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Abstract—We introduce ROS-X-Habitat, a software interface
that bridges the AI Habitat platform for embodied learning-based
agents with other robotics resources via ROS. This interface
not only offers standardized communication protocols between
embodied agents and simulators, but also enables physically and
photorealistic simulation that benefits the training and/or testing
of vision-based embodied agents. With this interface, roboticists
can evaluate their own Habitat RL agents in another ROS-
based simulator or use Habitat Sim v2 as the test bed for
their own robotic algorithms. Through in silico experiments,
we demonstrate that ROS-X-Habitat has minimal impact on
the navigation performance and simulation speed of a Habitat
RGBD agent; that a standard set of ROS mapping, planning and
navigation tools can run in Habitat Sim v2; and that a Habitat
agent can run in the standard ROS simulator Gazebo.

Keywords-Embodied Visual Agents; Robotic Middleware; Sim-
ulation

I. INTRODUCTION

Since the earliest days of robotics, researchers have sought

to build embodied agents to perform a variety of jobs, such

as assistive tasks in factories [1] or wildfire surveillance

[2]. Following tremendous advancements in deep learning

and convolutional neural networks over the past decade, re-

searchers have been able to develop learning-based embodied

agents that interact with the real world on the basis of visual

observations [3]. Software platforms such as OpenAI Gym

[4], Unity ML-Agents Toolkit [5], Nvidia Isaac Sim [6] and AI

Habitat [7] have emerged to address the community’s need for

training and evaluating learning-based embodied visual agents

end-to-end. Our research group was particularly intrigued by

the AI Habitat platform, because this open source platform

offers developers not only flexibility to tailor the software to

their own needs, but also a high-performance photorealistic

simulator recently enhanced with the Bullet physics engine

[8], as well as access to a sizeable library of visually-rich

scanned 3D environments with which to bridge the sim2real
performance gap for visual agents [9].

Even though these platforms allow roboticists to reuse

existing learning algorithms and train visual agents in sim-

ulators with ease, there is a critical step to using them for

embodied agents which is only partially addressed: Connecting

the trained agent with a robot. After training a learning-

based agent in simulation one would like to take advantage

of the extensive set of tools and knowledge from the robotics

Fig. 1: High-level overview of ros_x_habitat’s architec-

ture. In this paper we demonstrate the system’s operation under

modes (a), (b) and (c) to interface ROS or Habitat agents with a

ROS-based simulator or Habitat Sim v2. Although not demon-

strated in the paper, the modular design of ros_x_habitat
allows easy embodiment of a Habitat visual navigation agent

on a physical robot (such as the LoCoBot [12]).

community to make it easy to embody that agent. One par-

ticularly popular tool from the robotics community is ROS, a

robotics-focused middleware platform with extensive support

for classical robotic mapping, planning and control algorithms,

as well as drivers for a wide variety of computing, sensing and

actuation hardware. But ROS’ support for direct interfacing

with RL agents is limited, and Gazebo—the standard simu-

lation environment used for ROS systems—suffers from two

significant shortcomings when applied to this task: (i) It lacks

the level of photorealism required to allow vision-based agents

trained with synthetic inputs to perform well in real world

scenarios [9], [10]; (ii) It cannot match the simulation speed

of tools specifically designed to train large-scale reinforcement

learning (RL) agents [11].

In order to take advantage of the strengths and overcome

the weaknesses of these two independent sets of tools, in this

paper we present ROS-X-Habitat (“ROS-Cross-Habitat”), an

interface that bridges the AI Habitat training platform with

the ROS ecosystem. Figure 1 shows a simplified view of
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the interface’s architecture. The interface makes the follow-

ing contributions to the robotics community: (i) It allows

embodied agents to leverage Habitat Sim v2’s physics-based

simulation capability through the interface. We demonstrate

that the performance of a Habitat agent trained in a simulation

environment without physics degrades only slightly when

physics is turned on via the interface. This result suggests

that high throughput training without the overhead of ROS

and physics can produce agents that are still effective once

these additional layers are added. (ii) It allows AI Habitat’s

vision-based RL agents to be evaluated in ROS, so RL agent

developers can take advantage of ROS’s rich set of tools and

community support, as well as Gazebo’s ability to let users

author 3D assets and customary testing scenes. Although not

demonstrated here, this bridge to ROS dramatically shortens

the path to embodying the Habitat agents in a physical robot.

