMILES. Returns a list of dictionaries containing relevant information
about each compound, such as SMILES, chemical shifts, and other properties.
Results are sorted by similarity score in descending order.

Raise: Raises Exception if the search fails or if top_k is invalid.

retrieve_aromatic_protons_shifts

Arguments: None

Return: Retrieves the proton chemical shift ranges for aromatic hydrocarbons. Returns a
string representation of a list of dictionaries, each containing the type of proton
(e.g., aldehyde, aromatic, alkene) and its corresponding chemical shift range in
ppm relative to TMS.

Raise: No exceptions are raised.

retrieve_carbon_shifts

Arguments: None

Return: Retrieves the carbon chemical shift ranges for various functional groups in or-
ganic compounds. Returns a string representation of a list of dictionaries, each
containing the functional group (e.g., CH; —, R;C —, =CH, Ketones, Aldehydes)
and its corresponding chemical shift range in ppm relative to TMS.

Raise: No exceptions are raised.

20

Tool

carbon_nmr_spe ctra

Arguments: None

Return: Measures the 'C NMR spectra for the given sample using the
get_c13_nmr_prediction function. Returns the 'C NMR spectra as a
string in ACS-inspired publication format.

Raise: Raises an exception if an error occurs during measurement.

proton_nmr_spectra

Arguments: None

Return: Returns the 'H NMR spectra for the given compound using the
get_h_nmr_prediction function. Provides the 'H NMR spectra as a string
following ACS-inspired publication format.

Raise: Raises an exception if an error occurs during measurement.

ir_spectra

Arguments: None

Return: Returns the IR spectra for the given compound using the get_ir_prediction
function. Provides the IR spectra as a string following standard IR notation.

Raise: Raises an exception if an error occurs during measurement.

hsqc_nmr_spectra

Arguments: None

Return: Returns the HSQC (Heteronuclear Single Quantum Coherence) NMR spectra for
the given compound by making an external API call and formatting the result in
standard NMR notation.

Raise: Raises an exception if an error occurs during measurement or if the HSQC spectrum
is unavailable.

mass_spectrometry_spectra

Arguments: None

Return: Returns the mass spectrometry spectra for the given compound using Electrospray
Ionization (ESI) by making an external API call. Outputs the spectrum in the
formatm/z value (intensity),

Raise: Raises an exception if an error occurs during measurement or if the SMILES string
is invalid.

retrieve_isotope_distribution

Arguments: None

Return: Returns a predefined dictionary containing the isotopic distribution of common
elements in organic chemistry (C, H, S, Cl, Br, I, F, N, O).

Raise: No calculations or API calls are performed; values are typical for organic com-
pounds.

21

Tool

retrieve_dbe_formula

Arguments: None

Return: Returns the formula for calculating the Double Bond Equivalent (DBE), also
known as Degree of Unsaturation (DU) or Index of Hydrogen Deficiency (IHD).

Raise: No exceptions are raised.

obtain_isomers

Arguments: smiles (string): SMILES representation of the compound.

Return: Retrieves structural isomers for a given compound using its SMILES representa-
tion. Uses a remote function to query the PubChem database and return a list of
SMILES strings for compounds with the same molecular formula.

Raise: Returns an empty list if no isomers are found.

obtain_isomers_from_molecular_formula

Arguments: molecular_formula (string): Molecular formula of the compound.

Return: Retrieves structural isomers for a given molecular formula. Uses a remote
function to query the PubChem database and return a list of SMILES strings
for compounds with the same molecular formula.

Raise: Returns an empty list if no isomers are found.

validate_smiles

Arguments: smiles (string): SMILES representation of the compound.

Return: Validates a SMILES string to check if it represents a valid chemical structure.
Returns True if the conversion is successful (valid SMILES) and False otherwise.

Raise: No exceptions are raised.

eos F.2.2 Scoring Functions

609 The scoring functions for the SPECTRA environment are described in Table [F3] Note that the
610 score_molecule function is the one used to score the single task.

Table F.3: Spectra scoring functions. The table describes each scoring
function, including its arguments, return values, and behavior.

Function

score_molecule

Arguments: prediction (str, SMILES): Predicted SMILES string.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Returns 1.0 if the canonical SMILES match, ignoring stereochemistry, otherwise
0.0.

score_molecule_fragments

22

Function

Arguments: prediction (list[str] or str): Predicted fragments (list or string).
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Returns 1.0 if all predicted fragments are substructures of the ground truth
molecule, otherwise 0.0.

score_formula_match

Arguments: prediction (str, formula): Predicted molecular formula.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Returns 1.0 if predicted molecular formula matches the ground truth formula,
otherwise 0.0.

validate_dbe_consistency

Arguments: prediction (int): Predicted degree of unsaturation (DBE).
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Returns 1.0 if predicted DBE matches calculated DBE from SMILES, otherwise
0.0.

score_isotopic_distribution

Arguments: prediction (list[str], element symbols): Predicted isotopic distribution of
elements.

ground_truth (str, SMILES): Ground truth SMILES string.

Return: Returns 1.0 if predicted elements with isotopic distributions match those in the
molecule, otherwise 0.0.

score_num_hydrogen_symmetry_classes

Arguments: prediction (int): Predicted number of hydrogen symmetry classes.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Counts unique hydrogen symmetry classes using canonical ranking. Returns 1.0
if predicted count matches, otherwise 0.0.

score_num_carbon_symmetry_classes

Arguments: prediction (int): Predicted number of carbon symmetry classes.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Counts unique carbon symmetry classes using canonical ranking. Returns 1.0 if
predicted count matches, otherwise 0.0.

score_num_aromatic_carbons

Arguments: prediction (int): Predicted number of aromatic carbons.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Counts aromatic carbons in the molecule. Returns 1.0 if predicted count matches,
otherwise 0.0.

23

Function

score_num_ch3_groups

Arguments: prediction (int): Predicted number of CH3 (methyl) groups.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Counts CH3 groups (methyl) in the molecule. Returns 1.0 if predicted count
matches, otherwise 0.0.

score_num_carbonyl_groups

Arguments: prediction (int): Predicted number of carbonyl groups.
ground_truth (str, SMILES): Ground truth SMILES string.

Return: Counts carbonyl groups (C=0) in the canonical tautomer of the molecule. Re-
turns 1.0 if predicted count matches, otherwise 0.0.

611 F.2.3 Tasks and Subtasks

s12 Here, we present the prompts for a single task along with its associated subtasks. The structure and
613 format are consistent across other tasks within the SPEcTRA environment. Note that for these tasks,
614 there are no input parameters since the different machines are already configured.

Organic Compound Analysis

Analyze the provided organic compound sample in a lab environment and output the SMILES
string, while minimizing resource consumption due to the costly nature of the process.

Subtask 1: Molecular Formula

State the molecular formula for the compound analyzed.

Subtask 2: Double Bond Equivalents (DBE)

Calculate the Double Bond Equivalents (DBE) for the compound analyzed. Provide
your answer as an integer.

Subtask 3: Identify Elements from Mass Spectrum

Based on the isotope distribution patterns visible in the mass spectrum, list all
elements that can be definitively identified. Format your answer as a list of element
symbols: [Element]; Element2; Element3].

Subtask 4: Chemically Equivalent Carbon Atoms

How many different types of chemically equivalent carbon atoms are present in this
compound? (Count the number of unique carbon environments, not the total number
of carbons)

615

24

616

617

618
619

621
622
623
624

625
626

627

628
629

Subtask 5: Chemically Equivalent Hydrogen Atoms

How many different types of chemically equivalent hydrogen atoms are present in
this compound? (Count the number of unique hydrogen environments, not the total
number of hydrogens)

Subtask 6: Aromatic Carbons Count

State the count of aromatic carbons in the molecule.

Subtask 7: Methyl Groups Count

How many methyl (CH3) groups are present in the sample’s molecule?

Subtask 8: Carbonyl Groups Count

Indicate the number of C=0 groups present in the molecule.

Subtask 9: SMILES for Connected Fragments

Return the SMILES strings for the connected fragments of the compound.

Subtask 10: Complete SMILES

Provide the SMILES string representing the compound in the sample.

F3 MD

We deploy the LAMMPS package using the Modal Inference serverless infrastructure [41]]. All
input/output operations and tool executions are integrated with the Modal platform. This gives the
flexibility to execute LAMMPS simulations without requiring local or cloud-based installation, and it
automatically provides computational resources at the time of running the simulation. Structure files
and potential files required for MD simulations are stored in separate volumes, which the agent can
access directly during execution. Table[F4]lists the types of potentials available to the agent and the
corresponding materials.

Table F.4: Potentials available to the agent.

Potential Type Applicable Materials
Embedded Atom Method (EAM) Aluminum, Magnesium, Copper
ReaxFF Silicon, Alpha-Quartz, Wollastonite

This environment provides the underlying implementation for three task environments: Surface
Energy, Melting Dynamics, and Quenching Dynamics.

F.3.1 Tools

Table[F-3 provides a detailed description of the tools used in the MD environment, including what their
arguments, return objects, and the possible exceptions raised.

25

Table E.5: Tools for the MD environment. The table describes each tool
available in this environment, including its arguments, return values, and
potential errors.

Tool
get_potential_metadata

Arguments: file_path (string): Path to the LAMMPS potential file.
Return: Returns structured metadata: potential type, supported elements, pair style.

Raise: Raises ValueError if file is unrecognized or empty.

get_structure_from_mp_text

Arguments: mp_id (string): Materials Project ID.
file_path (string): Destination path for the CIF file.

Return/Behavior: Retrieves crystal structure from Materials Project, saves CIF file, and
returns a confirmation message.

Raise: Raises Exception if retrieval or saving fails.

convert_structure_to_lammps_data

Arguments: structure_path (string): Path to the CIF file.
output_file (string): Output LAMMPS data path.
atom_style (string, optional, default “charge”): Atom style for LAMMPS
conversion.

