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HySAE: An Efficient Semantic-Enhanced Representation Learning
Model for Knowledge Hypergraph Link Prediction

Anonymous Author(s)

ABSTRACT
Representation learning technique is an effective link prediction
paradigm to alleviate the incompleteness of knowledge hyper-
graphs. However, the 𝑛-ary complex semantic information inher-
ent in knowledge hypergraphs causes existing methods to face
the dual limitations of weak effectiveness and low efficiency. In
this paper, we propose a novel knowledge hypergraph represen-
tation learning model, HySAE, which can achieve a satisfactory
trade-off between effectiveness and efficiency. Concretely, HySAE
builds an efficient semantic-enhanced 3D scalable end-to-end em-
bedding architecture to sufficiently capture knowledge hypergraph
𝑛-ary complex semantic information with fewer parameters, which
can significantly reduce the computational cost of the model. In
particular, we also design an efficient position-aware entity role
semantic embedding way and two enhanced semantic learning
strategies to further improve the effectiveness and scalability of our
proposed method. Extensive experimental results on all datasets
demonstrate that HySAE consistently outperforms state-of-the-art
baselines, with an average improvement of 9.15%, a maximum im-
provement of 39.44%, an average 10.39x faster, and 75.79% fewer
parameters. The code for our proposed method is available at this
link https://anonymous.4open.science/r/HySAE-1026.
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1 INTRODUCTION
Although knowledge graphs (KGs) have been widely used to im-
prove technical applications in the Web community, the (ℎ, 𝑟, 𝑡)
triple structure cannot accurately and efficiently express semantic
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information about complex facts [21, 35]. Knowledge hypergraphs
are prevalent in the real world, offering greater semantic expressive-
ness than traditional binary relational KGs [10, 32]. For instance,
the mathematical community recognizes Newton and Leibniz as
co-inventors of Calculus. The binary relational triple cannot repre-
sent this fact, but the 𝑛-ary knowledge hypergraph can be defined
intuitively and clearly as InventorOf(Calculus,Newton, Leibniz).
Furthermore, knowledge hypergraphs suffer from the same incom-
pleteness issue as binary relational knowledge bases, which can
be alleviated through link prediction (also known as knowledge
completion) [11, 20, 29]. In recent years, knowledge hypergraph
representation learning is an effective link prediction paradigm that
has received extensive attention from academia and industry.

Limitations of existing methods. Since knowledge hyper-
graphs inherently have 𝑛-ary complex semantic information, this
poses a dual challenge to the effectiveness and efficiency of represen-
tation learning models. Existing methods usually extend or refer to
binary relational KG models to compute 𝑛-ary semantic structures,
which cannot achieve end-to-end knowledge hypergraph repre-
sentation learning [10, 14, 15, 19, 32, 36]. These solutions require
separate decomposition operations for knowledge tuples of differ-
ent arities, which inevitably destroys and loses the original semantic
structure and cannot adequately capture knowledge hypergraph 𝑛-
ary complex semantic information. Consequently, recent methods
can only enhance effectiveness by increasing complex local struc-
tures, which requires more elaborate and potentially redundant
model architectures [4, 11, 20, 28, 29]. This complexity undoubtedly
leads to higher computational costs and parameter amounts, sig-
nificantly compromising model efficiency. Existing solutions do
not provide a good trade-off between the effectiveness and
efficiency of knowledge hypergraph representation learning.

Knowledge Tuples:

Relation：
InventorOf( )
ScientistsAs( )
WorksAs( )

1. InventorOf(Calculus, Newton, Leibniz)

2. ScientistsAs(Newton, Einstein, Leibniz)

3. WorksAs(Einstein, Special Relativity, General Relativity)
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Figure 1: Real-world instances of knowledge hypergraphs
where some entities have equivalent role semantics. Swap-
ping the positions of entities with the equivalent role does
not affect the correctness of the original knowledge tuple.

Our idea and solution. Current works assume that the 𝑛-ary
relations in knowledge tuples have different semantic couplings
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with each entity, and they need to capture the unique semantic
information of all entities in the knowledge hypergraph to enhance
effectiveness. However, capturing the unique semantic information
of each entity equally and repetitively is not an efficient and rea-
sonable way. As illustrated in Figure 1, many different entities in
knowledge tuples have equivalent roles, meaning that replacing
the positions of some entities does not affect the correctness of
the original knowledge tuples. Furthermore, an analysis of several
real-world knowledge hypergraph benchmark datasets reveals that
entities are highly repetitive across different knowledge tuples,
with the uniqueness ratio of entities being less than 10% [11, 20, 29].
Therefore, our solution treats all entities in a knowledge tuple
equally, and the relations and all entities in each knowledge tuple
should feature interactions together during representation learning.
Importantly, knowledge tuples of different arities in a knowledge
hypergraph are processed simultaneously, which can significantly
reduce the computational cost and the number of model parameters.

Contributions. To address the above limitations, we propose
an efficient SemAntic-Enhanced knowledge Hypergraph represen-
tation learning model, HySAE, which focuses on striking a superior
trade-off between effectiveness and efficiency. HySAE designs a
novel knowledge hypergraph 3D scalable end-to-end embedding
architecture that efficiently enhances the ability to capture 𝑛-ary
complex semantic information from two perspectives. On the one
hand, using semantic-enhanced 3D dilated convolutional neural net-
works in relation and entities feature plane dimensions can expand
the semantic-aware region with fewer parameters to more ade-
quately capture latent 𝑛-ary semantic information. Specifically, we
propose two enhanced semantic learning strategies that provide a
more powerful effectiveness advantage over traditional knowledge
convolutional representation learning architectures [6, 18, 27]. On
the other hand, in relation and entities feature interaction dimen-
sions, efficient end-to-end knowledge hypergraph representation
learning is achieved by scalably adjusting the structural parameters
of the 3D embedding architecture to match the arity number of
different knowledge tuples adaptively. In addition, based on the 3D
scalable end-to-end embedding architecture, we propose an efficient
position-aware entity role semantic embedding way, which further
improves the effectiveness and scalability of the HySAE model with
fewer parameters.

Our contributions are summarized as follows:

• We propose a novel knowledge hypergraph representa-
tion learning model, HySAE, which constructs an efficient
semantic-enhanced 3D scalable end-to-end embedding ar-
chitecture that realizes a better trade-off between model
effectiveness and efficiency.

• HySAE designs an efficient position-aware entity role se-
mantic embedding way and two enhanced semantic learn-
ing strategies, which can adequately capture 𝑛-ary complex
semantic information with fewer parameters to improve
the effectiveness and scalability of the model further.

• Extensive experimental results demonstrate the effective-
ness and scalability of our proposed method, which consis-
tently outperforms all state-of-the-art baselines. Compared
with the best baseline, HySAE improved by an average of
9.15% and a maximum of 39.44% across all datasets.

• HySAE attains satisfactory model efficiency compared with
state-of-the-art baselines. Across all datasets, HySAE re-
duces the number of model parameters by an average of
75.79%, speeds up by an average of 10.39x, and reduces
memory usage by an average of 45.42%.

2 RELATEDWORK
Existing knowledge hypergraph representation learning methods
can be classified into three categories: translation-based, semantic
matching, and neural network methods.