(iii) It allows other embodied agents implemented in ROS

packages—for example, classical navigation algorithms such

as [13], [14]—access to the rich 3D environments avail-

able in Habitat Sim v2. Consequently, algorithms from other

sources can be evaluated in these photorealistic environments.

Additional details and features of the project can be found

in [15], [16]. The source code of the interface is available at

https://github.com/ericchen321/ros x habitat.

II. RELATED WORK

Based on the objectives of our work, we review previ-

ous work in three relevant areas of research: (i) embodied

agents, (ii) robotic middleware, (iii) simulators and datasets

for training and evaluating learning-based embodied agents or

for evaluating classical embodied agents in general.

A. Embodied Agents

We consider two categories of embodied agents commonly

used to complete navigation tasks: Classical robotics ap-

proaches and learning-based.

Most commonly deployed classical embodied agents do

navigation in two phases: Construct a map of the environment

using, for example, a SLAM algorithm (such as [17], [18],

[19]), and then use the map to plan out a path to the goal

position (such as [13], [14]). While many packages that follow

this approach are available in ROS, most recent photorealistic,

physics-capable simulators (see Section II-B) do not interface

to ROS and so evaluating classical agents in those simulators

is difficult. So-called “end-to-end” learning-based agents use

a neural network to produce a sequence of actions directly

from visual observations and localization data without relying

on prior maps [7], [20], [21]. Another popular approach is

to combine learning-based agents with classical mapping-

then-planning [22], [23], [24]. But none of these frameworks

connect directly to ROS.

Although not fundamental to their designs, a common

distinction between classical and visual learning-based agents

is that the former operate in a continuous action space while

the latter (especially RL agents) are often trained to produce

discrete actions. Continuous action spaces are more represen-

tative of how physical robots actuate [25], but training for

these spaces has higher computational cost [26]. As an ex-

ample, Habitat’s default PointGoal navigation agents have an

action space consisting of four actions [7]: move_forward,

turn_left, turn_right, and stop. To simulate these

actions, Habitat Sim teleports the robot from one state to

another without taking account of interactions between the

agent and other objects at intermediate states. It is certainly

possible to map from discrete to continuous actions, but it

is not clear a priori that embodying a discrete agent into a

continuous action space in this manner will produce good

results.

B. Simulators and Datasets

The exploding interest in RL agents, and particularly vision-

based RL agents, has put a premium on simulation speed and

photorealism. Gazebo [27] has been the canonical choice for

simulation in the ROS community; it benefits from extensive

community support and a huge set of community-shared

prebuilt assets, but lacks photorealism and high simulation

speed. Unity is a powerful game engine, and the Unity ML-

Agents Toolkit available to researchers provides simulation

environments suitable for embodied agents [5], but the toolkit

does not provide photorealistic simulation spaces by default

and lacks compatibility with off-the-shelf 3D datasets such

as Replica [28] or Matterport3D [29]. Isaac Sim [6] shows

great promise in terms of configurability and photorealism,

but is not currently open-source. The recently released Sapien

[30] platform offers a photorealistic and physics-rich simulated

environment, but currently provides limited support for tasks

other than motion planning.

In this paper we explore the use of Habitat Sim v2 from

the AI Habitat platform [31] for several reasons: (i) Extremely

high speed simulation. This feature is particularly useful for

RL agents, since agent performance may continue to improve

even after many millions of training steps. (ii) Photorealistic

rendering of scanned spaces. Habitat Sim v2 can render

photorealistic scenes (including depth maps) from Habitat’s

native datasets such as Replica [28] and ReplicaCAD [31].

The Habitat framework’s modular design [7], [31] offers a

seamless interface to many prior photorealistic 3D scene

datasets, including Matterport3D [29] and Gibson [32]. For

this paper we use the Matterport3D test set, since it is the only

publicly available dataset for which Habitat navigation results

have been reported against which we can compare (albeit for

v1 agents) [7]. (iii) Simulation of many different tasks. We

focus here on PointGoal navigation [7] from Habitat v1, but

object picking has also been demonstrated [31].

