
Under review as a conference paper at ICLR 2021

TRIPLE-SEARCH: DIFFERENTIABLE JOINT-SEARCH OF
NETWORKS, PRECISION, AND ACCELERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

The record-breaking performance and prohibitive complexity of deep neural net-
works (DNNs) have ignited a substantial need for customized DNN accelera-
tors which have the potential to boost DNN acceleration efficiency by orders-of-
magnitude. While it has been recognized that maximizing DNNs’ acceleration
efficiency requires a joint design/search for three different yet highly coupled
aspects, including the networks, adopted precision, and their accelerators, the
challenges associated with such a joint search have not yet been fully discussed and
addressed. First, to jointly search for a network and its precision via differentiable
search, there exists a dilemma of whether to explode the memory consumption or
achieve sub-optimal designs. Second, a generic and differentiable joint search of
the networks and their accelerators is non-trivial due to (1) the discrete nature of
the accelerator space and (2) the difficulty of obtaining operation-wise hardware
cost penalties because some accelerator parameters are determined by the whole
network. To this end, we propose a Triple-Search (TRIPS) framework to address
the aforementioned challenges towards jointly searching for the network structure,
precision, and accelerator in a differentiable manner, to efficiently and effectively
explore the huge joint search space. Our TRIPS addresses the first challenge above
via a heterogeneous sampling strategy to achieve unbiased search with constant
memory consumption, and tackles the latter one using a novel co-search pipeline
that integrates a generic differentiable accelerator search engine. Extensive ex-
periments and ablation studies validate that both TRIPS generated networks and
accelerators consistently outperform state-of-the-art (SOTA) designs (including
co-search/exploration techniques, hardware-aware NAS methods, and DNN ac-
celerators), in terms of search time, task accuracy, and accelerator efficiency. All
codes will be released upon acceptance.

1 INTRODUCTION

The powerful performance and prohibitive complexity of deep neural networks (DNNs) have fueled a
tremendous demand for efficient DNN accelerators which could boost DNN acceleration efficiency
by orders-of-magnitude (Chen et al., 2016). In response, extensive research efforts have been devoted
to developing DNN accelerators. Early works decouple the design of efficient DNN algorithms and
their accelerators. On the algorithms level, pruning, quantization, or neural architecture search (NAS)
are adopted to trim down the model complexity; On the hardware level, various FPGA-/ASIC-based
accelerators have been developed to customize the micro-architectures (e.g., processing elements
dimension, memory sizes, and network-on-chip design) and algorithm-to-hardware mapping methods
(e.g., loop tiling strategies and loop orders) in order to optimize the acceleration efficiency for a
given DNN. Later, hardware-aware NAS (HA-NAS) has been developed to further improve DNNs’
acceleration efficiency for different applications (Tan et al., 2019).

More recently, it has been recognized that (1) optimal DNN accelerators require a joint considera-
tion/search for all the following different yet coupled aspects, including DNNs’ network structure, the
adopted precision, and their accelerators’ micro-architecture and mapping methods, and (2) merely
exploring a subset of these aspects will lead to sub-optimal designs in terms of hardware efficiency
or task accuracy. For example, the optimal accelerators for networks with different structures (e.g.,
width, depth, and kernel size) can be very different; while the optimal networks and their bitwidths

1

Under review as a conference paper at ICLR 2021

for different accelerators can differ a lot (Wu et al., 2019). However, the direction of jointly designing
or searching for all the three aspects has only been slightly touched on previously. For example,
(Chen et al., 2018; Gong et al., 2019; Wang et al., 2020) proposed to jointly search for the structure
and precision of DNNs for a fixed target hardware; (Abdelfattah et al., 2020; Yang et al., 2020; Jiang
et al., 2020a;b) made the first attempt to jointly search for the networks and their accelerators, yet
either their network or accelerator choices are limited due to the prohibitive time cost required by
their adopted reinforcement learning (RL) based methods; and EDD (Li et al., 2020) contributed a
pioneering effort towards this direction by formulating a differentiable joint search framework, which
however only consider one single accelerator parameter (i.e., parallel factor) and more importantly,
has not yet fully solved the challenges of such joint search.

Although differentiable search is one of the most promising ways in terms of search efficiency to
explore the huge joint search space as discussed in Sec. 4.2, plethora of challenges exist to achieve
an effective generic joint search for the aforementioned three aspects. First, Challenge 1: to jointly
search for a network and its precision via differentiable search, there exists a dilemma whether to
activate all the paths during search. On one hand, the required memory consumption can easily
explode and thus constrain the search’s scalability to more complex tasks if all paths are activated; on
the other hand, partially activating a subset of the paths can lead to a sequential training of different
precision on the same weights, which might result in inaccurate accuracy ranking among different
precision as discussed in (Jin et al., 2020). Second, Challenge 2: the accelerators’ parameters are
not differentiable, and it is non-trivial to derive the operation-wise hardware-cost penalty in order
to perform differentiable search (in considering search efficiency). This is because the optimal
accelerator is often determined by the whole network instead of one specific operation/layer due to
the fact that some accelerator parameters (e.g., the loop order) need to be optimized for the whole
network.

In this paper, we aim to address the aforementioned challenges towards scalable generic joint search
for the network, precision, and accelerator. Specifically, we make the following contributions:

• We propose a Triple-Search (TRIPS) framework to jointly search for the network, precision,
and accelerator in a differentiable manner to efficiently explore the huge joint search space
which cannot be afforded by previous RL-based methods due to their required prohibitive
search cost. TRIPS identifies and tackles the aforementioned challenges towards scalable
generic joint search of the three for maximizing both the accuracy and acceleration efficiency.

• We develop a heterogeneous sampling strategy for simultaneous updating the weights and
network structures to (1) avoid the need to sequentially train different precision and (2)
achieve unbiased search with constant memory consumption, i.e., solve the above Challenge
1. In addition, we develop a novel co-search pipeline that integrates a differentiable hardware
search engine to address the above Challenge 2.

• Extensive experiments and ablation studies validate the effectiveness of our proposed TRIPS
framework in terms of the resulting search time, task accuracy, and accelerator efficiency,
when benchmarked over state-of-the-art (SOTA) co-search/exploration techniques, HA-NAS
methods, and DNN accelerators. Furthermore, we visualize the searched accelerators by
TRIPS to provide insights towards efficient DNN accelerator design in Appendix.