2.1 Translation-Based Methods
Models in this category are the classical methods for early knowl-
edge hypergraph representation learning. m-TransH [32] is an𝑛-ary
extended variant of the binary relational KG model TransH [31].
By employing a fully connected network to incorporate the cor-
relation of related entities into the loss function and enhance per-
formance, RAE [36] expands upon the m-TransH model. Inspired
by the RAE model, NaLP [15] explicitly models the relevance of all
role-value pairs in𝑛-ary relational facts. Translation-based methods
are weakly expressive, limiting the types of relations for knowl-
edge modeling, and the effectiveness of the model is no longer
competitive with the current state-of-the-art models.

2.2 Semantic Matching Methods
HSimplE [10] is inspired by the binary relational KG model Sim-
plE [17], which attempts to concatenate the embedding vectors of all
positions to generate the entity representation. GETD [19] expands
the TuckER [2] tensor decomposition model for binary relational
KGs to 𝑛-ary knowledge hypergraphs. S2S [7] extends the GETD
paradigm to supportmixed arity knowledge hypergraphs. RAM [20]
enhances the quality of entity representation in knowledge hyper-
graphs by constructing linear combinations of constrained entity
role semantic vectors. PosKHG [4] construct role semantic vectors
for each entity to create the role matrix, considerably increasing the
number of model parameters. ReAlE [11] investigates knowledge
hypergraph completion through the lens of relational algebra and
its basic operations. Most semantic matching methods rely on linear
model designs with tensor decomposition, which usually fail to
capture the implicit deep complex semantic information.

2.3 Neural Network Methods
HypE [10] equates entity roles to entity position information and
builds a separate convolutional layer and fully connected layer to
capture entity role information. HyperMLN [3] proposes a Markov
Logic network modeling framework to learn semantic using a vari-
ational EM algorithm. tNaLP+ [14] introduces type constraints on
roles and role-value pairs using a convolutional neural network.
RD-MPNN [37] is a knowledge hypergraph model based on rela-
tional message-passing neural networks. EnhancE [28] incorporates
entity neighborhood information for a more expressive entity rep-
resentation. HyConvE [29] jointly models 𝑛-ary complex semantics
using different convolutional paths. The architecture of neural net-
work models has become increasingly intricate in embedding richer
semantic information, and the memory and time usage during train-
ing have severely constrained the real-world applications.
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Figure 2: The overall framework of the HySAEmodel. On the right is a slice perspective of the 3D scalable end-to-end embedding
architecture and the diagram of two enhanced semantic learning strategies.

3 PROBLEM STATEMENT
3.1 Knowledge Hypergraph
Given a finite set of entities E, relations R, and knowledge tuples
T , a knowledge hypergraph can be represented asH = (E,R,T).
Each observed fact is represented as a tupleT𝑖 = 𝑟 (𝑒1, 𝑒2, ..., 𝑒𝑖 , ..., 𝑒𝑛)
in a knowledge hypergraphH , where T𝑖 ⊆ T , 𝑟 ∈ R is a relation
within the set of relations, 𝑒𝑖 ∈ E is an entity within the set of
entities, 𝑖 is the position of entity in knowledge tuple, and 𝑛 is the
non-negative arity of relation 𝑟 representing the number of entities
involved within each relation. In case 𝑛 = 2, T𝑖 represents a binary
relational fact. When 𝑛 ≥ 2, T𝑖 represents a beyond-binary (𝑛-ary)
relational fact. KGs based on the binary relational triple 𝑟 (𝑒1, 𝑒2)
are a special case of knowledge hypergraphs.

3.2 Knowledge Representation Learning
Traditionally, knowledge representation learning generally projects
entities and relations into a low-dimensional continuous latent
space to perform downstream tasks. Knowledge hypergraph rep-
resentation learning is an efficient link prediction method that es-
sentially learns an 𝑛-ary knowledge tuple T𝑖 = 𝑟 (𝑒1, 𝑒2, ..., 𝑒𝑖 , ..., 𝑒𝑛)
mapping function 𝑓 : {𝑟 ↦→ 𝒓 ∈ R𝑑 ; 𝑒𝑖 ↦→ 𝒆𝒊 ∈ R𝑑 }, where 𝒓 is the
embedding of the 𝑛-ary relation 𝑟 , 𝒆𝒊 is the embedding of the enti-
ties 𝑒𝑖 , and 𝑑 is the embedding dimension size of the representation
learning. The knowledge hypergraph link prediction task aims at
predicting missing component in 𝑛-ary facts, where the missing
component can be either an entity in the 𝑖-th position of the tuple
𝑟 (𝑒1, 𝑒2, ..., ?, ..., 𝑒𝑛) or an 𝑛-ary relation ?(𝑒1, 𝑒2, ..., 𝑒𝑖 , ..., 𝑒𝑛).

4 THE HYSAE MODEL
The overall framework of HySAE, an efficient semantic-enhanced
knowledge hypergraph representation learning model, is shown in
Figure 2. Each core component of HySAE helps enhance the ability
to capture 𝑛-ary complex semantic information while constraining

the model to have fewer parameters, thus achieving a good trade-off
between effectiveness and efficiency.

4.1 Position-Aware Entity Role Semantic
Previous research has shown that embedding entity role informa-
tion in knowledge hypergraphs is an essential semantic-enhanced
way to significantly improve the effectiveness of representation
learning. As a result, the entity role semantic embedding modules of
existing methods are usually designed to be complex and coupled,
and the redundant model structures require high computational
costs and parameter amounts [4, 10, 20]. However, most entities in
real-world knowledge hypergraphs have equivalent role semantic
information, and exchanging their positions does not affect the
semantic correctness of the original knowledge tuple. Inspired by
this observation, HySAE proposes an efficient position-aware entity
role semantic embedding way, which can effectively capture entity
role semantic information with fewer parameters.

Specifically, given an 𝑛-ary knowledge tuple 𝑟 (𝑒1, 𝑒2, ..., 𝑒𝑛), we
first randomly initialize the relation 𝑟 and the entities 𝑒𝑖 into 𝑑-
dimensional embedding vectors 𝒓 ∈ R𝑑 , 𝒆𝒊 ∈ R𝑑 . Then, each entity
in the 𝑛-ary knowledge tuple corresponds to a position 𝜌𝑖 and is
similarly initialized to the 𝑑-dimensional embedding vectors 𝝆𝒊 ∈
R𝑑 . The unified entity position embedding matrix P is constructed
in the 𝑑-dimensional embedding space, defined as

P =
(
𝝆1, 𝝆2, ..., 𝝆𝒊, ..., 𝝆𝜶

)
(1)

where 𝛼 denotes the maximum arity of the 𝑛-ary tuple in the knowl-
edge hypergraph, that is, the maximum number of entity positions
in the knowledge hypergraph. Although a knowledge hypergraph
has a large number of different 𝑛-ary knowledge tuples, HySAE
only learns 𝛼 position-aware entity role semantic vectors. Obvi-
ously, |𝑛 | ≤ |𝛼 | ≪ |E|, so the position-aware entity role semantic
embedding way of HySAE has minimal parameters.