Return/Behavior: Converts CIF to a LAMMPS .data file using the specified atom style.
Returns a confirmation message.

Raise: Raises Exception if the files are invalid or the atom style is unsupported.

run_lammps

Arguments: input_file (string): Path to the LAMMPS input script.

Return/Behavior: Runs LAMMPS simulation via a remote backend, generates a .log
file, and returns a success message with the log file path.

Raise: Raises ValueError for simulation errors or a generic Exception for unexpected
issues.

630 F.3.2 Scoring Functions

631 For each task environment, the ground truth is generated using predefined simulation parameters.
632 Agents are then evaluated by comparing their outputs against this ground truth, given the same
633 simulation parameters. For numerical outputs, a tolerance of 2% is applied to account for stochastic
634 variations in molecular dynamics (MD) simulations.

Table F.6: Scoring Functions in the MD environment. The table de-
scribes each scoring function available in this environment, including its
arguments, return values, and behavior.

Function

check_potential_file

26

635

636

637

638

Function

Arguments: target (string): Path to the reference potential file.

Return: Returns a scoring function. Checks if the result filename matches target and
verifies file existence via Modal. Returns 1.0 if both pass, otherwise 0.0.

check_numerical

Arguments: target (float): Expected numerical value.
tolerance (float): Allowed relative tolerance.
Return: Returns a scoring function. Parses the numeric result (string, JSON, or dict),

compares against target + tolerance, and checks associated file existence via
Modal. Returns 1.0 if all checks pass, otherwise 0.0.

check_structure

Arguments: target (string): Path to the reference LAMMPS .data file.
atom_style (string): LAMMPS atom style.

Return: Returns a scoring function. Reads remote LAMMPS .data result via Modal,
loads reference and result structures with pymatgen’s LammpsData, compares
using StructureMatcher. Returns 1.0 if structures match, otherwise 0.0. Tem-
porary files are automatically cleaned.

F.3.3 Tasks and Subtasks

Here we provide an example of a task and its associated subtask prompts for Aluminum in each task
environment. The prompt structure is similar for other materials.

Surface Energy of Aluminum

Calculate the surface energy of Aluminum for the given surface by removing periodic
boundary conditions in the given direction and computing the energy difference per unit
area between the relaxed bulk and the relaxed slab configuration. Use the Embedded Atom
Method (EAM) potential and the following simulation parameters. The simulation should
replicate the unit cell 5 times in each of the x, y, and z directions. Return the surface energy
in electronvolts/A? units.

Input Parameters:

{
"units": "metal",
"minimiser": "conjugate gradient",
"energy_tolerance": 1le-10,
"force_tolerance": 1e-10,
"maximum_iterations": 100000.0,
"maximum_evaluations": 100000.0,
"materials_project_id": "mp-134",
"direction": [0, O, 1],
"atom_style": "atomic"

}

27

639

Subtask 1 : Retrieve Aluminum Structure

Description: Retrieve structure of Aluminum and convert it to LAMMPS data format.
Return the absolute path of the final structure.

Input Parameters:

{

"materials_project_id": "mp-134",
"atom_style": "atomic"

}
Subtask 2 : Procure EAM Potential File

Description: Procure the appropriate Embedded Atom Method (EAM) potential file
for Aluminum for MD simulations. Return the absolute path to the potential file.

Input Parameters: None

Subtask 3 : Bulk Relaxation for Surface Energy

Description: Given paths to LAMMPS-compatible structure file and EAM potential
file, perform structure relaxation of Aluminum (5x5x5 replication). Report total
energy (eV) and saved path.

Input Parameters:

{
"units": "metal",
Ilpbcll: Iltruell’
"minimiser": "conjugate gradient",
"energy_tolerance": 1le-10,
"force_tolerance": 1e-10,
"maximum_iterations": le+b,
"maximum_evaluations": le+b,
"atom_style": "atomic"

}

Subtask 4 : Slab Relaxation for Surface Energy

Description: Create a slab by removing periodic boundary conditions along the given
direction, perform structure relaxation (5x5x5 replication). Report total energy (eV)
and saved path.

Input Parameters:

{

"units": "metal",

"minimiser": "conjugate gradient",
"energy_tolerance": 1le-10,
"force_tolerance": 1e-10,
"maximum_iterations": 1le+5,
"maximum_evaluations": le+b,
"atom_style": "atomic",
"direction": [0, 0, 1]

28

640

641

Subtask 5 : Surface Energy Calculation

Description: Compute surface energy from relaxed bulk and slab structures. Return
energy in eV/A2.

Input Parameters: None

Aluminum Melting Simulation

Simulate the melting of Aluminum by first equilibrating the system under NVT conditions,
then relaxing it under NPT conditions, followed by a heating stage under NPT where the
temperature is gradually increased to induce melting. Use the Embedded Atom Method
(EAM) potential and the given simulation parameters. The simulation should replicate the
unit cell 5 times in each direction. Report the final density of the system in g/cm?.

Input Parameters:

{
"units": "metal",
"PbC"Z |ltrue II,
"timestep": "1 femtosecond",
"nvt steps": 10000,
"nvt temperature": 300,
"nvt thermostat": "Nose-Hoover",
"npt relaxation steps": 10000,
"npt relaxation temperature": 300,
"npt relaxation pressure": O,
"npt relaxation thermostat": "Nose-Hoover",
"npt relaxation barostat": "Nose-Hoover",
"npt heating steps": 20000,
"npt heating initial temperature": 300,
"npt heating final temperature": 2000,
"npt heating pressure": O,
"npt_heating_thermostat": "Nose-Hoover",
"npt_heating_barostat": "Nose-Hoover",
"materials_project_id": "mp-134",
"atom_style": "atomic"

}
Subtask 1: Retrieve Aluminum Structure

Retrieve structure of Aluminum and convert it to LAMMPS data format. Return the
absolute path of the final structure.

Input Parameters:

{
"materials_project_id": "mp-134",
"atom_style": "atomic"

}

Subtask 2: Procure EAM Potential File

Procure the appropriate Embedded Atom Method (EAM) potential file for Aluminum
for MD simulations. Return the absolute path to the potential file.

Input Parameters: None

642

Subtask 3: NVT Equilibration

Given paths to LAMMPS-compatible Aluminum structure file and EAM potential
file, equilibrate the system under NVT conditions. Replicate the unit cell 5x5x5.
Return the absolute path of the equilibrated structure and final density (g/cm?).

Input Parameters:

{
"units": "metal",
Ilpbcll: Iltruell’
"timestep": "1 femtosecond",
"nvt steps": 10000,
"nvt temperature": 300,
"nvt thermostat": "Nose-Hoover",
"atom_style": "atomic"

| \T’

Subtask 4: NPT Relaxation

Given paths to NVT equilibrated Aluminum structure and EAM potential file, relax
the system under NPT conditions. Return the absolute path of the relaxed structure
and density (g/cm?).

Input Parameters:

{

"units": "metal",

"PbC": “true",

"timestep": "1 femtosecond",

"npt relaxation steps": 10000,

"npt relaxation temperature": 300,

"npt relaxation pressure": O,

"npt relaxation thermostat": "Nose-Hoover",
"npt relaxation barostat": "Nose-Hoover",
"atom_style": "atomic"

Subtask 5: NPT Heating / Melting Simulation

Given paths to NPT equilibrated Aluminum structure and EAM potential file, simulate
melting by heating under NPT to gradually increase temperature. Report the final
density (g/cm?).

Input Parameters:

{
"units": "metal",
“pr": lltrue n ,
"timestep": "1 femtosecond",
"npt heating steps": 20000,
"npt heating initial temperature": 300,
"npt heating final temperature": 2000,
"npt heating pressure": O,
"npt_heating_thermostat": "Nose-Hoover",
"npt_heating_barostat": "Nose-Hoover",
"atom_style": "atomic"

643

Aluminum Quenching Simulation

Simulate the quenching process of Aluminum by cooling its molten structure under NPT
conditions, followed by relaxation under NPT and NVT conditions. Use the Embedded Atom
Method (EAM) potential and the given simulation parameters. Report the final density of the

system in g/cm?3.

Input Parameters:

{

"path to molten structure": "/structures/task_30/
heatedsystem_3000_reax.dat",

"units": "metal",

Ilprll: Iltrue n s

"timestep": "1 femtosecond",

"npt quench steps": 20000,

"npt quench initial temperature": 2000,

"npt quench final temperature": 300,

"npt quench pressure": O,

"npt quench thermostat": "Nose-Hoover",

"npt quench barostat": "Nose-Hoover",

"npt relaxation steps": 10000,

"npt relaxation temperature": 300,

"npt relaxation pressure": O,

"npt relaxation thermostat": "Nose-Hoover",

"npt relaxation barostat": "Nose-Hoover",

"nvt steps": 10000,

"nvt temperature": 300,

"nvt thermostat": "Nose-Hoover",

"materials_project_id": "mp-134",

"atom_style": "atomic"

644

31

645

Subtask 1: Procure EAM Potential File

Input Parameters: None

Procure the appropriate Embedded Atom Method (EAM) potential file for Aluminum
for MD simulations. Return the absolute path to the potential file.

Input Parameters:

Subtask 2: NPT Quenching

Given paths to LAMMPS-compatible molten Aluminum structure and EAM potential
file, simulate the quenching process by cooling the molten structure under NPT
conditions. Return the absolute path of the cooled structure and the density in g/cm?.

{

"units": "metal",
Ilpbcll: lltruell’

"timestep":
"npt quench
"npt quench
n npt
n npt

steps": 20000,

quench pressure": O,
"npt quench thermostat":

"npt quench barostat":
"atom_style": "atomic"

"path to molten structure":
heatedsystem_3000_reax.dat",
"{ femtosecond",

initial temperature":
quench final temperature":

"Nose -Hoover",
"Nose -Hoover",

"/structures/task_30/

2000,
300,

structure and density (g/cm?).