2 RELATED WORKS

Hardware-aware NAS. Hardware-aware NAS has been proposed to automate the design of efficient
DNNs. Early works (Tan et al., 2019; Howard et al., 2019; Tan & Le, 2019) utilize RL-based NAS
that requires a massive search time/cost, while recent works (Wu et al., 2019; Wan et al., 2020; Cai
et al., 2018; Stamoulis et al., 2019) explore the design space in a differentiable way (Liu et al., 2018)
with much improved searching efficiency. Along another direction, one-shot NAS methods (Cai et al.,
2019; Guo et al., 2020; Yu et al., 2020) pretrain the supernet and directly evaluate the performances of
the sub-networks in a weight sharing manner as a proxy of their independently trained performances
at the cost of a longer pretrain time. In addition, NAS has been adopted to search for quantization
strategies (Wang et al., 2019; Wu et al., 2018; Cai & Vasconcelos, 2020; Elthakeb et al., 2020)
for trimming down the complexity of a given DNN. However, these works leave unexplored the

2

Under review as a conference paper at ICLR 2021

Accelerator
Structure

DNN
Structure

Quantization
Choices
16 8 4

TRIPS
Framework

16 8 4

Optimal Design Pairs

PEs number & Inter-
connection

Buffer Allocation
MAC tiling &
scheduling

Network Layer - Pipeline
Stage Allocation

Operator Type

Channel Expansion

Kernel Size
Group Num (for group

convolution)

Precision choices for each block
(e.g., 4-bit, 6-bit, 8-bit, 12-bit, 16-bit)

Figure 1: Illustrating our TRIPS framework: the large joint space and tackled challenges.

hardware design space, which is a crucial enabler for DNN’s acceleration efficiency, thus can lead to
sub-optimal solutions.

DNN accelerators. Motivated by customized accelerators’ large potential gains, SOTA accelera-
tors (Du et al., 2015; Chen et al., 2017) innovate micro-architectures and algorithm-to-hardware
mapping methods to optimize the acceleration efficiency, given a DNN and the hardware specifi-
cations. However, it is non-trivial to design an optimal accelerator as it requires cross-disciplinary
knowledge in algorithm, micro-architecture, and circuit design. SOTA accelerator design relies on
either experts’ manual design, which is very time consuming or design flow (Chen et al., 2005; 2009;
Rupnow et al., 2011) and DNN accelerator design automation (Wang et al., 2016; Zhang et al., 2018a;
Guan et al., 2017; Venkatesan et al., 2019; Wang et al., 2018a; Gao et al., 2017). As they merely
explore the accelerator design space, they can result in sub-optimal solutions as compared to SOTA
co-search/exploration methods and our TRIPS framework.

Co-exploration/search techniques. Pioneering efforts have been made towards jointly searching of
DNNs and their accelerators to some extent. For joint searching of DNNs and their precision, (Chen
et al., 2018; Gong et al., 2019; Wang et al., 2020) adopt either differentiable or evolutionary algo-
rithms yet without exploring their hardware accelerators. For joint searching of DNNs and their
accelerators, (Abdelfattah et al., 2020; Yang et al., 2020; Jiang et al., 2020a;b) conduct RL-based
search for the networks and some accelerator parameters/templates, where they strictly constrain
the search space of the network or accelerator to achieve a practical RL search time, limiting their
scalability and achievable efficiency. (Lin et al.) is another pioneering work which co-designs the
newtork and accelerator in a sequential manner based on the fact that the accelerator’s design cycle is
longer than the networks. EDD (Li et al., 2020) extends differentiable NAS to search for layer-wise
precision and the accelerators’ parallel factor, which is most relevant to our TRIPS. EDD has not
yet fully solved the joint search challenges. First, it does not discuss or address the potentially
explosive memory consumption issue of such joint search; second, EDD’s accelerator search space
only includes the parallel factor, which can be strictly limited to their accelerator template and cannot
generalize to include common accelerator parameters such as the tiling strategies.

Built upon prior art, our TRIPS targets a scalable generic joint search framework to optimally search
for the network, its precision, and adopted accelerator in a differentiable manner for improving
efficiency.

3 THE PROPOSED TECHNIQUES

In this section, we describe our proposed techniques for enabling TRIPS, where Sec. 3.1 provides
TRIPS’s formulation, Sec. 3.2 and Sec. 3.3 introduce TRIPS’s enablers that address the key challenges
of scalable generic joint search for networks, precision, and accelerators, and Sec. 3.4 unifies the
enablers to build a comprehensive co-search framework.

3.1 TRIPS: FORMULATION

Fig. 1 shows an overview of TRIPS, which jointly searches for the networks (e.g., kernel size, channel
expansion, and group number), precision (e.g., 4-/6-/8-/12-/16-bit), and the accelerators (e.g., PE
array type, buffer size, and tiling strategies of each memory hierarchy) in a differentiable manner.

3

Under review as a conference paper at ICLR 2021

(a) (b) (c)

Final choice: 4-bit Final choice: 12-bit

Figure 2: (a) GPU memory consumption comparison between soft Gumbel Softmax (GS) and hard
GS sampling (two active choices) for precision search. Probability of each precision choice during
the search process in the 4-th block when searching with: (b) hard GS sampling for updating both
weights ω and precision choices β (result in the lowest 4-bit), and (c) the proposed heterogeneous
sampling for updating ω and β (result in the highest 12-bit).

TRIPS targets a scalable yet generic joint search framework, which we formulate as a bi-level
optimization problem:

min
α,β

Lval(ω∗, net(α), prec(β)) + λLcost(hw(γ∗), net(α), prec(β)) (1)

s.t. ω
∗
= arg min

ω
Ltrain(ω, net(α), prec(β)), (2)

s.t. γ
∗
= arg min

γ
Lcost(hw(γ), net(α), prec(β)) (3)

Where α, β, and γ are the continuous variables parameterizing the probability of different choices
for the network operators, precision bitwidths, and accelerator parameters as in (Liu et al., 2018), ω
is the supernet weights, Ltrain, Lval, and Lcost are the loss during training and validation and the
hardware-cost loss, and net(α), prec(β), and hw(γ) denote the network, precision, and accelerator
characterized by α, β, γ, respectively.

3.2 TRIPS ENABLER 1: HETEROGENEOUS SAMPLING FOR PRECISION SEARCH

As discussed in Sec.1, there exists a dilemma (i.e., memory consumption explosion or biased search)
whether to activate all the paths during precision search, for addressing which we have developed a
heterogeneous sampling. Next, we first use real experiments to illustrate the joint search dilemma,
and then introduce our heterogeneous sampling which effectively address those challenges/issues.