3
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Furthermore, the position-aware entity role semantic embedding
way of HySAE is a decoupled structure, which facilitates the design
of an efficient end-to-end knowledge hypergraph representation
learning architecture. During knowledge hypergraph model train-
ing and reasoning, different 𝑛-ary knowledge tuples only need to
integrate the same shared entity role semantic vector 𝝆𝒊 according
to the position 𝜌𝑖 of each entity. HySAE uniformly learns and opti-
mizes entity role semantic vectors in the process of learning entity
and relation embedding vectors. The unified entity role semantic
awareness way is represented as

𝒆𝒓𝒐𝒍𝒊 = RA (𝒆𝒊, P𝒊 ·) (2)

where P𝒊 · = 𝝆𝒊 as the 𝑖-th position unified embedding of the 𝑛-ary
knowledge tuples, and 𝒆𝒓𝒐𝒍𝒊 ∈ R𝑑 denotes the entity embedding
vector containing the role semantic information. RA(·) is the role-
aware operator, which can be flexibly selected according to different
tasks. HySAE adopts a simple element-wise addition of the role-
aware operator to improve knowledge hypergraph model efficiency.

4.2 Efficient 3D Scalable End-to-End Embedding
HySAE constructs a novel 3D scalable end-to-end embedding ar-
chitecture that efficiently and skillfully captures knowledge hy-
pergraph 𝑛-ary complex semantic information. Compared with
traditional knowledge hypergraph representation learning model
architectures, the 3D scalable end-to-end embedding architecture
of HySAE can have a more powerful capability of 𝑛-ary latent se-
mantic embedding with fewer model parameters. As with other
knowledge representation learning methods [6, 27], the initial vec-
tors of relations and entities need to be reshaped into 2D embedding
matrices to enhance the interaction of feature information. The 2D
reshaping embeddings of relations and entities are defined as

𝒓 = Ψ (𝒓) , 𝒆𝒓𝒐𝒍𝒊 = Ψ
(
𝒆𝒓𝒐𝒍𝒊

)
(3)

where Ψ is a 2D reshaping function: {R𝑑 ↦→ R𝑑1×𝑑2 } transforms
embeddings 𝒓 and 𝒆𝒓𝒐𝒍𝒊 into matrices 𝒓 ∈ R𝑑1×𝑑2 , 𝒆𝒓𝒐𝒍𝒊 ∈ R𝑑1×𝑑2 ,
and 𝑑1 × 𝑑2 = 𝑑 .

To further improve the degree of feature interaction between
relations and entities in the knowledge hypergraph, HySAE con-
catenates 2D reshaping embeddings into the knowledge tuple 3D
feature tensor cube. It is important to note that HySAE masks
the entity 𝑒𝑚 to be predicted, allowing 1-N multilinear scoring
to accelerate knowledge hypergraph representation learning. The
knowledge tuple 3D feature tensor cube C𝒏 , as follows

C𝒏 =

(
𝒓 | |𝒆𝒓𝒐𝒍1 | | · · · | |𝒆𝒓𝒐𝒍𝒎−1 | |𝒆

𝒓𝒐𝒍
𝒎+1 | | · · · | |𝒆

𝒓𝒐𝒍
𝒏

)
(4)

where | | is the concatenation operation, and the relation 2D reshap-
ing embedding 𝒓 and each entity 2D reshaping embeddings 𝒆𝒓𝒐𝒍𝒊 in
C𝒏 ∈ R𝑑1×𝑑2×𝑛 generate feature interactions.

Existing research shows that convolutional embedding is a suc-
cessful and efficient paradigm for knowledge representation learn-
ing [6, 10, 14, 27, 29]. Aiming at the inherent 𝑛-ary complex se-
mantic features of knowledge hypergraphs, we propose a novel 3D
dilated convolutional neural network based on the 3D scalable end-
to-end embedding architecture of HySAE for efficient knowledge

hypergraph representation learning, defined as

F (𝑥,𝑦, 𝑧) = (C𝒏 ∗𝒘𝒍 ) (𝑥,𝑦, 𝑧)

=
∑︁

𝑎+𝑙𝑘ℎ=𝑥

∑︁
𝑏+𝑙𝑘𝑤=𝑦

∑︁
𝑐+𝑙𝑘𝑑=𝑧

C𝒏 (𝑎, 𝑏, 𝑐) 𝒘𝒍 (𝑘ℎ, 𝑘𝑤 , 𝑘𝑑 ) (5)

where ∗ is the 3D dilated convolution operation and𝒘𝒍 is the 3D
dilated convolution kernel. 𝑙 is the dilated size of the 3D dilated
convolution, and the standard convolution can be equated to the
dilated convolution with 𝑙 = 1.

Notably, the 3D scalable end-to-end embedding architecture of
HySAE has three feature dimensions with a flexible and efficient
operating space. In the feature dimension plane of relation and
entities reshaping embeddings, HySAE employs 3D dilated convo-
lution to expand the scale of the semantic-aware region without
increasing the parameters, as follows

𝑘ℎ−𝑙 = 𝑘ℎ + (𝑘ℎ − 1) (𝑙 − 1), 𝑘𝑤−𝑙 = 𝑘𝑤 + (𝑘𝑤 − 1) (𝑙 − 1) (6)

where 𝑘ℎ−𝑙 and 𝑘𝑤−𝑙 are the semantic-aware region scale on the
feature dimension plane of relation and entities reshaping embed-
dings. In this paper, set 𝑘ℎ = 𝑘𝑤 = 𝑘 , 𝑘 is the size of the 3D dilated
convolution kernel.

In relation and entities feature interaction dimensions, HySAE
adaptively matches the arities of different 𝑛-ary knowledge tuples
by scalably adjusting the structural parameters of the 3D embed-
ding architecture. Thus, HySAE can embed knowledge tuples of
different arities end-to-end together without the cost of redundant
operations such as tuple decomposition and summation. In addi-
tion, the end-to-end embedding architecture allows relations to
sufficiently interact with all entities in different 𝑛-ary knowledge
tuples, which helps further enhance the effectiveness of the rep-
resentation learning model. The feature maps obtained after 3D
scalable end-to-end embedding architecture are

F 𝒊 = C𝒏 ∗𝒘𝒍 (𝑘ℎ = 𝑘, 𝑘𝑤 = 𝑘, 𝑘𝑑 = 𝑛) (7)

where 𝑛 is the number of features in 3D feature tensor cube C𝒏 ,
i.e., the arity number of the 𝑛-ary knowledge tuples. F 𝒊 ∈ R𝑑1×𝑑2 ,
𝑖 = 1, 2, ..., 𝑛1, and 𝑛1 is the number of output channels of the 3D
dilated convolution, which is set to 8 in this paper.