Input Parameters:

}
Subtask 3: NPT Relaxation

Given paths to LAMMPS-compatible Aluminum structure and EAM potential file,
relax the structure under NPT conditions. Return the absolute path of the relaxed

{

"units": "metal",
Ilpbcll: Iltruell’

"timestep":
"npt relaxation
n npt
n npt
n npt
"npt relaxation barostat":
"atom_style": "atomic"

steps":

relaxation pressure':

"{ femtosecond",
10000,
relaxation temperature':

relaxation thermostat":

300,

0)

"Nose -Hoover",
"Nose -Hoover",

646

647

648

649
650

Subtask 4: NVT Relaxation

Given paths to LAMMPS-compatible Aluminum structure and EAM potential file,
relax the structure under NVT conditions. Report the final density (g/cm?).

Input Parameters:

{
"units": "metal",
"pr": Iltruell’
"timestep": "1 femtosecond",
"nvt steps": 10000,
"nvt temperature": 300,
"nvt thermostat": "Nose-Hoover",
"atom_style": "atomic"
}

F.4 OpenCatalyst
F4.1 Tools

The tools of the OPENCATALYST environment are described in Table [F77} These tools are highly based
on functions from the Pymatgen package [42].

Table F.7: OpenCatalyst tools. This table describes each tool available
in the environment, including its arguments, return values, and potential
errors.

Tool

get_structure_from_mp_text

Arguments: mp_id (string): Materials Project identifier string. The unique identifier
used by Materials Project to catalog materials, in the format “mp-XXXXX”.

Return: Returns a CIF content string containing the crystal structure data, including lattice
parameters, atomic positions, space group, and symmetry operations.

Raise: ConnectionError: If unable to connect to the Materials Project API due to
network issues or server downtime.
KeyError: If the specified MP ID is not found in the database, indicating an
invalid or non-existent material ID.
AuthenticationError: If the API key is invalid or missing, preventing access
to the Materials Project database.

enumerate_slabs_text

33

Tool

Arguments: bulk_cif (string): Bulk crystal structure in CIF string format.
miller_index (tuple): Miller indices for surface orientation. Defaults to
(1,1,1).
min_slab_size (float): Minimum slab thickness in Angstroms. Defaults to 12.
min_vacuum_size (float): Minimum vacuum layer thickness in Angstroms.
Defaults to 5.
Return: Returns a JSON string mapping slab indices to their CIF representations.

Raise: ValueError: If CIF string is malformed or parameters are invalid.
StructureError: If slab generation fails for the given structure.

choose_slab_text

Arguments: slabs_json (string): JSON string mapping slab keys to CIF strings. A
JSON-formatted string containing a dictionary where keys are slab identifiers
(e.g., “slab_07, “slab_1"") and values are the corresponding CIF strings.
index (int, optional): Index of the slab to select. Defaults to 0. The numerical
index of the slab to select from the JSON dictionary.

Return: Returns a CIF string for the selected slab, containing atomic positions, lattice
parameters, and other crystallographic information.

Raise: ValueError: Raised if the specified slab index is not found in the JSON dictio-
nary.
JSONDecodeError: Raised if the slabs_json string is not valid JSON.

get_adsorption_sites_text

Arguments: slab_cif (string): CIF string of the surface slab structure, including atomic
positions, lattice parameters, and surface geometry.

Return: Returns a JSON string containing classified adsorption sites with fractional
coordinates.
Raise: ValueError: If the CIF string is malformed or doesn’t represent a valid slab.

StructureError: If the slab structure cannot be analyzed for adsorption sites
due to geometric issues.

choose_adsorption_site_text

Arguments: adsorption_sites_json (string): A valid JSON string containing clas-
sified adsorption sites, where keys are site types (e.g., “ontop”, “bridge”,
“hollow”) and values are lists of fractional coordinates.
site_type (string): The type of adsorption site to select (e.g., “ontop”, “bridge”,
“hollow”).
index (integer, optional): The index of the site to select within the specified site
type. Defaults to 0.

Return: Returns a list of three floating-point numbers representing the fractional coordi-
nates [X, y, z] of the selected adsorption site.
Raise: ValueError: If the specified site_type is not found in the JSON string.
IndexError: If the specified index is out of range for the available sites of the
specified site_type.
JSONDecodeError: If the adsorption_sites_json string is not valid JSON.

34

Tool

add_adsorbate_to_slab_text

Arguments: slab_cif (string): CIF string of the surface slab structure.
adsorbate_cif (string): CIF or XYZ string of the adsorbate molecule structure.

height (float, optional): Height in Angstroms above the surface for adsorbate
placement (default is 2.0).

site (list of floats or None, optional): Fractional coordinates for adsorbate
placement [x, y, z], or None to auto-select site (default is None).
Return: Returns a CIF string of the combined surface-adsorbate structure.

Raise: ValueError: If CIF strings are malformed or the adsorbate cannot be parsed.
StructureError: If adsorbate placement fails due to geometric constraints.
RuntimeError: If no adsorption sites are found on the surface.

65t F.4.2 Scoring Functions

52 Table[F.8|describes the different scoring function used for scoring the OPENCATALYST environment
653 within the Corral environment.

Table F.8: OPENCATALYST scoring functions, their arguments, and return
values.

Function

resolve_path

Arguments: path_or_str (str): Path or string to resolve.

Return: Returns the resolved path as a string.

check_valid_json_file

Arguments: json_path (str): File path to the JSON file.
Return: Returns 1.0 if a valid, non-empty JSON file exists at the path; otherwise, 0.0.

check_slabs_json

Arguments: slabs_json (str): JSON string or file path containing slab data.

Return: Returns 1.0 if the JSON contains at least one valid slab (parsable CIF); otherwise
0.0.

check_mp_structure

Arguments: path_or_cif (str): CIF string or file path.

Return: Returns 1.0 if a valid CIF structure from Materials Project; otherwise, 0.0.

check_slab_structure

Arguments: path_or_cif (str): CIF string or file path.
Return: Returns 1.0 if a valid slab structure; otherwise, 0.0.

35

654

655
656

657

Function

check_co2_molecule_structure

Arguments: path_or_cif (str): CIF string or file path.

Return: Returns 1.0 if the structure contains exactly one CO, molecule (1 C, 2 O atoms);
otherwise, 0.0.

check_adsorption_structure

Arguments: slab_elements (list[str]): List of slab elements.
adsorbate_elements (list[str]): List of adsorbate elements.

Return: Returns a scoring function that scores 1.0 if the structure contains both slab and
adsorbate elements; otherwise, it scores 0.0.

check_adsorption_sites

Arguments: sites_json_or_path (str): JSON string or file path containing adsorption
sites.

Return: Returns 1.0 if the adsorption sites JSON contains at least one recognized site type
with valid 3D coordinates; otherwise, 0.0.

F.4.3 Tasks and Subtasks

Here we provide an example of a task and its associated subtask prompts for CO, adsorption on
Cu,0. The prompt structure is similar for other compounds.

CO, Adsorption on Cu,0O Slab

Create a CO, adsorbed structure on a Silicon/Cu;, O slab. Submit the path to the final combined
structure CIF file.

Input Parameters:

{
Ilmp_idll: |lmp_149"’
"co2_mp_id": "mp-644607",
"miller_index": [1, 1, 11,
"min_slab_size": 12,
"min_vacuum_size": 5,
"slab_index": O,
"site_type": "ontop",
"site_index": O,
"height": 2.0

}

36

658

Subtask 1: Retrieve Bulk Structure

Retrieve structure of Cu,O from Materials Project and save it as a CIF file. Submit
the path to the CIF file.

Input Parameters:

{

"mp_id": "mp-361"

| ‘TI

Subtask 2: Enumerate Slabs

Enumerate possible slabs from the bulk Cu,O structure and save the result as a JSON
file. Submit the path to the JSON file.

Input Parameters:

{
"miller_index": [1, 1, 17,
"min_slab_size": 12,
"min_vacuum_size": 5

Subtask 3: Select Slab

| LH

Choose one slab from the enumerated slabs (by index) and save it as a CIF file.
Submit the path to the CIF file.

Input Parameters:

{

"index": O

Subtask 4: Retrieve CO, Molecule

| LVJ

Retrieve CO, molecule structure from Materials Project and save it as a CIF file.
Submit the path to the CIF file.

Input Parameters:

{

"mp_id": "mp-644607"

Subtask 5: Determine Adsorption Sites

| LVJ

Determine possible adsorption sites on the chosen slab and save the results as a JSON
file. Submit the path to the JSON file.

Input Parameters: None

37

659

660

661

662

Subtask 6: Select Adsorption Site

Choose one adsorption site (preferably ontop site) from the identified sites and save
the coordinates to a file. Submit the path to the file.

Input Parameters:

{

"site_type": "ontop",
"index": O

}
Subtask 7: Place CO, on Slab

Place the CO, molecule on the chosen slab at the specified adsorption site with a

height of approximately 2.0 A and save the combined structure as a CIF file. Submit
the path to the CIF file.

Scoring Parameters:

{
"slab_elements": ["Cu", "0"],
"adsorbate_elements": ["C", "0"]
}
F5 ML

F.5.1 Tools

Table [F.9]shows the different tools available for the agents when working in the ML environment.

Table F.9: ML tools, their arguments, and return values.

Tool

get_bulk_polymorphs_data

Arguments: composition (string): Chemical formula specifying the composition for
which polymorphs should be retrieved. Should follow standard chemical
notation (e.g., TiO,, Al,03).

Return: Returns a JSON string containing comprehensive polymorph data, sorted by
energy above hull. The data includes properties like Materials Project ID, CIF
structure, energy above hull, formation energy per atom, band gap, density, volume,
number of sites, space group, and stability information.