C. Robotics Middleware

Robotics middleware [33] is an abstraction layer that resides

between the robotics software and the operating system (which

is itself abstracting the underlying hardware). Middleware

provides standardized APIs to sensors, actuators, and com-

munication; design modularity; and portability.
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A variety of robotics middleware systems have been de-

veloped (for example, see [34]), each with its own strengths

and limitations. For example, while Microsoft RDS supports

multiple programming languages, it runs only on the Windows

OS[35]. OROCOS offers its own optimized runtime environ-

ment for real-time applications, but it does not have a graphical

environment for drag-and-drop development nor a simulation

environment [35]. ROS (Robot Operating System) is a free,

open-source and popular robotics middleware introduced in

2007 [36]. Among its features: (i) It promotes modular,

robust and potentially distributed designs; (ii) The huge user

community has generated thousands of ready-to-use packages,

including drivers for all common robotics hardware [36], [37],

[38].

Given the popularity of ROS, it should come as no surprise

that others have sought to build an interface between an

embodied AI platform and the ROS ecosystem. PathBench is

a unified interface that allows a multitude of path-planning

algorithms to be evaluated under ROS and Gazebo [39].

Zamora et al. [40] used ROS as a bridge between OpenAI

Gym and Gazebo, but did not consider other simulation

environments which could provide photorealism. The Habitat-

PyRobot Bridge (HaPy) [41] is particularly related to our

work: it provides integration between Habitat agents and

PyRobot, which is itself an interface on top of ROS to control

different robots [42]. A key distinction between our work and

HaPy-PyRobot is a design decision about how much the user

is exposed to ROS. PyRobot abstracts ROS components away

from top-level APIs [42], thus requiring less familiarity with

ROS from its users. ROS-X-Habitat exposes ROS components

to a greater extent, thus requiring more familiarity with ROS

but allowing users greater flexibility to take advantage of the

full ROS ecosystem. Also, HaPy does not currently support

physics-based simulation from Habitat Sim.

III. SYSTEM DESIGN

A. Requirements

The interface should allow users to:

1) Leverage Habitat Sim v2’s full physics-based simula-
tion capability to provide a more realistic environment
for embodied agents. This step is non-trivial because

(at the current time) Habitat Sim v2 cannot simulate

agents which produce discrete actions with full dynamic

physics. In order to do so we have implemented API

calls in the interface to enable physics-based simulation.

Section IV demonstrates success on this requirement for

a learned Habitat RGBD navigation agent, and Section V

demonstrates success for a classical ROS planner.

2) Evaluate an agent inside a simulator through the in-
terface with minimal performance impact. Section IV

reports a number of experiments designed to gauge the

effect of the ROS middleware on the performance of the

Habitat platform components.

3) Deploy ROS-based planners to navigate within Habi-
tat Sim v2, thus allowing researchers to test planners
on a huge variety of photorealistic 3D scenes. Section V

demonstrates that this combination is feasible using the

Matterport 3D dataset.

4) Evaluate Habitat agents in other simulation environ-
ments with ROS bridges or on physical hardware.
Section VI demonstrates this capability in Gazebo, and

once we know that this combination works the jump to

other simulators or a real robot is much less daunting.

5) Extend or customize its functionality for bridging
with other tools from both the ROS and Habitat
frameworks. In Section III-B we show the modular

design of ROS-X-Habitat. The exposure of ROS nodes,

topics and services allows users to interface to other ROS

tools (such as RViz) or Habitat’s visualization modules.

B. Architecture

We designed ROS-X-Habitat as a ROS Noetic package

(ros_x_habitat), written in Python and consisting of a

collection of ROS nodes, topics and services. Following the

five requirements we established, we defined three operating

modes for the interface, as illustrated in Figure 2.

(a) A Habitat agent navigates in a Habitat Sim-rendered
scene (with or without physics) through ROS. Note that

this is not an expected use case for ros_x_habitat;

after all, running a Habitat agent in Habitat Sim is

precisely what AI Habitat is already designed to do. We

include this operating mode to demonstrate that (i) a

learning-based embodied agent trained in an environ-

ment without physics can be simulated with physics, and

(ii) the ros_x_habitat interface does not introduce

any performance penalty and the runtime overhead is not

excessive.