4.3 Enhanced Semantic Learning Strategy
The 3D scalable end-to-end embedding architecture of HySAE pro-
vides an excellent technical foundation for effectively and efficiently
capturing knowledge hypergraph 𝑛-ary complex semantic informa-
tion with a larger semantic-aware region. To further enhance the
effectiveness of knowledge tuples of different arities, we design two
enhanced semantic learning (ESL) strategies for HySAE to seam-
lessly capture knowledge hypergraph latent 𝑛-ary complex seman-
tic information: Internal Semantic Enhancement Learning Strategy
(ISE) and External Semantic Enhancement Learning Strategy (ESE).
The ISE learning strategy of HySAE is specifically defined as

ISE (F 𝒊) =𝑾𝜽 (C𝒏 ∗𝒘𝒍 (𝑘 = 𝑘𝜃 ; 𝑙 = 𝑙𝜃 )) (8)

where ISE (F 𝒊) are the feature maps obtained after 3D scalable end-
to-end embedding architecture using the ISE learning strategy.𝑾𝜽
denotes the linear transformation matrix used by HySAE to control
the dimension size of the feature maps during model training.

4
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Convolution kernel size 𝑘𝜃 and dilated size 𝑙𝜃 in the ISE learn-
ing strategy are both hyperparameters that can be optimized, but
they only capture features within a single semantic-aware scale.
Moreover, the ESE learning strategy captures potential features at
multiple external semantic-aware scales, which is advantageous on
knowledge hypergraph datasets with less 𝑛-ary semantic informa-
tion. The ESE learning strategy is specifically defined as

ESE (F 𝒊) =
1
𝑛

𝑛∑︁
𝑗=1

𝜆 𝑗 ·𝑾𝒋 (C𝒏 ∗𝒘𝒍 (𝑘 = 𝑘𝜃 ; 𝑙 = 𝑗)) (9)

where ESE (F 𝒊) are the feature maps obtained after 3D scalable
end-to-end embedding architecture using the ESE learning strategy.
𝑾𝒋 denote the linear transformation matrices to ensure seamless
integration of multi-scale features and 𝜆𝑖 is the multi-scale semantic
learning weight coefficient.

Since HySAE always focuses on model efficiency to constrain the
complexity of model architecture and the number of parameters,
the ESE learning strategy is set to dual scales in this paper, i.e., 𝑙=1
and 𝑙>1. Similar to the ISE learning strategy, the 𝑙>1 scale size of the
ESE learning strategy will become an optimizable hyperparameter
that determines the final value during model training. Additionally,
the pooling layer can effectively reduce the amount of parame-
ters, accelerate model convergence, and prevent overfitting. Hence,
HySAE uses a 3D max-pooling layer to extract salient features:

F𝑴𝑷
𝒊 = 3DMaxPool (ESL (F 𝒊)) (10)

where ESL (F 𝒊) denotes the feature maps obtained after using
enhanced semantic learning strategies (ISE or ESE) based on 3D
scalable end-to-end embedding architecture. The size of 3DMaxPool
layer is set to (4,1,1), F𝑴𝑷

𝒊 ∈ R𝑑1×𝑑2 , 𝑖 = 1, 2, ..., 𝑛2, and 𝑛2 = 𝑛1/4.
Then, we concatenate and flatten the feature maps to output a
𝑑-dimensional vector through the fully connected layer, as follows

𝒗𝒐𝒖𝒕 = FC
(
Flatten

(
F𝑴𝑷
1 | |F𝑴𝑷

2 | | · · · | |F𝑴𝑷
𝒏2

))
(11)

where 𝒗𝒐𝒖𝒕 ∈ R𝑑 is the output feature vector, Flatten(·) denotes
the flatten operation, | | is the concatenation operation.

4.4 Model Training
The 1-N multilinear scoring way has been proven to speed up
model training in binary relational KG representation learning [6].
Inspired by previous work, we extend the 1-N multilinear scoring
way to 𝑛-ary knowledge hypergraph representation learning to
accelerate model training. Before constructing the scoring function,
HySAE must integrate the masked entity 𝑒𝑚 in the knowledge
tuple with the role semantic vector of the corresponding position.
Specifically, we treat each entity in the knowledge hypergraph as a
candidate prediction entity set, and use the output feature vector
𝒗𝒐𝒖𝒕 with each entity embedding to compute the knowledge tuple
plausibility score 𝜙 (𝑥), as follows

𝜙 (𝑥) = softmax
(
𝒗𝒐𝒖𝒕 · (𝒆𝒓𝒐𝒍𝒎 )T + 𝒃

)
(12)

With the scoring function obtained above, we design the training
loss as well as the learning objective for the HySAE model. As with
the binary relational KG methods, generating negative samples
during knowledge hypergraph model training helps to improve

representation learning effectiveness and efficiency. However, ob-
servable instances in real-world knowledge hypergraph datasets
are positive (true) samples. Thus, we employ a negative sampling
strategy for the 𝑛-ary relational knowledge hypergraph representa-
tion learning model [20]. Specifically, for each positive (true) tuple
𝑥 ∈ T , we generate a set of negative samples as:

𝑛⋃
𝑖=1
N (𝑖 )𝑥 ≡

𝑛⋃
𝑖=1
{𝑒1, ..., 𝑒𝑖 , ..., 𝑒𝑛 ∉ T |𝑒𝑖 ∈ E, 𝑒𝑖 ≠ 𝑒𝑖 } (13)

where N (𝑖 )𝑥 represents the set of knowledge tuples after replac-
ing the 𝑖-th position entity, which is a generalization of the nega-
tive sampling strategy of the binary relational KG. Our model was
trained using mini-batch Stochastic Gradient Descent and AdaGrad
for tuning the learning rate [9]. The instantaneous multi-class log
loss used by HySAE can be defined as

L =
∑︁
𝑥∈T

𝑛∑︁
𝑖=1
− log

[
𝑒𝜙 (𝑥 )/

(
𝑒𝜙 (𝑥 ) +

∑︁
𝑦∈N (𝑖 )𝑥

𝑒𝜙 (𝑦)
)]

(14)

It can be concluded from the analysis that the instantaneous multi-
class log loss is essentially the cross-entropy loss, which is a gen-
eralization of the binary cross-entropy loss commonly used in KG
models. Furthermore, HySAE uses the necessary dropout [26] and
batch normalization [16] during the convolution process to prevent
model overfitting and stabilize convergence. For ease of description,
we name the model using the ISE learning strategy HySAE-I and
the model using the ESE learning strategy HySAE-E.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. After a comprehensive investigation of previous
works, the various experimental tasks of HySAE were conducted on
seven public benchmark datasets of knowledge hypergraphs. The
mixed arity knowledge hypergraph datasets are JF17K, WikiPeople,
and FB-AUTO [20, 28, 29]. To further validate the scalability of
the model, we conduct the fixed arity knowledge hypergraph task
on four datasets: WikiPeople-3, JF17K-4, WikiPeople-4, and JF17K-
5 [19]. A detailed summary of the datasets is provided in Table 1.

5.1.2 Baselines. To verify the effectiveness and efficiency of HySAE,
we select 17 classical and state-of-the-art baseline methods for com-
parison, including translation-based models, semantic matching
models, and neural network models. Specific comparison baseline
methods are as follows:

• Translation-Based Models: RAE (2018), NaLP (2019).
• Semantic Matching Models: GETD (2020), n-CP (2020),

n-TuckER (2020), HSimplE (2021), RAM (2021), S2S (2021),
PosKHG (2023), ReAlE (2023).