Raise: KeyError: Raised when the specified composition is not found in the database.
ValueError: Raised when the Materials Project API key is not available.

ConnectionError: Raised when there is a failure to connect to the Materials
Project APL

get_bulk_polymorphs_data_to_file

Tool

Arguments: composition (string): Chemical formula specifying the composition for
which polymorphs should be retrieved. Example: TiO, (titanium dioxide),
"Al203" (aluminum oxide).

save_path (string or None): Path where JSON data will be saved. Must include
the filename with . json extension. If None, an error is raised.

Return: Returns the file path where polymorph data was saved in JSON format.

Raise: ValueError: If save_path is None or API key is missing.

I0Error: If unable to write to the specified file path (e.g., directory does not
exist or is not writable).

batch_retrieve_polymorphs

Arguments: compositions (list of strings): List of chemical compositions to retrieve

polymorphs for.

max_energy_above_hull (float, optional): Maximum energy above hull
threshold in eV/atom. Defaults to 0.5.

max_per_composition (int, optional): Maximum number of polymorphs per
composition. Defaults to 10.

save_directory (string, optional): Directory path for saving individual com-
position files. Defaults to “polymorph_data”.

work_dir (string, optional): Working directory for the tool (hidden argument).

Return: Returns a JSON string containing batch retrieval results and statistics, including
successful and failed compositions, total number of polymorphs, and file paths for
each composition.

Raise: Raises ValueError if parameters are invalid (negative energy, zero
max_per_composition). Raises IOError if unable to create the save directory or
write files.

sort_and_get_first_from_json

Arguments: polymorph_data_json (string): JSON string containing the data to be
sorted, structured as a list of dictionaries with numerical properties for sort-
ing.

sort_key (string): Property name to sort the data by (e.g., “energy_above_hull”,

CEINT3

“band_gap”, “density”).
return_key (string): Property name to return from the first element after sorting
(e.g., "material_id", "cif").
Return: Returns the value of the specified return_key from the first element after sorting.

Raise: JSONDecodeError: If the polymorph_data_json is not valid JSON.
KeyError: If sort_key or return_key are not found in the data.
IndexError: If the JSON data is empty or contains no elements.

select_polymorphs_with_strategy

39

Tool

Arguments: polymorphs_data (string): JSON string or file path containing polymorph
data.

selection_strategy (string, optional): ‘“diverse_energy”, “most_stable”,
or “diverse_structure” to determine selection method. Defaults to “di-

"

verse_energy"”.

max_polymorphs (int, optional): Maximum number of polymorphs to select.
Defaults to 5.

energy_threshold (float, optional): Maximum energy above hull in eV/atom.
Defaults to 0.5.

is_path (bool, optional): Whether polymorphs_data is a file path. Defaults
to False.

Return: Returns a JSON string containing selected polymorphs based on the specified
strategy.
Raises: ValueError: If invalid selection strategy is specified.
FileNotFoundError: If is_path=True but file doesn’t exist.
JSONDecodeError: If polymorphs_data contains invalid JSON.

consolidate_polymorph_datasets

Arguments: composition_files (dict): Dictionary mapping compositions to their
JSON file paths.

output_path (string, optional): Path for the consolidated dataset (default: “con-
solidated_polymorphs.json™).

work_dir (string, optional): Working directory for intermediate steps (hidden
argument).

Return: Returns a JSON-formatted string with consolidation results and detailed statistics
(e.g., total polymorphs, number of compositions included, etc.).
Raise: FileNotFoundError: If one or more input files cannot be found.
JSONDecodeError: If input files contain invalid JSON.
IOError: If unable to write to the output path.

select_polymorphs_with_strategy_to_file

40

Tool

Arguments: polymorphs_data (string): JSON string or file path containing polymorph

data.

save_path (string): File path where selected polymorphs will be saved in JSON
format.

selection_strategy (string): selection strategy (“diverse_energy”,

“most_stable”, “diverse_structure”). Default is diverse_energy.
max_polymorphs (int): Maximum number of polymorphs to select. Default is

energy_threshold (float): Maximum energy above hull in eV/atom. Default
is 0.5.

is_path (bool): Whether polymorphs_data is a file path. Default is False.
work_dir (string | None): Directory to work in (optional).

Return: Returns the file path where the selected polymorphs were saved.

Raise: ValueError: If an invalid selection strategy is specified.
FileNotFoundError: If is_path=True but the input file doesn’t exist.
IOError: If unable to write to the save_path location.

filter_json_with_strategy

Arguments: input_json_path (string): Path to the input JSON file to be filtered.
output_json_path (string): Path where filtered JSON data will be saved.
custom_code (string | None): Python code string defining the filtering logic.
work_dir (string | None): Directory to work in, optional.

Return: Returns a JSON string with filtering results and comprehensive statistics, includ-

ing original and filtered data counts, output file path, and reduction percentage.

Raise: FileNotFoundError: Raised when the input JSON file doesn’t exist.
JSONDecodeError: Raised when the input file contains invalid JSON.
SyntaxError: Raised when the custom filtering code contains syntax errors.
RuntimeError: Raised when the custom filtering code fails during execution.

prepare_tabular_dataset

41

Tool

Arguments: polymorphs_json_path (string): Path to consolidated polymorphs JSON
file containing material properties and crystal structures.

output_path (string): Base directory and filename prefix for saving the dataset
files.

target_property (string, optional): Property to predict (defaults to “forma-
tion_energy_per_atom”).

feature_engineering (string): feature engineering strategy (“basic”, “ad-
vanced”, “custom”).

test_split (float, optional): Fraction of data for test set (defaults to 0.2).
normalize (bool, optional): Whether to normalize features (defaults to True).
work_dir (string, optional): Working directory for intermediate files.

Return: Returns a JSON string with dataset preparation results, including file paths for
training and test data, and other metadata.

Raise: FileNotFoundError if the polymorphs JSON file is not found.

KeyError if the target property is not found in the data.
ValueError if feature engineering fails or the data format is invalid.

evaluate_xgboost_model

Arguments: model_path (string): Path to the saved XGBoost model file.

test_data_path (string): Path to the test data CSV file with the same structure
as the training data.

target_column (string, default = "“formation_energy_per_atom”): The column
name in the test data representing the target variable for evaluation.

detailed_analysis (bool, default = True): Whether to include detailed analy-
sis and feature importance in the results.

Return: Returns a JSON string containing evaluation success status and metrics, including
MAE, RMSE, R2, MAPE, prediction ranges, error analysis, and feature impor-
tance (if detailed analysis is enabled).

Raise: FileNotFoundError: Raised when the model file or test data file doesn’t exist.

KeyError: Raised when the target column is not found in the test data.

ValueError: Raised when the model and data are incompatible or contain
invalid values.

train_xgboost_model

42

Tool

Arguments: train_data_path (string): Path to the training data CSV file containing
features and target column.

test_data_path (string): Path to the test data CSV file, with the same structure
as the training data.
model_save_path (string): Path to save the trained model file in . pk1 format.

target_column (string, default="formation_energy_per_atom”): Name of the
target column for prediction in the dataset.

hyperparameters (dict | None, optional): Dictionary of XGBoost hyperparam-
eters to override default values.

work_dir (string | None, optional): Working directory path, if provided.
Return: Returns a JSON-formatted string with comprehensive training results, including
model performance metrics (MAE, RMSE, R2), feature importance, and the model
path.
Raises: FileNotFoundError: Raised when the specified CSV files do not exist.
KeyError: Raised when the target column does not exist in the dataset.
ValueError: Raised when the data contains invalid values or formatting issues.

perform_cross_validation

Arguments: train_data_path (string): Path to the training data CSV file.
target_column (string): Name of the target column for prediction (default:
“formation_energy_per_atom”).
cv_folds (int): Number of cross-validation folds (default: 5).
hyperparameters (dict or None): XGBoost hyperparameters for cross-
validation (default: None).

Return: Returns a JSON string containing comprehensive cross-validation results and
statistical analysis, including R2, MAE, and other performance metrics.

Raise: FileNotFoundError: Raised if the training data file does not exist or is not
found.
KeyError: Raised if the target column is not found in the dataset.

ValueError: Raised if the number of cross-validation folds is invalid or the
data contains invalid values.

663 F.5.2 Scoring Functions

662 Table show and describe the scoring functions used in the ML environment.

Table F.10: Scoring Functions for the ML Environment. The table
describes each scoring function, its arguments, return values, and potential
behaviors.

Function

check_mp_structure

Arguments: path_or_cif (string): Path to CIF file or CIF string.

Return: Returns 1.0 if the input is a valid CIF string or file representing a non-empty
structure (via pymatgen. Structure), otherwise 0.0.

43

Function

compare_with_ground_truth

Arguments: generated_path (string): Path to generated JSON file.
ground_truth_path (string): Path to reference JSON file.

comparison_mode (string, optional): “strict, “keys®, “numerical®, or “subset*.
tolerance (float, optional): Numerical tolerance.
Return: Returns 1.0 if the generated file matches the ground truth according to the chosen

mode, otherwise 0.0. Modes control the exactness of comparison (structure, keys,
numerical values, subset).

ml_pipeline_score

Arguments: model_path (string): Path to trained ML model file.

Return: Returns a float score (0.0-1.0) evaluating the completeness and performance of
an ML pipeline, including model loading, evaluation metrics, and cross-validation
evidence.

polymorph_retrieval_success

Arguments: retrieval_results_path (string): Path to JSON retrieval results.

Return: Returns a float score (0.0-1.0) based on polymorph retrieval success rate, total
number retrieved, and distribution per composition.

score_polymorph_dataset

Arguments: consolidated_json_path (string): Path to consolidated polymorph
dataset JSON.