(b) A ROS-based planner (move_base [14] in our case)
navigates in a Habitat Sim-rendered scene (with
physics). Here we replace /agent_node with a ROS-

based planner node in the control loop. During navigation,

we feed visual observations and a prebuilt 2D occupancy

map to the ROS planner for localization and trajectory

planning. Note that (i) depth observations are emulated

as laser readings with /depthimage_to_laserscan
[43] before being injected into the planner.

(c) A Habitat agent navigates in a Gazebo-rendered scene.
Although not demonstrated here, the nodes we designed

for this mode also make it easy to swap in other ROS-

bridged simulators or physical robots because those enti-

ties typically expose a ROS interface similar to Gazebo’s.

IV. ANALYSIS OF IMPACT OF INTERFACE AND PHYSICS

A ROS bridge for the Habitat platform would be ineffective

if it cannot leverage Habitat Sim v2’s physics-based simula-

tion. While Habitat Sim v2 offers physics-based simulation,

the vision-based navigation agents that come with the platform

were trained without physics, and Habitat Sim v2 currently

cannot simulate these agents accurately with physics because

they produce discrete actions. Moreover, if upon introducing

physics the bridge either significantly degrades the navigation

performance of an embodied agent or leads to unacceptable
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Fig. 2: The ros_x_habitat architecture under each operating mode. (a) Simulating a Habitat RL agent in Habitat Sim v2.

If physics is turned on, each discrete action would be converted to a sequence of velocity commands in the node encapsulating

the Habitat environment (env_node) following Algorithm 1. (b) Simulating a ROS-based planner in a physics-enabled and

photorealistic Habitat Sim v2 environment. (c) Simulating a Habitat RL agent in a Gazebo environment. Note that for simplicity,

we omitted nodes, topics and services not being the gist of the interface’s operation—for example, map topics and nodes under

operating mode (b).

TABLE I: Simulation in Habitat Sim v2 with versus without physics. Habitat Sim v2 does not currently support

simulation with physics for its visual navigation agents, but ros_x_habitat allows such cross-simulation.

Agent’s Geometry Agent’s Physical Properties Simulation of Motion
Simulation
without physics

A cylinder 0.1m in radius,
1.5m in height.

Friction coefficient is undefined;
mass defined but not used for
simulation.

World state advances by one action
step for each discrete action sim-
ulated; for each action the agent
is translated or rotated instanta-
neously; no forces simulated.

Simulation with
physics

Defined by the 3D asset
attached to agent’s scene
node.

Friction coefficient is defined;
mass is defined and used to com-
pute dynamics.

World state advances by one con-
tinuous step for each velocity com-
mand; forces fully simulated.

runtime overhead it would still be an impractical design. We

dedicate this section to answer two research questions inspired

by these issues.

(RQ1) Given a Habitat navigation agent that was trained
in Habitat Sim using discrete time and without physics,
how effective is its navigation in the same environments but
with continuous time and physics enabled? Having a Habitat

agent’s discrete actions converted to a sequence of velocity

commands allows us to leverage Habitat Sim’s physics engine

to simulate the actuation process in a more realistic fashion.

We would like to measure how much of an impact physics

has on navigation performance and execution speed.

(RQ2) Does our implementation using ROS middleware
impair navigation performance or introduce unaccept-
able runtime overhead? First, we would like to verify that

adding the ROS interface does not alter a Habitat agent’s

navigation performance within Habitat Sim. Second, we would

like to measure how much ROS overhead impacts execution

speed. If the simulation throughput drops below real-time—

one simulated second takes more than one second to simulate

computationally—then we lose a significant benefit of simu-

lation compared to testing in the real-world.

Think of Operating Mode (a) of ros_x_habitat as en-

abling a form of regression test: The goal is to demonstrate that

physics and/or the ROS interface do not break the impressive

capabilities of pre-trained Habitat agents. The research ques-

tions specify our regression criteria, and the subsections below

describe the experiments used to test them (Section IV-A) and

the results of those experiments (Section IV-B).