Activating all choices - memory explosion and entangled correlation among choices. During
precision search, activating all the precision choices as (Wu et al., 2018; Gong et al., 2019) can easily
explode the memory consumption especially when the precision is co-searched with the network
structures. While composite convolutions (Cai & Vasconcelos, 2020) for mixed precision search
can mitigate this memory explosion issue during search by shrinking the required computation, yet
this large memory consumption issue would still exist during training when updating the precision
parameters, i.e., β in Eq. (1). For example, as shown in Fig. 2 (a), the measured GPU memory
consumption of co-searching the network and precision on ImageNet grows linearly with the number
of precision choices if activating all precision choices during search. In addition, the entangled
correlation (e.g., co-adaptation (Hong et al., 2020), correlation (Li et al., 2019), and cooperation (Tian
et al., 2020)) among different precision choices leads to a large gap between the supernet during
search and the final derived network, thus failing the joint search.

Table 1: Comparing the resulting accuracy when
training a fixed network using different precision
schedules, where high2low and low2high denote
sequential training from high precision to low preci-
sion and the inverse case, respectively.

Strategy Acc
4-bit (%) 8-bit (%) 12-bit (%) 16-bit (%) 32-bit (%)

Independent 63.52 67.44 67.56 67.65 68.21

high2low 59.29 45.09 45.45 45.15 65
low2high 4.36 26.55 43.58 63.3 63.5

joint 63.28 66.98 67.21 67.23 67.36

Activating only a subset of choices - Bi-
ased search. For addressing the above issues
of memory explosion and correlation among
choices, one natural choice is to adopt hard
Gumbel Softmax by reducing the memory con-
sumption, which however can lead to a biased
search and thus poor performance. Specifically,
activating only a subset of the precision choices
implies a sequential training of different preci-
sions that can lead to inaccurate performance

4

Under review as a conference paper at ICLR 2021

ranking. This is because a sequential training means different precision choices are applied on top
of the same weights and activations. As a result, different precision choices can interfere with each
other and different training order would lead to a different result. For better understanding, we next
show two concrete experiments.

Co-search network and precision using hard Gumbel Softmax: Fig. 2 (b) shows the resulting preci-
sion probability evolution when co-searching the network and precision on CIFAR-100 using hard
Gumbel Softmax (activating two precision choices) without imposing any hardware-cost constraints,
indicating the desired precision choice would be the highest precision. However, as shown in Fig. 2
(b), the block co-searched using hard Gumbel Softmax collapse to the lowest precision (i.e., the
highest probability towards the end of the search is the lowest precision choice 4-bit), indicating an
ineffective search direction. Note that the fluctuation in the probability of different precision choices
is caused by the intermittent activation of the block due to the hard Gumbel Softmax sampling.

Sequential training of a fixed network with multiple precision choices: As observed in (Jin et al.,
2020), when training a fixed network with multiple precision choices, either ascending or descending
the precision will incur an inferior convergence and thus chaotic accuracy ranking among different
precision choices. For example, as shown in Tab. 1, we compare the accuracy of a fixed network
(all blocks adopt the k3e1 (kernel size 3 and channel expansion 1) structure in (Wu et al., 2019))
under different precision choices, when being trained with different precision schedules, and find
that only jointly training all the precision choices can maintain the ranking consistent with that of
independently trained ones, while sequential training leads to both inferior accuracy and ranking.

Proposed solution - Heterogeneous sampling. To tackle both aspects of the aforementioned
dilemma, we propose a heterogeneous sampling strategy as formulated in Eq. (4) where W̄ l /
Ā
l are the composite weights / activations of the l-th layer as in (Cai & Vasconcelos, 2020) which are

the weighted sum of weights / activations under different precision choices, e.g., W l
j is the weights

quantized to the j-th precision among the total J options of the l-th layer. In our heterogeneous
sampling, for updating the weights in Eq. (2), we jointly update the weights under all the precision
choices weighted by their corresponding soft Gumbel Softmax GS(βlj), where βlj parameterizes the
probability of the j-th precision in the l-th layer, and the gradients can be estimated by STE (Zhou
et al., 2016) as ∂Ltrain/∂Al ≈ ∂Ltrain/∂Āl so that no extra intermediate feature maps are needed
to be stored into the memory during backward. For updating β, we adopt hard Gumbel Softmax (Jang
et al., 2016) with one-hot outputs GShard(βlj) to save memory and computation while reducing
the correlation among precision choices. In the same co-search setting as Fig. 2 (b), all the blocks
searched using our proposed heterogeneous sampling converge to the highest precision choice towards
the end of the search as shown in Fig. 2 (c).

A
l+1

= W̄
l
∗ Ā

l
=

J

∑
j=1

β̄ljW
l
j ∗

J

∑
j=1

β̄ljA
l
j where β̄lj = {GS(β

l
j) if updating weight

GShard(βlj) if updating β
(4)

3.3 TRIPS ENABLER 2: DIFFERENTIABLE ACCELERATOR SEARCH ENGINE

Motivation. Although EDD (Li et al., 2020) also co-searches the accelerator with the network,
their search space is limited to include only the parallel factor within their template which can be
analytically fused into their theoretical computational cost, whereas this is not always applicable to
other naturally non-differentiable accelerator design parameters such as tiling strategies. A more
general and efficient search engine is needed towards generic differentiable accelerator search.

Search algorithm. We propose a differentiable search engine to efficiently search for the optimal
accelerator (including the micro-architectures and mapping methods) given a DNN model and its
precision based on single-path sampling as discussed in Sec. 3.1. We solve Eq. (3) in a differentiable
way:

γ
∗
= arg min

γ

M

∑
m=1

GShard(γm)Lcost(hw({GShard(γm)}), net({Olfw}), prec({Blfw})) (5)

where M is the number of accelerator design parameters. Given the network net({Olfw}) and
precision prec({Blfw}), where Olfw and Blfw are the only operator and precision activated during
forward as discussed in Sec. 3.4, our search engine utilizes hard Gumbel Softmax GShard sampling

5

Under review as a conference paper at ICLR 2021

on each design parameter γm to build an accelerator hw({GShard(γm)}) and penalize each sampled
accelerator parameter with the overall hardware-cost Lcost through relaxation in a gradient manner.

Hardware template. We adopt a unified template for both the FPGA and ASIC accelerators, which is
a parameterized chunk-based pipeline micro-architecture inspired by (Shen et al., 2017). In particular,
the hardware/micro-architecture template comprises multiple sub-accelerators (i.e., chunks) and
executes DNNs in a pipeline fashion. Each chunk is assigned with multiple but not necessarily
consecutive layers which are executed sequentially within the chunk. Similar to Eyeriss, each chunk
consists of levels of buffers/memories (e.g., on-chip buffer and local register files) and processing
elements (PEs) to facilitate data reuses and parallelism with searchable design knobs such as PE
interconnections (i.e., Network-on-chip), allocated buffer sizes, MAC operations’ scheduling and
tiling (i.e., dataflows), and so on (see more details in Appendix B).