Return: Returns 1.0 if at least one composition has multiple polymorphs, otherwise 0.0.

ml_dataset_preparation_quality_binary

Arguments: ml_metadata_path (string): Path to ML dataset metadata JSON.

Return: Returns 1 if dataset preparation meets all criteria: existing train/test files, sufficient
sample sizes, and adequate feature count; otherwise returns 0.

model_training_success_binary

Arguments: model_path (string): Path to trained model file.

Return: Returns 1 if model can be loaded, has a predict method, and meets performance
thresholds (R? > 0.5, MAE < 0.5), otherwise 0.

model_evaluation_completeness_binary

Arguments: evaluation_results_path (string): Path to model evaluation results
JSON.

Return: Returns 1 if evaluation results are complete: includes required metrics (MAE,
RMSE, R?), R > 0.7, cross-validation stats, feature importance, and detailed
analysis; otherwise returns 0.

44

665

666
667

668

F.5.3 Tasks and Subtasks

Here we provide an example of a task and its associated subtask prompts for oxide. The prompt

structure is similar for sulphide and nitride compounds.

Oxide Polymorph Dataset and XGBoost Model

Generate a comprehensive dataset of oxide polymorphs from Materials Project and train
an XGBoost model to predict formation energies. Evaluate the trained XGBoost model
using test set and cross-validation metrics. Save the results as a JSON file with keys
test_set_evaluationand cross_validation_results. The test_set_evaluation
dictionary must contain mae, rmse, r2, and feature_importance. The
cross_validation_results dictionary must contain r2_mean and r2_std.

Input Parameters:

{
"max_energy_above_hull": 0.3,
"max_per_composition": 3,
"max_compositions": 40,
"target_property": "formation_energy_per_atom",
"feature_engineering": "advanced",
"test_split": 0.2,
"normalize": true,
"n_estimators": 200,
"max_depth": 8,
"learning_rate": 0.1,
"subsample": 0.8,
"colsample_bytree": 0.8,
"reg_alpha": 0.1,
"reg_lambda": 0.1,
"detailed_analysis": true,
"cv_folds": 5

}

Subtask 1: Generate Oxide Polymorph Dataset

Generate a diverse list of oxide compositions for dataset creation. Retrieve poly-
morphs for all oxide compositions from Materials Project database. For each compo-
sition, collect multiple polymorphs including both stable and metastable structures.
Consolidate all individual polymorph files into a single comprehensive dataset. Each
entry should have source_composition.

Input Parameters:

{
"max_energy_above_hull": 0.3,
"max_per_composition": 3,
"max_compositions": 40

3

45

Subtask 2: Prepare ML Dataset

Transform the consolidated dataset into ML-ready format with engineered fea-
tures and proper train/test splits. Create a metadata JSON file with features,
train_path, and test_path.

Input Parameters:

{
"target_property": "formation_energy_per_atom",
"feature_engineering": "advanced",
"test_split": 0.2,
"normalize": true,
"output_path": "oxide_ml_dataset"

}

Subtask 3: Train XGBoost Model

Train an XGBoost regression model to predict formation energies of oxide poly-
morphs. Use the prepared dataset with optimized hyperparameters for oxide materials.
Focus on achieving good generalization performance across different oxide families
and structural types.

Input Parameters:

{
"target_column": "formation_energy_per_atom",
"hyperparameters": {
"n_estimators": 200,
"max_depth": 8,
"learning_rate": 0.1,

"subsample": 0.8,
"colsample_bytree": 0.8,
"reg_alpha": 0.1,
"reg_lambda": 0.1

}
}
Subtask 4: Evaluate Model

Evaluate the trained XGBoost model using test set and cross-validation met-
rics. Save the results as a JSON file with keys test_set_evaluation
and cross_validation_results. The test_set_evaluation dic-
tionary must contain mae, rmse, r2, and feature_importance. The
cross_validation_results dictionary must contain r2_mean and r2_std.

Input Parameters:

{
"target_column": "formation_energy_per_atom",
"detailed_analysis": true,
"cv_folds": 5

}

670

671
672
673
674
675

677
678
679

G Pass"k

Beyond the standard pass@5 metric, we also computed the pass™5 score (more details about the
metrics are presented in Appendix [B). The results, presented in Figure [G.Z]for the four environments,
two agents, and two LLMs, reveal trends highly consistent with those of pass@5 (see Figure [2)).
Specifically, SPECTRA and MD perform notably poorly, while OPENCATALYST achieves near-perfect
scores. A key observation, however, is the pronounced decline in performance for the ML environment
under the pass™5 metric. Its scores decreased substantially from the pass@5 assessment, falling to a
level comparable with those of the MD environment. This, we hypothesize, may be because of the
distance between tasks being comparable to those of the SPECTRA environment. As for pass@35, no
trends are observed among the different agents and LLMs that were evaluated.

L g s (Claude 3.5 Sonnet
) V'S m— GPT-4o
Spectra ° @ React Agent
Y ’ Tool-Calling Agent
gA
@
o *
L>u< MD
L
£
g L J
o L 4
° .
° OpenCatalyst
£ °
5 °
o
*
¢
ML
o
®
0.0 0.2 0.4 0.6 0.8 1.0

pass~5 Score

Figure G.2: pass™5 scores across evaluated environments, agents, and LLMs. Performance
trends largely align with those of pass@35, with OPENCATALYST achieving near-perfect scores and
SpEcCTRA and MD performing poorly. A pronounced deviation is observed for the ML environment,
where a substantial performance decline under the pass”5 metric suggests agents struggle to solve its
tasks consistently. This decline may be attributed to the increased inter-task distance, which appears
comparable to that of the SPECTRA environment. No significant trends were identified across different
agents or LLMs.

47

680

681
682
683
684
685
686
687
688
689
690

691

692
693
694
695
696
697
698
699

701
702

H Number of Tool Calls

The number of tool calls executed by the agents constitutes another metric captured in Corral.
While straightforward to quantify, this metric offers valuable insights into an agent’s performance
and behavioral patterns. As illustrated in Figure the number of tool calls varies significantly
across environments. An inverse relationship is observed between the frequency of tool use and
both overall performance and the level of required domain expertise. Specifically, the SPECTRA and
MD environments exhibit the highest volume of tool calls. In contrast, the number of tool calls is
considerably lower and comparable between the OPENCATALYST and ML environments. Furthermore,
the tool-calling agent consistently employs a greater number of tool calls than its ReAct counterpart.
This discrepancy is anticipated, as the tool-calling agent’s strategy depends more heavily on tool
sampling and less on explicit reasoning chains.

.
Spectra
° ®
ot >
u
“XS_ -
& MD
c
= ®
£
o
- . L 4
o OpenCatalyst §
=
5)
o . -
s (Claude 3.5 Sonnet
o 4 = GPT-40
o) @ React Agent
° ‘ Tool-Calling Agent
0 200 400 600 800 1000 1200 1400

Total Tool Calls

Figure H.3: Total tool calls per environment, sorted by required domain expertise. Environments
demanding less expertise (OPENCATALYST, ML) exhibit fewer tool calls, while those requiring more
(SPECTRA, MD) prompt significantly higher usage. The tool-calling agent consistently employs more
calls than the ReAct agent across all environments.

H.1 Performance and Number of Tools

The observed trend suggests a potential inverse relationship between the number of tool calls and
pass@5 scores, a comparison visually supported by Figure [H.4] This figure indicates that high
performance on the OPENCATALYST and ML environments is associated with a low number of tool
calls. Conversely, lower scores on the MD and, more markedly, on the SPECTRA environments coincide
with a substantially higher frequency of tool calls. One might hypothesize that this trend is driven by
an inherent requirement for more steps or a greater number of available tools in certain environments.
However, this explanation is not supported by the data. The number of steps required for SPECTRA,
MD, and OPENCATALYST is comparable, particularly as both MD and OPENCATALYST involve numerous
file management operations absent in SPECTRA. Similarly, the possibility that a larger toolkit acts as
a distractor is countered by the fact that the number of tools available in SPECTRA is comparable to
that in ML, as detailed in Table[T}

48

1QpenCatalyst
101 M mmmmm Claude 3.5 Sonnet

= GPT-40
<> @ React Agent
g
0.8t ‘ Tool-Calling Agent
o

S 0.6
8 (¢}
(]
To)
2
8 04f o

0.2 ©

00t 6} o

0 200 400 600 800 1000 1200 1400

Total Tool Calls

Figure H.4: Illustration of the inverse trend between pass@5 scores and tool call frequency.
The high scores in OPENCATALYST and ML correspond to low tool usage, while the low scores
in MD and SPECTRA correspond to high, inefficient tool usage. This divergence occurs despite
comparable procedural steps and toolset sizes, countering hypotheses that attribute performance
solely to environmental complexity.

49

703

704
705
706
707
708

710
71

I Number of Completion Tokens

Although the number of tool calls demonstrates a strong correlation with model performance, the
consumption of completion tokens does not exhibit a similar trend, as illustrated in Figure[[.5] The
count of completion tokens remains largely consistent across the majority of environments and
agents. A prominent exception is the MD environment, where the ReAct agent implemented with
Claude-3.5 Sonnet generates a substantially higher volume of tokens. Apart from this outlier, the
ML environment is the only one that consistently results in a lower token count relative to the others.
Regarding agent performance, it is noteworthy that the ReAct agent does not systematically produce
more tokens despite its requirement to articulate its reasoning through explicit “thoughts”.

L 4 s (Claude 3.5 Sonnet
X * = GPT-40
Spectra - °® @ React Agent
® ‘ Tool-Calling Agent
g/\
‘E ’
g .
G MD °
c
‘g °
8 \ 4
2
_@ OpenCatalyst
=]
E °
2
*
ML F
o
®
0 50000 100000 150000 200000 250000

Completion Tokens

Figure 1.5: Number of completion tokens across environments sorted by the domain expertise
required to solve them. The figure illustrates that the number of tokens is similar across environments
and agents. Only the ML environment seems to yield a lower number of completion tokens.