A. Experiment Setup

Agent, task and dataset. We evaluate the Habitat v2 RGBD

agent [31] on the PointGoal navigation task (in which the agent

navigates from a pre-set initial position to a goal position [7]).

The agent was trained in Habitat Sim v2, but without physics

and in discrete time. It can output one of four discrete action

commands at each timestep: move_forward, turn_left,

turn_right or stop [7]. We used the 1,008 navigation

episodes (each episode is an instance of the task) from the

Matterport3D test set [29]. Because the original Habitat RGBD

agent was evaluated on the Matterport3D dataset, using it leads

to more meaningful benchmarking.

Evaluation metrics. We employ the Success Weighted by

Path Length (spl) metric to evaluate the RGBD agent’s

navigation performance in each episode [7], [31]. This met-

ric lies in the range [0, 1] and measures the length of the

traversed path relative to the shortest path from the source

to the destination; closer to 1 implies a shorter path and

thus better performance. To capture our interface’s impact on

execution speed we measured the total wall clock runtime
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(running_time) of evaluating an agent’s navigation over all

1, 008 episodes, which accounts for overheads introduced by

ROS, such as initialization and inter-process communication.

Enabling physics and mapping from discrete to contin-
uous action space. In Table I we summarize how Habitat

Sim v2 operates with and without physics, where (i) The

3D asset we attached to our agent is the LoCoBot model

provided in Habitat Sim’s code base [7]; (ii) An action step
is defined as one update of the world’s state due to the agent

completing an action in a discrete time simulation without

physics; (iii) A continuous step is defined as the advancement

of a world’s state over a predefined time interval ( 1
60 second

in our experiments) in a continuous time simulation with

physics enabled. As suggested in Table I, simulation without

physics teleports the agent instantaneously to the destination

position of the discrete action, whereas simulation with physics

requires the agent to move through space at a specified

velocity. To transfer the existing RGBD agent, or any agent

that outputs discrete actions, to the continuous time simulation

with physics, we use Algorithm 1 to map each discrete action

to a sequence of velocity commands, where (i) control period
is a user-supplied parameter and defines the time in seconds it

takes an agent to complete an action step. Set to 1 second

in our experiments; (ii) steps per sec defines the number

of continuous steps Habitat Sim advances for each second of

simulated time. Set to 60 in our experiments; (iii) the angular

velocities are measured in degrees / second; and (iv) the linear

velocities are measured in meters / second.

Algorithm 1 Convert a discrete action from a Habitat agent to

a sequence of velocities. The conversion allows the interface

to invoke Habitat Sim v2’s built-in API (step_physics())

to simulate the action with physics.

Require: a discrete action as one of the following:

move_forward, turn_left, or turn_right
1: initialize linear velocity, angular velocity as zero vec-

tors

2: num steps = control period · steps per sec
3: if action == move_forward then
4: linear velocity = [0.25/control period, 0, 0]
5: else if action == turn_left then
6: angular velocity = [0, 0, 10.0/control period]
7: else if action == turn_right then
8: angular velocity = [0, 0,−10.0/control period]
9: end if

10: for count steps = 1, 2, . . . , num steps do
11: env.step physics((linear velocity, angular velocity))
12: end for

Experiment Configurations. We conducted our experi-

ments on four configurations in order to independently observe

the impact of introducing physics-based simulation and adding

ROS. (i) -Physics & -ROS. We have the Habitat RGBD

agent actuate in its default, discrete action space without

using the ROS middleware, and we run Habitat Sim without

Fig. 3: Distribution of spl under the four experimental config-

urations. Failed episodes have spl at 0. Under Configurations

(a) and (b), the mean spl produced by the v2 RGBD agent is

0.495 without physics, which is close to the mean spl (0.53)

reported for the v1 RGBD agent in [7]. Under Configurations

(c) and (d), the spl dropped slightly to 0.455 after physics

was enabled.

physics turned on. This setting is the configuration in which

the agent was trained, and serves as a baseline for our ex-

periment. (ii) +Physics & -ROS. We enable physics-based

simulation, but do not use ROS. (iii) -Physics & +ROS.