• Neural Network Models: HypE (2021), HyperMLN (2022),
tNaLP+ (2023), RD-MPNN (2023), EnhancE (2023), HyConvE
(2023), and HySAE-2D.

To further prove the superiority of the knowledge hypergraph
3D scalable end-to-end embedding architecture, we construct a 2D
variant version of the HySAE model as a baseline. Since HySAE-2D
cannot conduct end-to-end knowledge hypergraph representation
learning, HySAE-2D adopts the ISE learning strategy to constrain
the number of model parameters.

5
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Table 1: Knowledge hypergraph dataset statistics. "Arity" denotes the involved arities of relations. "#Arity≥ 5" denotes the
amount of facts with 5-ary relations and beyond.

Dataset |E| |R| Arity #Train #Valid #Test #Arity=2 #Arity=3 #Arity=4 #Arity≥ 5

Mixed
𝑛-ary

JF17K 28,645 322 2-6 61,104 15,275 24,568 54,627 34,544 9,509 2,267
WikiPeople 47,765 707 2-9 305,725 38,223 38,281 337,914 25,820 15,188 3,307
FB-AUTO 3,388 8 2, 4, 5 6,778 2,255 2,180 3,786 - 215 7,212

Fixed
𝑛-ary

WikiPeople-3 12,270 66 3 20,656 2,582 2,582 - 25,820 - -
JF17K-4 6,536 23 4 7,607 951 951 - - 9,509 -

WikiPeople-4 9,528 50 4 12,150 1,519 1,519 - - 15,188 -
JF17K-5 561 7 5 1,096 301 833 - - - 2,230

Table 2: Results of link prediction on mixed arity knowledge hypergraph datasets. The best results are in boldface, the second-
best results are underlined, and the optimal baseline results are labeled with (). Experimental results for RAE, NaLP, HypE,
and tNaLP+ are from [29], and other baseline experimental results are from the original paper. The experimental results not
presented in the original paper and obtained locally are marked with "†".

Model JF17K WikiPeople FB-AUTO
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAE [36] 0.392 0.312 0.433 0.561 0.253 0.118 0.343 0.463 0.703 0.614 0.764 0.854
NaLP [15] 0.310 0.239 0.334 0.450 0.338 0.272 0.362 0.466 0.672 0.611 0.712 0.774
HypE [10] 0.494 0.399 0.532 0.650 0.263 0.127 0.355 0.486 0.804 0.774 0.824 0.856

HSimplE [10] 0.472 0.408 0.538 0.656 0.227† 0.221† 0.298† 0.351† 0.798 0.766 0.821 0.855
RAM [20] 0.539 0.463 0.573 0.690 (0.380) 0.279 (0.445) (0.539) 0.830 0.803 0.851 0.876
S2S [7] 0.528 0.457 0.570 0.690 0.372 0.277 0.439 0.533 - - - -

HyperMLN [3] 0.556 (0.482) 0.597 0.717 - - - - 0.831 0.803 0.851 0.877
tNaLP+ [14] 0.449 0.370 0.484 0.598 0.339 0.269 0.369 0.473 0.729 0.645 0.748 0.826
PosKHG [4] 0.545 0.469 0.582 0.706 0.315† 0.214† 0.377† 0.475† 0.856 0.821 0.876 0.895
EnhancE [28] 0.498 0.404 0.542 0.662 0.358 (0.285) 0.392 0.511 0.830 0.802 0.842 0.870
ReAlE [11] 0.559 (0.482) 0.594 0.705 0.332† 0.207† 0.417† 0.514† (0.873) (0.852) (0.886) (0.909)

RD-MPNN [37] 0.512 0.445 0.573 0.685 - - - - 0.810 0.714 0.880 0.888
HyConvE [29] (0.580) 0.478 (0.610) (0.729) 0.362 0.275 0.388 0.501 0.847 0.820 0.872 0.901
HySAE-I (Ours) 0.596 0.521 0.628 0.742 0.454 0.372 0.496 0.601 0.892 0.873 0.902 0.926
HySAE-E (Ours) 0.592 0.516 0.626 0.741 0.454 0.373 0.495 0.603 0.893 0.876 0.904 0.924

5.1.3 Evaluation Metrics and Hyperparameters. Consistent with
previous works [11, 20, 29], we use two standard evaluation metrics,
namely mean reciprocal rank (MRR) and Hits@𝑘 , where 𝑘 is set to
1, 3, and 10. In our experiments, the embedding dimension𝑑 is set to
400 and the batch size is taken from {64, 128, 256, 384, 512}. The size
of the 3D dilated convolution kernel 𝑘 is taken from 1 to 7, and the
size of the convolution dilated 𝑙 is taken from 1 to 5. Furthermore,
the learning rate is selected from 0.00001 to 0.00100, the decay rate
is chosen from 0.900 to 0.999, the dropout rate is selected from 0.0
to 0.9, and the multi-scale semantic learning weight coefficient 𝜆𝑖
is chosen from 0.1 to 0.9. The maximum number of model training
iterations is set to 500 epochs.

5.2 Mixed Arity Knowledge Hypergraph Results
The experimental results of the mixed arity knowledge hypergraph
link prediction are shown in Table 2, which demonstrate the ef-
fectiveness of our proposed model. HySAE consistently outper-
forms all baseline models, with an average improvement of
8.19% and a maximum improvement of 30.88% over the opti-
mal baseline model across all datasets andmetrics. In contrast,
other baseline models do not obtain consistently good results and
are less scalable on datasets of different sizes and semantic richness.

Based on the semantic-enhanced 3D scalable end-to-end embed-
ding architecture, HySAE can sufficiently capture 𝑛-ary complex
semantic information to ensure better effectiveness and scalability.

5.3 Fixed Arity Knowledge Hypergraph Results
The experimental results of the fixed arity knowledge hypergraph
link prediction are shown in Table 3, which demonstrate the effec-
tiveness and scalability of our proposed model. On the evaluation
metrics across all datasets, HySAE improved by an average of
5.40% over the optimal baseline, with a maximum improve-
ment of 14.21%. GETD, n-CP, and n-TuckER can only handle fixed
arity knowledge hypergraph task, and their poor model scalability
is not conducive to real-world applications. HySAE is highly com-
petitive on fixed arity knowledge hypergraph tasks, maintaining
a significant advantage in model scalability. Furthermore, the per-
formance of HySAE-E is more advantageous than HySAE-I on the
fixed arity knowledge hypergraph task.

5.4 Performance Breakdown
The performance breakdown is an extension of knowledge hy-
pergraph link prediction tasks, which can more comprehensively
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Table 3: Results of link prediction on fixed arity knowledge hypergraph datasets. The best results are in boldface, the second-best
results are underlined, and the optimal baseline results are labeled with (). Experimental results of RAE, NaLP, n-CP, n-TuckER,
and GETD are from [19], and other baseline experimental results are obtained locally.