Discussion about the general applicability. Our search approach is general and can be applicable
to different hardware architectures, since we do not hold any prior assumptions about the adopted
hardware architecture. Specifically, for any target hardware architecture, including TPU-like or
GEMM or other accelerators, our search approach can be directly applied once given (1) a simulator
to estimate the hardware cost, and (2) a set of user-defined searchable design knobs abstracted from
the target hardware architecture.

3.4 TRIPS: THE OVERALL CO-SEARCH FRAMEWORK

Objective and challenges. TRIPS’s iterative search starts from updating both the supernet weights ω
and accelerator parameters γ, given the current network net(α) quantized using precision prec(β),
and then updates α and β based on the derived optimal weights ω∗ and accelerator hw(γ∗) resulting
from the previous step. Updating ω∗ and γ∗ have been discussed in Sec. 3.2 and Sec. 3.3, respectively.
The key objective of TRIPS is captured by Eq. (1) which involves all the three major aspects towards
efficient DNN accelerators. The key challenges in achieving TRIPS include (1) the prohibitively
large joint search space (e.g., 2.3E+21 in this work) which if not addressed will limit the scalability
of TRIPS to practical yet complex tasks; (2) the entangled co-adaptation (Hong et al., 2020), correla-
tion (Li et al., 2019), and cooperation (Tian et al., 2020) issues among different network and precision
choices can enlarge the gap between the supernet during search and the final derived network, thus
failing the joint search; and (3) the non-triviality of deriving hardware-cost for the layer/block-wise
update during network search, as the hardware-cost is determined by the whole network.

Forward ∶ A
l+1

=

N

∑
i=1

GShard(αli)Oi(Al) = Olfw(Al) (6)

Backward ∶
∂Lval

∂αli
=

K

∑
k=1

∂Lval

∂GS(αlk)
∂GS(αlk)
∂αli

=
∂Lval

∂Al+1

K

∑
k=1

O
l
k(Al)

∂GS(αlk)
∂αli

(7)

∂Lcost

∂αli
= 1(GShard(αli) = 1)Lα

l
i

cost(hw(γ∗), net(αli), prec(β)) (8)

TRIPS implementation. To tackle the three aforementioned challenges, TRIPS integrates a novel
co-search pipeline which can be illustrated using the co-search for α as follows and is similarly
applicable to co-search for β . Note that here we define path to be one of the parallelled candidate
operators between the layer input and layer output within one searchable layer, which can be viewed
as a coarse-grained (layer-wise) version of the path definition in (Wang et al., 2018b; Qiu et al., 2019).

Single-path forward: For updating both α (see Eq. (6)) and β during forward, TRIPS adopts hard
Gumbel Softmax sampling (Hu et al., 2020a), i.e., only the choice with the highest probability will
be activated to narrow the gap between the search and evaluation thanks to the single-path property
of hard Gumbel Softmax sampling. In Eq. (6), Al and Al+1 denote the feature maps of the l-th and
(l + 1)-th layer, respectively, N is the total number of operator choices, Oli is the i-th operator in the
l-th layer parameterized by αli, and Olfw is the only operator activated during forward.

Multi-path backward: For updating both α (see Eq. (7)) and β during backward, TRIPS activates
multiple paths to calculate the gradients of α and β through Gumbel Softmax relaxation in order
to balance the search efficiency and stability motivated by (Cai et al., 2018; Hu et al., 2020b). For

6

Under review as a conference paper at ICLR 2021

example, αli’s gradients are calculated using Eq. (7), where K is the number of activated choices
with the top K Gumbel Softmax probability. Similar to (Cai et al., 2018), K ∈ (1, N) in TRIPS to
control the computational cost.

Hardware-cost penalty: The network search in Eq. (1) is performed in a layer/block-wise manner as
in (Liu et al., 2018), thus requiring layer/block-wise hardware-cost penalty which is determined by
the layer/block-to-accelerator mapping method and the corresponding layer/block execution cost on
the optimal accelerator hw(γ∗). The optimal mapping method of an accelerator is yet determined by
the whole network. To handle this gap, we derive the layer/block-wise hardware-cost assuming that
the single-path network derived from the current forward would be the final derived network, as this
single-path network has a higher if not the highest probability to be finally derived. In Eq. (8), 1 is an
indicator denoting whether αli (i.e., the i-th operator in the l-th layer) is activated during forward.

4 EXPERIMENT RESULTS

4.1 EXPERIMENT SETUP

Software settings. Search space and hyper-params. We adopt the same search space in (Wu et al.,
2019) for the ImageNet experiments and disable the first two down sampling operations for the
CIFAR-10/100 experiments. We use [4, 6, 8, 12, 16] as candidate precision choices and one block
shares the same precision of weights and activations for more hardware friendly implementation. We
activate two paths during backward, i.e., K = 2 in Eq. (7), for search efficiency. For Lcost in Eq. (3),
we use latency for FPGA as the target metric is Frame-Per-Second (FPS), and Energy-Delay-Product
(EDP) for ASIC. Detailed search and training settings are elaborated in Appendix A.

Baselines. We mainly benchmark over four kinds of SOTA baselines: (1) the most relevant baseline
EDD (Li et al., 2020) which co-searches networks, precision, and accelerators, (2) SOTA methods
co-exploring networks and accelerators including HS-Co-Opt (Jiang et al., 2020b), NASAIC (Yang
et al., 2020), and BSW (Abdelfattah et al., 2020), (3) SOTA methods co-searching the networks and
precision including APQ (Wang et al., 2020) and MP-NAS (Gong et al., 2019), and (4) hardware-
aware NAS with uniform precision, including FBNet (Wu et al., 2019), ProxylessNAS (Cai et al.,
2018), Single-Path NAS (Stamoulis et al., 2019), and EfficientNet-B0 (Tan & Le, 2019).

Hardware settings. To evaluate the generated network and accelerator designs, for FPGA cases,
we adopt the standard Vivado HLS (Xilinx Inc., a) design flow, on the target Xilinx ZC706 de-
velopment board (Xilinx Inc., b), which has a total 900 DSP48s (Digital Signal Processor) and
19.1Mb BRAM (Block RAM). For ASIC implementations, we use the SOTA energy estimation tool
Timeloop (Parashar et al., 2019) and Accelergy, (Wu et al., 2019), to validate our generated design’s
performance, with CACTI7 (Balasubramonian et al., 2017) and Aladdin (Shao et al., 2014) at a 32nm
CMOS technology as unit energy and timing cost plugins. Details about the accelerator search
space are discussed in Appendix B.