50

7

2

713
714
715
716
717
718
719

720

721
722
723

724
725
726
727

728

729

7

W
o

731

J Tool verbosity ablation results

Based on the initial results obtained across the environments, we investigated whether the verbosity
level employed in the tool descriptions provided to the agent could significantly influence agent
performance. As shown in Table[J.T1] no clear trend was observed across the different verbosity levels,
with the performance trends across environments remaining largely consistent. The most notable
performance difference occurred in the MD environment at the COMPREHENSIVE verbosity level when
compared to the other two description levels. This difference, however, was less pronounced for the
chained tasks.

Table J.11: Ablation Study on Tool Description Verbosity. This table presents the results of varying
the level of detail in tool descriptions provided to the agents (brief, workflow, and comprehensive).
The text in bold shows the best scores across environments. In the simpler OPENCATALYST and
ML environments, performance is consistently high regardless of verbosity. However, in the more
complex MD and SPECTRA domains, providing more context through workflow or comprehensive
descriptions generally improves scores, indicating that richer information about the action space is
crucial for the agent’s policy to succeed in challenging tasks.

. MD ML OPENCATALYST SPECTRA
Agent Verbosity
single chained single chained single chained single chained
Claude 3.5 Sonnet
brief 0.22 0.5 0.89 0.96 1.0 1.0 0.19 0.47
ReAct workflow 0.21 0.51 0.56 0.91 1.0 1.0 0.18 0.43
comprehensive 0.57 0.69 0.97 0.97 1.0 1.0 0.24 0.44
brief 0.52 0.78 0.99 0.91 1.0 0.66 0.05 0.49
Tool-Calling workflow 0.81 0.74 1.0 0.99 1.0 1.0 0.1 0.46
comprehensive 0.69 0.65 0.89 1.0 1.0 1.0 0.17 0.3
GPT-40
brief 0.2 0.72 0.33 0.99 0.89 1.0 0.05 0.44
ReAct workflow 0.51 0.71 0.89 1.0 1.0 1.0 0.0 0.38
comprehensive (.42 0.72 0.97 1.0 1.0 1.0 0.0 0.36
brief 0.2 0.69 0.33 0.77 1.0 0.75 0.05 0.41
Tool-Calling workflow 0.07 0.77 1.0 0.97 1.0 1.0 0.0 0.39
comprehensive 0.19 0.73 1.0 1.0 1.0 1.0 0.0 0.41

K Embeddings distance ablation

For studying the consistently poor performance of agents in the SPECTRA environment, we decided
to analyze the cosine distance of tasks and tools from that environment. We used the embeddings
obtained through the API of the closed-source model text-embedding-3-large.

For obtaining the distances reported in Table[I] each task and tool description is passed through the
model to generate its respective embedding. These embeddings are then used to calculate pairwise
distances between tools, tasks, and the combinations of tools and tasks. The distance metric used for

comparison is the cosine distance, which is calculated as follows:
A-B

Dcosine(Aa B) =1- 5

[All2[Bll2

where:

* A and B are the vectors (embeddings) representing the two entities (tasks or tools),
* ||AJ|2 and || B||2 are the L2 norms (magnitudes) of the vectors,

* A - B is the dot product between the vectors.

51

722 L Overall Results

Table L.12: Performance comparison of agents across SPECTRA, ML and OPENCATALYST tasks with
varying tool verbosity.

Task/ Task Tool Acent Model Scores Tool Exec Total Tool calls
Env Level Verbosity g Overall pass@5 pass™S time (s) tokens Total Failed
Tool-calling Claude 3.5 0.050 0.050 0.050 2517.794 1999844 316 0
brief Tool-calling GPT-40 0.020 0.046 0.001 4954.448 1066725 644 0
ReAct Claude 3.5 0.140 0.192 0.101 2761.069 1075978 487 0
ReAct GPT-40 0.020 0.046 0.001 4669.816 2982094 855 0
Tool-calling Claude 3.5 0.120 0.167 0.100 3321.458 9600785 681 0
Task comprehensive Tool-calling GPT-40 0 0.000 0.000 3986.564 7067824 1350 0
ReAct Claude 3.5 0.150 0.238 0.068 4672.958 11309758 890 0
ReAct GPT-40 0 0.000 0.000 3372.496 8579030 575 0
Tool-calling Claude 3.5 0.100 0.100 0.100 2909.819 6487221 680 0
workflow Tool-calling GPT-40 0 0.000 0.000 5425.582 4845761 1284 0
ReAct Claude 3.5 0.140 0.183 0.104 3491.533 7418732 841 0
SPECTRA ReAct GPT-40 0 0.000 0.000 3555.800 5418950 632 1
Tool-calling Claude 3.5 0.447 0.492 0.407 14603.170 3052471 1591 0
bricf Tool-calling GPT-40 0.343 0.415 0.286 25426.708 3711126 1797 0
ReAct Claude 3.5 0.416 0.467 0372 12952.609 1845878 1221 0
ReAct GPT-40 0.366 0.436 0.303 13407.503 2414056 1510 0
Tool-calling Claude 3.5 0.281 0.304 0.257 2512472 7929146 1753 20
Subtask comprehensive Tool-calling GPT-40 0.344 0.407 0.294 13817.494 7819026 1857 0
ReAct Claude 3.5 0.410 0.436 0.377 11667.673 7265056 1480 48
ReAct GPT-40 0.332 0.365 0.290 6221911 6186909 1329 10
Tool-calling Claude 3.5 0.417 0.460 0.370 2625.681 7404750 1740 16
workflow Tool-calling GPT-40 0.333 0.388 0.299 14822.657 5269491 1658 0
ReAct Claude 3.5 0.388 0.429 0.351 11366.324 5174901 1406 90
ReAct GPT-40 0.331 0.384 0.276 12005.337 7266929 1282 38
Tool-calling Claude 3.5 0.667 0.993 0.161 1220.296 1845649 147 9
brief Tool-calling GPT-40 0.267 0.333 0.109 1266.829 1340868 137 6
ReAct Claude 3.5 0.533 0.887 0.135 1034.641 933964 116 14
ReAct GPT-40 0.267 0.333 0.109 3337.430 4463267 128 2
Tool-calling Claude 3.5 0.600 0.887 0.359 1859.059 5304033 159 7
Task comprehensive Tool-calling GPT-40 0.733 0.996 0.244 1176.306 1968853 95 0
ReAct Claude 3.5 0.733 0.974 0.446 1093.865 2211623 96 13
ReAct GPT-40 0.533 0.967 0.055 1097.562 1848462 86 0
Tool-calling Claude 3.5 1 1.000 1.000 1425.824 2997344 132 0
workflow Tool-calling GPT-40 0.933 1.000 0.776 1189.020 1600247 103 0
ReAct Claude 3.5 0.400 0.557 0333 1048.410 1731643 99 14
ML ReAct GPT-40 0.733 0.891 0.667 823.038 1375619 94 4
Tool-calling Claude 3.5 0.783 0.909 0.589 1024.336 1444605.667 94.333 8.333
bricf Tool-calling GPT-40 0.417 0.772 0.072 2919916 1283053.667 126.667 12.000
ReAct Claude 3.5 0.767 0.959 0.563 628.312 352240.333 76.667 6.333
ReAct GPT-40 0.950 0.994 0918 572.154 218174.667 49.667 0.000
Tool-calling Claude 3.5 0.950 1.000 0.832 602.452 697221.667 65.333 0.000
Subtask comprehensive Tool-calling GPT-40 0.950 0.999 0.867 455.008 511905.000 56.000 0.000
’ ReAct Claude 3.5 0.833 0.966 0.666 604.539 525621.000 62.333 7.000
ReAct GPT-40 0917 0.999 0.755 687.699 408186.333 49.333 1.667
Tool-calling Claude 3.5 0.933 0.993 0.861 741.300 730223.000 65.000 0.000
workflow Tool-calling GPT-40 0.883 0.966 0.834 414.070 364710.333 54.667 0.000
ReAct Claude 3.5 0.833 0915 0.707 670.169 473178.000 68.333 8.000
ReAct GPT-40 0.967 0.999 0.923 611.969 321803.333 48333 2333
Tool-calling Claude 3.5 0.933 1.000 0.776 2037.189 2711823 188 32
brief Tool-calling GPT-40 1 1.000 1.000 2130.001 1953905 144 24
ReAct Claude 3.5 0.733 0.891 0.667 2290.416 1538987 114 2
ReAct GPT-40 1 1.000 1.000 1702.736 1786819 125 0
Tool-calling Claude 3.5 0.933 1.000 0.776 1763.970 3269313 157 37
Task comprehensive Tool-calling GPT-40 1 1.000 1.000 2054.796 2314210 120 0
ReAct Claude 3.5 1 1.000 1.000 1705.277 2586206 119 0
ReAct GPT-40 0.933 1.000 0.776 2642.857 2563808 119 0
Tool-calling Claude 3.5 1 1.000 1.000 1744.650 2646049 154 26
workflow Tool-calling GPT-40 1 1.000 1.000 2102.629 2357448 153 30
ReAct Claude 3.5 1 1.000 1.000 1762.177 2332113 125 0
OPENCATALYST ReAct) GPT-40 0.933 1.000 0.776 2347.130 2064826 160 0
Tool-calling Claude 3.5 0.552 0.655 0.449 1292.663 793577 111 23
brief Tool-calling GPT-40 0.714 0.746 0.682 1206.510 851828 140 39
ReAct Claude 3.5 0971 0.999 0.924 810.621 455240 113 10
ReAct GPT-40 0.943 0.996 0.877 1254.770 574773 103 8
Tool-calling Claude 3.5 1.000 1.000 1.000 1350.958 981333 126 10
Subtask comprehensive Tool-calling GPT-40 1.000 1.000 1.000 1146.016 692674 109 4
]] ReAct Claude 3.5 1.000 1.000 1.000 1109.015 806821 116 1
ReAct GPT-40 1.000 1.000 1.000 1203.005 627433 107 0
Tool-calling Claude 3.5 0.895 0.999 0.668 1371.961 888996 121 11
workflow Tool-calling GPT-40 1.000 1.000 1.000 1135.358 617183 109 4
ReAct Claude 3.5 1.000 1.000 1.000 1086.880 699299 115 0
ReAct GPT-40 1.000 1.000 1.000 1066.127 545052 98 1