Model WikiPeople-3 JF17K-4 WikiPeople-4 JF17K-5
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

RAE [36] 0.239 0.168 0.379 0.707 0.636 0.835 0.150 0.080 0.273 - - -
NaLP [15] 0.301 0.226 0.445 0.719 0.673 0.805 0.342 0.237 0.540 - - -
n-CP [19] 0.330 0.250 0.496 0.787 0.733 0.890 0.265 0.169 0.445 - - -

n-TuckER [19] 0.365 0.274 0.548 0.804 0.748 0.902 0.362 0.246 0.570 - - -
GETD [19] (0.373) (0.284) (0.558) 0.810 0.755 0.913 (0.386) (0.265) (0.596) - - -
HypE [10] 0.300 0.219 0.468 0.743 0.671 0.870 0.281 0.181 0.479 0.629 0.506 0.870
RAM [20] 0.321 0.250 0.462 0.790 0.739 0.883 0.200 0.135 0.328 (0.799) (0.725) 0.924
ReAlE [11] 0.310 0.220 0.495 0.710 0.647 0.834 0.264 0.140 0.517 0.786 0.679 (0.941)

HyConvE [29] 0.320 0.257 0.498 (0.823) (0.770) (0.922) 0.321 0.195 0.576 0.791 0.722 0.930
HySAE-I (Ours) 0.386 0.292 0.577 0.833 0.779 0.932 0.403 0.278 0.639 0.886 0.827 0.984
HySAE-E (Ours) 0.389 0.297 0.578 0.834 0.780 0.928 0.410 0.289 0.636 0.887 0.828 0.985
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Figure 3: Results of knowledge hypergraph performance breakdown.

evaluate the effectiveness and scalability of knowledge hypergraph
representation learning models [20, 29]. The experimental results
of knowledge hypergraph performance breakdown are shown in
Figure 3 and Table 6 (in the Appendix). HySAE consistently out-
performed all baseline models across all datasets, with a
significant performance advantage of 10.59% on average and
39.44% on maximum improvement over the optimal baseline.
Moreover, we find that the effectiveness of HySAE-I using the ISE
learning strategy is generally better on low-arity knowledge tuples.
Conversely, the effectiveness of HySAE-E using the ESE learning
strategy is superior in terms of high-arity knowledge tuples.

Table 4: Results of the number of model parameters (Mil-
lions). The best results are in boldface and the second-best
results are underlined.

Model JF17K WikiPeople FB-AUTO
HypE [10] ≈ 6.41M ≈ 10.25M ≈ 3.84M
RAM [20] ≈ 14.24M ≈ 27.34M ≈ 1.63M

PosKHG [4] ≈ 14.34M ≈ 27.53M ≈ 1.65M
HyConvE [29] ≈ 12.80M ≈ 21.44M ≈ 4.80M
ReAlE [11] ≈ 14.88M ≈ 29.61M ≈ 1.64M
HySAE-2D ≈ 11.62M ≈ 19.30M ≈ 3.94M

HySAE-I (Ours) ≈ 1.38M ≈ 2.34M ≈ 1.06M
HySAE-E (Ours) ≈ 2.76M ≈ 4.68M ≈ 2.12M

5.5 Model Efficiency Comparison
The model efficiency comparison was performed on mixed arity
knowledge hypergraph datasets: JF17K, WikiPeople, and FB-AUTO.
The state-of-the-art baseline models selected for comparison are
HypE, RAM, PosKHG, HyConvE, ReAlE, and HySAE-2D. Through
the investigation of existing works, we select the model efficiency
evaluation metrics as the number of model parameters [1, 24],
time and memory usage [8, 23, 34], and model training efficiency
curve [7, 20]. Additionally, the time usage refers to the time required
for each epoch iteration of models, calculated from the average of
10 epochs iteration time. The time usage contains the training,
validation, and testing time of the knowledge hypergraph represen-
tation learning models. The training efficiency curves are plotted
from 300 epochs iteration of knowledge hypergraph models. All
experimental results are obtained in locally consistent software and
hardware environment.

The results of the number of model parameters are shown in the
Table 4. Compared with the baseline models and HySAE-2D,
HySAE reduces the parameters by an average of 75.79% and
83.03%, respectively. The results of the model time usage, memory
usage, and training efficiency curves are shown in Figure 4. Com-
pared with the baseline models and HySAE-2D, HySAE is on
average 10.39x and 2.53x faster, andmemory usage is on aver-
age 45.42% and 21.84% lower, respectively, with significantly
faster and better convergence curves. The training efficiency
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Table 5: Results of ablation study. The best results are in boldface.

Model JF17K WikiPeople FB-AUTO

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
HySAE-I 0.596 0.521 0.628 0.742 0.454 0.372 0.496 0.601 0.892 0.873 0.902 0.926

w/o Role Semantic 0.561 0.485 0.592 0.704 0.436 0.351 0.480 0.594 0.884 0.864 0.897 0.918
w/o 3D Architecture 0.556 0.483 0.588 0.696 0.409 0.329 0.450 0.558 0.885 0.868 0.893 0.919

HySAE-E 0.592 0.516 0.626 0.741 0.454 0.373 0.495 0.603 0.893 0.876 0.904 0.924
w/o Role Semantic 0.580 0.505 0.614 0.728 0.438 0.352 0.481 0.596 0.882 0.863 0.893 0.915

w/o ESE(𝑙 = 1) 0.574 0.498 0.608 0.725 0.441 0.354 0.486 0.597 0.892 0.875 0.902 0.923
w/o ESE(𝑙 > 1) 0.588 0.510 0.625 0.740 0.442 0.353 0.489 0.600 0.891 0.873 0.901 0.923
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Figure 4: Results of model efficiency comparison.

curve does not include HypE and ReAlE because their model speed
is much slower than other methods. The model efficiency com-
parison shows the superiority and efficiency of the 3D scalable
end-to-end embedding architecture, which is highly competitive and
valuable in real-world applications.

5.6 Ablation Study
The ablation study experiments were conducted on three datasets
(JF17K, WikiPeople, and FB-AUTO) with hyperparameters con-
sistent with the knowledge hypergraph link prediction task. To
compare the ablation results more clearly, separate ablation study
experiments are conducted for HySAE using different learning
strategies (HySAE-I and HySAE-E). Specifically, the ablation exper-
iments of HySAE-I include removing entity role semantic informa-
tion (w/o Role Semantic) and removing 3D embedding architecture

(w/o 3D Architecture). Notably, the ablation results of (w/o 3D Archi-
tecture) are equivalent to HySAE-2D. Since the core of HySAE-E
lies in multi-scale features learning and integration, its ablation
experiments focus on removing different scales, i.e., (w/o ESE(𝑙=1))
and (w/o ESE(𝑙>1)). In order to contrast with the ablation study of
HySAE-I, (w/o ESE(𝑙=1)) and (w/o ESE(𝑙>1)) retain the 3D embedding
architecture and also perform the ablation study of removing entity
role semantic information (w/o Role Semantic).