4.2 BENCHMARK SEARCH EFFICIENCY

To evaluate the superiority of TRIPS in terms of search efficiency, we compare the search space size
and search time of TRIPS with both RL-based co-search works and one-shot NAS methods using
the reported data from the baselines’ original papers as shown in Tab. 2. We can see that TRIPS
consistently require notably less search time while handling the largest joint search space on all the
considered tasks. In particular, compared with the one-shot NAS methods (Guo et al., 2020; Cai

Table 2: Search efficiency benchmark of TRIPS over co-search works and one-shot NAS methods.

Method Dataset Network Space Accelerator Space Precision Space Joint Space Search Time (GPU hours)

HS-Co-Opt (Jiang et al., 2020b) CIFAR-10 1.15E+18 - - 1.15E+18 103.9
TRIPS CIFAR-10 9.85E+20 2.24E+27 2.40E+15 5.30E+63 6

BSW (Abdelfattah et al., 2020) CIFAR-100 4.20E+05 8.64E+03 - 3.63E+09 5184
TRIPS CIFAR-100 9.85E+20 2.24E+27 2.40E+15 5.30E+63 12

HS-Co-Opt (Jiang et al., 2020b) ImageNet 2.22E+18 - - 2.22E+18 266.8
Once-For-All (Cai et al., 2019) ImageNet 2.00E+19 - - 2.00E+19 1200

APQ (Wang et al., 2020) ImageNet 1.00E+35 - 1.00E+10 1.00E+45 2400
Single One-shot (Guo et al., 2020) ImageNet 7.00E+21 - - 7.00E+21 288

TRIPS ImageNet 9.85E+20 2.24E+27 2.40E+15 5.30E+63 80

7

Under review as a conference paper at ICLR 2021

et al., 2019) which can be potentially extended to co-search frameworks while suffering from a large
pretraining cost, TRIPS achieves 3.6× ∼ 30× less search time on ImageNet, while being end-to-end,
justifying our choice of differentiable co-search.

4.3 BENCHMARK OVER SOTA METHODS

FPS

A
C

C
 (%

)

+ 3.82% Acc.

+ 0.48% Acc.

1.17x FPS

1.59x FPS

2.52x FPS + 1.3% Acc.

Figure 3: Accuracy vs. FPS trade-off
of TRIPS against SOTA efficient DNN
solutions on ImageNet.

Co-exploration of networks, precision, and accelera-
tors. We benchmark our TRIPS framework with SOTA
efficient DNN solutions on ImageNet and FPGA-based
accelerators under the 512 DSP limits in Fig. 3 follow-
ing (Abdelfattah et al., 2020). Specifically, we provide four
searched results of our TRIPS framework; we use the re-
ported results for EDD, and search for the optimal accelera-
tor in our accelerator space for APQ, MP-NAS, and SOTA
hardware-aware NAS methods; for EfficientNet-B0, we ap-
ply the SOTA mixed precision strategy searched by (Habi
et al., 2020) for a fair comparison and the ProxylessNAS-
8bit is reported by APQ (Wang et al., 2020); and the other
baselines are all quantized to 8-bit for hardware measure-
ment and the accuracies are from the original papers with-
out considering the quantization effect. We can observe from Fig. 3 that (1) the searched networks
by our TRIPS framework consistently push forward the frontier of accuracy-FPS trade-offs, (2)
compared with the most relevant baseline EDD, we achieve a +1.3% higher accuracy with a 1.59×
FPS. The effectiveness of TRIPS over various SOTA methods that represent most of the existing
co-design directions verifies the necessity and effectiveness of co-searching all the three aspects
towards efficient DNN accelerators.

Co-exploration of networks and accelerators. Software-Hardware co-design is a significant prop-
erty of our TRIPS framework, so we further benchmark it with both searched precision and fixed-
precision over SOTA network/accelerator co-search works for a fair comparison.

FPS

A
C

C
 (%

)

A
C

C
 (%

)

FPS

A
C

C
 (%

)

FPS

+10.91%

1.48x

+5.15%

1.54x

+5.96%
4.4x

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

6.54x

6.79x

+8.01%
+5.46%

2.9x

Figure 4: Benchmark TRIPS w/ and w/o precision search (denoted as TRIPS-Mixed and TRIPS-16bit,
respectively) with SOTA network/accelerator co-exploration methods (Jiang et al., 2020b; Abdelfattah
et al., 2020) on CIFAR-10/100/ImageNet.

Table 3: Comparing the accuracy and ASIC effi-
ciency (i.e., EDP and area) of TRIPS and SOTA
co-exploration ASIC works (Yang et al., 2020).

Optimization Accuracy EDP Area
Methods (%) (J*clock-cycle) (um2)

NAS → ASIC 94.17 3.30E+06 4.83E+09
ASIC → HW-NAS 92.53 2.81E+06 3.86E+09

NASAIC 92.62 1.62E+06 3.34E+09

TRIPS 94.34 4.36E+03 5.92E+05

Co-search on FPGA. We benchmark with HS-
Co-Opt (Jiang et al., 2020b) and BSW (Ab-
delfattah et al., 2020) on ZC706 under the
same DSP limits as the baselines on CIFAR-
10/100/ImageNet. Note that all our baselines
here adopt a 16-bit fixed-point design, so we
provide TRIPS with fixed 16-bit in addition to
the one with searched precision for a fair com-
parison. From Fig. 4, we can see that (1) on both
CIFAR-10/100 dataset, TRIPS with fixed 16-bit consistently achieves a better accuracy (up to 10.91%
and 5.15%, respectively) and higher FPS (up to 2.21× and 2.15×, respectively) under the same
DSP constraint, and (2) when co-searching the precision, our method can more aggressively push
forward the FPS improvement (up to 6.79× and 6.54×, respectively on CIFAR-10/100), implying the
importance of the co-exploration of the precision dimension in addition to network and accelerator
co-explorations. Specifically, TRIPS with searched precision achieves a +5.96% higher accuracy and
4.4× FPS on ImageNet over (Jiang et al., 2020b).

8

Under review as a conference paper at ICLR 2021

Table 4: Benchmark TRIPS over NHAS (Lin et al.)
and DANCE (Choi et al., 2020) under the same
precision setting.