The Habitat RGBD agent communicates with Habitat Sim

v2 through the ROS interface, as shown in Figure 2(a). The

agent still navigates using its discrete action space, and the

simulation is run without physics. (iv) +Physics & +ROS.

The combination of the previous two settings.

Evaluation platform. We ran all experiments on a desktop

with an i7-10700K CPU, 64 GB of RAM, and an NVIDIA

RTX 3070 GPU under Ubuntu 20.04, ROS Noetic and Habitat

v0.2.0.

B. Results and Analysis

In this section we present the results from our experiments

and seek to answer the two research questions posed earlier.

(RQ1) Given a Habitat navigation agent that was trained
in Habitat Sim using discrete time and without physics,
how effective is its navigation in the same environments
but with continuous time and physics enabled? Comparing

subplots (a) and (c) in Figure 3 we can see the effect that

enabling physics has on the distribution of spl over the

1,008 episodes. We see that the number of failed episodes

(those with spl = 0.0) increased (by 129) after we mapped

actions to velocities and introduced physics-based simulation,

but the average spl only dropped slightly (from 0.495 to

0.455). We visually examined the 129 episodes in which the

agent navigated successfully in the discrete action space but

failed in the continuous action space. For the majority of them

(80/129) the failure was due to the robot being “stuck”, i.e.

the agent is not able to move forward but remains within
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Fig. 4: Total runtime under the four experimental configura-

tions for all 1, 008 episodes.

the scene. In some episodes the agent was stuck because

the agent’s movement is constrained to two dimensions by

our implementation of Algorithm 1: It was not able to climb

stairs when move_forward is converted to a sequence

of planar velocities. This problem does not manifest in the

discrete time mode without physics: it appears that the agent

is automatically teleported to the correct height for whatever

planar position it should occupy.

Figure 4 shows our timing result. Adding just physics

(without ROS) slows Habitat by a factor of roughly eight,

as extra time was required for simulating a discrete action

as a sequence of continuous actions (Algorithm 1), and for

simulator reset (to load and delete physics-based object assets

and reconfigure the simulator).

We conclude that using physics will significantly reduce

the throughput of the simulation engine, but the modest

performance degradation confirms that training RL agents in

the simplistic but high-throughput discrete action configuration

without physics can produce reasonable results even for agents

intended to be used in more realistic environments [26], and

the full physics need not be turned on until validation or even

final testing.

(RQ2) Does our implementation using ROS middleware
impair navigation performance or introduce unacceptable
runtime overhead? In terms of navigation performance, once

we removed non-determinism from the system we were able

to show that the introduction of ROS did not affect navigation

performance regardless of whether physics was enabled: Each

episode had the exact same number of steps with and without

ROS, and the SPL discrepancies were at the level of floating

point round-off. Comparing the distributions in the left and

right columns of figure 3 shows the latter effect qualitatively.

Turning to execution time: Figure 4 shows that adding ROS

increases total runtime by roughly a factor of five (without

physics) and less than 20% (with physics). The increases

are due to the overheads from inter-process communication

between ROS nodes, as well as intra-process communication

Fig. 5: ROS-based planner move_base navigating in Matter-

port3D scene 2t7WUuJeko7 simulated by Habitat Sim v2.

(a) The agent’s final position overlayed on top of the map

build by rtab_map_ros. (b) Top-down map of the scene

from Habitat Sim v2. The blue curve indicates the agent’s

trajectory. Blue square: starting position of the agent. Yellow

dot: final position. Red dot: goal position.

Fig. 6: ROS-based planner move_base navigating in Mat-

terport3D scene RPmz2sHmrrY simulated by Habitat Sim.

(a) The agent’s final position and laser-scanned map. (b) Top-

down map from Habitat Sim.

between threads running various service handlers and sub-

scriber callbacks within each node. Although the increase in

running time is significant, it is acceptable: with overhead

from both ROS and physics taken into account, simulating

over 274, 000 action steps across the full set of episodes in

less than 30 hours implies an average computation time of

less than 0.4 seconds for each action step lasting one second

of simulated time; consequently, the throughput is more than

twice real-time.