52

Table L.13: Performance comparison of agents across MD tasks with varying tool verbosity

Task/ Task Tool Agent Model Scores Tool Exec Total Tool calls
Env Level Verbosity & Overall pass@5 passhS time (s) tokens Total Failed
Tool-calling Claude 3.5 0.20 0.57 0.00272 3994.60 2372658 243 46
brief Tool-calling GPT-40 0.00 0.00 0.00 2668.31 2761722 334 53
ReAct Claude 3.5 0.40 0.65 0.25 1150.81 740500 132 10
ReAct GPT-40 0.00 0.00 0.00 1937.86 1711175 348 92
Tool-calling Claude 3.5 0.30 0.42 0.25 3436.00 4010181 284 52
Task comprehensive Tool-calling GPT-40 0.10 0.23 0.0025 2576.81 2756626 376 55
) ReAct Claude 3.5 0.60 0.75 0.35 2633.79 2173989 204 0
ReAct GPT-40 0.15 0.25 0.02 1872.54 2686373 254 46
Tool-calling Claude 3.5 0.65 0.75 0.41 3143.25 1669994 234 3
workflow Tool-calling GPT-40 0.00 0.00 0.00 2579.06 2608477 346 67
ReAct Claude 3.5 0.00 0.00 0.00 2796.24 1455136 91 4
Surface Energy ReAct GPT-40 0.10 0.34 0.0001 1732.40 2116582 309 69
Tool-calling Claude 3.5 0.86 0.95 0.70 3675.40 2392176 412 21
brief Tool-calling GPT-40 0.53 0.66 0.42 16050.29 8819312 817 114
ReAct Claude 3.5 0.33 0.48 0.21 2707.52 2015689 320 33
ReAct GPT-40 0.55 0.66 0.47 4862.63 3533316 697 131
Tool-calling Claude 3.5 0.86 0.95 0.69 3174.83 2310994 327 7
Subtask comprehensive Tool-calling GPT-40 0.56 0.71 0.42 16846.90 7371726 871 155
ReAct Claude 3.5 0.61 0.72 0.50 3100.14 2213461 353 26
ReAct GPT-40 0.54 0.70 0.40 5057.13 5066130 702 143
Tool-calling Claude 3.5 0.78 0.94 0.54 3439.93 2623439 394 22
workflow Tool-calling GPT-40 0.55 0.73 0.45 7761.7 7628950 883 154
ReAct Claude 3.5 0.60 0.68 0.52 3228.89 2045466 367 27
ReAct GPT-40 0.56 0.68 0.46 4750.14 4227465 682 121
Tool-calling Claude 3.5 0.13 0.45 0.0002 2012.93 1843125 138 44
brief Tool-calling GPT-40 0.00 0.00 0.00 2015.09 1525141 241 57
ReAct Claude 3.5 0.0 0.0 0.0 265.25 35472 0 0
ReAct GPT-40 0.00 0.00 0.00 4501.84 2364025 208 35
Tool-calling Claude 3.5 0.33 0.64 0.03 1975.85 2215060 170 34
Task comprehensive Tool-calling GPT-40 0.20 0.33 0.026 1171.90 1532063 184 7
ReAct Claude 3.5 0.67 0.97 0.36 2479.20 1956353 191 24
ReAct GPT-40 0.00 0.00 0.00 1522.47 1554510 131 8
Tool-calling Claude 3.5 0.33 0.78 0.03 1962.91 1398117 139 13
workflow Tool-calling GPT-40 0.00 0.00 0.00 1132.12 902589 169 8
ReAct Claude 3.5 0.47 0.64 0.34 1387.85 622430 80 2
Melting ReAct GPT-40 0.07 0.22 0.0001 971.58 765381 132 2
Tool-calling Claude 3.5 0.55 0.67 0.44 3243.99 3243724 364 69
brief Tool-calling GPT-40 0.63 0.78 0.45 21719.57 19734289 583 21
ReAct Claude 3.5 041 0.64 0.22 3795.09 2994944 380 62
ReAct GPT-40 0.53 0.68 0.41 3598.93 2343615 337 3
Tool-calling Claude 3.5 0.51 0.57 0.47 3160.90 4366885 348 84
Subtask comprehensive Tool-calling GPT-40 0.57 0.80 0.41 27788.65 7650030 561 44
ReAct Claude 3.5 0.80 0.95 0.69 5811.09 5376726 495 76
ReAct GPT-40 0.53 0.64 0.42 3352.13 3057493 313 3
Tool-calling Claude 3.5 0.52 0.74 0.35 3077.21 3278175 348 58
workflow Tool-calling GPT-40 0.64 0.83 0.44 29058.55 4814488 467 18
ReAct Claude 3.5 0.48 0.61 0.40 4047.19 2874521 405 64
ReAct GPT-40 0.60 0.69 0.51 3486.44 1861511 315 1
Tool-calling Claude 3.5 0.40 0.56 0.33 2715.42 4212990 204 58
brief Tool-calling GPT-40 0.27 0.61 0.007 1633.41 2357544 195 27
ReAct Claude 3.5 0.0 0.0 0.0 3276.82 650701 30.0 0.0
ReAct GPT-40 0.27 0.61 0.007 3045.26 5253679 198 50
Tool-calling Claude 3.5 0.87 0.99 0.55 1575.07 1252706 124 5
Task comprehensive Tool-calling GPT-40 0.00 0.00 0.00 1237.00 2489890 157 6
i ; ReAct Claude 3.5 0.00 0.00 0.00 3123.35 1933814 47 0
ReAct GPT-40 0.80 0.99 033 1188.14 1236142 104 1
Tool-calling Claude 3.5 0.67 0.89 0.44 1606.94 900033 120 3
orkflo Tool-calling GPT-40 0.07 0.22 0.0001 1099.34 1549820 150 7
w W ReAct Claude 3.5 0.00 0.00 0.00 3081.22 1279999 47 0
hi ReAct GPT-40 0.53 0.97 0.06 1817.45 1329878 95 2
Quenching Tool-calling Claude 3.5 0.50 0.71 0.28 409850 4427260 362 79
brief Tool-calling GPT-40 0.38 0.63 0.25 12957.03 15868903 629 40
ReAct Claude 3.5 0.28 0.36 0.25 3893.25 6921097 349 62
ReAct GPT-40 0.52 0.82 0.27 3220.80 1996441 334 6
Tool-calling Claude 3.5 0.30 0.42 0.25 4638.77 6404970 342 81
Subtask comprehensive Tool-calling GPT-40 0.48 0.69 0.29 10539.12 9541567 566 27
)) ReAct Claude 3.5 0.30 0.42 0.25 6541.34 6996892 511 111
ReAct GPT-40 0.53 0.84 0.29 3328.19 2892921 334 9
Tool-calling Claude 3.5 0.35 0.54 0.20 682.25 4714626 361 85
Kil Tool-calling GPT-40 0.48 0.74 0.28 13034.44 10529810 580 12
workiiow ReAct Claude 3.5 025 0.25 0.25 670.01 8800 97 7
ReAct GPT-40 0.45 0.0.77 0.26 4450.11 5727793 455 102

53

733

734
735

736
737

738
739

740
741

742
743
744

754

774

784

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]

[23]

Carlos E. Jimenez et al. “SWE-bench: Can Language Models Resolve Real-World GitHub
Issues?” In: arXiv preprint arXiv: 2310.06770 (2023).

Jun Shern Chan et al. “MLE-bench: Evaluating Machine Learning Agents on Machine Learning
Engineering”. In: International Conference on Learning Representations (2025).

Alexander Novikov et al. “AlphaEvolve: A coding agent for scientific and algorithmic discov-
ery”. In: arXiv preprint arXiv: 2506.13131 (2025).

Juraj Gottweis et al. “Towards an Al co-scientist”. In: arXiv preprint arXiv: 2502.18864
(2025).

Xingyao Wang et al. “Executable Code Actions Elicit Better LLM Agents”. In: Forty-first
International Conference on Machine Learning. 2024. URL: https://openreview.net/
forum?id=jJ9BoXAfFa.

Zhengyao Jiang et al. “AIDE: Al-Driven Exploration in the Space of Code”. In: arXiv preprint
arXiv: 2502.13138 (2025).

Michael D. Skarlinski et al. “Language agents achieve superhuman synthesis of scientific
knowledge”. In: arXiv preprint arXiv: 2409.13740 (2024).

Yuan Chiang et al. “LLaMP: Large Language Model Made Powerful for High-fidelity Materials
Knowledge Retrieval and Distillation”. In: arXiv preprint arXiv: 2401.17244 (2024).
Shuxiang Cao et al. “Agents for self-driving laboratories applied to quantum computing”. In:
arXiv preprint arXiv: 2412.07978 (2024).

Quintina Campbell et al. “MDCrow: Automating Molecular Dynamics Workflows with Large
Language Models”. In: arXiv preprint arXiv: 2502.09565 (2025).

Yunheng Zou et al. “El Agente: An Autonomous Agent for Quantum Chemistry”. In: arXiv
preprint arXiv: 2505.02484 (2025).