Co-search Accuracy Latency Area
Methods (%) (ms) (mm

2)
NHAS (Lin et al.) 70.74 1.58 5.87

TRIPS 71.70 1.25 5.50
DANCE (Choi et al., 2020) 68.70 8.13 2.73

TRIPS 72.20 2.85 2.12

Co-search on ASIC. We benchmark with NA-
SAIC, the first exploration towards network / ac-
celerator co-search targeting ASIC accelerators,
with both the co-search results and their reported
sequential optimization/hardware aware opti-
mization results (Yang et al., 2020) on CIFAR-
10 in Tab. 3. We can observe that compared
with both co-search, sequential optimization,
and hardware-aware optimization methods for
exploring the ASIC design space, our TRIPS framework consistently achieves notably improved
trade-offs between accuracy and energy delay product (EDP), which is energy multiplied with latency.
In particular, we achieve a +0.17% ∼ +1.81% higher accuracy with a 371.56 ∼ 756.88× reduction in
EDP. In the baseline implementations, most of the area is occupied by the support for heterogeneous
functionalities, which leads to severe under utilization when executing one task, thus contributing to
the surprisingly higher area and energy consumption.

We further benchmark TRIPS over other two co-search baselines targeting ASIC accelerators, i.e.,
NHAS (Lin et al.) and DANCE (Choi et al., 2020). In particular, we fix the precision of TRIPS
to be 4-bit and 16-bit to fairly compare with (1) NHAS which adopts 4-bit and (2) DANCE which
adopts 16-bit, respectively. As shown in Tab. 4, TRIPS achieves a 0.96%/3.5% higher accuracy and a
20.9%/64.9% reduction in latency together with a 6.3%/22.3% reduction in area consumption, as
compared with NHAS and DANCE, respectively, verifying the superiority of our TRIPS.

4.4 ABLATION STUDIES ABOUT TRIPS
A

C
C

 (%
)

FPS

1.11x FPS

1.75x FPS

+ 1.55% Acc. + 1.95%
Acc.

1.67x FPS

Figure 5: Accuracy vs. FPS trade-off of TRIPS,
TRIPS w/o heterogeneous sampling, and the se-
quential optimization baseline on CIFAR-100.

Scalability under the same DSP. In Fig. 5, we
show the pareto frontier of our TRIPS frame-
work under the same DSP constraint with differ-
ent accuracy and FPS trade-offs on CIFAR-100
to show our TRIPS can handle and is scalable
with a large range of DNN solutions.

Effectiveness of heterogeneous sampling. In
addition to the example and analysis in Sec. 3.2,
we further benchmark with the baseline that
adopts the same sampling strategy for updating
both the weights and precision. We integrate
the baseline’s sampling strategy into our TRIPS
framework (K = 2 for all the experiments),
termed as TRIPS w/o h-sampling, and show
the trade-offs between the achieved accuracy and FPS in Fig. 5. We find it tends to select lower
precision choices which are harmful to the overall accuracy, which is consistently inferior than that of
TRIPS with heterogeneous sampling, due to the inaccurate estimation for different precision ranking .

Comparison with sequential optimization. Due to the great flexibility on both software and
hardware side, a natural baseline is to search the network and precision based on theoretical efficiency
metrics (e.g., bit operations) and then search for the best matched accelerator given the searched
network and precision from the first search. We benchmark over results from such a design flow in
Fig. 5 on CIFAR-100 and observe that TRIPS consistently outperforms the sequential optimization
baseline, e.g., a 1.95% higher accuracy with 1.75× FPS, indicating the poor correlation between
theoretical efficiency and real-device efficiency measurement.

More ablation studies about the accelerator search engine and visualization of the searched
network, precision and accelerator can be found in Appendix C and D, respectively.

5 CONCLUSION
We propose a Triple-Search (TRIPS) framework to jointly search for the network structure, precision,
and accelerator in a differentiable manner. Our TRIPS framework adopts a heterogeneous sampling
strategy and a novel co-search pipeline that integrates a generic differentiable accelerator search
engine to achieve unbiased search with constant memory consumption. Extensive experiments
validate the superiority of TRIPS over SOTA designs in terms of accuracy and efficiency.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D
Lane. Best of both worlds: Automl codesign of a cnn and its hardware accelerator. arXiv preprint
arXiv:2002.05022, 2020.

Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee, and Vaishnav
Srinivas. Cacti 7: New tools for interconnect exploration in innovative off-chip memories. ACM
Trans. Archit. Code Optim., 14(2), June 2017. ISSN 1544-3566. doi: 10.1145/3085572. URL
https://doi.org/10.1145/3085572.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-precision neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2349–2358, 2020.

Deming Chen, Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang. xpilot: A
platform-based behavioral synthesis system. SRC TechCon, 5, 2005.

Deming Chen, Jason Cong, Yiping Fan, and Lu Wan. Lopass: A low-power architectural synthesis
system for FPGAs with interconnect estimation and optimization. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 18(4):564–577, 2009.

Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator for
deep convolutional neural networks. JSSC 2017, 52(1):127–138, 2017.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. ACM SIGARCH Computer Architecture News, 44(3):
367–379, 2016.

Yukang Chen, Gaofeng Meng, Qian Zhang, Xinbang Zhang, Liangchen Song, Shiming Xiang, and
Chunhong Pan. Joint neural architecture search and quantization. arXiv preprint arXiv:1811.09426,
2018.

Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and Jinho Lee. Dance:
Differentiable accelerator/network co-exploration. arXiv preprint arXiv:2009.06237, 2020.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam. Shidiannao:
Shifting vision processing closer to the sensor. In ACM SIGARCH Computer Architecture News,
volume 43, pp. 92–104. ACM, 2015.

Ahmed Taha Elthakeb, Prannoy Pilligundla, Fatemeh Mireshghallah, Amir Yazdanbakhsh, and Hadi
Esmaeilzadeh. Releq: A reinforcement learning approach for automatic deep quantization of
neural networks. IEEE Micro, 2020.

Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris: Scalable and
efficient neural network acceleration with 3d memory. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 751–764, 2017.

Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z Pan. Mixed precision
neural architecture search for energy efficient deep learning. In ICCAD, pp. 1–7, 2019.

Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun, Wei
Zhang, and Jason Cong. FP-DNN: An automated framework for mapping deep neural networks
onto FPGAs with RTL-HLS hybrid templates. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 152–159. IEEE, 2017.

10

https://doi.org/10.1145/3085572

Under review as a conference paper at ICLR 2021

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision, pp. 544–560. Springer, 2020.

Hai Victor Habi, Roy H Jennings, and Arnon Netzer. Hmq: Hardware friendly mixed precision
quantization block for cnns. arXiv preprint arXiv:2007.09952, 2020.

Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, Yunhe Wang, Zhenguo Li, and Yong Yu.
Dropnas: Grouped operation dropout for differentiable architecture search. In International Joint
Conference on Artificial Intelligence, 2020.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin.
Dsnas: Direct neural architecture search without parameter retraining. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12084–12092, 2020a.

Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of latency-constrained
differentiable neural architecture search. arXiv preprint arXiv:2008.05314, 2020b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, X Sharon Hu, and Yiyu Shi.
Device-circuit-architecture co-exploration for computing-in-memory neural accelerators. IEEE
Transactions on Computers, 2020a.

Weiwen Jiang, Lei Yang, Edwin H-M Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta,
Yiyu Shi, and Jingtong Hu. Hardware/software co-exploration of neural architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020b.

Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network quantization with adaptive bit-
widths. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2146–2156, 2020.

Guilin Li, Xing Zhang, Zitong Wang, Zhenguo Li, and Tong Zhang. Stacnas: Towards stable and
consistent differentiable neural architecture search. arXiv, pp. arXiv–1909, 2019.

Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and
Deming Chen. Edd: Efficient differentiable dnn architecture and implementation co-search for
embedded ai solutions. arXiv preprint arXiv:2005.02563, 2020.

Yujun Lin, Driss Hafdi, Kuan Wang, Zhijian Liu, and Song Han. Neural-hardware architecture
search.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara, R. Venkatesan, B. Khailany,
S. W. Keckler, and J. Emer. Timeloop: A systematic approach to dnn accelerator evaluation. In
2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 304–315, 2019.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang,
Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolutional
neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 26–35. ACM, 2016.

Yuxian Qiu, Jingwen Leng, Cong Guo, Quan Chen, Chao Li, Minyi Guo, and Yuhao Zhu. Adversarial
defense through network profiling based path extraction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4777–4786, 2019.

11

Under review as a conference paper at ICLR 2021

Kyle Rupnow, Yun Liang, Yinan Li, Dongbo Min, Minh Do, and Deming Chen. High level synthesis
of stereo matching: Productivity, performance, and software constraints. In 2011 International
Conference on Field-Programmable Technology, pp. 1–8. IEEE, 2011.

Y. S. Shao, B. Reagen, G. Wei, and D. Brooks. Aladdin: A pre-rtl, power-performance accelerator
simulator enabling large design space exploration of customized architectures. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pp. 97–108, 2014.

Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn accelerator efficiency through
resource partitioning. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pp. 535–547, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450348928. doi: 10.1145/3079856.3080221. URL https://doi.org/
10.1145/3079856.3080221.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4 hours.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
481–497. Springer, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Yunjie Tian, Chang Liu, Lingxi Xie, Jianbin Jiao, and Qixiang Ye. Discretization-aware architecture
search. arXiv preprint arXiv:2007.03154, 2020.

Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason Clemons, Steve Dai, Matthew
Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, et al. MAGNet:
A Modular Accelerator Generator for Neural Networks. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 2019.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12965–12974, 2020.

Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Deming Chen. Design
flow of accelerating hybrid extremely low bit-width neural network in embedded FPGA. In 2018
28th International Conference on Field Programmable Logic and Applications (FPL), 2018a.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8612–8620, 2019.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han.
Apq: Joint search for network architecture, pruning and quantization policy. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2078–2087, 2020.

Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. Deepburning: Automatic generation of
fpga-based learning accelerators for the neural network family. DAC ’16, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342360. doi: 10.1145/2897937.
2898003. URL https://doi.org/10.1145/2897937.2898003.

Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. Interpret neural networks by identifying critical
data routing paths. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8906–8914, 2018b.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
precision quantization of convnets via differentiable neural architecture search. arXiv preprint
arXiv:1812.00090, 2018.

12

https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1145/2897937.2898003

Under review as a conference paper at ICLR 2021

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Y. N. Wu, J. S. Emer, and V. Sze. Accelergy: An architecture-level energy estimation methodology
for accelerator designs. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–8, 2019.

Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and Yu-Wing Tai. Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on fpgas. In Proceedings of
the 54th Annual Design Automation Conference 2017, DAC ’17, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450349277. doi: 10.1145/3061639.3062244.
URL https://doi.org/10.1145/3061639.3062244.

Xilinx Inc. Vivado High-Level Synthesis, a. https://https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html, accessed
2019-09-16.

Xilinx Inc. Xilinx zynq-7000 soc zc706 evaluation kit. https://www.xilinx.com/
products/boards-and-kits/ek-z7-zc706-g.html, b. (Accessed on 09/30/2020).

Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas Chandra,
Weiwen Jiang, and Yiyu Shi. Co-exploration of neural architectures and heterogeneous asic
accelerator designs targeting multiple tasks. arXiv preprint arXiv:2002.04116, 2020.

Xuan Yang, Jing Pu, Blaine Burton Rister, Nikhil Bhagdikar, Stephen Richardson, Shahar Kvatinsky,
Jonathan Ragan-Kelley, Ardavan Pedram, and Mark Horowitz. A systematic approach to blocking
convolutional neural networks, 2016.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architec-
ture search with big single-stage models. arXiv preprint arXiv:2003.11142, 2020.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of
the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’15, pp. 161–170, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450333153. doi: 10.1145/2684746.2689060. URL https://doi.org/10.1145/
2684746.2689060.

Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. Caffeine:
Towards uniformed representation and acceleration for deep convolutional neural networks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018a.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming
Chen. Dnnbuilder: An automated tool for building high-performance dnn hardware accelerators
for fpgas. In Proceedings of the International Conference on Computer-Aided Design, ICCAD ’18,
New York, NY, USA, 2018b. Association for Computing Machinery. ISBN 9781450359504. doi:
10.1145/3240765.3240801. URL https://doi.org/10.1145/3240765.3240801.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

A TRAINING AND SEARCH SETTING

Search settings. For searching on CIFAR-10/100 dataset, we use half of the dataset for updating
supernet weight ω and the other half for updating network and precision parameter α and β. We
search for 90 epochs with an initial gumbel softmax temperature 5 decayed by a factor 0.975 every
epoch. For searching on ImageNet, we randomly sample 100 classes as a proxy search dataset and

13

https://doi.org/10.1145/3061639.3062244
https://https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/3240765.3240801

Under review as a conference paper at ICLR 2021

use 80% data for updating ω and the other 20% for updating α and β. We pretrain the supernet by 30
epochs without updating network architecture and precision, then search for 90 epochs with an initial
temperature 5 decayed by 0.956 every epoch, following (Wu et al., 2019). For both CIFAR-10/100
and ImageNet, we use initial learning rate 0.1 and an annealing cosine learning rate.