The experimental results are shown in Table 5, and HySAE de-
creases performance on all evaluation metrics when removing any
of the core components. The removal of entity role semantic infor-
mation reduces the performance of HySAE-I and HySAE-E by an
average of 3.42% and 2.16% across all datasets and metrics, respec-
tively. It can be seen from the ablation results that the performance
gains from the JF17K and WikiPeople datasets with rich entity role
semantic information are more prominent. In addition, removing
the 3D embedding architecture reduces HySAE-I performance by
5.63% on average. Removing the multi-scale features integration
reduces the (w/o ESE(𝑙=1)) and (w/o ESE(𝑙>1)) performance by 1.91%
and 1.07%, respectively. From the results of the ablation study exper-
iments, it is further evident that the 3D embedding architecture of
HySAE plays a substantial role in the knowledge hypergraph repre-
sentation learning performance. Combined with the experimental
results of model efficiency, removing 3D embedded architecture
can also slow the model speed by 2.53x and increase the number of
model parameters by 83.03%. In summary, the 3D scalable end-to-
end embedding architecture is a crucial foundation for realizing a
satisfactory trade-off between the effectiveness and efficiency of
knowledge hypergraph representation learning.

6 CONCLUSION
In this paper, we propose a novel knowledge hypergraph representa-
tion learning model, HySAE, which designs the semantic-enhanced
3D scalable end-to-end embedding architecture to efficiently and ad-
equately capture 𝑛-ary complex semantic information, achieving
a superior trade-off between model effectiveness and efficiency.
Extensive experimental tasks on datasets with different data sizes
and semantic information richness prove the superior scalability
and efficiency of our proposed method, and HySAE consistently
outperforms all baseline models on all metrics. Besides, the ESE
learning strategy is essentially multi-scale learning and integration,
and we control dual-scale learning to simplify the model architec-
ture and parameters. However, the number of scales for feature
learning and integration is an open question, and its relationship
with model effectiveness and efficiency is worthy of future work.
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A MODEL DETAILS
Without a special notation introduction, this paper uses lowercase
letters for scalars, bold lowercase letters for vectors, and bold upper-
case letters for matrices (or 3D tensors). Algorithm 1 summarizes
the training procedure for HySAE.

Algorithm 1: Training procedure for HySAE
Input: The 𝑛-ary knowledge hypergraphH = (E,R,T),

the negative sampling rate 𝑁 , the maximum number
of iterations 𝑛iter = 500

Output: The score of each knowledge tuple
Init: Entity embedding matrix E for 𝑒𝑖 ∈ E, Relation

embedding matrix R for 𝑟𝑖 ∈ R, Unified entity position
embedding matrix P

1 for 𝑖 = 1, 2, · · · , 𝑛iter do
2 Sample a mini-batch Tbatch ∈ T ;
3 for each fact 𝑥 := {𝑟, 𝑒1, 𝑒2, ..., 𝑒𝑛} ∈ Tbatch do
4 Construct negative samples for fact 𝑥 ;
5 𝒆𝒓𝒐𝒍𝒊 ← knowledge hypergraph position-aware

entity role semantic embedding using (2);
6 C𝒏 ← construct 𝑛-ary knowledge tuple 3D feature

tensor cube using (4);
7 F 𝒊 ← get the feature maps using the 3D scalable

end-to-end embedding architecture (7);
8 ISE (F 𝒊) ← HySAE-I get the feature maps using the

internal semantic enhancement learning strategy (8);
9 ESE (F 𝒊) ← HySAE-E get the feature maps using

the external semantic enhancement learning
strategy (9);

10 𝜙 (𝑥) ← get the final score of each knowledge tuple
using 1-N multilinear scoring (12);

11 end
12 Update learnable parameters w.r.t. gradients based on

the whole objective in (14);
13 end

B EXPERIMENTAL DETAILS
B.1 Datasets
The seven datasets used in the experimental section need some
additional details. The WikiPeople dataset contains abundant 𝑛-
ary semantic information, and it has the most significant num-
ber of relations and entities, i.e., high relation-specific and entity-
specific. Also, the WikiPeople dataset has the highest number of
relation-arity, which facilitates the performance release of role-
aware or position-aware knowledge hypergraph representation
learning models. In contrast, the FB-AUTO dataset has the least
relation-specific and entity-specific, as well as the lowest number
of relation-arity. The 𝑛-ary semantic information inherent in the
JF17K dataset lies between FB-AUTO and WikiPeople. Since JF17K
dataset lacks a validset, we randomly select 20% of the train set as
validation [20]. Other datasets follow the split of the corresponding
original papers. In addition,WikiPeople-3, JF17K-4, andWikiPeople-
4 are from GETD [19], and JF17K-5 is extracted directly from the
source data (JF17K dataset) by us.

B.2 Baseline Models
All local experiments were obtained on 4 NVIDIA GeForce RTX
3090 GPUs and PyTorch 1.12.0, ensuring a consistent hardware and
software environment. The specific hyperparameters for HySAE
are given in our code link, and the training iteration is terminated
during the model training process if the MRR metric does not
improve for 50 epochs continuously. Additionally, the baseline
models used for the local experiments all use the open-source code
given in the original paper. For the hyperparameters of the baseline
methods, we follow the notation from the original papers.

• RAM [20]. Details of the main hyperparameters:𝑚 = 2,
𝐾 = 10, the batch size is set to 64, the embedding size
is selected from {25, 50}, the decay rate is selected from
{0.995, 0.990}, dropout is selected from {0.0, 0.2, 0.4}, and
the learning rate is selected from {0.005, 0.003, 0.002, 0.001}.

• HSimplE [10]. The original paper does not give hyper-
parameter information, and we use the hyperparameters
given in the open-source code: the batch size is set to 128,
the embedding size is set to 200, the negative ratio is set to
10, and the learning rate is set to 0.01.

• PosKHG [4]. The original paper does not give hyperparam-
eter information, and we use the hyperparameters given in
the open-source code:𝑚 = 2, 𝐾 = 10, the batch size is set to
64, the embedding size is selected from {25, 50}, the decay
rate is set to 0.995, dropout is selected from {0.0, 0.2, 0.4},
and the learning rate is selected from {0.005, 0.003}.

• ReAlE [11].Details of themain hyperparameters: the learn-
ing rate is set to 0.08, thewindow size is set to 2, the negative
ratio is selected from {10, 100}, and the batch size is selected
from {128, 512}.

• HypE [10]. The original paper does not give hyperparam-
eter information, and we use the hyperparameters given
in the open-source code: 𝑓 𝑖𝑙𝑡_𝑤 = 1, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 6,
𝑠𝑡𝑟𝑖𝑑𝑒 = 2, the batch size is set to 128, the embedding size
is set to 200, the negative ratio is set to 10, and the learning
rate is set to 0.1.

• HyConvE [29]. Details of the main hyperparameters: the
batch size is set to 128, the embedding size is set to 400,
dropout is selected from {0.0, 0.2, 0.3, 0.4}, and the learning
rate is selected from {0.01, 0.005, 0.003, 0.001, 0.0005, 0.0001}.

It is important to note that our research problem is fundamentally
different from hyper-relational KGs [11, 20, 29]. Hyper-relational
KGs are still based on the primary triple (ℎ, 𝑟, 𝑡) as the core seman-
tic structure, and their model expression ability and computational
efficiency are greatly limited [5, 12, 13, 22, 25, 30, 33]. Knowledge
hypergraphs abandon the traditional triple structure and have more
substantial semantic expression capability. In addition, the format
and details of knowledge hypergraph datasets are significantly dif-
ferent from hyper-relational KG datasets. Consequently, the hyper-
relational KG methods are not the baseline model for this paper.