V. NAVIGATION OF ROS-BASED PLANNERS IN HABITAT

SIM

For robotics researchers interested in designing and testing

navigation algorithms—be they classical or RL—we believe

that this configuration of ros_x_habitat will be most

useful, as Habitat Sim provides a novel, high throughput,

photorealistic simulation environment in which to test such

algorithms. In this section we do not seek to show the merits

of a particular mapping, planning or navigation system, but

simply that some standard packages from ROS can be easily

and successfully connected to Habitat Sim in the configuration

shown in Figure 2(b).
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Fig. 7: Maps showing the Habitat v2 RGBD agent navigating

in three episodes in the House scene. The blue spheres

indicate the starting positions of each episode; the red spheres

indicate the goal positions of each episode. The green curves

represent paths traversed by the agent.

First, we mapped two scenes from the Matterport3D

dataset with rtab_map_ros [17]. Second, we attached the

LoCoBot [7] asset to the agent in Habitat Sim (the same

asset used in the previous section’s experiments). Finally, we

manually set a goal position for the move_base [14] planner.

Figures 5 and 6 show the generated map (left) and ground-

truth map (right) overlaid with the final agent position and

sensor readings (left) and path (right) for the two scenes. The

planner failed to reach the goal in Figure 5 but succeeded in

Figure 6.

We observed during the simulations that the agent often had

a hard time localizing itself, especially in cluttered regions.

We expect that with some tuning of the mapping, planning

and navigation algorithms’ parameters we could achieve better

performance.

VI. NAVIGATION OF HABITAT AGENTS IN GAZEBO

For RL researchers interested in testing their agents on

real robots, this configuration demonstrates the benefits of

ros_x_habitat. Researchers familiar with ROS know that

despite the significant sim2real gap in the Gazebo simulator,

it can be an effective first target during design and testing

because it will expose whole classes of common design bugs,

such as incorrectly typed or connected data flows, coordinate

transform errors, and gross timing issues.

Although we do not demonstrate a Habitat agent connected

to a physical robot in this paper, by demonstrating a Habitat

agent connected to Gazebo we show that ros_x_habitat
can allow connection of Habitat agents to other simulation

environments that have ROS bridges. Note that we do not

expect the Habitat agent to perform particularly well in this

Gazebo environment since it was trained in the much richer

visual and geometric environments of Matterport3D in Habitat

Sim.

Injecting the Matterport3D dataset into Gazebo is

not practical, so we used the House scene from the

turtlebot3_gazebo package [44] to build three naviga-

tion episodes of increasing path length as shown in Figure

7. Then we instantiate a Habitat v2 RGBD agent inside each

episode, and let it navigate until it reaches the goal or has

generated 500 actions. Since we only intend to show that this

configuration works, we do not report quantitative metrics such

as spl for these episodes. We see that the agent succeeded in

the two shorter of the three episodes, although in the middle

episode the agent took a path much longer than would be

optimal.

VII. CONCLUSION AND FUTURE WORK

We presented an extensible interface that bridges the AI

Habitat platform with ROS middleware. Through this inter-

face, researchers can develop and test their embodied agents

in both established simulators such as Gazebo or the state-of-

the-art Habitat Sim v2. Moreover, our interface implements the

necessary transformations to allow agents trained in the orig-

inal, high-throughput discrete time Habitat Sim environment

without physics to navigate in the more realistic continuous

time environment with physics available in Habitat Sim v2.

Using the SPL metric, we show that our interface introduces

negligible impacts on the navigation performance of embodied

agents in a discrete action space, and we show that if the agents

are actuated in a continuous action space with physics-based

simulation enabled, the run time overhead is still acceptable.

Although we only include two simulator options in our current

work, our modular design allows easy integration of additional

robotic embodiments, such as other simulators or physical

robots.

The interface is still in its infancy. Some planned work

for the future of ros_x_habitat include: (i) Allowing

the simulation of embodied agents trained for tasks other

than navigation, such as the object picking task introduced

in Habitat v2 [31]. (ii) Allowing classical ROS planners to be

evaluated on Habitat’s navigation metrics, such as spl when

simulated under Habitat Sim v2. (iii) Deploying an embodied

Habitat agent on physical robot(s).
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