Training settings. For CIFAR-10/100, we train the derived network for 600 epochs with a 0.1
initial learning rate and an annealing cosine learning rate on a single NVIDIA RTX-2080Ti gpu
following (Liu et al., 2018). For ImageNet, we adopt a 0.05 initial learning rate and an annealing
cosine learning rate for 150 epochs with four NVIDIA Tesla V100 gpus.

B ACCELERATOR SEARCH SPACE

To flexibly maintain the balance between hardware resource consumption and throughput across
different generated networks, we employ the chunk-wise pipeline styled accelerator architecture
inspired by (Shen et al., 2017; Zhang et al., 2018b). To enable the automatic hardware optimization
and explore as much as the performance frontier, we further free up the hardware configurations
during the co-optimization. Adopted from (Chen et al., 2017; Zhang et al., 2015; Yang et al., 2016),
these configurations, as illustrated in Fig. 1, cover 1) parallel processing elements (PE) settings:
number and inter-connections of PEs, 2) buffer management: allocation of lower memory levels
between input, weight and output, 3) tiling and scheduling of MAC(Multiply and Accumulate)
computations and 4) layer allocation: ways to assign each layer to the corresponding pipeline stage
(sub-accelerator). All the above configurations are formatted and maintained through vectors of
options to be compatible with the optimization formulation in Sec. 3. Taking AlexNet as an example
workload, the total accelerator space size can reach up to 10

5 for each sub-accelerator and the space
can go exponentially larger as the number of sub-accelerator (pipeline chunks) increases.

C ABLATION STUDIES ABOUT THE ACCELERATOR SEARCH ENGINE

The proposed accelerator search engine is one key enabler of our TRIPS framework. To evaluate
its efficacy, we compare the accelerator efficiency of the TRIPS generated accelerators with SOTA
accelerators under the same datasets and models. For FPGA-based accelerators, we consider three
representative including (Qiu et al., 2016; Xiao et al., 2017; Zhang et al., 2018b) on two DNN models
(AlexNet and VGG16) on ImageNet. For a fair comparison, when using our own engine to generate
optimal accelerators, we adopt the same precision and FPGA resource as the baselines. The results
in Tab. 5 show that the TRIPS generated accelerators outperform both SOTA expert-designed and
tool-generated accelerators under the same dataset, DNNs, and FPGA resources. For example, the
TRIPS generated accelerators achieve up to 2.16× increase in throughput on VGG16. The consistent
better performance of our auto generated accelerators validates the effectiveness of our accelerator
search engine in navigating the large and discrete design space of DNN accelerators to search for
optimal DNN accelerators.

Table 5: TRIPS generated FPGA accelerators vs. SOTA FPGA accelerators built on top of Zynq
XC70Z45 with 200 Mhz applied on different networks with fixed 16-bit on ImageNet.

(Zhang et al., 2018b) (Xiao et al., 2017) (Qiu et al., 2016) TRIPS generated (Zhang et al., 2018b) TRIPS generated
Network VGG16 VGG16 VGG16 VGG16 AlexNet AlexNet

Resource Utilization 680/900 DSP 824/900 DSP 780/900 DSP 723/900 DSP 808/900 DSP 704/900 DSP
Performance (GOP/s) 262 230 137 291 247 272

D VISUALIZATION OF SEARCHED NETWORK, PRECISION, AND ACCELERATOR.

Fig. 6 visualizes the searched network, precision, and accelerator achieved a 72.2% top-1 accuracy
on ImageNet and 110 FPS on ZC706 FPGA. We conclude the insights below.

Insights for the searched network. We find that wide-shallow networks will better favor real device
efficiency on ZC706 FPGA while achieve a similar accuracy. We conjecture the reason is that wider
networks offer more opportunities for feature/channel-wise parallelism when batch size equals to
one, leading to higher resource utilization and thus overall higher throughput.

14

Under review as a conference paper at ICLR 2021

k5
_e

1
8b

it

sk
ip

sk
ip

sk
ip

sk
ip

k5
_e

3
6b

it

sk
ip

sk
ip

k5
_e

6
8b

it

k5
_e

1_
g2

 6
bi

t

k5
_e

1_
g2

 8
bi

t

k5
_e

1
6b

it

k5
_e

1_
g2

 6
bi

t

k5
_e

6
8b

it

k5
_e

6
8b

it

k3
_e

3
6b

it

k5
_e

3
8b

it

k5
_e

6
8b

it

k5
_e

6
6b

it

k5
_e

3
6b

it

k5
_e

3
8b

it

k5
_e

6
8b

it

Chunk1
Spatially tiled across feature height

and width

Chunk2
Spatially tiled across feature height

and width

Chunk3
Spatially tiled across input and

output channels

Chunk4
Spatially tiled across input and

output channels

Chunk5
Spatially tiled across input and

output channels

Chunk6
Spatially tiled across input and

output channels

DW Chunk1
Spatially tiled across feature height

and width

DW Chunk2
Spatially tiled across channels

Figure 6: Visualization of the searched network, precision, and accelerator that achieves a 72.2% top
-1 accuracy on ImageNet and 110 FPS on ZC706 FPGA. The block definition follows (Wu et al.,
2019).

Insights for the searched accelerator of TRIPS. The whole network is partitioned into multiple
pipeline chunks to prioritize the resulting throughput, with each color representing one chunk.
Deterministically, two blocks with different quantization schemes will not be put into one chunk due
to hardware constraints. Adopted from the design in (Shen et al., 2017), there is no dependency of
computation among blocks, so the pipeline chunks can take non-consecutive layers and better group
the layers with similar dimensions together. Generally, as observed in Fig. 6 the chunks which take
mostly the early blocks of the network favor spatially tiling the feature map height and width as it
offers more parallelism, while the later chunks tends to choose the architecture to tile channels as,
after down-sampling, parallelism opportunity is more prominent along channel dimensions.

15

	Introduction
	Related works
	The Proposed Techniques
	TRIPS: Formulation
	TRIPS Enabler 1: Heterogeneous sampling for precision search
	TRIPS Enabler 2: Differentiable Accelerator Search Engine
	TRIPS: The overall Co-search Framework

	Experiment Results
	Experiment Setup
	Benchmark search efficiency
	Benchmark over SOTA methods
	Ablation studies about TRIPS

	Conclusion
	Training and search setting
	Accelerator search space
	Ablation studies about the accelerator search engine
	Visualization of searched network, precision, and accelerator.