Mhd Hussein Murtada, Z. Faidon Brotzakis, and Michele Vendruscolo. “MD-LLM-1: A Large
Language Model for Molecular Dynamics”. In: arXiv preprint arXiv: 2508.03709 (2025).
Indrajeet Mandal et al. “Autonomous Microscopy Experiments through Large Language Model
Agents”. In: arXiv preprint arXiv: 2501.10385 (2024).

Andres M. Bran et al. “Augmenting large language models with chemistry tools”. In: Nature
Machine Intelligence 6.5 (May 2024), pp. 525-535. ISSN: 2522-5839. DOI:|10.1038/s42256-
024-00832-8. URL: http://dx.doi.org/10.1038/s42256-024-00832-8.

Kourosh Darvish et al. “ORGANA: A robotic assistant for automated chemistry experimen-
tation and characterization”. In: Matter 8.2 (Feb. 2025), p. 101897. 1SSN: 2590-2385. DOTI:
10.1016/j .matt.2024.10.015, URL: http://dx.doi.org/10.1016/] .matt.2024!
10.015.

Daniil A. Boiko et al. “Autonomous chemical research with large language models”. In: Nature
624.7992 (Dec. 2023), pp. 570-578. 1SSN: 1476-4687. DOI: 10.1038/s41586-023-06792-
0. URL: http://dx.doi.org/10.1038/s41586-023-06792-0.

Hjalmar Wijk et al. “RE-Bench: Evaluating frontier Al R&D capabilities of language model
agents against human experts”. In: arXiv preprint arXiv: 2411.15114 (2024).

Megan Kinniment et al. “Evaluating Language-Model Agents on Realistic Autonomous Tasks”.
In: arXiv preprint arXiv: 2312.11671 (2023).

Zachary S. Siegel et al. “CORE-Bench: Fostering the Credibility of Published Research
Through a Computational Reproducibility Agent Benchmark™. In: arXiv preprint arXiv:
2409.11363 (2024).

Grégoire Mialon et al. “GAIA: a benchmark for General Al Assistants”. In: arXiv preprint
arXiv: 2311.12983 (2023).

Ludovico Mitchener et al. “BixBench: a Comprehensive Benchmark for LLM-based Agents in
Computational Biology”. In: arXiv preprint arXiv: 2503.00096 (2025).

Ziru Chen et al. “ScienceAgentBench: Toward Rigorous Assessment of Language Agents for
Data-Driven Scientific Discovery”. In: arXiv preprint arXiv: 2410.05080 (2024).

Jingyi Chai et al. “SciMaster: Towards General-Purpose Scientific Al Agents, Part I. X-Master
as Foundation: Can We Lead on Humanity’s Last Exam?” In: arXiv preprint arXiv: 2507.05241
(2025).

54

https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s42256-024-00832-8
http://dx.doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1016/j.matt.2024.10.015
http://dx.doi.org/10.1016/j.matt.2024.10.015
http://dx.doi.org/10.1016/j.matt.2024.10.015
http://dx.doi.org/10.1016/j.matt.2024.10.015
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
http://dx.doi.org/10.1038/s41586-023-06792-0

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

820
821
822
823
824
825
826
827
828

830
831
832
833
834
835
836
837
838
839

[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Minyang Tian et al. “SciCode: A Research Coding Benchmark Curated by Scientists”. In:
arXiv preprint arXiv: 2407.13168 (2024).

Hao Cui et al. “CURIE: Evaluating LLMs On Multitask Scientific Long Context Understanding
and Reasoning”. In: arXiv preprint arXiv: 2503.13517 (2025).

Siddharth Narayanan et al. “Aviary: training language agents on challenging scientific tasks”.
In: arXiv preprint arXiv: 2412.21154 (2024).

Microsoft. AutoGen: A Programming Framework for Agentic Al. https : / / github |
com/microsoft/autogen. Accessed: 2025-08-20. 2025. URL: https://github. com/
microsoft/autogen!

Sayash Kapoor et al. “Al Agents That Matter”. In: Trans. Mach. Learn. Res. 2025 (2025).
URL: https://openreview.net/forum?id=Z2y4ukFzMviZ.

Nawaf Alampara, Mara Schilling-Wilhelmi, and Kevin Maik Jablonka. “Lessons from the
trenches on evaluating machine-learning systems in materials science”. In: arXiv preprint
arXiv: 2503.10837 (2025).

Yue Huang et al. “MetaTool Benchmark for Large Language Models: Deciding Whether to
Use Tools and Which to Use”. In: arXiv preprint arXiv: 2310.03128 (2023).

Shunyu Yao et al. 7-bench: A Benchmark for Tool-Agent-User Interaction in Real-World
Domains. 2024. arXiv: 2406 . 12045 [cs.AI]. URL: https://arxiv.org/abs/2406,
12045,

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Elsevier, 2023.

A. P. Thompson et al. “LAMMPS - a flexible simulation tool for particle-based materials
modeling at the atomic, meso, and continuum scales”. In: Comp. Phys. Comm. 271 (2022),
p- 108171. DOI1:/110.1016/j.cpc.2021.108171,

Matthew K. Horton et al. “Accelerated data-driven materials science with the Materials Project”.
In: Nature Materials (July 2025). 1SSN: 1476-4660. DOI:(10.1038/s41563-025-02272-0.
URL: http://dx.doi.org/10.1038/s41563-025-02272-0,

Lowik Chanussot et al. “Open catalyst 2020 (OC20) dataset and community challenges”. In:
Acs Catalysis 11.10 (2021), pp. 6059-6072.

Tiangi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In: Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
2016, pp. 785-794.

Kevin Maik Jablonka, Luc Patiny, and Berend Smit. “Making Molecules Vibrate: Interactive
Web Environment for the Teaching of Infrared Spectroscopy”. In: Journal of Chemical Educa-
tion 99.2 (Jan. 2022), pp. 561-569. I1SSN: 1938-1328. DOI:/10.1021/acs. jchemed.1c01101|
URL: http://dx.doi.org/10.1021/acs. jchemed.1c01101,

Damiano Banfi and Luc Patiny. “www.nmrdb.org: Resurrecting and Processing NMR Spectra
On-line”. In: CHIMIA 62.4 (Apr. 2008), p. 280. 1SSN: 0009-4293. DOI: 10.2533/chimia,
2008.280. URL: http://dx.doi.org/10.2533/chimia.2008.280.

Andrés M. Castillo, Luc Patiny, and Julien Wist. “Fast and accurate algorithm for the simulation
of NMR spectra of large spin systems”. In: Journal of Magnetic Resonance 209.2 (Apr.
2011), pp. 123—-130. 1SSN: 1090-7807. DOI:|10.1016/j . jmr.2010.12.008. URL: http:
//dx.doi.org/10.1016/j.jmr.2010.12.008,

Jodo Aires-de-Sousa, Markus C. Hemmer, and Johann Gasteiger. “Prediction of 1H NMR
Chemical Shifts Using Neural Networks”. In: Analytical Chemistry 74.1 (Dec. 2001), pp. 80—
90. 1SSN: 1520-6882. DOI:[10.1021/ac010737m. URL: http://dx.doi.org/10.1021/
ac010737m.

Inc. Modal Labs. Modal Python Package. Version 1.0. Accessed: 2025-08-21. 2025. URL:
https://modal.com/docs/guidel

Shyue Ping Ong et al. “Python Materials Genomics (pymatgen): A robust, open-source
python library for materials analysis”. In: Computational Materials Science 68 (Feb. 2013),
pp- 314-319. 1SSN: 0927-0256. DOI:|10.1016/j . commatsci.2012.10.028. URL: http:
//dx.doi.org/10.1016/j.commatsci.2012.10.028.

55

https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://openreview.net/forum?id=Zy4uFzMviZ
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1038/s41563-025-02272-0
http://dx.doi.org/10.1038/s41563-025-02272-0
https://doi.org/10.1021/acs.jchemed.1c01101
http://dx.doi.org/10.1021/acs.jchemed.1c01101
https://doi.org/10.2533/chimia.2008.280
https://doi.org/10.2533/chimia.2008.280
https://doi.org/10.2533/chimia.2008.280
http://dx.doi.org/10.2533/chimia.2008.280
https://doi.org/10.1016/j.jmr.2010.12.008
http://dx.doi.org/10.1016/j.jmr.2010.12.008
http://dx.doi.org/10.1016/j.jmr.2010.12.008
http://dx.doi.org/10.1016/j.jmr.2010.12.008
https://doi.org/10.1021/ac010737m
http://dx.doi.org/10.1021/ac010737m
http://dx.doi.org/10.1021/ac010737m
http://dx.doi.org/10.1021/ac010737m
https://modal.com/docs/guide
https://doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1016/j.commatsci.2012.10.028

	Introduction
	
	The Environment
	The Agent
	Interaction Dynamics

	Results
	Overall Performance
	Decomposing Tasks
	Tool Verbosity Ablation
	Dependence on Task and Tool Similarity

	Conclusion
	Related Work
	Metrics
	Average Score
	Overall Success Rate
	Pass@k
	Passk
	Token Usage
	Tool Call Statistics
	Duration Metrics

	Corral framework and API Routes
	Structured Tool Descriptions and Verbosity Levels
	Documentation Tags
	Verbosity Levels
	Example: The get_structure_from_mp_text Tool

	Corral Framework Usage Examples
	Detailed Environment Descriptions
	Overview of the Environments
	Spectra
	Tools
	Scoring Functions
	Tasks and Subtasks

	MD
	Tools
	Scoring Functions
	Tasks and Subtasks

	OpenCatalyst
	Tools
	Scoring Functions
	Tasks and Subtasks

	ML
	Tools
	Scoring Functions
	Tasks and Subtasks

	Passk
	Number of Tool Calls
	Performance and Number of Tools

	Number of Completion Tokens
	Tool verbosity ablation results
	Embeddings distance ablation
	Overall Results