C EXPERIMENTAL SUPPLEMENT
C.1 Performance Breakdown Supplement
The performance breakdown experiment trains the model using all
knowledge tuples in the mixed arity knowledge hypergraph, and
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Table 6: Results of performance breakdown. The best results are in boldface and the second-best results are underlined.

Breakdown
Arity Model JF17K WikiPeople FB-AUTO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

2-ary

RAM [20] 0.342 0.253 0.374 0.523 0.450 0.372 0.472 0.577 0.542 0.496 0.587 0.621
PosKHG [4] 0.337 0.250 0.368 0.509 0.346 0.238 0.428 0.505 0.517 0.445 0.566 0.630
HyConvE [29] 0.362 0.269 0.395 0.550 0.374 0.304 0.457 0.510 0.400 0.329 0.430 0.528
HySAE-I (Ours) 0.389 0.295 0.419 0.583 0.473 0.396 0.516 0.608 0.594 0.522 0.631 0.722
HySAE-E (Ours) 0.372 0.279 0.404 0.565 0.472 0.396 0.513 0.604 0.606 0.545 0.641 0.717

3-ary

RAM [20] 0.596 0.522 0.617 0.743 0.289 0.219 0.334 0.431 - - - -
PosKHG [4] 0.591 0.516 0.604 0.741 0.268 0.189 0.317 0.433 - - - -
HyConvE [29] 0.594 0.526 0.615 0.723 0.336 0.252 0.350 0.500 - - - -
HySAE-I (Ours) 0.626 0.556 0.655 0.763 0.352 0.263 0.379 0.533 - - - -
HySAE-E (Ours) 0.628 0.553 0.662 0.773 0.350 0.256 0.380 0.535 - - - -

4-ary

RAM [20] 0.729 0.679 0.759 0.817 0.261 0.170 0.280 0.447 0.453 0.367 0.501 0.617
PosKHG [4] 0.757 0.698 0.774 0.864 0.200 0.110 0.217 0.413 0.461 0.379 0.517 0.622
HyConvE [29] 0.764 0.712 0.798 0.858 0.309 0.208 0.322 0.526 0.457 0.369 0.500 0.619
HySAE-I (Ours) 0.809 0.756 0.842 0.903 0.373 0.257 0.430 0.605 0.507 0.426 0.534 0.688
HySAE-E (Ours) 0.802 0.749 0.837 0.901 0.386 0.265 0.449 0.626 0.509 0.449 0.528 0.625

5-ary

RAM [20] 0.787 0.721 0.862 0.900 0.113 0.043 0.145 0.221 0.387 0.290 0.531 0.568
PosKHG [4] 0.792 0.687 0.860 0.909 0.155 0.100 0.217 0.233 0.463 0.409 0.561 0.574
HyConvE [29] 0.786 0.701 0.861 0.896 0.391 0.301 0.429 0.562 0.953 0.937 0.967 0.976
HySAE-I (Ours) 0.866 0.793 0.931 0.982 0.435 0.338 0.490 0.620 0.968 0.962 0.971 0.977
HySAE-E (Ours) 0.881 0.823 0.928 0.978 0.472 0.379 0.527 0.635 0.967 0.960 0.972 0.978

6-ary

RAM [20] 0.777 0.698 0.881 0.917 0.070 0.042 0.075 0.130 - - - -
PosKHG [4] 0.866 0.854 0.878 0.896 0.023 0.015 0.034 0.048 - - - -
HyConvE [29] 0.873 0.855 0.886 0.907 0.275 0.187 0.281 0.470 - - - -
HySAE-I (Ours) 0.956 0.938 0.969 0.979 0.278 0.191 0.294 0.485 - - - -
HySAE-E (Ours) 0.908 0.875 0.927 0.958 0.313 0.200 0.345 0.558 - - - -
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Figure 5: Effects of (a) embedding dimension, (b) convolution kernel size, (c) dilated size, and (d) batch size on knowledge
hypergraph datasets.

then evaluates the breakdown performance on knowledge tuples
of different arities separately, so it can only be performed on the
mixed arity knowledge hypergraph datasets [20, 29]. For a more
comprehensive comparison of the performance breakdown task
of the knowledge hypergraph models, we give the experimental
results for all metrics in Table 6. HySAE consistently outperforms
all baseline methods and has good model scalability.

Combined with the experimental results ofmixed arity and fixed
arity knowledge hypergraph link prediction tasks, the multi-scale
feature learning and integration of HySAE-E is beneficial in en-
hancing the performance of knowledge hypergraph tasks with less
𝑛-ary semantic information. However, a higher number of scales
in the ESE learning strategy will result in a more complex model
and a higher number of parameters, impairing the model efficiency.
Therefore, we set the ESE learning strategy as dual scales feature
learning and integration, i.e., 𝑙 = 1 and 𝑙>1. Also, we can reasonably

choose the number of scales for feature learning and integration ac-
cording to the needs of knowledge hypergraph tasks with different
data and semantic information sizes in the real world.

C.2 Sensitivity of Hyperparameters
To further investigate the influence of critical hyperparameters
on mixed arity and fixed arity knowledge hypergraphs, we con-
duct sensitivity analysis experiments on FB-AUTO and JF17K-4
datasets, including embedding dimension, convolution kernel size,
dilated size, and batch size. Except for the hyperparameter of sensi-
tivity analysis, the other hyperparameters are consistent with the
knowledge hypergraph link prediction task.

Figure 5(a) shows the effect of embedding dimension on model
performance, and it can be seen that when the embedding dimen-
sion is small, the model performance is generally lower. When the
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(a) JF17K dataset efficiency curves with MRR, Hits@1, Hits@3, and Hits@10 metrics
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(b) WikiPeople dataset efficiency curves with MRR, Hits@1, Hits@3, and Hits@10 metrics
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(c) FB-AUTO dataset efficiency curves with MRR, Hits@1, Hits@3, and Hits@10 metrics

Figure 6: The model training efficiency curves on knowledge hypergraph datasets.

embedding dimension increases to a threshold, the model perfor-
mance will not significantly improve, and even performance decay
will occur. Figure 5(b) and Figure 5(c) show that the convolution
kernel size and dilated size have an impact on the model perfor-
mance, which proves that the size of the semantic-aware region
of the model can affect model performance. Figure 5(d) illustrates
the effect of batch size on model performance, which is a very
important hyperparameter during model training. The inherent
𝑛-ary semantic information of fixed arity knowledge hypergraph
is relatively simple, so the performance of HySAE on fixed arity
knowledge hypergraph dataset is more robust.

C.3 Model Efficiency Curves Supplement
For a more comprehensive comparison of the model training ef-
ficiency curves, the experimental results for all metrics are given
in Figure 6. It is evident from the experimental results that our
proposed models can achieve higher performance in a shorter time
on all metrics. Additionally, our proposed models are significantly
faster than other baseline models and can complete 300 epochs
iteration in the shortest time. In addition, the training efficiency
curve of HySAE-I using the ISE learning strategy is better than that
of HySAE-E using the ESE learning strategy. This further validates
our idea that multi-scale feature learning and integration degrades
the model efficiency.
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